
HALC: Object Hallucination Reduction via Adaptive Focal-Contrast Decoding

Zhaorun Chen * 1 Zhuokai Zhao * 1 Hongyin Luo 2 Huaxiu Yao 3 Bo Li 1 4 Jiawei Zhou 5

Abstract

While large vision-language models (LVLMs)
have demonstrated impressive capabilities in in-
terpreting multi-modal contexts, they invariably
suffer from object hallucinations (OH). We in-
troduce HALC, a novel decoding algorithm de-
signed to mitigate OH in LVLMs. HALC lever-
ages distinct fine-grained optimal visual infor-
mation in vision-language tasks and operates on
both local and global contexts simultaneously.
Specifically, HALC integrates a robust auto-focal
grounding mechanism (locally) to correct hallu-
cinated tokens on the fly, and a specialized beam
search algorithm (globally) to significantly re-
duce OH while preserving text generation qual-
ity. Additionally, HALC can be integrated into
any LVLMs as a plug-and-play module without
extra training. Extensive experimental studies
demonstrate the effectiveness of HALC in reduc-
ing OH, outperforming state-of-the-arts across
four benchmarks. Code is released at https:
//github.com/BillChan226/HALC.

1 Introduction
The confluence of natural language processing (NLP) and
computer vision (CV) has undergone a transformative shift
over the past years with the introduction of vision-language
models (VLMs) (Zhu et al., 2023; Liu et al., 2023b; Zhang
et al., 2024). Although VLMs have shown exceptional pro-
ficiency in integrating and interpreting intricate data across
both textual and visual modalities, a significant challenge
emerged as the phenomenon of object hallucination (OH),
where VLMs erroneously generate hallucinated objects and
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descriptions within their outputs (Rohrbach et al., 2018).
Based on the different parts of the sentences that are being
hallucinated, OH can be categorized into three types: object
existence, attribute, and relationship hallucinations (Gunjal
et al., 2023; Zhai et al., 2023).

OH has been a persistent challenge since the earlier stages
of the VLM development (Rohrbach et al., 2018). And it
has been gaining increased attention, especially when recent
research indicates that even the much more sophisticated
and capable large vision-language models (LVLMs) are not
immune to it (Dai et al., 2022; Li et al., 2023; Guan et al.,
2023). Numerous efforts have been devoted to mitigating
OH in the context of LVLMs, including a post-hoc approach
that corrects the LVLM output after completion (Zhou et al.,
2023), a self-correction pipeline for OH mitigation (Yin
et al., 2023), and various decoding strategies that are tai-
lored towards reducing OH via better textual or visual priors
utilization (Huang et al., 2023; Leng et al., 2023).

Despite the efforts, these approaches are not yet fully satis-
fying in terms of eliminating OH. More importantly, they
mainly focus on mitigating object existence hallucination,
while assuming the attribute- and relationship-level hallu-
cinations can be consequently corrected through autore-
gressive decoding. Furthermore, their reliance on more
powerful external LVLMs (Yin et al., 2023), repeated pro-
cessing (Zhou et al., 2023) or additional data (Gunjal et al.,
2023) complicates their adaptations to existing LVLMs and
restricts their use cases. The importance of OH reduction
combined with the limitations in existing methods under-
score the urgent need for developing novel approaches.

To this end, we introduce Object Hallucination Reduction
through Adaptive FocaL-Contrast decoding (HALC), a
novel decoding strategy designed to effectively counter OH
and can be easily integrated into any open-source LVLMs
such as MiniGPT-4 (Chen et al., 2023), LLaVA (Liu et al.,
2023b) and mPLUG-Owl2 (Ye et al., 2023). HALC ad-
dresses all three types of OH (existence, attribute, and rela-
tionship) while preserving generation quality in both local
and global levels; locally, it employs an adaptive focal-
contrast grounding mechanism to locate the fine-grained
optimal visual information to correct each generated token
that might be hallucinating; and globally, it incorporates a
matching-based beam search that utilizes a visual matching
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score to steer the generation of the final outputs to balance
both OH mitigation and text generation quality.

The main contributions of this paper are: (1) HALC, a novel,
plug-and-play decoding algorithm that significantly reduces
OH in LVLMs while preserving outputs generation qual-
ity; (2) an open-sourced platform that unifies all major OH
reduction baselines and state-of-the-arts (SOTAs) (Chuang
et al., 2023; Zhou et al., 2023; Yin et al., 2023; Huang
et al., 2023; Leng et al., 2023), including HALC, into one
framework providing convenient evaluations supporting ma-
jor LVLM backbones (Zhu et al., 2023; Chen et al., 2023;
Liu et al., 2023b; Dai et al., 2023) and OH benchmarks
and evaluation metrics (Rohrbach et al., 2018; Fu et al.,
2023; Li et al., 2023; Liu et al., 2023a); and (3) comprehen-
sive experimental studies that thoroughly evaluates HALC,
demonstrating its superior capability in OH reduction over
existing approaches.

2 Related Work
OH and its assessment. OH refers to the phenomenon
where vision-language models (VLMs), including both ear-
lier BERT-based models (Li et al., 2019; Radford et al.,
2021) and more recent LVLMs (Liu et al., 2023b; Zhu et al.,
2023; Tu et al., 2023; Cui et al., 2023; Wang et al., 2024;
Zhou et al., 2024b), erroneously generate unfaithful con-
tents. More specifically, Gunjal et al. (2023) and Zhai et al.
(2023) proposed that OH could be categorized into three
types: object existence hallucination for the creation of non-
existent objects, object attribute hallucination for providing
misleading descriptions, and object relationship hallucina-
tion for depicting incorrect inter-object relationships.

The most well-adopted metric specifically designed to eval-
uate OH is CHAIR (Rohrbach et al., 2018), which was
motivated after Rohrbach et al. (2018) discovered that ex-
isting metrics that measure the output’s text quality, such
as CIDEr (Vedantam et al., 2015), is misleading at repre-
senting hallucinations (higher CIDEr score may correlate
with higher OH). Another notable and more recent metric
is POPE (Li et al., 2023), which transforms the assessment
of OH into a binary classification problem where metrics
such as precision, recall and accuracy are used to represent
the level of OH. In our evaluations, we utilize CHAIR and
propose a new metric based on POPE, named OPOPE, for
thorough assessments of OH, while keeping the standard
text generation quality metrics such as BLEU (Papineni
et al., 2002), as an additional indicator to make sure little
sacrifice in quality was made when mitigating OH.

Challenges and existing approaches. OH has been a per-
sistent challenge over the past years (Rohrbach et al., 2018).
Despite numerous advancements in LVLMs (Dai et al.,
2022; Li et al., 2023; Zhou et al., 2024a), none of them can
produce faithful outputs without suffering from some level

of OH. Various strategies have been developed to this matter.
For instance, Zhou et al. (2023) and Yin et al. (2023) pro-
posed post-hoc and self-correction pipelines, respectively.
Huang et al. (2023) and Leng et al. (2023) developed decod-
ing strategies emphasizing better prior utilization. While
effective, these approaches often require powerful external
LVLMs or additional data, limiting their adaptability.

Distinct from these methods, HALC offers a novel decoding
strategy that effectively reduces OH without necessitating
extra LVLMs, training, or data. Integrating a novel adaptive
focal-contrast grounding mechanism, HALC addresses both
local and global contexts in OH reduction. Its compatibil-
ity with open-source LVLMs like MiniGPT-4 (Zhu et al.,
2023) and LLaVA (Liu et al., 2023b) further enhances its
applicability. And as previous approaches often study the
problem under different settings and metrics (Zhou et al.,
2023; Yin et al., 2023; Huang et al., 2023; Leng et al., 2023),
to promote the development of OH reduction in general, we
implement an open-source platform which hosts both the
proposed HALC and other methods, supporting various
LVLM backbones and evaluation metrics.

3 Background and Motivation

3.1 Problem Formulation

We consider an LVLMMLVLM
θ parameterized by θ, with a

general architecture consisting of a vision encoder, a vision-
text interface module, and a text decoder. For an image-
grounded text generation task, given a textual query x and
an input image v, v is first processed by the vision encoder
into a visual embedding, then transformed by the interface
module as the input to the text decoder together with the
query x, and finally decoded into a textual response y au-
toregressively. Formally, we have

yt ∼ pθ(·|v, x, y<t) ∝ exp fθ(·|v, x, y<t) (1)

where yt denotes the tth token, y<t is the token sequence
generated up to time step t, and fθ is the logit distribution
(unnormalized log-probabilities) produced byMLVLM

θ .

OH happens when some parts of the text generation y con-
flicts with the input image v. The goal of OH reduction
is to minimize the occurrence of hallucination tokens and
preserve the faithfulness to v when addressing the query x,
while maintaining a high-quality generation of text y.

3.2 Why Does OH Occur?

OH in VLMs can be attributed to various factors, including
but not limited to the inherent biases in the training data
caused by co-occurrence (Biten et al., 2022; Zhou et al.,
2023), visual uncertainty due to model’s statistical bias
and priors (Leng et al., 2023), as well as the limitations in
current models’ ability to discern context and fact accurately
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during the entire output generation process (Daunhawer
et al., 2021). Studies have also shown that OH is not random
but exhibits certain patterns and dependencies, such as its co-
existence with knowledge aggregation pattern (Huang et al.,
2023), and the tendency to occur with objects positioned
later in the generated descriptions (Zhou et al., 2023).

A closer examination of these analysis suggests that the
autoregressive nature of the LVLMs may be a fundamental
factor contributing to their hallucinatory behaviors. Specifi-
cally, autoregressive decoding makes LVLMs progressively
rely more on textual information including both the query x
and the increasing history generations y<t, while unavoid-
ably reducing reliance on the visual input. This imbalance
results in a significant deviation from accurate represen-
tation of the visual input, ultimately culminating in OH
with behaviors and patterns observed in the aforementioned
studies (Zhou et al., 2023; Leng et al., 2023). This is espe-
cially obvious when longer responses are generated, which
explains the correlation between higher OH and larger max-
imum token lengths, as seen in Huang et al. (2023).

3.3 Fine-grained Visual Knowledge Reduces OH

To mitigate the disproportionate reliance on the textual and
visual information during the autoregressive text generation,
the process can be enhanced by continuously incorporating
targeted visual information. As faithful text generations
should guarantee that object-related text tokens are well
grounded in the visual input, we hypothesize that the gen-
eration can benefit from focusing more on the fine-grained
visual context for different object-related tokens. For ex-
ample, for an image showing a man holding a clock on the
beach as in Fig. 2, the generation of the clock token can be
well grounded in a smaller region of the image, which we
call a specific visual context, ideally excluding the beach
which is distracting. Therefore, our key insight in miti-
gating OH lies in identifying a token-wise optimal visual
context to provide the most informative visual grounding
while decoding a specific token.

We verify our hypothesis through an empirical pilot study.
Fig. 1 shows the oracle performance of OH levels when we
rely on optimal visual contexts for tokens through brute-
force search, with greedy decoding on the MME bench-
mark (Fu et al., 2023) on three categories of OH.1 We can
see that for most cases, there are optimal visual contexts
where decoding from them eliminates over 84.5% of the
hallucinations. This motivates our approach of identifying
different visual contexts for object-related token genera-
tions through adaptive focal-contrast decoding, which is
introduced in detail in the next section.

1Details of this oracle analysis can be found in Appendix C.2.
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Figure 1: On average, over 84.5% of the observed existence, at-
tribute, and relationship hallucinations are reduced by leveraging
some optimal visual context v∗. Blue bar denotes number of hallu-
cinated tokens on each corresponding MME sub-task, while orange
bar denotes results when decoding from the oracle v∗.

4 Methodology
An overview of the proposed HALC method is shown in
Fig. 2. It operates at the token level during generation,
with reliance on fine-grained visual information represented
by samples of different visual contexts. By recomputing
the token distributions from different visual context inputs
and contrasting them, object-related token probabilities are
redistributed to reduce hallucinations dynamically within
the generation steps. We describe the full procedures below.

4.1 Object-related Token Identification

To focus on the most-probable hallucination sources and
optimize time efficiency, we first identify tokens that are
related to objects to be processed by HALC. In particular,
at each generation step t, we acquire the part-of-speech
(POS) tag (Honnibal & Montani, 2017)2 of the currently
generated token from the modelMLVLM

θ . If the token be-
longs to noun, adjective/adverb/number/verb/pronoun, or
preposition, which correspond to object existence, attribute,
and relationship hallucinations, respectively, we redo the
current token generation with HALC. For example, as seen
in Fig. 2, the newly generated token surfboard is identified
as it may contribute to the object existence hallucination.
Notice that we do not make any assumptions on whether
or not the current token is hallucinating, instead, we only
determine if the token can be prune to hallucination solely
based on its syntactic category.

4.2 Visual Context Retrieval

To identify the fine-grained visual information for the
current token, we first retrieve a visual context window
vd = (wd, hd, pd) corresponding to the token, where wd

and hd are the width and height of the visual window, and
pd is the center point. Specifically, we employ a zero-shot
detector Gd such as Grounding DINO (Liu et al., 2023c) or
OWLv2 (Minderer et al., 2023) to locate the token within
the original image input v. Notably, despite the most com-

2We use the small-sized spaCy English pipeline (https://
spacy.io/models/en) for tagging each complete word.
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Figure 2: An overview of HALC. As LVLM autoregressively generates texts w.r.t. an image input (e.g. a man holding a clock on the
beach), the conventional decoding method may hallucinate the clock as surfboard. However, HALC corrects this potential hallucination
by first locating its visual grounding vd, then sample n distinctive yet overlapping FOVs (e.g. ṽs, ṽd, ṽl). Next, all FOVs are fed back into
the LVLM, along with the current ongoing response, obtaining n logits distributions. Then we compute Jensen-Shannon Divergence (JSD)
between each pair of the n distributions, and select the top m pairs, providing 2m next-token candidates by bi-directional contrasted logits
distributions. Each of the 2m candidates are then appended to the k ongoing beams (beam search omitted in the figure for simplicity),
resulting in 2mk response candidates. Finally, k best responses are selected according to the global visual matching score between current
text and original image, completing the current decoding round with the hallucinating token surfboard successfully corrected to clock.

mon use case of these zero-shot detectors is to locate objects,
they are trained to also provide good visual reference for
adjective or prepositional phrase. This is because during
pre-training, the objective of these detection models is to
associate words in text descriptions with specific regions
in images (Liu et al., 2023c), which naturally includes at-
tributes and relationships besides names.

Interestingly, we find that although the current token may
technically be non-existing when it represents a hallucina-
tion (e.g., surfboard in Fig. 2), it can still be accurately
located by the detector in practice, especially when the de-
tector confidence threshold is set to lower values.

4.3 Adaptive Focal-contrast Grounding

While off-the-shelf detectors establish a meaningful refer-
ence vd within the original image input v, it is often not the
optimal visual context for decoding. In Fig. 3, we show an
example of how token probabilities representing different
objects change with different visual context windows, or
field of views (FOVs) input to the vision model inMLVLM

θ .
In this generation step, the ground-truth token “clock” (we
call a victim token) is hallucinated to “surfboard”. Although
direct decoding from vd does not correct the hallucination
as the probability of “clock” is still low, we can see that
there exists a better visual context window v1 that can cor-
rect the hallucination, and the curve corresponding to the
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|𝐯
,𝐱
,𝐲
"
𝐭)

Samples of Field-of-Views (FOVs)

Figure 3: Log-likelihood of object tokens w.r.t. visual context
samples in the FOV space, at the generation step in the example
of Fig. 2. Exponentially expanding FOVs are adopted. While
obvious objects (e.g. beach, man) are stable with high likelihood,
hallucinating objects are either noisy (e.g. book) or shift gradually
with the context (e.g. surfboard). The victim token (e.g. clock)
usually display a drastically peaking pattern (local maximum).

faithful token “clock” displays a drastically peaking pattern.
This is a sharp difference from the patterns of other tokens,
which display smaller contrasts when the visual contexts
vary. This observation motivates our approach of focal-
contrast grounding to adaptively adjust the object-related
token probabilities, by sampling and selecting a range of
most contrasting FOVs based on their decoding probabilities
to best approximate the optimal visual contexts.

FOV sampling. We first sample a sequence of n FOVs,
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v1, v2, . . . , vn, based on the initial visual context vd. There
could be different approaches to come up with different
FOVs conditioning on vd. To attain a larger coverage of
the input image quickly, one strategy to sample FOVs is
through an exponential expanding function, by setting

vi = (wi, hi, pi) =
(
(1 + λ)iwd, (1 + λ)ihd, pd

)
(2)

where wi, hi, pi are the width, height, and center of FOV vi.

Dynamic visual context selection. Based on the observa-
tion from Fig. 3, we now select a set of FOVs based on
a contrastive criterion in the text decoding space to better
approximate the optimal visual context for the current token.
In particular, after obtaining n different FOVs, we feed these
visual contexts back into the model3 MLVLM

θ , resulting in
n different probability distributions pi = pθ(·|vi, x, y<t)
with i = 1, 2, . . . , n. Between any two candidate FOVs, we
adopt the following distance measure for the discrepancy
between their decoded token probability distributions

d(vi, vj) = JSD(pθ(·|vi, x, y<t) ∥ pθ(·|vj , x, y<t)) (3)

where JSD is the Jensen-Shannon divergence, a symmetric
metric that measures the difference between two distribu-
tions. With the idea that more different FOV pairs are more
likely to include the optimal visual context for the current
victim token generation, we dynamically select the top m
pairs with the largest distance according to Eq. (3).

Contrastive decoding. After obtaining top m visual con-
text pairs with most discrepancies in influencing the token
output, we contrast the decoding probability distributions
(pi, pj) within each pair in order to amplify the information
residing in one visual context over the other. This would
potentially recover the victim token over the hallucinated
token as the victim token enjoys a sharper contrast in the
probability comparisons, especially when one of the visual
contexts under comparison is near the optimal grounding.
Specifically, we redistribute the probabilities based on the
contrast in log space (Li et al., 2022b) for a given FOV pair
(vi, vj), resulting in the following distribution

pvi/vj
(·|vi, vj , x, y<t) ∝ exp

[
(1 + α)fθ(·|vi, x, y<t)

−αfθ(·|vj , x, y<t)
]

(4)

where fθ again is the logit distribution, α is the amplifica-
tion factor where larger α indicates a stronger amplification
of the differences between the distribution pair (α = 0 sim-
plifies Eq. (4) to regular decoding from vi without contrast).

Unlike existing uni-modal contrastive decoding meth-
ods (Chuang et al., 2023; Gera et al., 2023; Shi et al., 2023)
that assign an expert and an amateur distribution in the con-
trast by assuming the final or context-aware layer contains

3We directly feed the cropped image to the FOV in the model.

more factual knowledge, in our case defining an asymmet-
ric expert distribution among a random pair of FOVs is
non-trivial. For example, the optimal visual context usu-
ally resides midway among growing FOVs, making either
overflowing or insufficient context result in hallucination, as
seen in Fig. 3. Therefore, as we have no knowledge where
the optimal visual context resides, for each pair of FOVs,
we propose to contrast them bi-directionally, which contains
both positive (larger over smaller-sized FOV) and negative
(smaller over larger-sized FOV) contrast to preserve the
completeness of FOV representations (as shown in Fig. 2).
Essentially, this process results in 2m candidate tokens by
individual greedy decodings which will be further selected
by the matching-based beam search algorithm next.

4.4 Matching-based Beam Search

While our adaptive focal-contrast grounding in §4.3 focuses
on local token corrections at a single generation step, we
adopt a sequence-level beam search algorithm (Anderson
et al., 2016) to globally maintain the text generation qualities.
Specifically, with a beam size of k, at an HALC decoding
step at time t, the k beam sequences would generate 2mk to-
ken candidates for yt in total from top m focal-contrast pairs.
Different from existing beam score designs (Borgeaud &
Emerson, 2019) based only on textual information, we rely
on a global visual matching score to select the top k beams
from 2mk candidates, by comparing the similarity between
the current text sequence y≤t and the original image v. This
maintains a diverse but faithful set of generations within the
search. In practice, we employ the Bootstrapping Language-
Image Pre-training (BLIP) model (Li et al., 2022a) for both
text and image encoding and compute their similarity scores.

Combining all components, the full procedure of HALC is
summarized in Algorithm 1. Notice that by utilizing the fine-
grained visual information at different levels for a single
generation step, we admittedly trade in some computation
time for correcting token hallucinations. The detailed anal-
ysis on time complexity is in Appendix B. One way to in-
crease the HALC decoding speed is through parallelization
of decoding from different visual contexts, where we can
hope to spend at worst roughly twice of the regular decoding
time at HALC steps considering the whole sequence.4

5 Theoretical Analysis on FOV Sampling
Based on our observation (in Fig. 1 and Fig. 3) that there
exists some underlying optimal visual context v∗ within the
original image v that can largely reduce the object halluci-
nation at the token level, our method aims to recover this
optimal visual context v∗ based on a sampling process con-
ditioned on vd. To do so, we first select the visual contexts,

4As HALC does not happen at every decoding step. There are
also other overhead such as visual grounding affecting the runtime.
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Algorithm 1 HALC Decoding

Require: LVLM MLVLM
θ , text query x, image input v,

grounding detector Gd, FOV sample size n, beam size
k, number of contrast FOV pairs m.

output Model response ynew.
1: repeat
2: At every decoding step t:
3: for b = 1 to beam size k do
4: MLVLM

θ decoding, obtain current token ybt
5: if ybt ∈ {existence, attribute, relationship} ▷ §4.1

then
6: Retrieve visual context vbd ← Gd(ybt , v) ▷ §4.2
7: end if
8: if vbd ̸= {∅} then
9: Sample n FOVs v1, . . . , vn by expanding vbd

10: else
11: Randomly sample n FOVs v1, . . . , vn from v
12: end if ▷ §4.3
13: Compute pair-wise JSDs d(vi, vj),∀i ̸= j ▷ §4.3,

Eq. (3)
14: Select top-m candidate pairs ▷ §4.3
15: for i = 1 to m do
16: Apply bi-directional contrast (pvi/vj

, pvj/vi
),

17: get a pair of redistributed logits ▷ §4.3, Eq. (4)
18: end for ▷ ybnew with 2m candidates obtained
19: end for
20: Select top k candidates by visual matching ▷ §4.4
21: if vbd ̸= {∅} and ybnew = ybt then
22: ybnew ← [IDK] ▷ ybt is hallucinating, but no

correction token was found
23: end if
24: ybt ← ybnew ▷ Hallucinating token ybt corrected
25: until each beam has terminated

or FOVs, by taking a sequence of FOV samples starting
from the initial vd based on an off-the-shelf detector. While
we cannot guarantee that the initial visual grounding vd is
sufficiently accurate to approximate v∗ (and directly using
vd could result in unstable behaviors), we could effectively
certify the robustness of our FOV sampling strategy in Theo-
rem 5.1. To preserve generality, consider the sampled FOVs
are taken from a distribution π(·|vd), where π can either
follow normal distribution sampling around vd, or obey an
exponential expansion sampling strategy starting from vd.

Theorem 5.1. Let v∗ = (w∗, h∗, p∗) be the optimal vi-
sual context. Assume there exists a tolerable neighborhood
B(v∗, ϵ) = {v̂ : ∥v̂ − v∗∥ ≤ ϵ} around v∗, such that decod-
ing from visual contexts within the neighborhood is robust:

D(pθ(·|v∗), pθ(·|v̂)) ≤ δ ≪ 1, ∀v̂ ∈ B(v∗, ϵ) (5)

where D(·, ·) ∈ [0, 1] is a symmetric discrepancy measure
between two probability distributions, such as the Jensen-
Shannon divergence, or the total variation distance.

Let vd = (wd, hd, pd) be the initial detection and vd =
v∗ + η with perturbation η. The minimum deviation
of token probabilities from the optimum with n samples
v1, v2, . . . , vn distributed according to π(·|vd) is denoted
as

hπ(v
∗, n) = min

i=1,...,n
D (pθ(·|v∗), pθ(·|vi)) (6)

(a) For normal distribution sampling πg(·|vd) ∼
N (vd, σ

2I), the minimum deviation above is bounded as

hπg
(v∗, n) ≤ δ + (1− Cg(ϵ, η;σ))

n (7)

where Cg(ϵ, η;σ) ∈ (0, 1) is a constant depending on
ϵ, η, σ, and the upper bound goes to δ when n→∞.

(b) For exponential expansion sampling πe(·|vd) ∼ U(r ∈
[rmin, rmax]) with samples vr = ((1 + λ)rwd, (1 +
λ)rhd, pd) uniformly from the r-space, under the conditions
(i) |pd − p∗| < ϵ and (ii) wd/hd = w∗/h∗, the minimum
deviation in Eq. (6) is bounded below

hπe
(v∗, n) ≤ δ + (1− Ce(ϵ, v

∗, vd;λ))
n (8)

where Ce(ϵ, v
∗, vd;λ) ∈ (0, 1] is a constant depending on

ϵ, v∗, vd, λ, and the upper bound goes to δ when n→∞.

The proof of Theorem 5.1 is detailed in Appendix A. The
neighborhood radius ϵ around the optimal v∗ can be roughly
interpreted as a valid range of optimal visual context to
yield the correct prediction (e.g., [v1, v2] in Fig. 3). Typi-
cally the detection perturbation ∥η∥ > ϵ, making vd outside
of the ϵ-neighborhood of v∗. Through FOV sampling ac-
cording to some π(·|vd), the above theorem establishes a
formal guarantee that at least one of the n samples achieves
good approximation of the optimal v∗ in the decoding prob-
ability space, as the deviation is closer to δ when n grows.
The normal sampling distribution, concentrated around vd,
is preferred when vd has minimal perturbations from v∗.
And an exponential expansion sampling distribution, with a
more averaged coverage of the sampling space, is preferable
when less prior of the task is available. In practice of our
algorithm, we take discrete integer values of r under the ex-
ponential expansion distribution for deterministic sampling
with n = 4, acquiring good efficiency and performance.

6 Experiments
Benchmarks. We evaluate HALC on three benchmarks
including (1) quantitative metrics CHAIR (Rohrbach et al.,
2018) and POPE (Li et al., 2023) on MSCOCO (Lin et al.,
2014) dataset; (2) general-purposed Multimodal Large Lan-
guage Model Evaluation (MME) (Fu et al., 2023) bench-
mark; and (3) qualitative evaluation benchmark LLaVA-
Bench (Liu et al., 2023a). These experiments comprehen-
sively assess HALC’s capability on reducing OH in im-
age captioning, visual-question answering (VQA) and more
challenging tasks that generalize to novel domains.

6



HALC: Object Hallucination Reduction via Adaptive Focal-Contrast Decoding

Table 1: CHAIR evaluation results on MSCOCO dataset of LVLMs with different decoding baselines and SOTAs designed for mitigating
OH. Lower CHAIRS and CHAIRI indicate less OH. Higher BLEU generally represent higher captioning quality, although existing work
has reported weak correlation between CHAIR and text overlapping quality metrics. Bold indicates the best results of all methods.

Method MiniGPT-4 LLaVA-1.5 mPLUG-Owl2
CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑

Greedy 30.87±5.45 12.33±2.07 14.33±0.00 20.80±0.08 6.77±0.07 15.93±0.00 23.20±0.35 8.33±0.28 15.37±0.00
Beam Search 29.56±6.09 11.36±0.99 14.94±0.00 18.67±0.38 6.30±0.05 16.17±0.00 21.67±1.61 7.63±0.40 15.77±0.00
DoLA 30.87±2.52 11.70±0.13 14.93±0.00 21.00±0.67 6.70±0.38 15.93±0.00 24.60±0.24 8.73±0.30 15.40±0.00
OPERA 30.00±0.43 11.67±0.22 14.87±0.00 21.13±0.12 6.73±0.18 16.27±0.01 22.13±0.86 7.57±0.16 15.53±0.00
VCD 30.27±0.44 12.60±0.45 14.33±0.00 23.33±5.66 7.90±0.53 14.67±0.01 27.27±7.32 9.73±1.22 14.40±0.00
Woodpecker 28.87±2.20 10.20±0.85 15.30±0.01 23.85±4.62 7.50±0.01 17.05±0.00 26.33±1.98 8.43±0.80 16.43±0.00
LURE 27.88±2.25 10.20±0.85 15.03±0.11 19.48±2.35 6.5±0.38 15.97±0.01 21.27±0.06 7.67±0.16 15.65±0.05

HALC 17.80±0.03 8.10±0.14 14.91±0.00 13.80±0.08 5.50±0.14 16.10±0.01 17.33±4.30 7.43±0.11 16.27±0.00

Baselines. To effectively evaluate HALC, besides regular
greedy decoding and beam search baselines, we further in-
volve layer-wise contrastive decoding SOTA DoLa (Chuang
et al., 2023), as well as SOTA methods specifically designed
to mitigate OH, including OPERA (Huang et al., 2023),
VCD (Leng et al., 2023), Woodpecker (Yin et al., 2023) and
LURE (Zhou et al., 2023) in our analysis. All the results are
acquired and benchmarked consistently with our unified im-
plementation. Please refer to Appendix C.1 for the detailed
setting of our HALC.

LVLM Backbones. Three LVLMs including MiniGPT-4
V2 (Chen et al., 2023), LLaVA-1.5 (Liu et al., 2023b) and
mPLUG-Owl2 (Ye et al., 2023) are used for both HALC
and all aforementioned baselines except Woodpecker and
LURE, where Woodpecker utilizes ChatGPT (Brown et al.,
2020) during its self-correction process and LURE distills
an extra reviser model from GPT-4 (Achiam et al., 2023).

6.1 CHAIR and POPE on MSCOCO

Following existing evaluation procedures (Huang et al.,
2023; Yin et al., 2023; Liu et al., 2023b), we randomly sam-
pled 500 images from the validation split of MSCOCO (Lin
et al., 2014) and conduct evaluations with both CHAIR and
POPE. For each metric, we repeat the experiments five times
with different random seeds and report average and standard
deviations of all the runs.

CHAIR. Caption Hallucination Assessment with Image
Relevance (CHAIR) (Rohrbach et al., 2018) is a tailored
tool created to evaluate the occurrence of OH in the task of
image captioning. Specifically, CHAIR measures the extent
of OH in an image description by determining the proportion
of the mentioned objects that are absent in the actual label
set. This metric includes two separate evaluation aspects:
CHAIRS , which performs assessments at the sentence level
(proportion of the hallucinated sentences over all sentences
), and CHAIRI , which operates at the object instance level
(proportion of the hallucinated objects over all generated
objects). Lower scores indicate less OH.

We prompt all methods with “Please describe this image in
detail.” and the results are illustrated in Table 1. Besides
CHAIRS and CHAIRI , we also report BLEU (Papineni
et al., 2002) as an assessment of the text generation quality.
Table 1 demonstrats that our proposed HALC consistently
outperforms all the existing methods by a large margin. No-
tably, a major advantage of HALC is its strong robustness,
as can be observed by its much lower standard deviations,
especially when compared to the non-OH specific baselines.
While Woodpecker (Yin et al., 2023) has the highest gen-
eration quality BLEU scores, this can be largely attributed
to the fact that Woodpecker adopts ChatGPT, a much more
capable LLM, to organize the final outputs, which is not
exactly a fair comparison to the other methods.

We also investigate how HALC performs with longer re-
sponses, as showed in Fig. 4, where we plot both the number
of generated (dashed) and hallucinated (solid) objects with
randomly sample 100 images. This experiment is important
to further assess HACL’s robustness, as it is commonly be-
lieved that OH happens more with objects positioned later
in the responses (Zhou et al., 2023), as well as in longer
responses (Huang et al., 2023). We observe that HALC is
the only method that can keep even smaller number of hal-
lucinations while the number of generated objects increases,
demonstrating its superior performance and advantageous
robustness in reducing OH.

POPE. Polling-based Object Probing Evaluation
(POPE) (Li et al., 2023) evaluates OH via a streamlined
approach, which incorporates a list of yes-or-no questions
to prompt LVLMs for presence of positive and negative
objects. When selecting negative (non-existing) objects for
prompting, POPE provides three sampling options: random,
popular, and adversarial. We refer detailed explanations of
the different options to its original paper (Li et al., 2023).

One distinct difference between POPE and CHAIR is that
POPE relies on interacting with the examined LVLM di-
rectly. While this requirement is not an issue when evalu-
ating the decoding-based baselines, it limits its adaptation
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Table 2: Proposed OPOPE evaluation results on MSCOCO dataset of LVLMs with different decoding baselines and SOTAs designed for
mitigating OH. Higher accuracy, precision, and F score indicate better performance. Bold indicates the best results of all methods.

Method MiniGPT-4 LLaVA-1.5 mPLUG-Owl2
Accuracy↑ Precision↑ Fβ=0.2 ↑ Accuracy↑ Precision↑ Fβ=0.2 ↑ Accuracy↑ Precision↑ Fβ=0.2 ↑

Greedy 66.78±1.27 90.43±25.1 85.79±18.7 70.56±1.51 91.08±20.6 87.72±16.3 69.77±1.18 91.07±17.8 87.45±13.9
Beam Search 67.22±0.74 91.20±14.4 86.57±10.8 69.87±1.37 91.72±20.4 88.01±15.97 69.20±0.90 91.90±15.1 87.91±11.7
DoLA 67.06±1.19 90.84±23.1 86.22±17.3 70.69±1.50 90.87±19.8 87.59±15.74 70.17±1.69 91.97±24.5 88.30±19.26
OPERA 67.26±1.04 90.76±20.0 86.25±15.0 69.73±1.34 91.10±19.4 87.46±15.3 69.26±0.45 93.06±8.01 88.83±6.14
VCD 65.78±0.96 90.02±20.7 85.00±15.1 70.67±1.22 91.62±16.7 88.19±13.3 69.81±0.65 92.70±11.0 88.76±8.49
Woodpecker 67.78±0.88 91.33±16.66 86.91±12.6 69.80±0.54 91.80±8.41 88.04±6.56 68.90±1.02 92.22±17.98 88.05±13.77
LURE 68.14±0.99 90.95±17.34 86.76±13.23 70.00±1.53 90.89±21.9 87.38±17.3 69.24±1.60 90.54±23.37 86.85±18.28

HALC 66.76±0.68 91.95±15.0 86.92±11.1 70.59±0.82 92.94±12.18 89.22±9.55 70.12±0.98 91.94±15.1 88.26±11.85
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Figure 4: Comparing four mainstream methods on the ratio of
hallucination objects (CHAIRI ) v.s. the number of max tokens.
The right axis (dashed line) indicates the total number of generated
objects. HALC outperforms all other methods by maintaining a
low ratio of hallucination with the increasing of generated objects.

to post-hoc methods such as LURE (Zhou et al., 2023). It
also creates larger instabilities when the examined LVLM
incorporates smaller language backbones such as LLaMA-
7B (Touvron et al., 2023), which has less robust chat capabil-
ity. To these concerns, we propose offline POPE (OPOPE),
which keeps the object sampling and yes/no query strategy
from POPE, but replaces the live interactions with offline
checks. Specifically, instead of querying the model with
“Is there a {} in the image?”, where “{}” is the queried
object, we first ask the examined LVLM to give its detailed
descriptions of the image, and then manually check if the
sampled positive/negative objects exist in the captions when
computing the OPOPE scores.

We also adjust the main metrics for comparison. As it is
more random for descriptions to include the exact sampled
hallucinated objects, false-negative (FN) and the resulting
recall become less trustable in the offline checks. Therefore,
we propose to use F-beta, instead of F-1, as the main metric
of OPOPE, so that the final score relies less on the FN.
Specifically, we have Fβ = (1+β2)·(precision·recall)/(β2·
precision + recall), where we use β = 0.2 throughout our
experiments. The evaluation results incorporating OPOPE is
shown in Table 2. All the numbers are averaged results of the
three sampling methods (random, popular and adversarial,
as in the original POPE), while the complete version of the
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Figure 5: Comparison across OH baselines and SOTAs on four OH-
critical MME subsets. All methods adopt MiniGPT-4 as LVLM
backbone. HALC outperforms all other methods with a large
margin: existence: +10.7%; position: +18.3%; color: +19.4% and
count: +20.2% in average.

table is shown in Appendix F. We also include the original
POPE evaluation results in Appendix E where HALC also
outperforms other methods in most of the settings.

6.2 MME

The Multimodal Large Language Model Evaluation
(MME) (Fu et al., 2023) benchmark is a comprehensive
tool designed to quantitatively compare multimodal LLMs.
Following Yin et al. (2023); Leng et al. (2023), we utilize
the “existence” and “count” subsets to evaluate the object ex-
istence hallucinations and the “position” and “color” subsets
for object attribute and relationship hallucination. Please
refer to Appendix D for experiment details. The comprehen-
sive results across six methods are reported in Fig. 5, where
HALC significantly outperforms all the other methods on
each sub-task, indicating an overall performance gain in
reducing OH while preserving generation quality.

6.3 LLaVA-Bench Qualitative Study

LLaVA-Bench (Liu et al., 2023a) is a collection of 24 im-
ages, where each image is paired with a detailed, manually-
crafted description and carefully selected questions. The
questions are divided into three categories: simple QA (con-
versation), detailed descriptions, and complex reasoning. In
this experiment, we leverage LLaVA-Bench as a case study
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to qualitatively compare the decoding outputs of HALC
with other methods. The results are shown in Appendix G.

7 Analysis and Ablation Studies

7.1 Adaptive Focal-contrast Grounding
FOV Sampling initialization. The visual context retrieval
process described in §4.2 utilizes detector output as a key
component of the adaptive focal-contrast grounding algo-
rithm introduced in §4.3. However, it is important to note
that HALC primarily uses the detector output as a initial-
ization for the field of view (FOV) sampling process, rather
than depending heavily on it. In this section, we present
empirical results to compare different methods of sampling
initialization, which include random sampling (selecting a
random FOV within the image), center initialization (select-
ing a fixed region in the center of the image), original image
initialization (using the entire image) and detector initial-
ization (using the detector output). More specifically, we
include an extra detector model, OWLv2 (Minderer et al.,
2024), in addition to the Grounding Dino (Liu et al., 2023c)
illustrated in previous sections.

Table 3: HALC performance with different sampling initialization.

Init. CHAIRS ↓ CHAIRI ↓ OPOPE ↑ POPE ↑ BLEU ↑
Random 25.6 11.8 83.33 67.67 15.10
Center 23.9 11.2 86.62 69.10 14.80
Original 27.8 12.2 85.20 68.33 15.50
G. Dino 22.0 8.8 88.20 70.67 16.40
OWLv2 23.4 10.8 84.47 67.50 15.70

As shown in Table 3, both random and center initialization
perform better than using the original image as the visual
input. This result confirms the robustness of the proposed
FOV sampling process. Additionally, both detectors deliver
better performance than the other initializations, further
demonstrating that using a detector-grounded FOV provides
an effective starting point for the subsequent conditional
FOV sampling process.

Exponential Expanding ratio. Besides initialization, an-
other important parameter used in adaptive focal-contrast
grounding is the expanding ratio λ, which determines each
sampling FOV as in Eq. (2). Thus we further analyze the
performance of HALC with different expanding ratios.

Table 4: HALC performance with different expanding ratios.

λ CHAIRS ↓ CHAIRI ↓ OPOPE ↑ POPE ↑ BLEU ↑
0.2 22.0 8.5 86.45 69.63 16.60
0.4 18.0 7.6 87.33 70.20 16.10
0.6 22.0 8.8 88.20 70.67 16.40
0.8 28.0 9.6 86.45 69.63 14.80
1.0 26.0 8.9 84.32 69.63 14.70

Table 4 demonstrates that an expanding ratio of 0.6 is opti-
mal. We hypothesize that the poorer performance associated

with smaller or larger expanding ratios is due to that smaller
ratios increase the number of FOV samples, which presents
greater challenges for the global beam search. On the other
hand, larger ratios decrease the granularity of the FOV in
the image, potentially leading to more severe hallucinations.

7.2 Global Beam Search
Beam sizes. As is common with all beam search algorithms,
beam size k is a major hyperparameter. Thus here we exam-
ine the performance of HALC w.r.t. different values of k.
Table 5: HALC performance with different values of beam size k.

k CHAIRS ↓ CHAIRI ↓ OPOPE ↑ POPE ↑ BLEU ↑
1 36.0 14.6 88.20 70.49 15.40
2 22.0 8.8 88.74 70.67 16.40
3 26.0 9.8 87.65 70.67 15.40
5 29.6 11.1 86.33 70.14 15.70
8 33.3 13.8 87.73 70.14 15.50

Table 5 shows improved performance as the beam size ini-
tially increases from one. However, when the beam size
reaches or exceeds two, the number of FOV samples also
increases, making it more challenging for the global beam
search module to select the optimal visual context from all
the samples, thus leading to a higher rate of hallucination.
Furthermore, as the beam size continues to increase, the
variance of HALC’s performance also increases, indicating
that it will be more difficult to select the top candidate as
the global matching model also suffers from hallucination.

Scoring methods. Finally, we compare the BLIP and CLIP
scoring models with random selection to rank the beams.

Table 6: HALC performance with different scoring methods.

CHAIRS ↓ CHAIRI ↓ OPOPE ↑ POPE ↑ BLEU ↑
Random 26.6 12.8 85.45 68.45 15.20
BLIP 22.0 8.8 88.20 70.67 16.40
CLIP 23.4 10.0 87.67 71.96 15.60

As shown in Table 6, different scoring methods do not lead
to large variations and they all outperform random selection.

8 Conclusion
We present HALC, a novel decoding algorithm designed to
mitigate OH in LVLMs. HALC operates on both local and
global levels, integrating a robust adaptive focal-contrast
grounding mechanism to better utilize fine-grained visual
information for correcting hallucinated tokens, and a special-
ized beam search algorithm that promotes further visually
matched generations. Comprehensive experiments demon-
strate that HALC effectively reduces OH, achieving SOTA
performance while preserving sequence generation quality,
and can be conveniently integrated into existing LVLMs
without additional training or data. A benchmarking tool
was also built to support convenient comparisons across all
available OH reduction strategies comprehensively.

9



HALC: Object Hallucination Reduction via Adaptive Focal-Contrast Decoding

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
We thank Lingyu Gao for initial discussion and constructive
suggestions. This work was supported in part by the Re-
search Computing Center at the University of Chicago, and
Cisco Faculty Research Award. We also thank Center for
AI Safety and Google Cloud Research Credits program for
supporting our computing needs. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of any funding agencies.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anderson, P., Fernando, B., Johnson, M., and Gould, S.
Guided open vocabulary image captioning with con-
strained beam search. arXiv preprint arXiv:1612.00576,
2016.

Biber, D., Johansson, S., Leech, G., Conrad, S., and Finegan,
E. Longman grammar of spoken and written english,
2000.
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A Proof of Robust Certification of FOV Sampling in Theorem 5.1
This section proves theoretical analysis on the robustness of HALC in approximating the optimal visual context v∗ via
sampling in the FOV space (Theorem 5.1). With certain assumptions on v∗ and vd, we focus on demonstrating the certified
robustness on the decoding token probability distribution compared with that from the optimal visual context v∗, when
sampling different FOVs based on vd which is initially determined by an detector Gd.

The objective of HALC is to approximate the unknown optimal visual context for a decoding step, thereby mitigating
hallucination and enhancing the truthfulness of the LVLM outputs. We approach the optimal proxy by sampling a series of
n FOVs in the original image v, starting from vd according to some sampling function π(·|vd). We focus on bounding the
minimum deviation of the decoding token probabilities from the optimum among the n FOV samples, with the hope that we
can always find some sample that is close to the optimal v∗ during this process. And as the sample size n becomes larger, the
minimum deviation becomes smaller, indicating that we can better cover the optimal visual context v∗ within the samples.5

Proof. Let v∗ = (w∗, h∗, p∗) be the optimal visual context, represented by a 3-tuple of its width, height, and center
point. The corresponding optimal token decoding probability distribution is pθ(·|v∗), where θ denotes the parameters
of the LVLM MLVLM

θ , and we ignore the condition on the textual query x and previously generated tokens y<t for
simplicity. We rely on a symmetric discrepancy measure D(·, ·) ∈ [0, 1] to compare the disparity between two probability
distributions, such as the Jensen-Shannon divergence, or the total variation distance. We assume that the model prediction is
robust around v∗ against small perturbations. In particular, we assume that there exists a tolerable small ϵ-neighborhood
B(v∗, ϵ) = {v̂ : ∥v̂ − v∗∥ ≤ ϵ} around v∗, such that

g(v∗, v̂) = D(pθ(·|v∗), pθ(·|v̂)) ≤ δ ≪ 1, ∀v̂ ∈ B(v∗, ϵ) (9)

Essentially, for any visual context window (or FOV) close enough to v∗, the output token probability disparity is tiny, which
is likely to result no difference in greedy decoding.

From the FOV detector Gd, the output visual context is denoted as vd = (wd, hd, pd), which is in general not the optimal.
We assume vd = v∗ + η in the 3-tuple vector space, where η is the perturbation vector from the optimal. The detection
perturbation is often large enough with ∥η∥ > ϵ, making vd outside of the ϵ-neighborhood of v∗.

vd → v∗: If we directly use the detector output vd as an approximation of the optimal visual context v∗, the output
distribution deviation from the optimum, measured by g(v∗, vd), is often unpredictable, when vd does not fall in the
hypothetical tolerable region B(v∗, ϵ). An example can be seen as the inaccurate detection vd in Fig. 3 results in the wrong
token prediction book. This prompts the need for our proposed FOV sampling approach with the hope to find samples close
to the optimal v∗.

π(·|vd)→ v∗: Thus we consider sampling conditioned on vd in the FOV space to enhance the robustness of optimal visual
context approximation, hoping to find some sample that is close to the optimal. To do this, we obtain an upper bound on the
minimum deviation from the output distribution among a collection of FOV samples. Assume π(·|vd) ∈ Ω is an arbitrary
sampling function conditional on the initial FOV detection vd, where Ω denotes the sampling space over all potential
visual contexts in the entire image v. π can either be a deterministic sampling function, or a stochastic sampling process
with a probabilistic distribution over Ω. Suppose we acquire n samples v1, v2, . . . , vn according to π(·|vd), we denote the
minimum deviation of the resulted token probability from that of the optimal visual context v∗ as

hπ(v
∗, n) = min

i=1,...,n
g(v∗, vi) = min

i=1,...,n
D (pθ(·|v∗), pθ(·|vi)) (10)

where D is the aforementioned symmetric discrepancy measure between two probability distributions, which is within the
range of [0, 1]. Having a small value of hπ(v

∗, n) would indicate that we can find some visual context that is close to the
optimal v∗ through n samples.

We proceed to estimate the minimum deviation hπ(v
∗, n) from the optimal visual context v∗ with n samples. We introduce

a partition based on the occurrence of two probabilistic events: the event A where at least one of the samples falls into the
ϵ-neighborhood B(v∗, ϵ) close to v∗, and its complement. Let us denote the probability of at least one sample falling within

5The subsequent selection of the best sample is another question, which is not concerned in this proof. We theoretically justify the
existence of an “optimal” sample in the proof here, and HALC selects such a sample by contrasting FOV pairs based on the observation
illustrated in Fig. 3.
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B(v∗, ϵ) as P (A), and the complementary event’s probability as P (¬A) = 1− P (A). Hence, we can express the minimum
divergence hπ(v

∗, n) as a marginalization over these events:

hπ(v
∗, n) = P (A) · [hπ(v

∗, n)|A] + P (¬A) · [hπ(v
∗, n)|¬A] (11)

Recognizing that for the one sample in the vicinity of v∗ in the event of A, its decoding token probability deviation from the
optimal is bounded by δ ≪ 1 based on our assumption. Hence we have

hπ(v
∗, n) ≤P (A) · δ + P (¬A) · 1 ≤ δ + P (¬A) (12)

Next, we consider two instances of the sampling function π(·|vd) that yield an upper bound for hπ(v
∗, n).

Normal Distribution Sampling. Suppose sampling from π follows a stochastic process following a normal distribution
around vd. We denote this sampling process as πg(·|vd) ∼ N (vd, σ

2I), where we assume a variance of σ2 for each element
of the visual context representation (width, height, center) independently. For ṽ ∈ Ω, the probability of sampling ṽ following
the multivariate normal distribution is

q(ṽ; vd, σ
2I) =

1√
(2πσ2)s

exp

(
− 1

2σ2
(ṽ − vd)

⊤(ṽ − vd)

)
where s = 3 is the dimension of the FOV representation vector. The probability of event ¬A happening, which is none of n
FOV samples falling within the ϵ-neighborhood of v∗, is

P (¬A) = P (∥v1 − v∗∥ > ϵ) ∧ P (∥v2 − v∗∥ > ϵ) ∧ · · ·P (∥vn − v∗∥ > ϵ) (13)
= P (∥ṽ − v∗∥ > ϵ)n (14)
= P (∥ṽ − (vd − η)∥ > ϵ)n (15)

From the normal distribution assumption of ṽ, we know that ṽ − (vd − η) also follows a normal distribution N (η, σ2I).
Therefore,

P (¬A) = (1− P (∥ṽ − (vd − η)∥ ≤ ϵ))
n (16)

=

(
1−

∫
ν:∥ν∥≤ϵ

1√
(2πσ2)s

exp

(
− 1

2σ2
(ν − η)⊤(ν − η)

)
dsν

)n

(17)

= (1− Cg(ϵ, η;σ))
n (18)

where we use Cg(ϵ, η;σ) ∈ (0, 1) to denote the constant value given ϵ, η, and σ. Following Eq. (12), we now have

hπg (v
∗, n) ≤ δ + (1− Cg(ϵ, η;σ))

n (19)

where the second term goes to 0 as n is increasing to larger values.

Exponential Expansion Sampling. Now suppose sampling from π follows an exponential expanding process, where a
sample can be expressed as vr = (wr, hr, pr) = ((1+ λ)rwd, (1 + λ)rhd, pd) with an expanding factor λ (assuming λ > 0
without loss of generality) and some r.6 Essentially, the sample space comprises all fields of view (FOVs) that maintain the
same aspect ratio (i.e. wd/hd) and the same center pd with vd. Assume the sampling is uniform among all possible FOVs in
the sample space, which we denote as πe(·|vd) ∼ U(r ∈ [rmin, rmax]), where rmin and rmax correspond to the smallest
FOV allowed (such as a few pixels) and the largest FOV possible (i.e. the entire original image v), respectively.

For this sampling distribution, we introduce two moderate assumptions regarding the initial detection vd. First, the center of
the detection is relatively close to the optimum, such that |pd − p∗| < ϵ. Second, The detection vd and the optimum v∗ share
the same aspect ratio, meaning wd/hd = w∗/h∗. This assumption is reasonable since the optimum is unknown, and we can
assume it adheres to the aspect ratio used by a standard detector.

6Besides expansion, this could also be an exponential shrinking process when r is negative. We abuse the use of “expansion” for both.
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We begin by deriving the range of r such that vr falls into the small neighborhood B(v∗, ϵ) around v∗. We need

∥vr − v∗∥ ≤ ϵ (20)

=⇒ (wr − w∗)2+(hr − h∗)2 + (pr − p∗)2 ≤ ϵ2 (21)

=⇒ [(1 + λ)rwd − w∗]2+[(1 + λ)rhd − h∗]2 + (pd − p∗)2 ≤ ϵ2 (22)
...

=⇒ (w2
d + h2

d)

(
(1 + λ)r − wdw

∗ + hdh
∗

(w2
d + h2

d)

)2

≤ ϵ2 − (pd − p∗)2 − h2
dh

∗2

(w2
d + h2

d)
(
wd

hd
− w∗

h∗ )
2 (23)

= ϵ2 − (pd − p∗)2 > 0 (24)

Denoting constants Ca = ϵ2−(pd−p∗)2

(w2
d+h2

d)
and Cb =

wdw
∗+hdh

∗

(w2
d+h2

d)
, we get the range of r such that vr ∈ B(v∗, ϵ) as

max

(
rmin,

log(Cb −
√
Ca)

log(1 + λ)

)
≤ r ≤ min

(
rmax,

log(Cb +
√
Ca)

log(1 + λ)

)
if Cb >

√
Ca (25)

Or rmin ≤ r ≤ min

(
rmax,

log(Cb +
√
Ca)

log(1 + λ)

)
if Cb ≤

√
Ca (26)

We further denote this range as r ∈ [Cmin(ϵ, v
∗, vd;λ), Cmax(ϵ, v

∗, vd;λ)], with rmin ≤ Cmin(ϵ, v
∗, vd;λ) <

Cmax(ϵ, v
∗, vd;λ) ≤ rmax. Based on the independent uniform sampling assumption, the probability of the event ¬A

that none of the n samples fall into the ϵ-neighborhood around the optimum B(v∗, ϵ) is

P (¬A) =

(
1− Cmax(ϵ, v

∗, vd;λ)− Cmin(ϵ, v
∗, vd;λ)

rmax − rmin

)n

= (1− Ce(ϵ, v
∗, vd;λ))

n (27)

where we use Ce(ϵ, v
∗, vd;λ) ∈ (0, 1] to denote the constant value depending on ϵ, v∗, vd, λ. Following Eq. (12), we then

have
hπe

(v∗, n) ≤ δ + (1− Ce(ϵ, v
∗, vd;λ)))

n (28)

where the second term goes to 0 as n is increasing to larger values.

Discussion. In the above, we demonstrated that beginning with the initial detected visual context vd, under certain mild
conditions, acquiring n samples according to a distribution π(·|vd) is an efficient method for identifying a sample that leads
to a small bounded deviation in the token decoding probabilities from those derived from the optimal visual context v∗. The
more samples acquired, the tighter the bound is. This provides a simple and robust way of approximating the optimum.

Different sampling distributions have distinct characteristics. For normal distribution sampling πg(·|vd) ∼ N (vd, σ
2I),

the variance parameter σ2 determines the spread of the samples and thus the likelihood of approximating the optimal v∗

within B(v∗, ϵ). For exponential expansion sampling πe(·|vd) ∼ U(r ∈ [rmin, rmax]) with samples vr = ((1 + λ)rwd, (1 +
λ)rhd, pd), the parameter λ controls the rate of growth for the sampled visual contexts. In practice, we apply discrete integer
values of r to acquire different samples efficiently, thus λ affects the sample coverage of the visual information around v∗.

The choice of the sampling distribution π is contingent upon factors such as the quality of the detector Gd, the LVLM
backboneMLVLM

θ , the textual query x, and the visual input v. Specifically, the continuous normal distribution is advantageous
for concentrated sampling around vd, which is particularly effective when the detection perturbation η is small (meaning
vd is near v∗). In contrast, exponential expansion sampling covers an extended range of visual contexts quickly, which is
preferable when limited context information is obtained. In scenarios where significant underestimation or overestimation in
Gd detection is present, the exponential expanding strategy can discover the optimal visual context more effectively.

B Time Cost Analysis
Since time complexity is a critical aspect for VLM decoding algorithms, in this section we analyze the additional runtime
overhead and time cost of HALC. According to Biber et al. (2000), nouns, adjectives, adverbs, numbers, verbs, and pronouns,
which are tokens that will actually pass through HALC decoding, comprise approximately 35% of the total words in modern
English (we observe similar sparse patterns in our experiments). POS tagging is observably fast in practice (we used the
spaCy package, which is highly optimized on CPU with the smallest tagger model, which is only 12 MB in size7). Thus we

7https://spacy.io/models/en#en_core_web_sm
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will mainly discuss the time cost w.r.t. other modules in HALC.

For each individual token, after its original decoding, HALC will utilize the detection module to initialize the FOV sampling,
for which we use Td to represent the detector time cost. Next, each one of the n FOVs (in our experiments, n = 4, as shown
in Table 8) is fed back into the LVLM for decoding, resulting in n ∗ TLV LM time cost, where TLV LM represents the LVLM
decoding time for a single step (although this may increase slightly as the sequence grows longer). Other computations on
top of the multiple decodings such as contrasting the distributions can be ignored in comparison. Therefore, in summary,
without any parallelization, for a sequence of L tokens, HALC will cost approximately:

L ∗ TLV LM + L ∗ 0.35 ∗ (Td + n ∗ TLV LM ) = L ∗ ((1 + 0.35n) ∗ TLV LM + 0.35Td) (29)

In practice, when n = 4 and Td is relatively much smaller than TLV LM (the detection model Grounding DINO we used
was based on the Swin-Tranformer8 with 341M parameters), we expect HALC to cost around 2.4x of the normal greedy
decoding time expense.

However, the decoding passes for the extra n FOVs can essentially run in parallel as they do not depend on each other.
With parallelization, the time cost with n FOV decoding is equal to the time cost for 1 FOV decoding, so the expected time
cost will be only approximately 1.35x of the greedy decoding. When the detection model time can not be ignored and in the
worst case it is the same as the decoding step time (which is unlikely as the LVLMs we experimented with are 7B), the
expected time cost would be 1.7x of the normal greedy decoding.

C Experimentation Details

C.1 Experimental Setups

The overall experiment settings is reported in Table 7. While the regular greedy decoding follows this setting, the beam
search variant in our experiment essentially applies a token-wise beam search based on accumulated probability scores of
the previous tokens y<t. We use the default code for implementation of these two baselines in HuggingFace Transformers
Repository (Wolf et al., 2020).9

Table 7: Overall Experiment Settings

Parameters Value
Maximum New Tokens (CHAIR) 64
Maximum New Tokens (POPE) 64
Maximum New Tokens (MME) 128
Top-k False
Top-p 1
Temperature τ 1

The complete hyper-parameters for HALC in our experiments in §6 is reported in Table 8. Specifically, there are four major
hyper-parameters that can actively adjust the effectiveness of HALC to adapt to different task settings:

1. FOV Sampling Distribution: Typically, a normal distribution, which concentrated around vd, provides a tighter bound
under minimal perturbations, while an exponential expansion sampling distribution, with a more averaged coverage
of the sampling space, is preferable when less contexts of the task is available. Thus to preserve generality in our
experiment, we have employed the exponential expansion sampling with exponential growth factor λ = 0.6.

2. Number of Sampled FOVs n: n determines the number of sampled FOVs in the sample space. According to Theorem 5.1,
while increasing n and adjusting the distribution parameters can efficiently reduce minimum token probability deviations
and enhance the robustness against perturbed initial detection, it’s notable that the runtime costs also raise with n.
Consequently, we set n = 4 across all our experiments.

3. JSD Buffer Size m: For each beam in the overall beam search process (beam size k), our bi-adaptive visual grounding
module samples n visual contexts, which through interpolated JSD calculation would produce n·(n−1)

2 JSD values

8https://huggingface.co/docs/transformers/model_doc/swin
9https://huggingface.co/docs/transformers
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in total. Then we select the top m FOV pairs with relatively large discrepancy to produce contrastive candidate
distributions.

4. Beam Size k: The beam size k is set to adjust the diversity and range for HALC to search for the best candidate
captions. Essentially, the global visual matching score module selects the top k diverse captions from 2m · k text
sequence candidates passed from the local adaptive visual grounding module. While a larger k involves a larger search
space and hopefully a better generation, the runtime cost also raises linearly w.r.t. k. HALC adopts Bootstrapping
Language-Image Pre-training (BLIP) (Li et al., 2022a) for both text and image encoding when computing their cosine
similarity scores. Notably given the global search capability of our visual matching score module, HALC seeks to
preserve a more diverse set of captions within the beam buffer.

5. Other Hyperparameters: Our implementation inherits an additional hyperparameter, adaptive plausibility threshold,
originally from DoLA (Chuang et al., 2023).

Table 8: HALC Hyperparameter Settings

Parameters Value
Amplification Factor α 0.05
JSD Buffer Size m 6
Beam Size 1
FOV Sampling Exponential Expansion
Number of Sampled FOVs n 4
Exponential Growth Factor λ 0.6
Adaptive Plausibility Threshold 0.1

Regarding the comparison of HALC with SOTAs that are specifically designed for OH mitigation, we adopt the code,
hyper-parameters, and pre-trained models of each method outlined in their public repositories and papers respectively.
Specifically, the hyper-paratermers for DoLa (Chuang et al., 2023)10 is reported in Table 9; OPERA (Huang et al., 2023)11 is
reported in Table 10; and the hyperparatermers for VCD (Leng et al., 2023)12 is reported in Table 11. For each of these
baselines, we strictly follow their implementations and default hyper-parameters as reported in the paper to reproduce their
results.

Table 9: DoLa Hyperparameter Settings

Parameters Value
Repetition Penalty θ 1.2
Adaptive Plausibility Threshold β 0.1
Pre-mature Layers [0, 2 · · · , 32]

Table 10: OPERA Hyperparameter Settings

Parameters Value
Self-attention Weights Scale Factor θ 50
Attending Retrospection Threshold 15
Beam Size 3
Penalty Weights 1

10https://github.com/voidism/DoLa
11https://github.com/shikiw/OPERA
12https://github.com/DAMO-NLP-SG/VCD
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Table 11: VCD Hyperparameter Settings

Parameters Value
Amplification Factor α 1
Adaptive Plausibility Threshold 0.1
Diffusion Noise Step 500

Regarding post-hoc correction method woodpecker (Yin et al., 2023)13 and LURE (Zhou et al., 2023)14 , we also strictly
follow their implementations and hyper-parameters as reported in the paper to reproduce their results. For woodpecker,
we adopt their original code and use OpenAI API to access GPT-3.5 Turbo. In average, per 500 images would result in
approximately $4.5 cost. For LURE, we also directly adopt their pre-trained projection layer model (based on Minigpt4) to
reproduce the results reported in this paper. All the hyper-parameters are default.

Notably, to construct a standardized evaluation platform, we reorganize these repositories and form a unified object
hallucination evaluation benchmark released at https://github.com/BillChan226/HALC. This benchmark
repository provides at ease a unified access to most of the announced LVLMs for various VQA tasks, evaluated by
CHAIR (Rohrbach et al., 2018) , POPE (Li et al., 2023), offline POPE (OPOPE), linguistic quality metrics and MME
scores (Fu et al., 2023) in a standardized pipeline.

C.2 Empirical Studies on Optimal Visual Contexts

We verify our insight that optimal visual context is important in correcting object hallucination through an empirical pilot
study. Fig. 1 shows the oracle performance of OH levels when we rely on optimal visual contexts for tokens through
brute-force search, with greedy decoding on the MME benchmark (Fu et al., 2023) on three categories of OH sources.
Specifically, each MME sub-task contains 30 images, and we have followed (Leng et al., 2023) and selected four sub-tasks
(including existence, count, color, position) to evaluate the hallucination in our analysis, in total 110 distinct images. Based
on these images, we manually constructed multiple challenging questions (2-4 per image) that are likely to induce the
LVLM to hallucinate (e.g. queries based on co-occurrence statistics illustrated in (Li et al., 2023) on some plausible but
unfaithful objects that are likely to co-occur, some minor objects in the distance). Then we take each question as a count
unit and calculate the number of hallucinations on word level (instead of token level) which could be attributed for each of
the three sources. Then for each question with a hallucination occurring, we search across the original image input using a
brutal-force breadth-first algorithms until the hallucinating token is corrected to be consistent with the ground truth. This
process effectively succeeds to retrieve the optimal visual context for 54.0% of the questions. For those questions that fail
this brutal-force search, we further manually select the visual context candidates based on human priors. In total, 84.5% of
the questions that contain these three sources of hallucinations can be eliminated with an explicit optimal visual context v∗.

D MME Experiment Details
The experiment details mostly follow Appendix C.2, where we adopt each sub-task of 30 images from the MME benchmark
dataset15, and reconstruct the question prompt following offline POPE. Specifically, instead of simply asking a question with
a binary yes/no answer, we first ask the decoder to generate a detailed caption of the provided image and then check whether
the target positive/negative word existes in the caption. The detailed results are reported in Table 12. The corresponding
figure result is shown in Fig. 5.

13https://github.com/BradyFU/Woodpecker
14https://github.com/YiyangZhou/LURE
15https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation
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Table 12: Comparison of Decoder Performances on 4 MME sub-tasks

Decoder Existence Position Color Count Max Tokens Num of Samples

HALC 155 73.33 141.67 93.33 128 110
Greedy 145 63.33 118.33 85 128 110
DoLa 145 60 118.33 85 128 110
Opera 135 56.67 115 80 128 110
VCD 135 70 133.33 70 128 110
LURE 140 60 108.33 68.33 128 110

E POPE Results
Although we argue that POPE is not suitable for post-correction decoding methods and as a result we propose OPOPE. We
also conduct the POPE evaluation and demonstrate the result in Table 13. To adapt HALC for the original POPE benchmark,
we use the entire query together with the initial answer (yes/no) as the text prompt for the detection model to provide a
grounding for the focal area of the query.

Table 13: Detailed POPE results with random, popular and adversarial samplings.

Setting Model Decoding Accuracy Precision Recall F1 Score

Random MiniGPT-4

Greedy 61.00 56.32 98.00 71.53
Beam Search 58.00 54.47 97.33 69.86
OPERA 57.66 54.21 98.67 69.97
VCD 60.33 57.87 76.00 65.71
HALC 61.33 56.54 98.00 71.70

Popular MiniGPT-4

Greedy 55.33 52.87 98.00 68.69
Beam Search 50.33 50.17 97.33 66.21
OPERA 51.00 50.51 98.67 66.82
VCD 57.33 55.05 80.00 65.21
HALC 55.67 53.07 98.00 68.85

Adversarial MiniGPT-4

Greedy 54.00 52.15 96.7 67.76
Beam Search 52.00 51.05 97.33 66.97
OPERA 52.67 51.39 98.67 67.58
VCD 53.67 52.53 76.00 62.13
HALC 56.00 53.26 98.00 69.02

According to Table 13, HALC has also outperformed the other four methods by a large margin in terms of accuracy,
precision, recall and F1 Score on all three types of POPE VQA tasks (random, popular, adversarial).
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F Comprehensive OPOPE Results

Table 14: Detailed OPOPE results with random, popular and adversarial samplings.

Setting Model Decoding Accuracy Precision Recall F0.2 Score

Random

MiniGPT-4

Greedy 68.30 97.24 37.67 91.67
Beam Search 68.37 96.30 38.20 90.98
DoLa 68.50 97.27 38.07 91.78
OPERA 68.67 96.98 38.53 91.63
VCD 67.10 96.22 35.60 90.30
Woodpecker 69.07 96.99 39.366 91.83
LURE 69.50 96.65 40.4 86.76
HALC 67.90 97.36 40.4 91.74

LLaVA-1.5

Greedy 72.20 97.17 45.73 93.14
Beam Search 71.33 97.48 43.80 93.09
DoLa 72.30 96.78 46.13 92.86
OPERA 71.20 96.76 43.87 92.47
VCD 72.07 96.89 45.60 92.87
Woodpecker 70.83 95.89 43.53 91.65
LURE 71.67 97.24 44.6 93.02
HALC 71.87 97.86 44.73 93.58

mPLUG-Owl2

Greedy 71.27 96.91 43.93 92.62
Beam Search 70.50 97.26 42.20 92.61
DoLa 71.47 96.92 44.33 92.69
OPERA 70.17 96.92 41.67 92.22
VCD 70.93 97.31 43.07 92.81
Woodpecker 70.27 97.99 41.38 93.09
LURE 70.83 96.71 43.13 92.30
HALC 71.50 97.38 44.20 93.07

Popular

MiniGPT-4

Greedy 66.43 88.70 37.67 84.30
Beam Search 67.00 90.09 38.20 85.62
DoLa 66.8 89.50 38.07 85.08
OPERA 66.80 88.65 38.53 84.43
VCD 65.47 65.47 35.60 83.64
Woodpecker 67.37 89.47 39.37 85.29
LURE 67.8 89.38 40.4 85.40
HALC 66.37 90.02 36.80 85.27

LLaVA-1.5

Greedy 70.27 89.79 45.73 86.58
Beam Search 69.80 91.25 43.8 87.6
DoLa 70.43 89.75 46.13 86.60
OPERA 69.63 90.51 43.87 86.95
VCD 70.57 91.08 45.60 87.71
Woodpecker 69.37 90.07 43.53 86.51
LURE 69.63 89.32 44.6 86.00
HALC 70.03 90.74 44.67 87.28

mPLUG-Owl2
Greedy 69.30 89.13 43.93 85.74
Beam Search 68.83 90.27 42.20 86.48
DoLa 69.53 89.35 44.33 85.99
OPERA 69.03 92.02 41.67 87.94
VCD 69.43 91.10 43.07 87.35
Woodpecker 68.58 90.73 41.38 86.75
LURE 69.17 89.99 43.13 86.38
HALC 69.63 89.95 44.20 86.50

Adversarial

MiniGPT-4

Greedy 65.60 85.35 37.67 81.38
Beam Search 66.3 87.21 38.20 83.11
DoLa 65.87 85.74 38.07 81.80
OPERA 66.3 86.66 38.53 82.68
VCD 64.77 85.44 35.60 81.08
Woodpecker 66.88 87.53 39.37 83.60
LURE 67.13 86.82 40.4 83.14
HALC 66.00 88.47 36.80 83.94

LLaVA-1.5

Greedy 69.23 86.30 45.73 83.44
Beam Search 68.47 86.45 43.8 83.33
DoLa 69.33 86.07 46.13 83.30
OPERA 68.37 86.01 43.87 82.95
VCD 69.37 86.91 45.60 83.99
Woodpecker 69.20 89.45 43.53 85.96
LURE 68.7 86.1 44.6 83.13
HALC 69.87 90.21 44.67 86.80

mPLUG-Owl2

Greedy 68.73 87.16 43.93 83.98
Beam Search 68.27 88.17 42.20 84.63
DoLa 68.87 87.02 44.33 83.91
OPERA 68.57 90.22 41.67 86.35
VCD 69.07 89.69 43.07 86.10
Woodpecker 67.85 87.94 41.38 84.29
LURE 67.73 84.91 43.13 81.86
HALC 69.23 88.50 44.20 85.21
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G Experiment Results on LLaVA-Bench
As discussed in §6.3, we leverage LLaVA-Bench (Liu et al., 2023a) as a case study to qualitatively compare the decoding
outputs of HALC with other methods. Results generated by HALC and other OH reduction baselines incorporating
mPLUG-Owl2 (Ye et al., 2023), MiniGPT-4 (Zhu et al., 2023; Chen et al., 2023), and LLaVA (Liu et al., 2023b) LVLM
backbones are shown in Fig. 6, 7 and 8 respectively. In all the plots, red fonts indicate OH, including any of the object
existence, attribute or relationship hallucinations.

HALC: The image is a painting of a face, resembling the famous
Mona Lisa’s portrait. The painting is done in a modern style,
with a blend of colors and textures. The woman's face is the
main focus of the painting, and her expression appears to be
calm and serene. The background is slightly blurred, adding
depth to the artwork.

Greedy: The image is a painting of a woman, possibly a Mona 
Lisa-style portrait, with a smile on her face. She is wearing a 
necklace and appears to be looking directly at the viewer. The 
painting is set against a backdrop of a mountain landscape, 
adding a sense of depth and beauty to the composition.

OPERA: The image features a painting of the famous Mona
Lisa, a portrait of a woman attributed to the Renaissance artist
Leonardo da Vinci. The Mona Lisa is known for her enigmatic
smile and captivating gaze. The painting is displayed on a wall,
showcasing the artwork's beauty and historical significance.

VCD: The image is a painting of the famous Mona Lisa,
capturing the enigmatic smile of the subject. The artwork is
displayed on a wall, and it features a blue background that
accentuates the painting's colors and the subject's eyes,
making the painting stand out. The Mona Lisa is the central
focus of the artwork, showcasing her famous smile and
captivating gaze.

HALC: The image showcases a beautiful view of a mountain range with a
large, sandy beach in the foreground. The beach is bustling with activity,
with numerous cars and trucks parked along the shore. In the
background, the city can be seen, stretching across the landscape. The
sky above the scene is filled with clouds, adding to the picturesque
atmosphere. The combination of the mountain range, the beach, and the
city creates a captivating and dynamic scene.

Greedy: The image showcases a beautiful view of a mountain range with
a large, sandy beach in the foreground. The beach is bustling with
activity, with numerous people enjoying the sunny day. Some of the
people are standing closer to the water, while others are scattered along
the beach, engaging in various activities. In the background, the
mountain range stretches across the horizon, creating a picturesque
scene. The combination of the sandy beach, the lush green mountains,
and the blue ocean creates a serene and inviting atmosphere.

OPERA: The image showcases a breathtaking view of a mountainous area
overlooked by water. A sandy beach stretches along the coast,
surrounded on three sides by mountains. In addition to the beach, there
are several boats visible in the water, adding to the picturesque scene. A
few people can be seen scattered around the beach, enjoying the
beautiful surroundings. Some of them are closer to the water, possibly
swimming or sunbathing, while others are further back on the beach.

VCD: The image depicts a picturesque view of a mountainous landscape
with a beautiful blue ocean in the background. The ocean water is visible
near the bottom of the image, with a sandy beach extending along the
shoreline. The water appears to be calm and inviting, creating a serene
atmosphere. The mountainous area is characterized by a series of hills
and mountains, with some of them rising steeply and others gently. A
few people can be seen scattered throughout the scene, likely enjoying
the natural beauty of the area.

Figure 6: LLaVA-Bench results comparing HALC and other methods with mPLUG-Owl2 (Ye et al., 2023) backbone.
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HALC: The image shows a dining table with a
variety of items on it, including a bowl of noodles, a
cup of green tea, and some other dishes. The bowl
is placed in the center of the table, surrounded by
several bowls containing different foods. A cup of
green tea is near the top right corner of the table. A
spoon can be seen resting on the table, close to the
bowl of noodles.

Greedy: The image shows a bowl of noodles with
chopsticks and a spoon on the side. The bowl of
noodles is filled with a variety of ingredients,
including meat, vegetables, and sauce. The
background of the image is a wooden table with a
red and white checkered tablecloth. There are also
two glasses of beer on the table.

OPERA: The image shows a bowl of ramen noodles 
with chicken and vegetables on the side. The bowl 
of ramen noodles has a clear broth with chicken and 
vegetables on the side. The noodles are cooked and 
have a chewy texture. The chicken is cooked and 
has a crispy texture. The vegetables are cooked and 
have a crunchy texture. The table is made of wood 
and has a red and white checkered tablecloth on it.

VCD: The image is a table with a bowl of noodles 
and some vegetables in it. There are also some 
chopsticks on the table. There are two chairs on 
either side of the table, and a vase of flowers on the 
table. The background of the image is a wall with a 
large window with a view of a city street.

HALC: The image is a toy of a dinosaur with glasses
on its face. The dinosaur is made of plastic and has
a red and orange flame on its back. The flame is
made of plastic and has a red and orange color.
The dinosaur is standing on its feet and has a pair
of glasses on its face. The dinosaur has a smiling
expression on his face.

Greedy: The image is a toy of a dinosaur with 
glasses on its face. The dinosaur is made of plastic 
and has a red and orange color scheme. The 
glasses are made of plastic and have a black frame 
and lenses. The dinosaur is standing on its hind legs 
and has a long tail. The image is a toy of a dinosaur 
with glasses on its face. The dinosaur is made of 
plastic and has a red and orange color scheme. 

OPERA: The image is of a toy dinosaur with glasses
on its face. The dinosaur is made of plastic and has
a red and orange flame on its back. The dinosaur is
standing on its hind legs and has a smile on its face.
The image is of a toy dinosaur with glasses on its
face. The dinosaur is made of plastic and has a red
and orange flame on its back. The dinosaur is
standing on its hind legs and has a smile on its face.

VCD: The image is a toy flamingo with a red body
and orange wings. It has a pair of glasses on its
head and is standing on its hind legs. The toy is
made of plastic and has a smooth surface. The
image is a toy flamingo with a red body and orange
wings. It has a pair of glasses on its head and is
standing on its hind legs. The toy is made of plastic
and has a smooth surface. The flamingo has a
cartoonish appearance, with large eyes and a
smiling expression.

Figure 7: LLaVA-Bench results comparing HALC and other methods with MiniGPT-4 (Zhu et al., 2023; Chen et al., 2023) backbone.
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HALC: The image features a man standing on the
back of a yellow taxi cab, holding a blue white
towel. He appears to be ironing clothes while riding
in the taxi. The taxi is driving down a busy with
other such as a and a car visible in the scene. The
man manages to balance himself on the back of the
taxi, making the scene quite unique and interesting.

Greedy: The image features a man standing on the
back of a yellow taxi cab, holding a blue shirt. He
appears to be ironing the shirt while the taxi is in
motion. The taxi is driving down a busy street, with
other vehicles such as a truck and a car visible in the
scene. Additionally, a traffic light can be seen in the
background, indicating that the taxi is driving
through an intersection.

OPERA: In the image, a man is standing on the back
of a yellow taxi cab, ironing clothes. He is wearing a
yellow shirt and appears to be focused on his task.
The taxi is surrounded by other vehicles, including a
truck on the left side and a car on the right side of the
scene. Additionally, there is a handbag placed near
the center of the scene, possibly belonging to the
man ironing clothes or someone else in the vicinity.

VCD: The image depicts a busy street scene where a
man is standing on top of a car, ironing clothes. He
is positioned towards the center of the scene, and
there are multiple other people visible in the area.
Various vehicles are present on the street, including
a truck on the left side, a bus on the right side.
There are also a few more cars on the right side of
the image, near the background.

HALC: The image features a young boy wearing a suit 
and tie, with a red bow tie. He is wearing glasses 
and has a smiling expression on his face. The boy 
appears to be the main focus of the scene, with the 
rest of the image being blurry. The suit and tie give 
him a formal and polished appearance.

Greedy: The image features a young man wearing a 
suit and tie, with a red bow tie. He is wearing 
glasses and has a smiling expression on his face. The 
man appears to be the main focus of the scene, 
with the rest of the image being blurry. The suit and 
tie combination, along with the red bow tie, gives 
the impression that the man is dressed up for a 
special occasion or event.

OPERA: The image features a young boy wearing 
glasses and a red bow tie, standing in front of a 
building. He appears to be the main focus of the 
scene. The boy is wearing a suit and tie, giving him a 
formal and polished appearance. The building in the 
background adds to the overall setting of the image.

VCD: The image depicts a young boy wearing a blue 
suit with a red bow tie. He is dressed in a business 
suit, and his face is adorned with a pair of glasses. 
The boy has a charming smile and appears to be 
posing for a picture. In the background, there is a 
person partially visible, possibly taking the photo.

Figure 8: LLaVA-Bench results comparing HALC and other methods with LLaVA (Liu et al., 2023b) backbone.
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