
Under review as a conference paper at ICLR 2024

BALANCED LEARNING WITH TOKEN SELECTION FOR
FEW-SHOT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, patch-based approaches have shown promise in few-shot learn-
ing, with further improvements observed through the use of self-supervised learn-
ing. However, we observe that the mainstream object-oriented approach focuses
mainly on the salient part of the subject and also ignores the non-annotated part
of the image. Based on the assumption that any patch of the image is beneficial
to learning, we present an end-to-end learning framework, which reconsiders the
whole image from a multi-level perspective. The learning of annotated subjects
involves Direct Patch Learning (DPL) to promote balanced learning of different
features, and Gaussian Mixup (GMIX) to provide extra mixed patch-level labels.
As for the non-annotated part, we utilize a cascading token selection strategy along
with self-supervised learning to better utilize knowledge in the background in the
current context by learning the consistent representation of different views from
the same image. Finally, in inductive few-shot learning, our method outperforms
many previous methods and achieves new state-of-the-art performance. Further-
more, it provides an insight that non-annotated parts are also favorable for few-
shot learning. As an ablation study, the effectiveness of each designed component
is verified and the mechanism of how our method outperforms the baseline is
shown both quantitatively and visually.

1 INTRODUCTION

Few-shot Learning (FSL) is a highly challenging task, which aims to adapt to new tasks using a
very small amount of labeled data. In recent years, many methods (Finn et al., 2017; Vinyals et al.,
2016a; Tian et al., 2020a; Chen et al., 2019; Jamal & Qi, 2019; Hao et al., 2019; Li et al., 2019; Qiao
et al., 2019; Sun et al., 2019; Rodrı́guez et al., 2020; Jelley et al., 2022) have been proposed to tackle
this problem. Most few-shot methods contain two stages, meta-training, and meta-testing. After
pre-training a backbone on the base set in meta-training, the method’s performance on novel classes
is evaluated on lots of few-shot tasks during meta-testing. Few-shot learning can be categorized as
transductive and inductive methods. Their difference is that transductive methods add the novel set
as unlabeled data to the base set. This paper will focus on the more general inductive method.

Some recent studies (Hiller et al., 2022; Zhang et al., 2020; He et al., 2022; Lifchitz et al., 2019;
Huang et al., 2021) have shown that patch-based methods benefit few-shot learning. DeepEMD
(Zhang et al., 2020) regarded each patch as a component of an object. The similarity used for clas-
sification is calculated by optimal matching between patches. However, the Hungarian algorithm
for solving the optimal matching is computationally expensive. Densecls (Lifchitz et al., 2019)
trained each local patch using an image-level label to promote consistent predictions across differ-
ent patches. Overall, it has been argued in previous object-oriented few-shot work that a complete
classification task can be achieved using only the part in which the object resides. However, certain
patches, so-called background patches, might contain overlapping objects and richer semantic infor-
mation, which the model did not entirely leverage during training, further limiting its performance.

Based on the thoughts above, Tokmakov et al. (2019) introduced background attributes in a limited
way to enable background learning. However, this research trend has not resulted in a viable end-
to-end learning model.
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Figure 1: Guided-backpropagation (Springenberg et al., 2015) visualization of our strategy. The second
column confirms the phenomena mentioned by motivation in Sec.3.1 that there is indeed ignorance of annotated
parts within objects (body and tails) and non-annotated parts beyond objects (grassland). These phenomena
were mitigated by our proposed strategy.

To tackle these concerns, we propose a multi-stage end-to-end framework, named Cascading Patch-
Wise Network. The overall framework comprises n successive token selections along with self-
supervised learning loss. The token selection strategy separates tokens into “top tokens” and “bottom
tokens”, based on the ranking scores. In foreground learning (basically the top tokens after the first
selection), we propose two methods, Direct Patch Learning (DPL) and Gaussian Mixup (GMIX).
DPL operates on particular local foreground patch tokens, while GMIX offers patch-level labels
to DPL by mixing different patches. In contrast, we utilize self-supervised learning to each level
of bottom tokens to further learn the image’s structural information and increase data utilization
efficiency, thereby enhancing the model’s robust representation capabilities.

In summary, our main contributions are:

• An end-to-end Cascading Patch-Wise Network for fully utilizing the contextual information
for few-shot learning is proposed. Based on such a network, our method makes significant
improvements on its baseline and proves the potential value of non-annotated parts.

• The token selection strategy is implemented to divide the learning process into “top tokens”
and “bottom tokens”. The employment of self-supervised learning to acquire knowledge
from the “bottom tokens” brings effective utilization of the available data.

• Direct Patch Learning along with Gaussian Mixup is utilized to balance the learning of di-
verse features and improve the representational capacity of local tokens. By demonstrating
the visualization results of local tokens’ activation areas, we validate the efficacy of Direct
Patch Learning.

2 RELATED WORK

Meta-learning. Meta-learning is the dominant paradigm in few-shot learning, which makes the
model generalize to new tasks better by constructing multiple learning tasks. Researchers have
proposed many meta-learning methods (Finn et al., 2017; Koch et al., 2015; Snell et al., 2017a;
Vinyals et al., 2016a; Oreshkin et al., 2018b). Some other methods (Chen et al., 2019; Lee et al.,
2019b; Tian et al., 2020b; Mangla et al., 2020) focus on pre-training a better backbone, and the few-
shot classification problem was solved through a linear classifier or metric learning. In this paper,
we pay more attention to training an efficient backbone and improving the generalization ability of
the model to novel categories.

Patch-based Method. LMPNet (Huang et al., 2021) considered a local token as a local descriptor,
calculates the distance between each pair of tokens in two images, and takes the average distance of
all pairs as the matching score for the images. DeepEMD (Zhang et al., 2020) followed a similar idea
as LMPNet (Huang et al., 2021), but it computes the matching score for image tokens using optimal
matching. It needs to solve an optimal matching problem during training, which is computationally
expensive. Densecls (Lifchitz et al., 2019) trained each local patch with an image-level label to
encourage the same prediction over different patches. Our work here takes a different approach,
aiming to strengthen the representational ability of tokens and better exploit knowledge from given
limited data.
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Figure 2: Overall pipeline. The illustration of the multi-stage learning framework that utilizes a token se-
lection strategy to remove the top tokens in the current context. For the first encoder, the removed top tokens
(foreground tokens) are utilized to perform the direct patch learning, for the following encoders, the removed
tokens were discarded. For all encoders, the remaining bottom tokens were inputted to the next encoder for
self-supervised learning.

Self-supervised learning in FSL. In papers of Gidaris et al. (2019), He et al. (2022), Hiller et al.
(2022); Su et al. (2020), self-supervised methods were introduced for few-shot learning, and they in-
dicated that supervised learning provides inferior performance compared with self-supervised meth-
ods in few-shot scenarios. We adopt the self-supervised method DINO (Caron et al., 2021), iBot
(Zhou et al., 2022), DINOv2 (Oquab et al., 2023) to squeeze residual information beyond the anno-
tated object. Finally, the three methods are compared visually and quantitatively.

Cascading learning. HCT (He et al., 2022) used spectral clustering to perform pooling on patches
so that the model learns at different semantic levels. Similar to ours, HCT uses the framework of
self-supervised learning methods to achieve SOTA performance. But our motivation and method are
still different from HCT (detailed in Appendix.A).

3 METHOD

3.1 DEFINITION AND MOTIVATION

Definition: Few-shot classification involves dividing the dataset into two distinct sets, denoted as
Dbase and Dnovel. The former set, Dbase, is utilized to conduct meta-training, which is a process of
training a model to learn how to learn. When testing, few-shot testing task is constructed on Dnovel,
it contains a tuple (Dsupport, Dquery). If Dsupport contains K classes and each class has N samples,
it is called a K-way-N -shot task.

Motivation: 1) “Shortcut” effect of the annotated objects. For a targeted object, networks prefer
discriminating it by only part of patches. In layman’s terms, not only can an elephant’s trunk be used
as a foreground feature to judge an elephant, but so can its legs and ears. So if a balanced learning
scenario is not constructed for the foreground patches, the robustness is reduced. 2) “Unused residual
information” beyond the annotated objects. These parts of the image with no class labels also hold
a prior probability which brings limited learning value.

Optimisation goals: Overall, we constructed different cascading weight redistribution strategies for
the patch ranked by token selection. For the object itself, we alleviate the shortcut effect that occurs
when a certain patch is too easy to be recognized. For low-ranked patches that contain even less
information, a cascading iterable method is used to squeeze out the residual information.

Our overall pipeline is illustrated in Fig.2. Multiple token selection module (Sec.3.2) is used to
distinguish “top tokens” from “bottom tokens”. Generally, only the top and bottom tokens after the
first selection can be interpreted as foreground and background. To alleviate “Shortcut” effect of the
annotated object, the Direct Patch Learning (Sec.3.3) is proposed for the foreground, which is only
used after the first selection. Finally, the cascading self-supervised learning strategy (Sec.3.4) will
squeeze limited information patch-wisely out of the rest of the bottom tokens.

3



Under review as a conference paper at ICLR 2024

Figure 3: Patches of the first token selection. Patches with brighter masks are selected as top patches for
Direct Patch Learning, while patches with darker masks are considered bottom patches that serve as input for
the second selection, which is utilized for mining background information.

3.2 TOKEN SELECTION

Since the motivation in Sec.3.1 mentions the need to build a supervised representation of the un-
labelled part of the image, it is natural to think of the currently popular self-supervised learning
method, which will be also discussed in Sec.3.4 and Appendix.A. Then, further research on DINO
(Caron et al., 2021), iBot (Zhou et al., 2022) and DINOv2 (Oquab et al., 2023) points out that the
self-attention map of [cls] tokens highlights the areas where the foreground object is located, and
suppresses the background area. Inspired by this, we present a feature selection mechanism based
on Random Walk that distinguishes “top tokens” from “bottom tokens” in the current context. Fur-
thermore, we do not merely discard the bottom tokens but employ self-supervised learning to mine
the structural information inherent in the image, which we find beneficial for few-shot learning.

The token selection strategy is where tokens with high relativity with [cls] token are selected as top
tokens for patch-level supervision training, while those with lower relativity are used as input for the
next encoder to learn background representation. Fig. 3 illustrates a visualized example of the token
selection process.

To select tokens that are most closely associated with the [cls] token (i.e., top tokens), it is necessary
to determine the degree of relevance between the [cls] token and patch tokens. Inspired by the
PageRank (Page et al., 1998) algorithm, we consider different tokens as states and attention scores
as the probability transition matrix between states, then construct a Markov chain. Starting from
the state corresponding to [cls], after s steps, we obtain the distribution of states πs, formalized as
follows:

πs = πs−1A = π0A
s, (1)

where π0 = {0, 0, ..., 0, 1}, meaning it starts from the state corresponding to the [cls] token, A is
a probability transition matrix from the average attention score of all heads in a multi-head trans-
former. In our final setting, we set s = 3.

Finally, we rank the probability distribution of states, removing the top half of tokens with the highest
probabilities. The remaining tokens proceed to the next encoder for further learning. An intuitive
explanation for this approach is that higher probabilities indicate a stronger association between
the corresponding patch tokens and the [cls] token. Since the [cls] token encodes the features of a
specific object in the current context, we exclude these tokens, allowing the next encoder to focus
on learning from the remaining tokens.

Then to extract the limited information from the remaining bottom tokens, self-supervised learn-
ing methods and cascade learning strategy are applied. The process of self-supervised learning is
introduced and analyzed in Sec.3.4 and Sec.4.4.

3.3 DIRECT PATCH LEARNING

The “Shortcut effect” is still illustrated by the example of an elephant and its trunk below. Empir-
ically speaking, an elephant can be identified easily by its distinctive trunk alone. An object x can
be described as a set of features [t1, t2, . . . , tn], where ti can be parameterized as a function of x,
[t1, . . . tn] = fθ(x). Typically, in classical deep learning classification, the features are not explicitly
separated, and the conditional distribution p(y | x) is the model’s direct output.
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In few-shot learning, learning only the salient features of the base class during meta-training may not
be sufficient as saliency implies its strong correlation with a specific base class and will not provide
effective discriminative features when dealing with novel classes. Let t1 represent the feature of the
trunk, and t2 represent the feature of the skin texture. Due to the strong correlation between the t1
and the elephant, we can observe

1 ≈ p(y = elephant | t1, t2) ≈ p(y | t1)
= p(y | t1) + 0 · p(y | t2).

(2)

If t2 is the output of the neural network, learning of t2 can be weak or non-existent, resulting
in overfitting on the base classes. Essentially, this scenario can be seen as weighted learning of
features, which can select features according to the class feature bias, suppress weakly correlated
outputs, and benefit the classification of base classes. However, as training progresses, performance
on base classes tends to improve at the expense of the ability to discriminate among novel classes
(Chen et al., 2021). Although data augmentation techniques such as RandCrop can reduce this risk
to some extent, we aim to further reduce this risk at the model level.

In order to address this issue, we transform the original learning objective, which is p(y|x) =
p(y|t1, t2, ..., tn), into multiple balanced weak classifiers p(y|ti). For each weak classifier, only
a single feature is utilized to construct the classifier, thus the modeling objective becomes:

p(y | x) = 1

n

∑
i≤n

p(y | ti). (3)

We pursue this approach for two main purposes. Firstly, it helps reduce overfitting to the base class
by imposing additional constraints. Secondly, it promotes balanced learning of different features
and minimizes the occurrence of “shortcuts”.

The desired situation is that ti in the features set has diverse semantic information and can be sep-
arated for optimizing using Eq.3. However, for common classification tasks, features ti are highly
entangled. Separately considering these features is intractable. We use the local patches’ represen-
tations as ti since patches in one image naturally represent some local attributions. Specifically,
we can let ti be a feature vector from a convolutional network or a token from a transformer that
describes the corresponding local area.

LMPNet (Huang et al., 2021) also considered a local token as a local descriptor, however, their pur-
pose is more similar to that of DeepEMD (Zhang et al., 2020), which used a local token to compute
matching scores between two images. Our aim is to construct a feature-diverse classification model
that weakens the suppression of weakly correlated features and enhances the generalization ability
to novel classes. Based on Jensen’s inequality and Eq.3, we define the Direct Patch Learning loss
function as:

LDPL := − 1

n

∑
i

E(log(p(y | ti))) ≥ −E(log(
1

n

∑
i

p(y | ti))). (4)

That is, we optimize the upper bound of cross-entropy for the unweighted feature model, making
the computation tractable.

3.4 PATCH-WISE LEARNING STRATEGY

Patch-level Label. In the few-shot classification task, only the image-level annotations are available.
Besides, a local patch might contain multiple overlapping objects, such as a sheep grazing on a
grassland. If this patch’s label is simply assigned as “sheep”, the learning of grassland features
would be ignored. To alleviate this problem, we propose Gaussian MixUp (GMIX). Instead of using
a scalar to mix two images, we use a mixing matrix generated from Gaussian Distribution, as shown
in Fig.4. Therefore there exist patches with complex mixed semantics and hard labels are replaced
by soft labels.

n-th cascading patch-wise learning strategy. In the first stage, after token selection for the outputs
from the first encoder, we obtain foreground-relevant and background-relevant patch sets Pf and
Pb. Patch-level supervision loss involves only the foreground tokens from the student network,
denoted as P (s)

f = (t1, ..., tn):

LDPL = − 1

n

n∑
i

E(log(p(y | ti))). (5)
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Figure 4: Gaussian MixUp for Patch-level Label. The loss function is denoted by L, where z represents
the class label and y denotes the network output. The GMIX algorithm generates pixel weights through two
randomly generated Gaussian functions, which are utilized to blend two images and produce soft labels for
Direct Patch Learning.

For [cls] tokens, We used a self-supervised method and loss (Lssl) in the multiple papers like DINO
(Caron et al., 2021), iBot (Zhou et al., 2022) and DINOv2 (Oquab et al., 2023) for self-supervised
training. The loss used in the first stage is defined as

L1th = L1th

ssl + LDPL. (6)

Instead of being discarded, those semantically irrelevant bottom tokens Pb will be used as input for
the second encoder for further mining of the rich contextual information inherent in the image. The
[cls] token from the nth stage will only be used for self-supervised loss computation (detailed in
Appendix.A) as in the previous stage. Then the total loss is

Lnth

= Ln−1th

ssl + LDPL + αLnth

ssl , (7)

while α is the degradation hyper-parameter. We presented an overall pipeline in Algorithm 1, where
we omitted GMIX for the sake of simplicity.

During testing, only the output of the first encoder is utilized, and the average of foreground tokens
and [cls] token is concated as the final feature vector. A cosine classifier is constructed to perform
the few-shot classification task.

Algorithm 1 Training pipeline
θs, θt are the teacher network and student network’ parameters.

1: for each epoch ∈ [0, total epochs) do
2: for each iteration do
3: L← LDPL

4: if epoch > stage1 epoch then
5: for each nth ∈ total layers do
6: L← L+ αLnth

ssl

7: end for
8: end if
9: θs ← θs − lr ∗ ∂L

∂θs

10: z ← z − lr ∗ ∂L
∂z

11: θt ← θt ∗momentum+ θs ∗ (1−momentum)
12: end for
13: end for

4 EXPERIMENT

4.1 DATASET

MiniImageNet (Vinyals et al., 2016b) is a subset of the ImageNet (Deng et al., 2009) dataset. It
comprises 100 classes, out of which 64, 16, and 24 are used for training, validation, and testing,
respectively. Each class in MiniImageNet consists of 600 images, resulting in a total of 600,000
images.

TieredImageNet (Ren et al., 2018) is also a subset of ImageNet and represents an extension of
MiniImageNet, encompassing 600 classes, of which 351, 97, and 160 classes are allocated to the
training, validation, and testing splits, respectively. TieredImageNet contains 779,165 images totally.
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CIFAR-FS (Bertinetto et al., 2018) divides the 100 classes in the CIFAR-100 dataset into training,
validation, and testing sets, each consisting of 64, 16, and 20 classes, respectively. Each category in
CIFAR-FS contains 600 images.

FC100 (Oreshkin et al., 2018a) is also derived from the CIFAR-100 dataset, but the distribution of
categories across the training, validation, and testing sets is more diverse, rendering the task more
challenging.

4.2 IMPLEMENTATION DETAILS

The AdamW optimizer is employed with linear learning rate warm-up along with the cosine sched-
uler of learning rate. Our experiments are conducted on 8 Nvidia V100 GPUs over a period of 400
epochs. And a multi-crop strategy from DINO is also implemented, which includes 2 global images
and 8 local images. Our method is evaluated on three different architectures, namely ResNet18,
EfficientNet-b0, and ViT-S (detailed in Appendix.A). For ResNet18, we set the global image res-
olution to 224 × 224 and the local patch resolution to 96 × 96. For EfficientNet-b0, we set the
global image resolution to 384 × 384 and the local resolution to 144 × 144. In cascading learning,
the training is conducted in two stages. In the first stage, the backbone and the first encoder are
trained for 300 epochs. In the second stage, all network components are trained until 400 epochs.
The loss weight α in Algorithm 1 is set to 0.1. For the remaining settings, we follow the original
self-supervised model implementation.

In our evaluation, a standard evaluation protocol is employed as described in (Mangla et al., 2020;
He et al., 2022; Tian et al., 2020b). We construct a cosine classifier to solve few-shot tasks and
evaluate our experiments on 5-way 1-shot and 5-way 5-shot classification. For each task, 1 or 5
labeled images are used as support data, and the remaining unlabeled images of the same category
are used as query data. In this paper, we sample 2,000 testing tasks for performance evaluation.

Baseline (train). Baseline (val). Ours (train). Ours (val).

Figure 5: Visualization results of features extracted from the network on the miniImageNet. Our scheme has
better classification boundaries on the validation set.

4.3 COMPARISON

Results of miniImageNet and tieredImageNet. Table 1 displays the results obtained on miniIm-
ageNet and tieredImageNet. Our proposed method outperforms previous state-of-the-art methods
that also use simple CNN (such as ResNet12) on all benchmarks. It is noteworthy that a significant
improvement over the second-best method is achieved. Specifically, in the 5-way-1-shot setting, our
method outperforms AMTNet (Lai et al., 2022) by 2.07% on miniImageNet, and in the 5-way-5-shot
setting, it surpasses MCL (Liu et al., 2022) by 2.91%. The results on MiniImagenet and TieredIm-
ageNet are presented in Table 1. Some recent methods use heavyweight backbones like ViT and
Swin, which perform well but require a large amount of data to avoid overfitting. While our method
with EfficientNet-B0 achieved state-of-the-art performance with better efficiency (in Appendix.A
Table.6). Based on our method, modern backbone like EfficientNet have higher performance, but
large backbones like ViT only achieve relatively good results (also detailed and analyzed in Ap-
pendix.A). Our approach allows the model to better utilize information in the dataset, and improve
performance on novel thoughts.

Results of CIFAR and FC-100. Table 2 shows the result on CIFAR and FC-100 dataset, we all
achieved optimal or suboptimal performance.

Moreover, cross domain results are also carried out and reach SOTA (detailed in Appendix.A).

Overall, the SOTA results are achieved in most of the scenarios in inductive few-shot learning.
Although in a few other cases, we only achieved relatively good results. It’s still enough to prove the
effectiveness and efficiency that ours achieved higher throughput and relatively good performance
using a lighter-weight network.
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Method Backbone
miniImageNet 5-way tieredImageNet 5-way

1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

Variational FSL (Zhang et al., 2019) ResNet-12 61.23±0.26 77.69±0.17 - -
MetaOptNet (Lee et al., 2019a) ResNet-12 62.64±0.61 78.63±0.64 65.99±0.72 81.56±0.53

Fine-tuning (Dhillon et al., 2019) WRN-28-10 57.73±0.62 78.17±0.49 66.58±0.70 85.55±0.48
Neg-Cosine (Liu et al., 2020) ResNet-12 63.85±0.81 81.57±0.56 - -

Rethingking-distill (Tian et al., 2020b) ResNet-12 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49
Meta-Baseline (Chen et al., 2021) ResNet-12 63.17±0.23 79.26±0.17 68.62±0.27 83.74±0.18

FEAT (Ye et al., 2020) ResNet-12 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16
DeepEMD (Zhang et al., 2020) ResNet-12 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58

LookingWider (Zhao et al., 2021) ResNet-12 67.96±0.98 83.36±0.51 73.42±0.95 87.72±0.75
ECS (Rizve et al., 2021) ResNet-12 66.82±0.80 84.35±0.51 71.87±0.89 86.82±0.58

PAL (Ma et al., 2021) ResNet-12 69.37±0.64 84.40±0.44 72.25±0.72 86.95±0.47
FRN (Wertheimer et al., 2021) ResNet-12 66.45±0.19 82.83±0.13 72.06±0.22 86.89±0.41

LDA (Xu et al., 2021) ResNet-12 67.76±0.46 82.71±0.31 71.89±0.52 85.96±0.35
SetFeat (Afrasiyabi et al., 2022) ResNet-12 68.32±0.62 82.71±0.46 73.63±0.88 87.59±0.57

MCL (Liu et al., 2022) ResNet-12 69.31±n/a 85.11±n/a 73.62±n/a 86.29±n/a
LIF (Li et al., 2021) ResNet-12 68.94±0.28 85.07±0.50 73.76±0.32 87.83±0.59

AMTNet (Lai et al., 2022) WRN-28 70.05±0.46 84.55±0.29 73.86±0.50 87.62±0.33

Baseline ResNet-12 62.74±0.44 79.61±0.36 70.02±0.43 84.66±0.28
Ours ResNet-12 72.12±0.40 88.02±0.28 77.64±0.48 90.41±0.32

FewTURE (Hiller et al., 2022) Swin-Tiny 72.40±0.78 86.38±0.49 76.32±0.87 89.96±0.55
HCTransformers (He et al., 2022) ViT-S×2 74.62±0.20 89.19±0.13 79.57±0.20 91.72±0.11

Baseline EfficientNet-B0 62.74±0.44 79.61±0.36 70.02±0.43 84.66±0.28
Ours EfficientNet-B0 74.84±0.36 89.84±0.30 80.04±0.42 92.20±0.31

Table 1: Comparison on miniImagenet and tieredImageNet. Bold numbers indicate the best performance, blue
number indicates sub-optimal performance. For a fairer comparison, we put the method using the traditional
CNN (ResNet12) on top and the method using the new architecture at the bottom.

Method Backbone
CIFAR-FS 5-way FC100 5-way

1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

Shot-Free (Ravichandran et al., 2019) ResNet-12 69.2±n/a 84.7±n/a - -
TEWAM (Qiao et al., 2019) ResNet-12 70.4±n/a 81.3±n/a - -

Prototypical Networks (Snell et al., 2017b) ResNet-12 72.2±0.7 83.5±0.5 37.5±0.6 52.5±0.6
MetaOptNet (Lee et al., 2019b) ResNet-12 72.6±0.7 84.3±0.5 41.1±0.6 55.5±0.6
Rethinking (Tian et al., 2020b) ResNet-12 73.9±0.8 86.9±0.5 44.6±0.7 60.9±0.6

ECS (Rizve et al., 2021) ResNet-12 76.8±0.8 89.2±0.6 47.3±0.8 64.4±0.8
PAL (Ma et al., 2021) ResNet-12 77.1±0.7 88.0±0.5 47.2±0.6 64.0±0.6

DeepEMD (Zhang et al., 2020) ResNet-12 74.5±0.3 86.4± 0.4 45.4± 0.3 61.5±0.7

Baseline ResNet-12 70.2±0.4 83.0±0.3 40.1±0.4 58.2±0.4
Ours ResNet-12 78.1±0.4 89.9±0.4 47.8±0.4 65.6±0.4

FewTURE 3 (Hiller et al., 2022) Swin-Tiny 77.8±0.8 88.9± 0.6 47.7± 0.8 63.8±0.8
HCTransformers 3 (He et al., 2022) ViT-S 78.9±0.2 90.5± 0.1 48.2± 0.2 66.4±0.1

Baseline EfficientNet-B0 71.3±0.4 83.2±0.3 41.2±0.4 58.6±0.4
Ours EfficientNet-B0 79.2±0.4 92.0±0.4 48.1±0.4 66.2±0.4

Table 2: Comparison on CIFAR-FS and FC100.

4.4 ABLATION STUDY

Table 3 shows the ablation experiments on miniImagenet with ResNet12 as the backbone. MP and
DPL bring a great performance improvement by 8.85% on the miniImageNet 5-way-1-shot setting
compared with the DINOv2 baseline. GMIX can further improve the accuracy by 1.47% (1-shot).
With all these proposed strategies, we surpass the supervised baseline by 9.38% (1-shot). Fig.5
visualizes the embedding space of the dataset. After training with our strategies, the embeddings of

SL SSL DPL GMIX Cascading Selection 1-shot (%) 5-shot (%)
✓ - - - - 62.74±0.44 79.61±0.36
- ✓ - - - 61.50±0.44 78.13±0.36
- ✓ ✓ - - 70.35±0.40 85.61±0.39
- ✓ ✓ ✓ - 71.82±0.40 86.57±0.37
- ✓ ✓ ✓ ✓ 72.12±0.40 88.02±0.28

Table 3: Ablation study. Baseline is trained with
SL(Supervised learning), we surpass it by a large mar-
gin of 9.38% (1-shot) and 8.41% (5-shot).

Stage of Cascade DINO iBot DINOv2
n = 1 stage 70.51±0.38 71.14±0.37 71.82±0.40
n = 2 stages 71.22±0.41 71.87±0.37 72.12±0.40
n = 3 stages 71.16±0.38 71.72±0.40 71.78±0.39
n = 4 stages 71.02±0.39 71.78±0.41 71.89±0.40

Table 4: Comparison of Stage of Cascad-
ing Token Selection and SSL method 5-way-
1-shot results (%) of miniImageNet.
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the validation set become more concentrated and exhibit clearer classification boundaries, indicating
that our method has better generalization abilities over novel categories.

Input Resolution. For datasets with lower resolution, such as CIFAR, the improvement on perfor-
mance is not that significant. As pointed out by (He et al., 2022), the patch-based method is not
effective on datasets with low resolution. To investigate the impact of resolution on performance,
experiments were conducted on different resolution inputs, and the results are shown in Fig.6. This
figure also demonstrates that only increasing the resolution may not have positive effects for some
methods, as also noted by (He et al., 2022). These experiments suggest that the improvement in
performance is not solely attributable to the increase in resolution. Instead, it is the robust backbone
trained with our proposed stronger regularization strategies that matter the most in reducing the risk
of overfitting.
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Figure 6: Comparison of different input resolu-
tions.

input w/o DPL w/i DPL

Figure 7: Visualization of local patch token ac-
tivation regions of two models

Strategy Backbone 1-shot (%) 5-shot (%)
All ResNet-12 71.44±0.42 87.64±0.31

TokenSelection ResNet-12 72.12±0.40 88.02±0.28

Table 5: Comparison of different token selection strategies on miniImageNet.

Number of cascading stages and self-supervise methods: Experiments Table 4 have shown that
all self-supervised methods give the best results when number of stage n=2. Moreover, among all
the self-supervised methods, DINOv2 gives the best results. Therefore, DINOv2 is used in all cases
where other results are not specifically mentioned.

Token Selection Strategy. Table 5 presents our experiments on validating the design of the token
selection strategy. We denote using tokens with higher attention scores for Direct Patch Learning
loss as TokenSelection and using all the tokens as All. In the results of the miniImageNet dataset,
it is observed that training with a token selection strategy demonstrates better performance. We
attribute such a phenomenon to the irrelevant semantic information contained in other tokens from
background regions.

Activation Region of Direct Patch Learning. It is observed that the model trained using DPL
exhibits a larger activation region for local patch tokens. The receptive field of a deep neural network
is theoretically large enough to cover the entire input space. Therefore, using image-level features,
such as global pooled features in CNN or the [cls] token in ViT, is adequate to activate the object’s
entire region, and local tokens are only required to activate their respective local areas. Moreover,
directly using global features for training may not benefit generalization to new classes for the model
may mainly focus the most significant features on the base classes. When facing novel classes,
these features may not be discriminative enough. Through Direct Patch Learning, the model learns
different features from one sample more independently. This approach helps avoid overfitting to
base classes by learning a more varied set of features.

5 CONCLUSIONS

This paper introduces a cascading learning framework for few-shot learning that divides the learning
process patch-wise using a token selection. The goal is to enhance the representational capacity of
tokens and better leverage the knowledge available from limited data. Our approach demonstrates
strong performance with a minimal increase in computational cost. Furthermore, the GMIX mod-
ules and patch-wise strategy can be easily integrated into other tasks as plug-and-play modules.
Overall, both the insight of the non-annotated part and cascading patch-wise learning strategy is still
enlightening to the community.
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A APPENDIX

The difference between HCT and our method. 1) HCT He et al. (2022) still did not take the
non-annotated part into consideration, while our cascading strategy and self-supervised method are
designed to squeeze the residual value of the non-annotated part. 2) As for the annotated part, HCT
modifies the DINO to a supervised framework and implements the clustering of patches. Different
from clustering, balanced patch weights from our DPL do not emphasize semantic information. 3)
Our method avoids the direct cascade of the backbone and achieves relatively good results with
fewer parameters in Table.6.

Method Params Throughput FLOPS 5-way-1-shot (%) 5-way-5-shot (%)
HCT(He et al., 2022) 42.2M 170.1 images/s 20.8G 74.62±0.20 89.19±0.13

Ours 7.1M 344.2 images/s 8.4G 74.84±0.36 89.84±0.30

Table 6: Comparison of efficiency. Throughput is measured using the same setting and a V100 GPU.

Cross domain results. CUB200 (Wah et al., 2011) is a fine-grained dataset that contains 11,788
images of 200 subcategories belonging to birds. Table 7 presents the result on CUB100. Our strategy
gets an improvement of 4.47% on the 1-shot setting and 1.72% on the 5-shot setting compared to
the previous SOTA. Table 8 shows the cross-domain performance of miniImageNet to CUB200. We
beat baseline by 8.46% on 5-shot and achieved state-of-the-art compared to the previous approach.

Method Backbone 5-way 1-shot 5-way 5-shot
ProtoNet (Snell et al., 2017a) ResNet-12 66.09±0.92 82.50±0.58

RelationNet (Sung et al., 2018) ResNet-34† 66.20±0.99 82.30±0.58
MAML (Finn et al., 2017) ResNet-34 67.28±1.08 83.47±0.59

cosine classifier (Chen et al., 2019) ResNet12 67.30±0.86 84.75±0.60
MatchNet (Vinyals et al., 2016a) ResNet-12 71.87±0.85 85.08±0.57

NegMargin (Liu et al., 2020) ResNet-18 72.66±0.85 89.40±0.43
S2M2 (Mangla et al., 2020) ResNet-34 72.92±0.83 86.55±0.51

FEAT (Ye et al., 2020) ResNet-12 73.27±0.22 85.77±0.14
DeepEMD (Zhang et al., 2020) ResNet-12 75.65±0.83 88.69±0.50

Baseline ResNet-12 74.11±0.42 85.06±0.29
Ours ResNet-12 80.12±0.40 91.12±0.28

Table 7: Results on CUB200.

Method Backbone 5-way-5-shot
ProtoNet (Snell et al., 2017a) ResNet-12 62.02±0.70

MatchingNet (Vinyals et al., 2016a) ResNet-12 53.07±0.74
RelationNet (Sung et al., 2018) ResNet-12 57.71±0.73
Baseline++ (Chen et al., 2019) ResNet-12 65.57±0.70
NegMargin (Liu et al., 2020) ResNet-12 69.30±0.73

Baseline ResNet-12 63.62±0.36
Ours ResNet-12 72.08±0.28

Table 8: Cross domain results with miniImageNet being the source dataset and CUB200 being the target
dataset.

ViT comparison on miniImagenet and tieredImageNet. It indeed failed to achieve SOTA results
on ViT, but we have the following analysis of ViT results. 1) In terms of our network, the overall
implementation is a cascade strategy, which does not require extremely strong encoding capabilities
at the first level of the encoder. However, the result is still valid to prove the effectiveness and
efficiency of the strategy by using weak encoders to achieve the SOTA results. 2) The overall
analysis shows that the SOTA HCT method He et al. (2022) essentially uses two ViTs, but our ViT
method achieves relatively good results with half of the flops and parameters as the HCT.
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Method Backbone
miniImageNet 5-way tieredImageNet 5-way
1-shot 5-shot 1-shot 5-shot

FewTURE (Hiller et al., 2022) Swin-Tiny 72.40±0.78 86.38±0.49 76.32±0.87 89.96±0.55
HCTransformers (He et al., 2022) ViT-S 74.62±0.20 89.19±0.13 79.57±0.20 91.72±0.11

Baseline ViT-S 56.33±0.39 65.61±0.34 67.34±0.47 79.64±0.29
Ours ViT-S 73.36±0.38 87.74±0.29 78.88±0.45 89.07±0.34

Table 9: ViT comparison on miniImagenet and tieredImageNet as Fig.1

EffientNet comparison on miniImagenet. We managed to reach the SOTA of the miniImagenet
and tieredImageNet on EffientNet. And to achieve a fairer comparison, we replaced the backbone
of the dominant network architecture with EffientNet for the comparison 10.

Method Backbone
miniImageNet 5-way

1-shot (%) 5-shot (%)

LIF (Li et al., 2021) EfficientNet-B0 67.12±0.36 84.12±0.41
AMTNet (Lai et al., 2022) EfficientNet-B0 68.53±0.38 84.35±0.29

HCTransformers (He et al., 2022) EfficientNet-B0 + ViT-S 69.12±0.21 85.51±0.28

Baseline EfficientNet-B0 62.74±0.44 79.61±0.36
Ours EfficientNet-B0 74.84±0.36 89.84±0.30

Table 10: EffientNet comparison on miniImagenet. We adopt their original code with the exception of altering
the backbone. For HCTransformer, we follows their setting except modifying the first backbone and replacing
the [cls] token with the pooled feature.

Self-supervised learning. A multi-stage structure is built on top of the self-supervised learning
method. Then here come three self-supervised learning methods, DINO (Caron et al., 2021), DI-
NOv2 (Oquab et al., 2023), and iBot (Zhou et al., 2022).

These methods share a common goal of acquiring a consistent representation, where an identical im-
age, subjected to various data augmentations, is expected to manifest consistent representations, with
a predominant emphasis on the foreground patches which have high attention scores. In contrast,
our approach differs by introducing a cascading structure. At each level, it progressively eliminates
tokens with high attention and instead concentrates on establishing consistency among the remain-
ing tokens. Our primary goal with this approach is to reduce the risk of overfitting to base classes
by extracting knowledge from the retained patches. In essence, our aim is to attain representation
consistency across multiple contexts.

In addition, those methods are all built upon the foundation of the vision transformer. In contrast,
our approach diverges by employing a convolutional neural network as the backbone, augmenting
it with 1-4 transformer blocks to serve as the encoder for each cascade. Formally, define g = f ◦ e
where f is a backbone and e is a transformer encoder. Then f(x) ’s outputs are a tensor with
shape[b, c, w, h], which is squeezed and then concatenated with a [cls] token to be a tensor with
shape [b, c, h × w + 1], which consisting of w × h patch tokens and one [cls] tokens. Finally, the
encoder takes the concerted tensor as the input.
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