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Abstract

Link prediction is a crucial task in graph machine learning, where the goal is to infer miss-
ing or future links within a graph. Traditional approaches leverage heuristic methods based
on widely observed connectivity patterns, offering broad applicability and generalizability
without the need for model training. Despite their utility, these methods are limited by their
reliance on human-derived heuristics and lack the adaptability of data-driven approaches.
Conversely, parametric link predictors excel in automatically learning the connectivity pat-
terns from data and achieving state-of-the-art but fail short to directly transfer across differ-
ent graphs. Instead, it requires the cost of extensive training and hyperparameter optimiza-
tion to adapt to the target graph. In this work, we introduce the Universal Link Predictor
(UniLP), a novel model that combines the generalizability of heuristic approaches with the
pattern learning capabilities of parametric models. UniLP is designed to autonomously
identify connectivity patterns across diverse graphs, ready for immediate application to any
unseen graph dataset without targeted training. We address the challenge of conflicting
connectivity patterns—arising from the unique distributions of different graphs—through
the implementation of In-context Learning (ICL). This approach allows UniLP to dynami-
cally adjust to various target graphs based on contextual demonstrations, thereby avoiding
negative transfer. Through rigorous experimentation, we demonstrate UniLP’s effectiveness
in adapting to new, unseen graphs at test time, showcasing its ability to perform comparably
or even outperform parametric models that have been finetuned for specific datasets. Our
findings highlight UniLP’s potential to set a new standard in link prediction, combining the
strengths of heuristic and parametric methods in a single, versatile framework.

1 Introduction

Graph-structured data is ubiquitous across diverse domains, including social networks (Liben-Nowell &
Kleinberg, 2003), protein-protein interactions (Szklarczyk et al., 2019), movie recommendations (Koren et al.,
2009), and citation networks (Yang et al., 2016). It encapsulates the complex relationships among entities,
serving as a powerful data structure for analytical exploration. At the heart of graph analysis lies the task
of link prediction (LP) (Yang et al., 2015; Dong et al., 2022; Guo et al., 2022), a crucial problem aimed at
forecasting missing or future connections within these networks. Over the years, the quest to enhance LP
accuracy has advanced the development of numerous methodologies (Kumar et al., 2020), broadly categorized
into two main classes of approaches.

The first line of works is non-parametric heuristics link predictors, including Common Neighbor (CN) (Liben-
Nowell & Kleinberg, 2003), Preferential Attachment (PA) (Barabási & Albert, 1999), Resource Allocation
(RA) (Zhou et al., 2009) and Katz index (Katz, 1953). By discovering and abstracting the universal structural
properties underlying different graphs (Barabási & Albert, 1999; Watts & Strogatz, 1998; Holland et al.,
1983), heuristics methods are developed based on observing the connectivity patterns existing in real-world
graph datasets. For example, CN assumes the tendency of triadic closure (Easley et al., 2010), such that a
friend’s friend is likely to be friends in a social network. These heuristics link predictors can be readily applied
to any graph dataset with great generalizability. However, this approach relies on predefined heuristics,
crafted from human expertise into the graph connectivity. Despite the initial success via capturing one
specific connectivity pattern, they fail to capture all the effective structural features in the link prediction,
leading to suboptimal performance when applied indiscriminately.
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The other line of works is parametric link predictors, which automatically learn the connectivity patterns
by fitting the LP models to the target graphs. These parametric methods, especially those Graph Neural
Networks (Kipf & Welling, 2017; Hamilton et al., 2018) for Link Prediction (GNN4LP), have dominated
the leaderboard of the link prediction tasks (Hu et al., 2021). Typically, these GNN4LP are provably the
most expressive models such that the link representation is permutation-invariant (Zhang et al., 2021). They
can capture more effective structural features compared to the simpler heuristics counterparts. However,
their dependency on extensive training for each new graph dataset and the necessity for hyperparameter
optimization (Chamberlain et al., 2022; Wang et al., 2023b; Dong et al., 2023) present notable challenges for
their application across diverse graph environments.

Given that (1) the heuristics methods can be readily applied to any graphs without training based on common
connectivity patterns and (2) the parametric model can automatically capture the connectivity patterns by
fitting on the graph, a natural question arises:

Can a singular LP model automatically learn and apply the connectivity pattern across new,
unseen graphs without the need for direct training?

An affirmative response would not only pioneer a new frontier in graph machine learning but also align with
the transformative potential observed in foundation models across text and image processing fields (Brown
et al., 2020; Kirillov et al., 2023). These models’ exceptional generalizability, driven by their capability
of transfer learning (Yosinski et al., 2014), offers a blueprint for the development of a universal LP model
capable of broad applicability without explicit fitting.

Present work. In this study, we introduce the Universal Link Predictor (UniLP), a novel model designed
for immediate application across diverse non-attributed graph environments1 without the prerequisite of
model fitting. Our investigation starts by assessing whether existing LP models possess the capability to
transfer connectivity pattern knowledge from one graph to another. Through empirical and theoretical
analyses spanning both heuristic and parametric link predictors, we uncover a significant challenge: negative
transfer (Wang et al., 2021a) can happen when directly transferring the connectivity patterns across distinct
graph datasets, including both real-world and synthetic examples. This complexity arises from the inherent
diversity and flexibility of graph data, leading to unique connectivity patterns for each graph.

To equip UniLP with the capability to adapt to diverse graphs without the need for training, we are inspired
by the concept of In-context Learning (ICL) as utilized by large language models (LLMs) (Brown et al., 2020).
ICL enables models to adapt to new datasets or tasks through the relevant demonstration examples (Wang
et al., 2023a). Analogously, for adapting our LP model to a particular graph, we select a collection of in-
context links to act as such demonstration examples. These in-context links not only provide a context for
link prediction but also aid in capturing the unique connectivity pattern inherent to the graph in question.
To achieve link representations that are conditioned on the graph’s specific connectivity pattern, we employ
an attention mechanism (Vaswani et al., 2017; Brody et al., 2022). This mechanism facilitates dynamic
adjustment of link representations in response to the graph context, enabling the model to accurately reflect
the unique connectivity patterns of each graph.

We have curated a diverse collection of graph datasets spanning multiple domains, providing a rich variety of
connectivity patterns for benchmarking. Through extensive experiments on these datasets, we demonstrate
the seamless applicability of UniLP to novel and unseen graph datasets without requiring dataset-specific
fitting. Notably, UniLP, empowered with ICL, exhibits the capability to meet or even exceed the performance
levels of LP models that have been pretrained and finetuned for specific target graphs. This achievement
underscores UniLP’s broad applicability and robust adaptability, establishing a groundbreaking approach to
link prediction tasks.

In summary, our contributions to the field of link prediction are:

1In this study, we focus on non-attributed graphs. This choice is informed by previous findings indicating that node attributes
have minimal impact on the effectiveness of LP tasks when compared to the structure of the graph. This is discussed in detail
in Appendix E of (Dong et al., 2023).
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• We pioneer in highlighting the challenges of applying a singular LP model across various graph
datasets due to conflicting connectivity patterns, a finding supported by both empirical evidence
and theoretical analysis.

• Addressing these challenges, we introduce UniLP, a novel LP approach leveraging ICL for dynamic
adaptation to new graphs in real-time, thereby eliminating the need for traditional training processes.

• The diverse collection of graph datasets we’ve collected facilitates extensive validation of UniLP’s
adaptability. Our experiments confirm that UniLP is not only capable of adjusting to any new
graph dataset during inference but also achieves competitive performance, marking a significant
advancement in link prediction methodologies.

2 Can one model fit all?

Machine learning models perform a task by learning from data. The quest for generalizability in ma-
chine learning models has led to significant advancement in domains such as natural language process-
ing (NLP) (Vaswani et al., 2017; Brown et al., 2020) and computer vision (CV) (Betker et al.; Kirillov
et al., 2023). Foundation models in these fields have demonstrated remarkable generalizability across unseen
datasets (Donahue et al., 2014), primarily due to their training on extensive data, which enables them to
learn transferable knowledge.

In the context of LP tasks, the heuristics link predictors can be seen as a type of transferable knowledge. These
predictors, crafted by manually analyzing common connectivity patterns in real-world graphs, offer insights
into the underlying structure of networks. However, the validity of applying these heuristics universally
is questioned, especially considering the wide spectrum of graph data. For instance, social networks like
Facebook often exhibit a community-oriented structure (Newman, 2006a). Conversely, networks adhering to
a scale-free power-law distribution (Barabási & Albert, 1999), such as the World Wide Web, tend to favor
a Preferential Attachment connectivity pattern. Through both empirical and theoretical examination, we
aim to explore the challenges posed by the direct application of connectivity patterns from one graph to
another. Our findings will reveal that such an approach may lead to negative transfer (Wang et al., 2021a),
emphasizing the critical need for adaptable strategies in the face of graph diversity.

2.1 Empirical evaluation on transferability

Our exploration begins with an empirical investigation aimed at understanding the transferability of learned
connectivity patterns across diverse graph domains. We curate a collection of real-world graphs from varied
fields in Table 1, ensuring comprehensive illustrations of different graph types.

To assess the potential of the important connectivity pattern, learned from one graph, to influence the LP
performance on another, we incorporate extra graphs into the training phase of the target graph. In other
words, this experiment deviates from the standard supervised learning approach by introducing additional
training signals from other graphs. If the connectivity patterns from these extra graphs align with or augment
the structure of the target graph, the LP model’s performance should either remain stable or improve. To
make the experiment tractable, we only introduce one additional graph into the training graph and then
make a link prediction on the target graph. This additional graph is kept disconnected from the target
graph to ensure that the test set remains the same as standard LP tasks. In these experiments, we
employ SEAL (Zhang & Chen, 2018) as the backbone model for the experiment and adopt Hits@50 as the
performance metrics (Hu et al., 2021).

Results are presented in Figure 1. It shows how the LP model’s performance is affected by the introduction
of additional graph data during training. In the heatmap, warm colors represent an improvement in LP
performance, while cooler colors denote a performance decrease. The predominance of cooler colors in the
heatmap reveals that integrating an extra graph into training generally results in performance degradation.
This observation underscores the potential discordance in the underlying characteristics of different graphs,
leading to conflicts between the learned connectivity patterns . This phenomenon highlights the inherent
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Figure 1: Performance change of SEAL (Zhang & Chen, 2018) after training with one additional graph.
Adenotes statistically significant change.

challenge in deploying a singular LP model across various graphs, thus questioning the feasibility of a “one
model fits all” approach in the context of LP tasks.

2.2 Conflicting patterns across graphs

In this section, we delve into the theoretical aspects of how the unique characteristics of different graphs
can hinder the transferability of connectivity patterns. We begin with a formal definition and preliminary
discussion of LP.

Preliminary. Consider an undirected graph G = (V, Eo). V is the set of nodes with size n, which can be
indexed as {i}n

i=1. Eo denotes the observed set of links, which is a subset Eo ⊆ E∗ of the complete set of
true links E∗ ⊆ V × V . Here, E∗ encompasses not only the observed links but also potential links that are
currently absent or may form in the future within the graph G. For any node v ∈ V , N (v) = {u|(u, v) ∈ Eo}
denotes the neighbors of node v. The set of k-hop simple paths from node u to v is denoted as πk(u, v) =
{(v1, v2, . . . , vk)|v1 = u, vk = v and (vi, vi+1) ∈ Eo for i ∈ {1, . . . , k − 1}}. Note that paths only contain
distinct nodes. We denote the shortest-path between a node pair (u, v) as SP(u, v).

The objective of LP tasks is to identify the set of unobserved true links Eu ⊆ E∗\Eo within a given graph
G. This task diverges from typical binary classification problems, as the potential candidates for Eu are
predetermined: they consist of all node pairs not already included in the observed links V × V \Eo. In
practical terms, “identifying” Eu equates to ranking these unobserved true links higher than false links
based on their link features (Yang et al., 2015; Hu et al., 2021). This ranking process is defined by what we
term connectivity patterns2:
Definition 2.1. Connectivity pattern is an ordered sequence of events ω = [A1, A2, . . . ] such that
p(y = 1|Ai) ≥ p(y = 1|Aj) for any i < j.

Here, an event A refers to a specific set of conditions met by the link features of a node pair. In LP
tasks, connectivity patterns may be determined by human experts using heuristic methods or by training

2We have an in-depth analysis on how connectivity patterns differ from and relate to graph distributions in Appendix C.1,
where we illustrate that graphs with different underlying distribution could have the shared connectivity pattern.
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(a) (b)

Figure 2: Two synthetic graphs with different connectivity patterns: (a) Grid lattice graph; (b) Triangular
lattice graph.

parametric link predictors. For example, in social networks, a simple connectivity pattern might be ω =
[CN(u, v) ≥ 1, CN(u, v) = 0], suggesting that pairs of users with common friends are more likely to connect
than those without any.

The ability to transfer a connectivity pattern from one graph to another suggests the potential for LP models
to be applicable to new, previously unseen graphs. However, a mismatch in the ranking of connectivity
patterns between the training and target graphs could lead to inaccuracies, since the model can assign
higher scores to unlikely links and lower scores to likely ones.

Next, we demonstrate that even structurally similar synthetic graphs can exhibit different connectivity
patterns. We begin by considering two types of lattice graphs: a Grid graph, similar to a chessboard,
where nodes are evenly spaced on a 2D grid, each connected to its four nearest neighbors; and a Triangular
graph, derived from the Grid by adding one diagonal edge within each square unit. Despite their structural
similarities, these graphs, Grid and Triangular, display divergent connectivity patterns:

Theorem 2.2. Define A2 = |π2(u, v)| ≥ 1 and A3 = |π3(u, v)| ≥ 1 as elements of ω. The connectivity
patterns on Grid and Triangular graphs are distinct. Specifically:
(i) On Grid: ω = [A3, A2]; (ii) On Triangular: ω = [A2, A3].

The proof is in Appendix C.2. In essence, in Triangular graphs, node pairs two hops away are more likely to
form a link compared to those three hops away. Conversely, in Grid graphs, despite their structural similarity
to Triangular graphs, node pairs two hops away have no likelihood of linking.

This observation of conflicting connectivity patterns across similar graphs underlines the challenges in knowl-
edge transfer for LP tasks. Even slight structural variations in graphs can significantly alter the likelihood
of link formation between nodes. Consequently, the task of developing a universal link predictor, capable of
adapting to any graph without specific tuning for its connectivity pattern, is a non-trivial endeavor.

2.3 Contextualizing Link Prediction

The challenge of conflicting connectivity patterns across different graphs highlights a critical issue: a model
trained on one graph may break down when applied to another without accommodating the unique charac-
teristics of the target graph. To mitigate this, we suggest a paradigm where the model dynamically adapts
to the target graph by taking into account its specific characteristics.

This adjustment process involves conditioning the model on the target graph’s properties, thereby ensuring
that the prediction of link formation, p(1|A), is influenced not just by the inherent link features but also by
the properties of the target graph. We draw inspiration from the concept of In-context Learning (ICL) in
LLMs (Dai et al., 2022), which enables LLMs to solve tasks with a few demonstration examples. We propose
the incorporation of the target graph as a contextual element c in the link prediction p(1|A, c). By doing so,
the model learns to understand the joint distribution of link features and the graph context, allowing it to
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Figure 3: Overview of the UniLP framework. (a) For predicting a query link q, we initially sample positive
(s+) and negative (s−) in-context links from the target graph. (b) Both the query link and these in-context
links are independently processed through a shared subgraph GNN encoder. An attention mechanism then
calculates scores based on the similarity between the query link and the in-context links. The final repre-
sentation of the query link, contextualized by the target graph, is obtained through a weighted summation,
which combines the representations of the in-context links with their respective labels.

adapt to different graphs. In the subsequent section, we will delve into the practical implementation of an
LP model equipped with ICL capabilities.

3 Universal Link Predictor

This section outlines our proposed UniLP, designed for effective application to unseen datasets. UniLP can
readily adapt to the connectivity patterns of any new graphs, even though they are not seen during the
training phase. UniLP operates by first sampling a set of in-context links from the target graph, which are
then independently encoded alongside the target link using a shared GNN encoder. An attention mechanism
is employed to merge the representations of these in-context links in relation to their interaction with the
target link, forming a composite representation for the final prediction. The overall framework is in Figure 3.

3.1 Query and in-context links

For a given target link q ∈ V × V in graph G, we define it as the query link. To predict this link based
on the contextual information of G, we start by sampling a set of in-context links from G. Specifically, we
select k node pairs S+ ⊆ Eo as positive examples, where S+ = {s+

1 , s+
2 , . . . , s+

k }. These pairs have existing
links between them in G. Similarly, we gather negative examples S− = {s−

1 , s−
2 , . . . , s−

k } ⊆ V × V \Eo,
comprising k node pairs without a link. The combined set S+ ∪ S− approximates the overall properties of G
and provides a context c for the model to perform LP (p(1|A, c)) using both link features and graph context.

Once we get the query link and the in-context links, we need to obtain the structural representation for
them. We start by extracting the ego-subgraph for each of them. An ego-subgraph G((u, v), r, G) for a node
pair (u, v) is a subgraph induced by all the r-hop neighboring nodes of the nodes u and v on the graph G:

G((u, v), r, G) = (Vs, Es),

where Vs = {i|SP(i, u) ≤ r or SP(i, v) ≤ r} and Es = {(i, j) ∈ Eo|i, j ∈ Vs}. For simplicity, we denote such
an ego-subgraph as G(e) for the node pair e = (u, v) when there is no ambiguity. The ego-subgraphs for the
query link and the in-context links are {G(e)|e ∈ {q}

⋃
S+ ⋃

S−}.
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Utilizing ego-subgraphs to represent links offers several key advantages over using either individual node
pairs or the entire graph. Firstly, an ego-subgraph provides a richer structural context than a mere node
pair, encapsulating the local neighborhood structure around the link in question. This approach allows for
a more detailed and informative representation of the link’s local structures. Secondly, ego-subgraphs serve
as an effective and computationally efficient approximation of global link features (Zhang & Chen, 2018).
This is advantageous over the resource-intensive process of encoding the entire graph. Lastly, representations
at the subgraph level are inherently more expressive compared to node-level representations (Frasca et al.,
2022). This enhanced expressiveness is crucial for capturing the structures of links and performing accurate
LPs.

3.2 Encoding ego-subgraphs

The ego-subgraphs within the set {G(e)|e ∈ {q} ∪ S+ ∪ S−} vary in size, requiring a uniform approach to
representation. We employ GNNs to encode these subgraphs into a consistent latent space.

In the absence of node features in non-attributed graphs, typical GNNs (Kipf & Welling, 2017; Hamilton
et al., 2018; Xu et al., 2018) require initial input vectors for each node. Common methods like assigning
identical or random vectors meet this requirement but lack expressiveness about graph structures (Li et al.,
2020; Zhang et al., 2021). To address this, we utilize the labeling trick technique, assigning each node i in
G(e) a positional encoding based on its relative position to the target link e = (u, v). A proper design of
labeling trick can ensure that GNNs are expressive enough to capture the heuristic graph substructures, like
Common Neighbor and Shortest Path.

We propose DRNL+, which extends the labeling tricks applied in Double Radius Node Labeling
(DRNL) (Zhang & Chen, 2018) and Distance Encoding (DE) (Li et al., 2020). In DRNL, nodes i in G(e)
are assigned integer labels as follows:

DRNL(i, (u, v)) = 1 + min(du, dv) + (d/2)[(d/2) + (d%2) − 1],

where du := SP(i, u), dv := SP(i, v), and d := du + dv. However, DRNL doesn’t distinguish nodes reachable
to only one of the target nodes. Thus, DRNL+ enhances this by using DE to assign a tuple of integers:

DRNL+(i, (u, v)) =


(0, du), if dv = ∞
(0, dv), if du = ∞
(DRNL(i, (u, v)), 0), otherwise

(1)

After the labeling trick indicates relative positions, we apply the SAGE (Hamilton et al., 2018) with mean
aggregation to update node representations (Zeng et al., 2022). The final subgraph representation, he ∈ RF

for each link e ∈ {q}
⋃

S+ ⋃
S−, is derived by average pooling the representations of all nodes in G(e).

We find that mean aggregation and pooling work best for such a universal link predictor, hypothesizing
that this approach better accommodates varying graph sizes and node degrees, thereby enhancing model
generalizability.

3.3 Link prediction with context

Once the ego-subgraphs are encoded into latent space, we utilize these representations {he|e ∈ {q}∪S+ ∪S−}
to parameterize our link predictor p(1|A, c) via an attention mechanism (Vaswani et al., 2017).

The attention scores a between the query link representation hq and each in-context link representation hs

for s ∈ S+ ∪ S− are calculated using additive attention (Niu et al., 2021; Brody et al., 2022):

as = p⊤LeakyReLU (Wk · [hq∥hs]) , (2)

where p⊤ ∈ RF ′ is a learnable vector and Wk ∈ RF ′×2F is a projection matrix. The concatenation operation
is denoted by ∥. The normalized attention scores α are obtained as follows:

αs = softmax (as) = exp (as)∑
e∈S+

⋃
S− exp (ae) . (3)

7



Under review as submission to TMLR

We denote the attention score between the query link and a positive in-context link s+ ∈ S+ as α+, and with
a negative in-context link as α−. Like in Transformer and GAT models (Veličković et al., 2018; Brody et al.,
2022), multi-head attention can also be employed to capture diverse interactions between graph structures.

Remark. The attention scores are pivotal for shaping the query link’s representation in the context of
the target graph. We intentionally exclude label information from the attention score computation to avoid
biasing the model towards easy predictions during training. This approach aligns with an “unsupervised”
learning strategy, as opposed to a “supervised” one, where label information might lead the model to rely
excessively on seen patterns, thus turning the attention mechanism into a de facto classifier. This could
hinder the model’s ability to generalize and adapt across varying graph structures, increasing the risk of
overfitting to specific connectivity patterns not applicable to new, unseen graphs. Our empirical findings
support this methodology, demonstrating that keeping the attention computation label-free significantly
boosts the model’s generalizability.

After the normalized attention scores α are determined, we compute the final representation for the query
link q. This is achieved by applying a weighted sum to the representations of the in-context links, using
the attention scores as weights. Additionally, we integrate label information into the in-context links’ rep-
resentations by adding corresponding learnable vectors. Formally, the final representation is calculated as
follows:

h̃q =
∑

s∈S+
α+

s Wv

(
hs + l+)

+
∑

s∈S−
α−

s Wv

(
hs + l−)

, (4)

where l+, l− ∈ RF ′ are learnable vectors for labels, and Wv ∈ RF ′×F is a value projection matrix. The
representation h̃q encapsulates both the link features of the query link q and an estimation of the target
graph G, and is then input into an MLP classifier to produce the link prediction result:

p(1|A, c) = σ
(
MLP

(
h̃q

))
, (5)

where σ (·) denotes a sigmoid function.

3.4 Pretraining objective

The pretraining objective for UniLP focuses on predicting the query link q based on its own features and
the context of the graph it is part of. We align this objective with standard binary classification as seen in
typical parametric link prediction algorithms (Zhang & Chen, 2018; Chamberlain et al., 2022; Dong et al.,
2023). In this setting, the classification label ye for an edge e is set to 1 if e is among the observed links Eo;
otherwise, ye is 0. Additionally, we consider a set of pretrain graphs G, with each graph G being a member
of this set. The overall pretraining loss is then defined as:

L = EG∈G,e∈V ×V BCE
(
MLP

(
h̃e

)
, ye

)
. (6)

This loss function is employed across multiple graphs, allowing UniLP to learn a generalizable pattern for
link prediction across various graph structures.

4 Related work

Link prediction. Traditional LP methods are handcrafted heuristics designed by observing the connectiv-
ity pattern in real-world data. They leverage either the link’s local (Liben-Nowell & Kleinberg, 2003; Adamic
& Adar, 2003; Zhou et al., 2009; Barabási & Albert, 1999) or global information (Katz, 1953; Page et al.,
1999) to infer the missing links in the graph. OLP (Ghasemian et al., 2020) stacks the heuristics link predic-
tors as a feature vector and fits a random forest as the classifier. WLNM (Zhang & Chen, 2017) is one of the
pioneers in training a neural network as a link predictor. GAE (Kipf & Welling, 2016), as the first GNN4LP,
utilizes GNNs to encode the graph structure into node representation and perform the link prediction task.
SEAL (Zhang & Chen, 2018; Zhang et al., 2021) points out that a link-level representation is necessary
for a successful LP method and proposes the labeling trick to enable GNNs to learn the joint structural
representation. GraIL (Teru et al., 2020) extends the idea of the node labeling trick (Zhang et al., 2021) of
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Table 1: The pretrain datasets and test benchmarks.

Dataset Pretrain Test # Nodes # Edges Avg. node deg. Std. node deg. Max. node deg. Density
Biology

Ecoli ! - 1805 29320 16.24 48.38 1030 1.8009%
Yeast ! - 2375 23386 9.85 15.5 118 0.8295%
Celegans - ! 297 4296 14.46 12.97 134 9.7734%

Transport
Power ! - 4941 13188 2.67 1.79 19 0.1081%
USAir - ! 332 4252 12.81 20.13 139 7.7385%

Web
PolBlogs ! - 1490 19025 12.77 20.73 256 1.7150%
Router ! - 5022 12516 2.49 5.29 106 0.0993%
PB - ! 1222 33428 27.36 38.42 351 4.4808%

Collaboration
Physics ! - 34493 495924 14.38 15.57 382 0.0834%
CS - ! 18333 163788 8.93 9.11 136 0.0975%
NS - ! 1589 5484 3.45 3.47 34 0.4347%

Citation
Pubmed ! - 19717 88648 4.5 7.43 171 0.0456%
Citeseer ! - 3327 9104 2.74 3.38 99 0.1645%
Cora - ! 2708 10556 3.9 5.23 168 0.2880%

Social
Twitch ! - 34118 429113 12.58 35.88 1489 0.0737%
Github ! - 37700 289003 7.67 46.59 6809 0.0407%
Facebook - ! 22470 171002 7.61 15.26 472 0.0677%

SEAL to the knowledge graph completion tasks. NBFNet (Zhu et al., 2021) proposes a general framework
for performing link prediction based on learnable paths. ELPH (Chamberlain et al., 2022), NCNC (Wang
et al., 2023b), and MPLP (Dong et al., 2023) further improve the scalability of GNN4LP and achieve the
state-of-the-arts on various graph benchmarks. On heterogeneous graphs, SLiCE (Wang et al., 2021b) adopts
a pretrain-and-finetune strategy to learn contextual node representations for link predictions. Daza et al.
(2021) studies how to perform inductive link prediction over knowledge graphs based on the textual data of
nodes.

In-context Learning. The remarkable efficacy of LLMs across a broad spectrum of language tasks is
significantly attributed to their adeptness in ICL (Brown et al., 2020). This capability allows LLMs to
generalize to new tasks by leveraging demonstration examples, effectively learning the required skills on the
fly. Irie et al. (2022) delves into the equivalence between conventional model training and the application
of attention mechanisms to training samples during inference, suggesting an underlying mechanism of ICL.
Further exploration by Dai et al. (2022) posits that ICL facilitates an implicit optimization process guided by
in-context examples. While the concept of ICL has been primarily associated with LLMs, Prodigy (Huang
et al., 2023) represents an initial attempt to adapt ICL for GNN-based models. Their approach, however, is
somewhat constrained by the overlap in pretrain and test datasets, which raises questions about the method’s
transferability across distinct graph domains.

5 Experiments

In this section, we conduct extensive experiments to assess the performance of UniLP on new unseen datasets.
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5.1 Experimental setup

Benchmark datasets. The foundation for our model’s training is a collection of graph datasets spanning
a variety of domains. Following (Mao et al., 2023), we have carefully selected graph data from fields
such as biology (Von Mering et al., 2002; Zhang et al., 2018; Watts & Strogatz, 1998), transport (Watts
& Strogatz, 1998; Batagelj & Mrvar, 2006), web (Ackland & others, 2005; Spring et al., 2002; Adamic &
Glance, 2005), academia collaboration (Shchur et al., 2019; Newman, 2006b), citation (Yang et al., 2016),
and social networks (Rozemberczki et al., 2021). This diverse selection ensures that we can pretrain and
evaluate the LP model based on a wide array of connectivity patterns. The details of the curated graph
datasets can be found in Table 1.

Baseline Methods. We compare UniLP with both heuristic and GNN-based parametric link predictors.
Heuristic methods include Common Neighbor (CN) (Liben-Nowell & Kleinberg, 2003), Adamic-Adar in-
dex (AA) (Adamic & Adar, 2003), Resource Allocation (RA) (Zhou et al., 2009), Preferential Attachment
(PA) (Barabási & Albert, 1999), Shortest-Path (SP), and Katz index (Katz) (Katz, 1953). GNN-based
methods include GAE (Kipf & Welling, 2016), SEAL (Zhang & Chen, 2018), ELPH (Chamberlain et al.,
2022), NCNC (Wang et al., 2023b), and MPLP (Dong et al., 2023). For GAE and NCNC, which require
initial node features, we use a 32-dimensional all-one vector. All other methods can handle non-attributed
graphs directly.

Evaluation of UniLP To evaluate UniLP’s effectiveness on unseen datasets, we divide our graph data
into non-overlapping pretrain and testing sets (see Table 1) and pretrain one single model on the combined
pretrain datasets. During pretraining, we dynamically sample 40 positive and negative links as in-context
links S+ ∪ S− for each query link from the corresponding pretrain dataset. For evaluation, each test dataset
is split into 70%/10%/20% for training/validation/testing. The training set here forms the observed links
Eo, while validation and test sets represent unobserved links Eu. During the inference, we sample k = 200
positive and negative links as in-context links per test dataset. We report Hits@50 (Hu et al., 2021) as the
evaluation metric for LP. More details about the pretraining of UniLP can be found in Appendix A.1.

Evaluation of Baselines. Baseline models follow similar evaluation procedures, with adaptations for
transfer learning capabilities. We employ two settings: (1) Pretrain Only, where models are trained on
combined pretrain datasets and then tested on each test dataset, and (2) Pretrain & Finetune, where
after pretraining, models are additionally finetuned on each test dataset with 200 sampled positive and
negative links for training.

5.2 Primary results

Table 2 presents the performance of UniLP on various unseen graph datasets. The results demonstrate that
UniLP outperforms both traditional heuristic methods and standard GNN-based LP models that are pre-
trained without specific adaptation, showing significant improvements in 4 out of 7 the benchmark datasets.
This performance enhancement suggests that tailoring the LP model to individual graphs can markedly
increase its transfer learning capabilities.

Moreover, UniLP achieves comparable or even superior results to GNN-based LP models that undergo
finetuning, despite not being explicitly trained on the test data. This highlights the effectiveness of the
ICL capability in UniLP, which allows the model to adapt seamlessly to specific graph datasets without
the need for additional training. By leveraging in-context links provided during the inference phase, UniLP
can dynamically adjust its knowledge of connectivity patterns, demonstrating its potential to deliver robust
performance across a wide range of unseen graph datasets. In addition, the experimental results on the
synthetic Triangular/Grid lattice graphs can be found in Table 4 in the Appendix.

5.3 The inner mechanism of UniLP

We further explore the capability of our proposed model’s ICL to facilitate skill learning (Pan et al., 2023; Mao
et al., 2024), enabling the model to acquire new skills not encountered during the pretraining phase, guided
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Table 2: Link prediction results on test datasets evaluated by Hits@50. The format is average score ±
standard deviation. The top three models are colored by First, Second, Third.

Biology Transport Web Collaboration Citation Social
C.ele USAir PB NS CS Cora Facebook Ave. Rank

Heuristics
CN 46.88±12.28 82.75±1.54 41.15±3.77 74.03±1.59 56.84±15.56 33.85±0.93 58.70±0.35 11.00
AA 61.07±5.16 86.96±2.24 44.12±3.36 74.03±1.59 68.22±1.08 33.85±0.93 67.80±2.12 5.71
RA 62.80±4.84 87.27±1.89 43.72±2.86 74.03±1.59 68.21±1.08 33.85±0.93 68.84±2.03 5.57
PA 43.85±4.12 77.69±2.29 28.93±1.91 35.35±3.01 6.49±0.61 22.09±1.52 12.95±0.63 13.71
SP 0.00±0.00 0.00±0.00 0.00±0.00 80.00±1.11 41.34±35.58 52.97±1.53 0.00±0.00 13.14
Katz 58.86±6.48 84.64±1.86 44.36±3.65 78.96±1.35 66.32±5.59 52.97±1.53 60.79±0.60 6.86

Pretrain Only
SEAL 61.28±3.76 86.00±1.56 45.44±2.68 84.07±1.96 62.82±1.62 56.21±2.24 54.57±1.48 5.57
GAE 44.71±3.39 76.12±2.27 27.56±2.34 15.20±2.14 5.08±0.48 24.22±1.53 6.65±0.57 14.14
ELPH 59.23±4.50 84.42±2.22 43.69±2.90 84.27±1.43 70.69±3.63 56.91±1.43 61.80±2.46 5.57
NCNC 48.07±4.79 75.44±4.22 25.66±1.42 80.07±1.43 34.27±2.28 52.51±2.54 19.28±1.58 11.57
MPLP 56.74±5.31 82.94±2.30 47.78±2.55 80.33±1.54 24.26±1.28 46.71±2.25 48.06±2.09 8.86

Pretrain & Finetune
SEAL 64.45±4.14 88.49±2.16 47.78±3.32 84.84±2.32 61.54±3.09 62.19±3.27 58.70±2.78 3.14
GAE 44.71±4.07 74.47±2.96 25.92±2.64 18.34±2.27 4.95±0.44 25.31±1.48 6.11±0.39 14.71
ELPH 60.51±5.72 84.52±2.08 43.58±3.48 86.08±0.69 71.10±3.48 57.18±1.89 63.31±3.63 4.71
NCNC 64.45±5.10 85.85±2.46 47.75±6.90 88.25±2.25 58.75±5.74 60.00±2.50 59.32±6.93 3.71
MPLP 62.56±4.79 85.08±1.54 48.01±2.94 80.16±1.18 50.35±1.01 56.02±2.09 56.72±1.20 6.14

Ours
UniLP 65.20±4.40 85.98±2.00 48.14±2.99 89.09±2.05 64.59±2.65 57.50±2.40 65.49±2.05 1.86

Table 3: Link prediction results on test datasets evaluated by Hits@50 under context perturbation. This
table presents the outcomes of link prediction when the context, i.e., in-context links, is deliberately altered.
The aim is to analyze how changes in the context influence the final prediction accuracy.

Biology Transport Web Collaboration Citation Social
C.ele USAir PB NS CS Cora Facebook

UniLP-FlipLabel 0.61±0.27 15.81±13.17 0.03±0.03 27.97±4.29 0.60±0.23 2.03±0.55 0.32±0.15
UniLP-RandomContext 52.89±5.90 81.91±2.14 47.47±3.05 85.60±1.23 47.80±6.48 37.62±5.64 22.17±6.55

UniLP 65.20±4.40 85.98±2.00 48.14±2.99 89.09±2.05 64.59±2.65 57.50±2.40 65.49±2.05

by ICL demonstrations. This investigation focuses on the model’s performance sensitivity to corrupting in-
context links, particularly when these links are presented with incorrect input-label associations. Given that
each in-context link consists of an input and its corresponding label, we introduce two perturbation strategies
to assess this sensitivity: FlipLabel: we invert the labels of the in-context links, labeling previously positive
links as negative and vice versa. RandomContext: Instead of selecting in-context links from the target
graph, we randomly sample them from a graph generated using the Stochastic Block Model (Holland et al.,
1983).

The outcomes, as shown in Table 3, reveal that flipping the labels of in-context links significantly degrades
the model’s performance, rendering it almost ineffective. This finding underscores the model’s utilization of
ICL for skill learning, specifically in learning new feature-label mappings within a given context (Wei et al.,
2023; Min et al., 2022). It highlights the pivotal role of accurate label information in in-context links for the
model’s effective adaptation to the target graph.

Furthermore, using randomly generated graphs as a source of in-context links also detrimentally affects
performance, albeit to varying extents across different datasets. This implies the importance of choosing
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in-context links that genuinely represent the properties of the target graph. Interestingly, the less severe
performance decline in some datasets may indicate their inherent community-based graph structures.

Figure 4: Performance of UniLP with varying quantities of in-context links.

5.4 Effectiveness of in-context links’ size

This experiment evaluates how varying the quantity of in-context links affects UniLP’s performance during
inference. We experiment with different numbers of in-context links, ranging from 10 to 400, sampled from
each test graph. These links are used as context for the model. Additionally, we utilize SEAL as the base
model and assess its performance under finetuning (FT) and supervised training (SUP) from scratch with
varying training sample sizes. For comparison, we also include results from training a SEAL model on the
full set of target graph data (Full), as detailed in Figure 4.

The findings reveal a consistent improvement in UniLP’s performance with an increasing number of in-
context links. This indicates that our method can more effectively capture the target graph’s properties with
additional context. Notably, on four of the test datasets, UniLP either matches or exceeds the performance
of models trained end-to-end on the entire graph. This suggests that leveraging more pretraining data can
be advantageous for LP tasks when properly managed. Furthermore, despite both UniLP and the finetuned
models being pretrained on the same datasets and using the same in-context links, UniLP can outperform its
finetuned counterparts. This observation suggests that in some cases, utilizing ICL can be a more effective
approach for adapting a pretrained model to a specific target dataset compared to finetuning. The trend on
the rest of graphs can be found in Figure 7 in Appendix.

5.5 Visualization of the link representation

We conduct a comparative visualization of link representations as learned by a Pretrained Only SEAL model
and UniLP. This comparison is shown in Figure 5. The results indicate that a naively pretrained model
tends to map link representations from various graph datasets into a close subspace, potentially leading
to indistinguishable link representations across different graphs, even when these graphs exhibit conflicting
connectivity patterns.

In contrast, the link representations generated by UniLP, which are conditioned on the context of the target
graph, demonstrate a distinct separation between different datasets. This separation is indicative of UniLP’s
effective ICL capability, which adeptly captures the subtle distributional differences across graphs. By
adjusting the link representations based on the context provided by in-context links, UniLP can effectively
address the challenge of conflicting connectivity patterns in diverse graph datasets.

5.6 Diversifying context

In our prior analysis, we utilized a fixed set of in-context links sampled from each target graph to serve as
the context. This section delves into the impact of varying these in-context links by employing different
random seeds, aiming to discern the sensitivity of UniLP’s performance to the specific selection of in-context
links for each target graph. The outcomes of this investigation are shown in Figure 6a.
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(a) (b)

Figure 5: Visualization of the link representation learned from (a) Pretrain Only SEAL; (b) UniLP. Different
colors indicate different test datasets.

(a) (b)

Figure 6: (a) Impact of Diverse In-Context Link Sets on LP Performance. This figure evaluates the variability
in UniLP’s performance across different sets of in-context links sampled. (b) Influence of positive-to-negative
in-context link ratios on LP performance. The x-axis shows the ratio of positive to negative in-context links.
A value of 0 indicates that all in-context links are negative, while a value of 1 indicates that all in-context
links are positive.

For the C.ele, USAir and PB datasets, the selection of in-context links has a minimal effect on UniLP’s
performance. However, for the NS and Cora datasets, the choice of in-context links significantly influences
performance. The findings reveal that the selection of in-context links indeed affects UniLP’s performance
across the test datasets to varying extents, highlighting the importance of the selection process for these
contextual links in optimizing the model’s efficacy. This echoes the findings in the NLP domain, where large
language models are sensitive to the selection of in-context demonstrations (Zhao et al., 2021). The study
on the selection of the in-context links can be an interesting future work.
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5.7 Varying positive-to-negative ratios of in-context links

In our previous exploration of LP performance, we initially maintain a balanced set of positive and negative
in-context links for each query link during both pretraining and testing phases. This study delves into the
effects of changeing the ratio of positive to negative in-context links, while keeping the total count constant
at 200, to assess the impact on LP accuracy. The findings, shown in Figure 6b, reveal several noteworthy
observations.

Remarkably, for the majority of graph datasets examined, increasing the proportion of negative sam-
ples—contrary to intuitive expectations—does not detract from performance and, in some cases, matches
the efficacy of a balanced distribution of in-context links. This phenomenon indicates that negative sam-
ples are more informative as positive ones for leveraging the ICL capabilities of UniLP. Specifically, in the
case of the synthetic Grid graph, a higher ratio of negative samples significantly enhances LP performance,
given a fixed total number of in-context links. This improvement may stem from the symmetry of positive
link structures within the Grid graph, which exhibit a consistent connectivity pattern. The introduction
of a greater variety of negative samples seems to enrich the model’s learning context, effectively harnessing
UniLP’s ICL potential to capture more diverse disconnectivity patterns.

An exception to this trend is observed with the Facebook graph dataset, where a balance between positive
and negative in-context links yields the most favorable outcomes. This suggests that for certain graph types,
a balanced approach to in-context link selection optimizes LP performance.

6 Conclusion

In this paper, we introduce the Universal Link Predictor, a novel approach designed to be immediately ap-
plicable to any non-attributed graph dataset without the necessity of training or finetuning. Recognizing the
issue of conflicting connectivity patterns among diverse graph datasets, we innovatively employ ICL to dy-
namically adjust link representations according to the specific properties of the target graph by conditioning
on support links as contextual input. Through extensive experimental evaluations, we have demonstrated
the effectiveness of our method. Notably, our Universal Link Predictor excels in its ability to adapt seam-
lessly to new, unseen graphs, surpassing traditional models that require explicit training. This significant
advancement presents a promising direction for future research and applications in the field of LP.
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A Experimental details

Figure 7: Performance of UniLP with varying quantities of in-context links on the rest of graph datasets.

A.1 Pretraining the Models

We pretrain UniLP on the datasets listed in Table 1, employing an approach by sampling an equal number
of non-connected node pairs (V × V \Eo) as negative samples to match the count of observed links (|Eo|) in
each graph. The pretraining follows a standard binary classification framework.

For predicting each query link, we sample 40 positive and negative links as in-context links (S+ ∪ S−) from
the respective pretrain dataset. This setup ensures variability: different query links from the same dataset
or the same query link across training batches may be paired with different in-context links. However,
during testing, the set of in-context links for each test dataset remains constant. This training methodology
serves multiple purposes: it enhances UniLP’s generalization capabilities by exposing it to a broad range of
in-context links and optimizes GPU memory usage by selecting a manageable yet diverse set of in-context
links during pretraining.

The pretraining phase incorporates an early stopping criterion based on performance across a merged vali-
dation set, which comprises 200 links from the validation set of each test dataset. This approach will stop
UniLP’s optimization once it reaches optimal performance on this merged validation set, ensuring efficiency
and preventing overfitting.

A.2 Software and hardware details

We implement UniLP in Pytorch Geometric framework (Fey & Lenssen, 2019). We conduct our experiments
on a Linux system equipped with an NVIDIA A100 GPU with 80GB of memory.

B Supplementary experiments

B.1 Synthetic graphs

We deployed our pretrained UniLP on the synthetic graph from Figure 2a, 2b, with outcomes presented in
Table 4. These findings demonstrate that UniLP matches the performance of both models that are fully
trained on the entire graph and those that undergo explicit finetuning. This performance underscores the
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Table 4: Link prediction results on synthetic Triangular/Grid lattice graphs evaluated by Hits@50. The
format is average score ± standard deviation. The top three models are colored by First, Second, Third.

Triangular Grid
Heuristics

CN 73.58±0.81 0.00±0.00
AA 73.58±0.81 0.00±0.00
RA 73.58±0.81 0.00±0.00
PA 0.00±0.00 0.00±0.00
SP 97.91±0.63 86.04±1.11

Katz 90.08±0.67 56.79±0.99

SEAL
Supervised 99.29±0.28 79.45±1.09

Pretrained Only 98.11±0.84 61.48±0.57
Pretrain & Finetune 98.35±0.57 78.24±0.79

Ours
UniLP 98.73±0.49 77.39±1.38

efficacy of UniLP’s ICL capability, affirming its ability to dynamically adapt to synthetic graph environments
and learn connectivity patterns directly from in-context links without the need for additional training or
finetuning.

B.2 Empirical analysis of conflicting patterns

Theorem 2.2 provides a theoretical analysis of the conflicting connectivity patterns in Grid and Triangular
graphs. In practical link prediction tasks, a portion of edges is often missing or yet to form. To test whether
the conflicting patterns persist under such conditions, we conduct an empirical analysis by removing edges
from the synthetic graphs.

Following the same setup as in Section 5, we randomly remove 30% of the edges from both the Grid and
Triangular graphs. We then estimate p(y = 1|A2) and p(y = 1|A3) empirically for each graph. The results,
presented in Table 5, show that the two graphs continue to exhibit different connectivity patterns, despite
their structural similarity. This supports the conclusion that the conflicting patterns identified in theory
also hold under more realistic conditions.

Table 5: Empirical analysis for Theorem 2.2 under realistic conditions.

Triangular Grid
p(y = 1|A2) 0.3184±0.00199 0.0000±0.00000

p(y = 1|A3) 0.1656±0.00067 0.2536±0.00079

C Theoretical analysis

C.1 More discussions about the connectivity patterns

In the initial definition (Definition 2.1), connectivity patterns are characterized as ordered sequences of
events that are satisfied by the features of links. This concept indicates that if two graphs exhibit identical
connectivity patterns, an LP model trained on one graph could theoretically be applied to the other without
retraining. The rationale behind this is rooted in the LP task’s core objective: to prioritize true links over
false ones through ranking. Hence, a consistent ranking mechanism across different graphs allows for the
same heuristic-based link predictor to be effectively utilized for LP tasks across those graphs.

It might be tempting to equate connectivity patterns directly with graph distributions; however, this is
a misconception. Graphs can share identical connectivity patterns yet differ significantly in their under-
lying distributions. An illustrative example is provided by graphs generated through the Stochastic Block
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Model (Holland et al., 1983) with distinct parameters, which may still present identical connectivity patterns
as long as their intra-block edge probabilities are higher than those between blocks.

Consequently, despite real-world graphs often exhibiting varied underlying distributions—reflected in aspects
such as node degrees, graph sizes, and densities—the question of whether a singular, common connectivity
pattern exists across diverse graphs remains non-trivial. This inquiry forms the theoretical foundation for
our Universal Link Predictor model, challenging us to explore the feasibility of applying one singular link
prediction methodology in a world of inherently distinct graph structures.

C.2 Proof for Theorem 2.2

We first restate the theorem and proceed with the proof:

Define A2 = |π2(u, v)| ≥ 1 and A3 = |π3(u, v)| ≥ 1 as elements of ω. The connectivity patterns on Grid and
Triangular graphs are distinct. Specifically:
(i) On Grid: ω = [A3, A2]; (ii) On Triangular: ω = [A2, A3].

Proof. In a Grid graph, the probability of a connection given a 2-hop simple path, p(y = 1|A2), can be
expressed as p(y=1,A2)

p(A2) . The absence of any 2-hop connected node pairs (u, v) ∈ Eo implies p(y = 1, A2) = 0,
leading to p(y = 1|A2) = 0.

Considering the symmetric nature of nodes in a synthetic Grid graph, we select an arbitrary node as an
anchor. Identifying nodes with a 3-hop simple path to this anchor reveals that:

p(y = 1|A3) = p(y = 1, A3)
p(A3) = 4

16 = 1
4 . (7)

This calculation confirms the connectivity sequence on Grid as ω = [A3, A2].

Conversely, in a Triangular graph, the probabilities given a 2-hop and a 3-hop simple path are calculated as:

p(y = 1|A2) = p(y = 1, A2)
p(A2) = 6

18 = 1
3 ,

p(y = 1|A3) = p(y = 1, A3)
p(A3) = 6

36 = 1
6 .

Thus, establishing the connectivity sequence for Triangular as ω = [A2, A3], which is in direct contrast to
that of Grid graphs, highlighting the inherent difference in their connectivity patterns.
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