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ABSTRACT

Deep learning models often hallucinate, producing realistic artifacts that are not
truly present in the sample. This can have dire consequences for scientific and
medical inverse problems, where accuracy is more important than perceptual quality.
Uncertainty quantification techniques, such as conformal prediction, can pinpoint
outliers and provide guarantees for image regression tasks, improving reliability.
However, existing methods predict fixed quantiles and utilize a linear constant
scaling factor to calibrate uncertainty bounds, resulting in larger, less informative
bounds. We propose QUTCC, a quantile uncertainty training and calibration
technique that enables nonlinear, non-uniform scaling of quantile predictions to
enable tighter uncertainty estimates. Using a U-Net architecture with a quantile
embedding, QUTCC can predict the full conditional distribution of quantiles
for each image. After conformal calibration, QUTCC can predict pixel-wise
uncertainty intervals that satisfy coverage guarantees and also estimate a pixel-
wise conditional probability density function. We evaluate our method on image
denoising, quantitative phase imaging, and compressive MRI reconstruction. Our
method successfully pinpoints hallucinations in image estimates and consistently
achieves tighter uncertainty intervals than prior methods while maintaining the
same statistical coverage.

1 INTRODUCTION

In recent years, deep learning models have become the dominant approach across many inverse
problems, favored for their ability to learn powerful and complex priors from an abundance of
data (Ongie et al., 2020; Alshardan et al., 2024; Barbastathis et al., 2019; Xue et al., 2019). However,
these models are generally limited in their ability to represent uncertainty in their predictions, which
has been a significant barrier to their use in scientific and medical applications, where identifying
observations as out-of-distribution is crucial and the consequences of model hallucination can be
severe (Begoli et al., 2019). While significant progress has been made in estimating uncertainty
in deep learning, many methods require substantial computational demands, incorporate strong
prior data assumptions, or may not provide formal statistical guarantees (Psaros et al., 2023; Gal
& Ghahramani, 2016; Gal et al., 2017; Lakshminarayanan et al., 2017; Sun et al., 2024). These
limitations have motivated research into conformal prediction methods for uncertainty quantification,
which aim to overcome these challenges (Angelopoulos & Bates, 2021; Angelopoulos et al., 2021;
Dewolf et al., 2023; Barber et al., 2023; Romano et al., 2019).

Specifically, recent methods apply the statistical rigor of conformal prediction to inverse problems and
image regression tasks through multi-dimensional conformalized quantile regression (Angelopoulos
et al., 2022; Romano et al., 2019; Koenker & Bassett Jr, 1978). This is typically done by modifying
a neural network to output two additional predictions: a lower-bound and an upper-bound image,
which together define a confidence interval for each pixel. A calibration step is then used to scale
these bounds so that the interval captures the true intensity values with the desired coverage, resulting
in pixel-wise intervals that are statistically guaranteed to contain the true values with a user-specified
confidence level (Angelopoulos et al., 2022). Multi-dimensional conformalized quantile regression is
simple to implement and computationally inexpensive, unlike ensemble methods, which often require
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a. Quantile regression with quantile embeddings

b. Conformal calibration c. Uncertainty prediction on unseen data
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Figure 1: QUTCC Overview. a) Quantile Regression with Quantile Embedding: During training,
a neural network with a quantile embedding predicts an image as a function of the measurement and
quantile, q. The quantile embedding is randomly sampled (q ∈ (0, 1)) and the value of q determines
the asymmetry of the pinball loss, enabling the model to learn a range of conditional quantiles.
b) Conformal Calibration: During calibration, the predictive bounds (qlower, qupper) are iteratively
adjusted on a held-out dataset to satisfy the desired miscoverage level α. c) Uncertainty Prediction
on Unseen Data: At test time, the model can be queried to predict the mean image, a pixel-wise
uncertainty map, or a conditional probability density function at each pixel.

training multiple models, while still providing formal coverage guarantees that are independent
of the model choice or data distribution. This makes it particularly well-suited for scientific and
medical imaging, which often has small datasets, and adaptive imaging, where inference speed is
crucial (Ye et al., 2025). However, prior methods use a linear pixel-wise scaling during conformal
calibration to approximate a complex, nonlinear distribution, which leads to overly loose prediction
intervals (Angelopoulos et al., 2022). Furthermore, existing methods learn fixed quantiles, which
carry the risk of quantile crossing (He, 1997).

To address these challenges, we present Quantile Uncertainty Training and Conformal Calibration
(QUTCC), a novel method for simultaneous quantile prediction and conformal calibration that enables
efficient and accurate uncertainty quantification for imaging inverse problems (Fig 1). Building
on past work in multi-quantile estimation (Rodrigues & Pereira, 2020; Tagasovska & Lopez-Paz,
2019), QUTCC uses a single neural network to estimate a distribution of quantiles. During the
conformal calibration step, QUTCC applies a non-uniform, nonlinear scaling to the uncertainty
bounds, compared to constant scaling used by prior methods. This results in smaller and potentially
more informative uncertainty intervals. Additionally, because all quantiles are learned during training,
QUTCC can query the full quantile range at inference time to construct a pixel-wise estimate of
the underlying probability distribution. We evaluate QUTCC on five imaging inverse problems
and show that QUTCC can highlight regions of hallucination and maintain smaller uncertainty
interval sizes than prior methods, while satisfying the same statistical guarantees. Additionally, we
show that QUTCC effectively approximates pixel-wise probability density functions, providing a
richer representation of uncertainty that could enable more informed downstream decision-making in
scientific and medical imaging applications.

2 RELATED WORK

2.1 CONFORMAL PREDICTION

Conformal prediction is a robust statistical technique that constructs predictive intervals with a formal
guarantee of statistical coverage (Angelopoulos & Bates, 2021; Correia et al., 2024; Romano et al.,
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2019). In general, conformal methods take heuristic or model-derived uncertainty estimates and refine
them into statistically valid predictive intervals by leveraging a held-out calibration dataset. These
intervals are constructed to satisfy a finite-sample marginal coverage guarantee at a user-specified
level (1− α), meaning that, with high probability, the true response lies within the predicted interval
at least (1 − α)% of the time. For example, setting α = 0.1 yields prediction intervals that are
guaranteed to contain the ground truth in at least 90% of test cases. Conformal prediction has become
increasingly popular due to its simplicity, speed, formal guarantees, and lack of assumptions on
model or data distribution (Angelopoulos et al., 2023). It has been applied to a variety of areas,
including classification Angelopoulos et al. (2020); Ding et al. (2023); Angelopoulos et al. (2021),
language modeling (Quach et al., 2023; Campos et al., 2024), robotics (Lindemann et al., 2023;
Lekeufack et al., 2024), protein design (Fannjiang et al., 2022), and time series estimation (Xu & Xie,
2023; Zaffran et al., 2022). Recently, conformal prediction has been proposed for image-to-image
regression tasks to enable pixel-wise uncertainty prediction (Angelopoulos et al., 2022), and thereafter
applied to adaptive-microscopy (Ye et al., 2025). These methods alter a neural network to predict
fixed upper and lower quantile estimates, in addition to the mean image, then uniformly scale these
predictions by a constant factor using conformal risk control to ensure valid statistical coverage at
test time (Angelopoulos et al., 2022). Instead of predicting fixed quantiles and uniformly scaling
them during conformal calibration, we use one network to predict all possible conditional quantiles.
This enables non-uniform, asymmetric scaling during conformal calibration and leads to tighter
uncertainty intervals for image regression tasks and imaging inverse problems.

2.2 QUANTILE REGRESSION

Quantile regression is a general approach to estimate the conditional quantiles of a target distribution
rather than the mean of a response variable (Koenker & Bassett Jr, 1978; Koenker & Hallock, 2001).
This is often accomplished by leveraging an asymmetric loss function, called pinball loss (Fig. 1a ,
Eq. 3), tailored to the specified quantile level (Steinwart & Christmann, 2011). The estimated intervals
obtained by quantile regression do not have formal guarantees on their own, but can be paired with
conformal prediction to obtain coverage guarantees (Romano et al., 2019). Learning quantiles during
neural network training can improve predictive performance by introducing a regularization effect,
while enabling uncertainty estimation (Rodrigues & Pereira, 2020). One limitation of quantile-based
methods is the tendency for ‘quantile crossing’ to occur, a phenomenon wherein quantiles trained
independently violate their natural ordering, resulting in lower quantiles exceeding higher ones
(Das et al., 2019). Training a single network to simultaneously predict multiple quantiles, called
‘simultaneous quantile prediction’ can mitigate this issue, while also enabling the estimation of the
entire conditional distribution (Sangnier et al., 2016; Liu & Wu, 2011; Tagasovska & Lopez-Paz,
2019; Rodrigues & Pereira, 2020). In our work, we leverage a single-network with shared parameters
for simultaneous quantile prediction. We embed the quantile level as an explicit input parameter into a
U-Net, which is well-suited for a variety of image regression and imaging inverse tasks. Furthermore,
we pair our network with conformal prediction to achieve coverage guarantees. We show that our
network mitigates the issue of quantile crossing while also maintaining overall prediction accuracy.
We are the first to demonstrate that a single network trained for simultaneous quantile prediction can
predict conformally calibrated uncertainty intervals for imaging inverse problems.

2.3 PREDICTING TIGHTER OR MORE INTERPRETABLE BOUNDS

Achieving smaller interval lengths without sacrificing coverage guarantees reflects increased con-
fidence in the model’s predictions, leading to more precise and reliable uncertainty quantification.
Producing tighter bounds is a common objective across uncertainty estimation methods, not just
conformal prediction (Xie et al., 2024). Several approaches have been proposed to enhance conformal
prediction by targeting user-specified properties such as reduced interval length or improved condi-
tional coverage (Xie et al., 2024; Chung et al., 2021); however, to date, none of these techniques have
been applied to imaging tasks. On the other hand, several methods aim to improve the interpretability
of uncertainty prediction for imaging tasks by moving away from per-pixel uncertainty estimates.
These methods leverage principal components, posterior projected distribution, and spatial/topological
relationships (Nehme et al., 2023; Yair et al., 2024; Belhasin et al., 2023; Gupta et al., 2023) to predict
uncertainty in a more interpretable way. However, without incorporating conformal prediction, these
methods lack statistical guarantees. Several methods pair inverse problems with downstream tasks,
such as classification, to estimate the uncertainty in a more interpretable way (Cheung et al., 2024;
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Wen et al., 2024), and others represent uncertainty in a semantically-meaningful latent space (Sankara-
narayanan et al., 2022). While these methods are promising, they are less general and often tied to a
specific application. We present a more general method that can predict uncertainty for any imaging
inverse problem while achieving smaller uncertainty interval lengths than previous image-to-image
regression methods.

3 METHODOLOGY

3.1 PROBLEM OVERVIEW

Given an unseen measurement image y, our goal is to train a network fθ that can be queried at any
quantile level q ∈ (0, 1) to produce an estimate x̂ = fθ(y, q)

1. The image estimate is obtained by
querying the network at q = 0.5, which gives us the median image:

x̂ = fθ(y, q = 0.5). (1)

The uncertainty interval is obtained by querying the network at a high quantile value, qupper, and a
low quantile value, qlower. The upper quantile prediction serves as the upper bound of the uncertainty
interval, and the lower quantile serves as the lower bound. These two quantities can be subtracted to
get a notion of pixel-wise uncertainty: û = fθ(y, qupper)− fθ(y, qlower).

During conformal calibration, we use a small calibration dataset, Dc = {(xi,yi)}Nc
i=1, to search over

different values of the input parameters qupper and qlower until we reach the desired coverage. That is,
the constructed interval, C ∈ [fθ(y, qlower), fθ(y, qupper)], contains at least 1− α of the ground truth
pixels with probability 1− δ (Angelopoulos et al., 2022). Formally, this means that with probability
of at least 1− δ:

E[xtest ∈ C(ytest)] ≥ 1− α (2)
where xtest, ytest are unseen test data from the same distribution as the calibration data. After
calibration, the network can provide a pixel-wise uncertainty map for new, unseen data or can
be queried to predict a conditional distribution for any pixel in the image. Our method QUTCC,
is summarized in Fig. 1. We elaborate on our network architecture, training procedure, and the
conformal calibration step below.

3.2 NETWORK ARCHITECTURE

Our proposed network, fθ(y, q), takes the parameter q as an input to predict the conditional quantile.
To do this in practice, we propose to use an attention U-Net (Ronneberger et al., 2015; Oktay
et al., 2018) with a quantile-embedding to condition the U-Net on a given q. This is inspired by
the architecture of U-Nets used for diffusion models, which include a time-embedding (Ho et al.,
2020; Zhang et al., 2023). Specifically, we encode randomly sampled quantiles (q ∈ (0, 1)) as
high-dimensional vectors during training, allowing the network to learn the distribution of the target
variable for each specified quantile. This allows us to query an image prediction at any quantile
during a forward pass. The neural network weights are shared across different quantile predictions,
limiting quantile crossing. The proposed network is shown in Fig. 1, and the full architecture and
training details are described in the Supplement.

3.3 SIMULTANEOUS QUANTILE REGRESSION

In order to train our neural network to predict an arbitrary quantile image, we use pinball loss (Lq),
an asymmetric loss function commonly used in quantile regression (Eq. 3), where x̂ denotes the
predicted value, x represents the ground truth, and q ∈ (0, 1) is the quantile of interest:

Lq(x, x̂) =

{
q · |x− x̂| if x− x̂ ≥ 0

(1− q) · |x− x̂| otherwise.
(3)

When q ̸= 0.5, the pinball loss introduces asymmetry by penalizing overestimates and underestimates
unequally. Specifically, when q > 0.5, the loss assigns a greater penalty to underestimations

1Please note that we adopt the notation x̂ = f(y), which is commonly used in the field of inverse problems
instead of ŷ = f(x), which is more common in the machine learning literature.
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(i.e., when x̂ < x), encouraging the model to predict higher values. Conversely, for q < 0.5,
overestimations (i.e., when x̂ > x) incur a larger penalty, biasing predictions downward. This
asymmetry enables the model to learn conditional quantiles of the target distribution, in contrast to
losses like mean squared error (MSE), which are symmetric and designed to estimate the conditional
mean. At each training step, the quantile parameter, q is randomly sampled and used to both condition
the network and as an input to the loss function. This allows the model to learn the full conditional
quantile function, rather than a discrete, fixed quantile value as in prior image-to-image regression
methods (Angelopoulos et al., 2022; Ye et al., 2025). The total loss is given by:

Ltotal(θ) =

Nt∑
i=1

Lq(xi, fθ(yi, q)), (4)

where fθ is a neural network with parameters θ, and fθ(yi, q) is the output of the neural network
given an input measurement, yi and quantile value q. This loss is minimized with the Adam optimizer
(Kingma & Ba, 2014) using backpropagation.

3.4 CONFORMAL CALIBRATION

After training, the neural network can be queried to obtain the uncertainty interval predictions.
However, these predictions may not be valid. To ensure the statistical coverage in Eq. 2, a conformal
calibration step is necessary. Following the procedure in (Angelopoulos et al., 2022), we use a small,
separate calibration dataset, Dc = {(xi,yi)}Nc

i=1 to adjust qlower and qupper until the desired coverage,
1−α, is reached. Our model’s risk over the calibration dataset is the number of miscovered pixels for
each image normalized by the total number of pixels, K, and the size of the calibration dataset, Nc:

R̂(qlower, qupper) =
1

Nc

N∑
i=1

1

K

K∑
k=1

1{xi(k) /∈ C(yi(k), qlower, qupper)}, (5)

where k is the index of the pixels in the image. This measures the miscoverage as a function of qlower
and qupper. We can decompose this total risk as a function of the miscoverage from the lower quantile
(the number of ground truth pixels that are lower than the lower quantile) and the miscoverage from
the upper bound (the number of ground truth pixels that are higher than the upper quantile):

R̂(qlower, qupper) =
1

Nc

N∑
i=1

1

K

K∑
k=1

[1 {xi(k) < fθ(yi, qlower)}+ 1 {xi(k) > fθ(yi, qupper)}] . (6)

During conformal calibration, we calibrate the lower and upper quantile bounds independently. To
satisfy a target total miscoverage rate of α, the calibration process allocates half of this error budget
to each bound. That is, the lower and upper bounds are each adjusted to capture violations at a rate
no greater than α/2. Thus, if x(k) denotes the ground truth at pixel k and [x̂lower(k), x̂upper(k)] the
predicted interval, the goal is to ensure:

P(x(k) < x̂lower(k)) ≤
α

2
and P(x(k) > x̂upper(k)) ≤

α

2
, (7)

which implies:
P(x̂lower(k) ≤ x ≤ x̂upper(k)) ≤ α. (8)

By allowing the quantile bounds to vary independently and adaptively during calibration, our method
supports non-uniform scaling as a function of image characteristics. Rather than scaling the quantile
predictions by a constant, linear factor, as proposed in prior work (Angelopoulos et al., 2022), our
quantile predictions can be scaled in a non-uniform, non-linear way as a function of the neural
network, fθ(y, qlower, qupper). In practice, this can result in smaller uncertainty intervals.

Pseudocode for this calibration process is provided in Algorithm 1. At each step, we compute the
miscoverage from the quantile upper and lower bounds over the entire calibration dataset. If the
violation rate for a bound exceeds the adjusted α, we relax the corresponding bound; otherwise, we
tighten it. This process proceeds via a binary search over the quantile space until the desired coverage
is reached. Conducting a binary search over the quantile space assumes that the learned quantile
function is monotonic, which we verify in Supplement Tbl. 3. Note that we adjust the error rate, α′ ←
α− 1−α

Nc
to account for the finite calibration dataset size (Angelopoulos & Bates, 2021; Vovk, 2012).

At the end of this procedure, we can obtain a constructed interval C ∈ [fθ(y, q
∗
lower), fθ(y, q

∗
upper)]

that satisfies Eq. 2.
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Algorithm 1 Calibrating Quantile Bounds qlower, qupper

1: Compute adjusted error: α′ ← α− 1−α
Nc

2: Initialize bounds: qlower ← α′, qupper ← 1− α′

3: Define step size ∆q for bound updates
4: while R(qlower, qupper) > α′ do
5: (rlower, rupper)← (Rlower(qlower), Rupper(qupper))
6: Update qlower ← qlower ±∆q ▷ −∆q if rlower ≤ α′/2, else +∆q
7: Update qupper ← qupper ±∆q ▷ +∆q if rupper ≤ α′/2, else −∆q

8: return (q∗lower, q
∗
upper)

3.4.1 ESTIMATING THE CONDITIONAL DISTRIBUTION

Since our network is trained to predict the full conditional quantile distribution rather than a single
fixed quantile, we can recover an estimate of the entire conditional quantile function, Q̂k(q), at each
pixel k. This is accomplished by querying the network over a range of quantile levels q ∈ (0, 1).
Recall that the quantile function Q̂k(q) is the inverse of the cumulative distribution function for the
conditional distribution at pixel k.

By approximating the derivative of the quantile function with respect to q, we can obtain the rate
of change of the predicted values across quantile levels. Since the quantile function is the inverse
of the cumulative distribution function, the reciprocal of this derivative provides an estimate of
the conditional probability density function (PDF) at each pixel. This derivative is numerically
approximated using finite differences on the discrete set of quantile predictions:

∂x̂

∂q

∣∣∣
qi
≈ ∇qx̂

∣∣∣
qi

=
x̂(qi+1) − x̂(qi−1)

qi+1 − qi−1
for i = 2, . . . , n− 1, (9)

where x̂(qi) denotes the image prediction at quantile level qi. The estimated PDF at each pixel is then

given by the reciprocal of this derivative p̂ =
(

∂x̂
∂q

)−1

. The network is first queried at all desired
quantile levels to obtain the conditional quantile function estimates. Next, the derivative of this
function is approximated using finite differences, and finally, the pixel-wise PDF is computed as the
inverse of the derivative. This approach not only enables accurate pixel-wise PDF estimation but,
when combined with conformal calibration of multiple bounds, also provides statistically guaranteed
coverage of the estimated density.

To ‘conformalize’ the pixel-wise PDF estimation, we first specify the desired coverage level (e.g., for
90% coverage, we initialize with quantiles 0.05 and 0.95; for 60%, with 0.20 and 0.80). These initial
bounds are then calibrated using Algorithm 1 to guarantee the target coverage. By performing this
calibration for multiple quantile levels {qi}ni=1 and their associated coverage rates {1− αi}ni=1, we
obtain a set of conformally corrected quantiles,

{Q̂conf
k (qi)}ni=1, (10)

from which the pixel-wise PDF is reconstructed via finite differences:

p̂confk

(
Q̂conf

k (qi)
)
=

(
Q̂conf

k (qi+1)− Q̂conf
k (qi−1)

qi+1 − qi−1

)−1

. (11)

By calibrating multiple quantile levels with their corresponding coverage rates, we construct a PDF
that provides reliable and conformally calibrated estimates.

4 RESULTS

To evaluate our proposed approach, we fit and calibrate a separate model fθ to five separate imaging
inverse problems: accelerated MRI (Zbontar et al., 2018), quantitative phase imaging (QPI) (Pinkard
et al., 2024), and denoising under real-noise, synthetic Poisson, and Gaussian noise (Zhang et al.,
2019). We compare against Im2Im-UQ, which is the leading conformal prediction approach for

6
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image-to-image regression. To ensure that our performance improvements come from our uncertainty
quantification technique and not network improvements, we upgrade Im2Im-UQ to use the same
architecture and depth as QUTCC, which we call Im2Im-Deep. In all cases, we set α = 0.1 during
conformal calibration. Full training details are provided in the supplement. We evaluate predicted
interval lengths, empirical risk, and model performance. We also visualize uncertainty and highlight
the model’s ability to identify hallucinations, which are realistic features not present in the ground
truth. Finally, we show that QUTCC infers pixel-wise PDFs without relying on prior distributional
assumptions.

4.1 UNCERTAINTY INTERVAL LENGTH AND RISK

We compare the predicted uncertainty interval lengths and total risk for each imaging modality in
Fig. 2 and Table 1. QUTCC consistently produces smaller prediction intervals than Im2Im-Deep
across all five modalities, while keeping the total risk under 0.1. By achieving smaller interval lengths
while exhibiting comparable risk, QUTCC demonstrates that its uncertainty quantification is both
more precise and well-calibrated without sacrificing coverage.

In Figure 3, we compare QUTCC and Im2Im-Deep for Gaussian denoising with progressively
increasing noise, plotting the average uncertainty interval lengths as a function of pixel intensity.
When the noise variance is lower, QUTCC produces smaller interval lengths that better match
the noise level compared to Im2Im-Deep. In addition, QUTCC consistently estimates narrower
uncertainty intervals in regions of high signal intensity.

Metric Method MRI QPI Gaussian Poisson Real Noise

Interval Length
Im2Im-Deep 0.109 ± 0.056 0.065 ± 0.014 0.063 ± 0.049 0.047 ± 0.038 0.038 ± 0.045
QUTCC 0.108 ± 0.057 0.062 ± 0.014 0.059 ± 0.048 0.040 ± 0.029 0.036 ± 0.035

Total-Risk
Im2Im-Deep 0.099 ± 0.047 0.098 ± 0.099 0.094 ± 0.065 0.049 ± 0.042 0.096 ± 0.040
QUTCC 0.097 ± 0.031 0.100 ± 0.102 0.090 ± 0.046 0.093 ± 0.091 0.098 ± 0.029

Table 1: Interval Length and Total Risk

MRI             QPI      Gaussian                    Poisson                    Real-Noise
0.0

0.1

0.2

0.3
Im2Im-Deep QUTCC

In
te

rv
al

 L
en

gt
h

Figure 2: QUTCC exhibits smaller uncertainty interval sizes: We compare the predictive interval
sizes of Im2Im-Deep and QUTCC across all five inverse problems. QUTCC consistently produces
narrower uncertainty intervals. The black bolded line indicates the mean interval length.

4.2 UNCERTAINTY VISUALIZATIONS

Next, we visualize the predicted pixel-wise uncertainty of Im2Im-Deep and QUTCC for an undersam-
pled MRI and a real noise image (Fig. 4). We compare these against the true error, which we obtain
by taking the difference between the model prediction and the ground truth. Both Im2Im-Deep and
QUTCC predict regions of high uncertainty that align with areas of high reconstruction error. How-
ever, QUTCC produces a more informative uncertainty map by selectively highlighting only the most
uncertain regions, whereas Im2Im-Deep tends to assign broad, uniform areas of elevated uncertainty.
In the MRI task shown in Fig. 4, arrows in the model prediction, uncertainty, and error maps indicate
a hallucinated structure that appears in both the Im2Im-Deep and QUTCC predictions. QUTCC is
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Im2Im-Deep
QUTCC
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Figure 3: QUTCC exhibits smaller uncertainty intervals in regions of high pixel intensity: In a
Gaussian denoising setting, we analyze how uncertainty interval lengths vary with pixel intensity
across increasing noise levels (σ = 0.1, 0.3, 0.5). Under low-noise conditions, QUTCC exhibits
substantially narrower uncertainty intervals compared to the baseline. As noise increases to σ = 0.5,
this advantage becomes less pronounced overall. However, QUTCC continues to produce shorter
uncertainty intervals for high-intensity pixels (intensity > 0.8), even at higher noise levels. All
confidence intervals were estimated over a set of 10 samples.
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Figure 4: Hallucination Visualization: We show pixel-wise QUTCC and Im2Im-Deep uncertainty
quantification for MRI and Real Noise tasks. In both imaging scenarios, both models highlight
regions of high uncertainty that correspond to regions of high error. In the MRI task, the arrows
point to a hallucination that appears in the Im2Im-Deep and QUTCC model predictions that is not
present in the ground truth. QUTCC produces tighter uncertainty intervals that can better pinpoint
uncertainty and hallucinations compared to Im2Im-Deep, which highlights a larger region.
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able to accurately localize this hallucination with its uncertainty prediction, but Im2Im-Deep exhibits
broader, less specific uncertainty across the surrounding structure.

4.3 ESTIMATING THE CONDITIONAL DISTRIBUTION

D
en

si
ty

Pixel Intensity

Normal Left-SkewedRight-Skewed

σ =0.1

Figure 5: QUTCC predicts diverse pixel-wise distributions: By querying multiple quantiles and
conformalizing the result, we can predict pixel-wise conditional distributions with statistical coverage
guarantees. Here, we show several predicted conditional distributions for regions within an image
given a measurement with Gaussian noise. At the blue, green, and red pixels, the model predicts a
right-skewed distribution, a Gaussian-like distribution, and left-skewed, respectively.

Finally, we demonstrate QUTCC’s ability to construct a conformalized, pixel-wise conditional PDF
in Fig. 5. To provide statistical coverage guarantees, we calibrate the model across a range of
miscoverage levels α (see Suppl. Fig. 9 for visualization). By systematically varying α (e.g., from
0.1 to 0.9) and recording the corresponding quantile bounds, we obtain a collection of confidence
intervals that, when aggregated, approximate the full cumulative distribution function. Differentiating
this cumulative distribution function yields a conformalized pixel-wise PDF with formal coverage
guarantees at each risk level. In Figure 5, we illustrate QUTCC ’s ability to model diverse pixel-wise
predictive distributions. The blue, green, and red patches show noticeably right, symmetric, and
left-skewed distributions, respectively.

5 LIMITATIONS AND CONCLUSION

We propose QUTCC, a new uncertainty quantification method for imaging inverse problems that can
achieve tighter uncertainty estimates than previous methods while maintaining the same statistical cov-
erage. QUTCC accomplishes this by training a U-Net with a quantile embedding simultaneously on
q ∈ (0, 1) quantiles and then dynamically adjusting its quantile bound predictions during calibration
until the desired risk is satisfied. We validated QUTCC on five imaging inverse problems - under-
sampled MRI, QPI, denoising under Gaussian, Poisson, and real noise, comparing its performance
against prior conformal methods for image regression tasks. Our method exhibited tighter uncertainty
intervals, on average, while still pinpointing model hallucinations and regions of high error. This can
be attributed to our model learning and applying a nonlinear and asymmetrical scaling to its pixel-wise
uncertainty predictions. Furthermore, QUTCC can estimate a conformalized conditional PDF, which
previous conformal uncertainty quantification methods for image-to-image regression tasks could not
do. While quantifying model uncertainty remains a significant open challenge in the field of deep
learning, we believe that QUTCC offers a simple, yet robust method of uncertainty quantification for
imaging inverse problems and image-to-image regression tasks. Some limitations are that QUTCC
has a need for paired data for both the training and conformal calibration step. Additionally, we do
not consider motion or 3D effects, which can be present in real samples. Interesting future work
includes considering the effects of sample movement and distribution shifts, as well as uncertainty
across multiple measurements instead of considering uncertainty for a single-frame independently.
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Ethical Considerations: Using machine learning methods for scientific and medical applications has
inherent risk - producing realistic artifacts that are not truly present in the image can be catastrophic
for discovery and medical diagnostics. As research in uncertainty quantification matures, we hope
that some of these risks can be mitigated to enable more trustworthy imaging. We acknowledge and
fully comply with the ICLR Code of Ethics.

Reproducibility: We describe the different imaging inverse tasks in more detail in A.1. In this section,
we also include the model epochs that we used to evaluate in this paper. Additional explanation of
QUTCC’s model architecture can be found in A.2, where we describe the quantile embedding in
more detail. Code to train our model and reproduce the experiments shown here can be found at this
anonymous code repo: https://anonymous.4open.science/r/QUTCC-246F.
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A APPENDIX

These supplementary materials contain additional information to improve the reproducibil-
ity of the paper, as well as several additional analyses and experimental results. Code
for training and analysis of QUTCC can be found at the following anonymous repo:
https://anonymous.4open.science/r/QUTCC-246F. Section A.1 provides more details about the
different inverse problems used throughout the paper and their associated datasets. Section A.2
details the network architecture used for QUTCC. Section A.3 provides additional comparisons
against the original formulation of Im2Im-UQ without our network modifications and analysis on
quantile crossing. Section A.4 includes analysis on the size-stratified risk, more visualizations of our
uncertainty predictions across the different inverse problems, and a visualization of how QUTCC
produces narrower uncertainty intervals through asymmetry. Finally, Sec. A.5 provides several
visualizations of QUTCC’s conditional distribution predictions, including an example showing how
we conformalize the quantiles and the PDF prediction as a function of noise.

A.1 EXPERIMENT DETAILS

In this section, we provide additional experimental details about our training process and datasets
used for our five different tasks: denoising (real, Gaussian, Poisson), MRI, and QPI. Im2Im-Deep
and QUTCC were each trained for 50 epochs on their respective datasets using a single NVIDIA
RTX PRO 6000. Following training, we conducted a model selection sweep to identify the epoch that
yielded the narrowest uncertainty intervals while satisfying the target risk level (α = 0.1).

For all models, an initial learning rate of 1e-4 and weight decay of 0 was used. Batch size was
adjusted depending on the task, with 4 used for denoising tasks, 12 for MRI, and 72 for QPI for U-Net
backbones and 32, 512, and 16 (respectively) for ResNet-18 backbones. Images were normalized
before training.

A.1.1 REAL NOISE TASK

For the real noise task, we used the Fluorescence Microscopy Denoising (FMD) dataset (Zhang
et al., 2019), which contains experimentally acquired fluorescence microscopy images spanning 12
wide-field, confocal, and two-photon modalities. The model was trained on 10,000 images, with 500
confocal mouse images used for calibration and an additional 500 for validation. The epochs used for
Im2Im-Deep and QUTCC are 5 and 10, respectively.

A.1.2 GAUSSIAN AND POISSON NOISE TASK

For both the Gaussian and Poisson tasks, we synthetically introduced varying levels of noise to the
FMD ground truth images. The dataset was split into 180 ground truth images for training, 40 for
calibration, and 20 for validation. The pseudocode for generating gaussian and poisson noise are
shown below in Algorithm 2 and Algorithm 3.

Algorithm 2 Add Gaussian Noise
1: Input: Clean image x, max noise level σmax
2: Output: Noisy image y
3: Sample noise std: σ ∼ U(0, σmax)
4: Sample Gaussian noise: η ∼ N (0, σ2)
5: Add noise: y← x+ η
6: Clamp: y← Clamp(y, 0, 1)
7: return y

Algorithm 3 Add Poisson Noise
1: Input: Clean image x, min/max noise levels

σmin, σmax
2: Output: Noisy image y
3: Sample scale: λ ∼ U(σmin, σmax)
4: Scale image: xscaled ← λ · x
5: Sample noise: η ∼ Poisson(xscaled)
6: Clamp: y← Clamp(η, 0, 1)
7: return y

For Gaussian noise, we set σmax = 0.5. For Poisson noise, the noise level range (λmin, λmax) was
set to (50, 100). In each iteration, with a batch size of 16, we generated 25 random noise levels
uniformly sampled between the specified minimum and maximum values. The number of training
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epochs for Im2Im-Deep and QUTCC with Gaussian noise were 15 and 20, respectively. For Poisson
noise, Im2Im-Deep was trained for 10 epochs, while QUTCC was trained for 35 epochs.

A.1.3 MAGNETIC RESONANCE IMAGING (MRI) TASK

Data used for the MRI task was obtained from the NYU fastMRI initiative database
(fastmri.med.nyu.edu) (Knoll et al., 2020; Zbontar et al., 2018). The primary goal of fastMRI
is to test whether machine learning can aid in the reconstruction of medical MRI images. To train our
models, we split the fastMRI dataset into 700 volumes for training, 200 volumes for calibration, and
200 for validation. It is important to note that a single volume contains multiple MRI images. The
epochs used for Im2Im-Deep and QUTCC are 25 and 30, respectively.

To simulate the forward model in MRI, we start with a fully-sampled 3D volume composed of multiple
2D image slices. Each 2D image slice is transformed into its frequency domain representation using
the 2D Fourier Transform, producing its k-space data. To simulate undersampled acquisition,
we apply a 4× undersampling mask to the k-space. The resulting undersampled k-space is then
transformed back into the image domain using the inverse Fourier Transform, yielding an aliased or
artifact-corrupted image that serves as the input for the models.

A.1.4 QUANTITATIVE PHASE IMAGING (QPI) TASK

Data used for the QPI task were obtained from the Berkeley Single Cell Computational Microscopy
(BSCCM) dataset (Pinkard et al., 2024). The BSCCM dataset contains image samples of individual
white blood cells that have been captured with several illumination patterns on an LED array
microscope. For this task, we used 289,059 images for training, 82,588 images for calibration, and
41,294 images for validation. The number of training epochs for Im2Im-Deep and QUTCC were 15
and 20, respectively.

In QPI, the goal is to image the structure of transparent cells by recovering the phase delay of
the light that passes through the cells. Several intensity-only images are used to computationally
estimate the phase of the light, since this cannot be measured directly. The input measurement
y is the concatenation of two cell intensity images acquired at different illumination angles. The
corresponding ground truth is the quantitative phase image recovered from four or more illumination
angles. The model is trained to map these two intensity images into a phase image.

A.2 MODEL ARCHITECTURE

Our method, QUTCC, is based on a U-Net backbone augmented with self-attention mechanisms,
where quantile embeddings are propagated through the self-attention layers to guide the network’s
quantile predictions. In our design, the target quantile level is embedded as a continuous scalar,
analogous to the time-step embeddings in diffusion models. A core part of this architecture is the
integration of self-attention layers within the U-Net, implemented as AttentionBlock modules.
These blocks allow the model to capture global dependencies across spatial dimensions, enabling
each pixel or feature location to attend to all other locations within its feature map. Specifically,
attention layers are incorporated at various downsampling resolutions within both the encoder and
decoder paths, as well as at the bottleneck of the U-Net.

The ability to condition the model’s output on a given quantile is achieved through the quantile
embedding mechanism. A quantile value between (0, 1) is chosen for each image sample at each
iteration and then transformed into a high-dimensional vector representation using a positional
encoding scheme, employing sinusoidal functions to create generalizable embeddings. This initial
embedding is then processed by a small multi-layer perceptron, which is then used throughout to
condition the network. By introducing this conditioning, the model learns to generate outputs that
are responsive to the entire range of quantile levels. This mechanism works in tandem with the
self-attention layers, which are specified using the attention_resolutions parameter.

In our experiments, QUTCC was trained using attention_resolutions configured as
[16, 8, 4, 2, 1]. This means for 512 x 512 images, using the specified configuration results in at-
tention layers within the encoder path (at resolutions 512x512, 256x256, 128x128, 64x64, and
32x32), one central attention layer in the middle block (at 8x8 resolution), and additional atten-
tion layers distributed across the decoder path (at resolutions 32x32, 64x64, 128x128, 256x256,
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and 512x512). The attention_resolutions parameter dictates the spatial scales at which
these attention mechanisms are introduced. Further model configurations can be found in
models/model_config.yaml.

A.3 MODEL ANALYSIS

In Fig. 4, we restricted our comparisons to the Im2Im-Deep and QUTCC models. The original
Im2Im-UQ model was excluded due to its comparatively shallow architecture, resulting in decreased
performance. However, for the subsequent analysis, we reintroduce Im2Im-UQ for completeness. In
this section, we assess the model’s mean predictive performance and the quantile crossing occurrences.

A.3.1 MEAN PREDICTION PERFORMANCE

Does QUTCC produce tighter intervals because it is simply a better image prediction network? To
investigate this, we compare the predictive performance of Im2Im-UQ, Im2Im-Deep and QUTCC.
In Table 2, we compare the performance of Im2Im-Deep and QUTCC using standard image recon-
struction metrics: MSE, SSIM, PSNR, and LPIPS. For QUTCC, the mean prediction was obtained
by setting the quantile level to q = 0.5. The results indicate that all models achieve nearly identical
performance in terms of MSE, with only minor differences observed in SSIM, PSNR, and LPIPS.
These variations are not substantial enough to suggest that QUTCC provides a significantly better
mean prediction. These findings suggest that QUTCC ’s improved uncertainty quantification predic-
tions are not attributed to better mean prediction performance. Rather, its ability to more effectively
characterize uncertainty appears to come from the explicit learning of quantiles during training.

Metric Model MRI QPI Gaussian Poisson Real Noise

MSE (↓)
Im2Im-UQ 0.003 ± 0.002 0.0006 ± 0.0005 0.0007 ± 0.0006 0.0003 ± 0.0003 0.0030 ± 0.0004
Im2Im-Deep 0.001 ± 0.002 0.0004 ± 0.0003 0.0006 ± 0.0006 0.0003 ± 0.0002 0.0004 ± 0.0002
QUTCC 0.001 ± 0.002 0.0004 ± 0.0003 0.0006 ± 0.0005 0.0003 ± 0.0003 0.0002 ± 0.0001

SSIM (↑)
Im2Im-UQ 0.668 ± 0.127 0.949 ± 0.017 0.852 ± 0.102 0.931 ± 0.038 0.803 ± 0.016
Im2Im-Deep 0.707 ± 0.139 0.961 ± 0.010 0.856 ± 0.107 0.937 ± 0.035 0.959 ± 0.006
QUTCC 0.708 ± 0.139 0.959 ± 0.010 0.865 ± 0.102 0.941 ± 0.036 0.957 ± 0.008

PSNR (↑)
Im2Im-UQ 26.867 ± 2.923 33.135 ± 2.543 32.739 ± 3.535 36.163 ± 3.059 25.833 ± 0.734
Im2Im-Deep 29.711 ± 3.138 34.565 ± 2.393 33.557 ± 4.018 37.062 ± 2.968 34.038 ± 1.837
QUTCC 29.833 ± 3.156 34.948 ± 2.436 33.660 ± 4.143 37.498 ± 3.797 37.350 ± 1.936

LPIPS (↓)
Im2Im-UQ 0.343 ± 0.033 0.153 ± 0.025 0.420 ± 0.092 0.294 ± 0.071 0.360 ± 0.033
Im2Im-Deep 0.324 ± 0.043 0.125 ± 0.015 0.414 ± 0.103 0.299 ± 0.071 0.297 ± 0.029
QUTCC 0.323 ± 0.040 0.121 ± 0.015 0.408 ± 0.102 0.284 ± 0.072 0.312 ± 0.026

Table 2: Image reconstruction performance of Im2Im-UQ, Im2Im-Deep, and QUTCC: For each
metric, the arrow indicates the direction of better performance.

A.3.2 QUANTILE CROSSING PERFORMANCE

Task Crossed Pixels Total Pixels Crossing Ratio
MRI 2.20e1 1.64e9 1.34e−8
QPI 5.00 2.62e8 1.91e−8
Gaussian 1.10e6 3.36e9 3.29e−4
Poisson 3.49e3 3.36e9 1.04e−6
Real Noise 3.38e4 1.05e9 3.23e−5

Table 3: Quantile crossing occurrences for QUTCC

In section 3.4 we describe the conformal
calibration step, which is dependent on the
quantile function being monotonic. To
ensure the validity of the predicted quan-
tiles, specifically to avoid the issue of quan-
tile crossing, we quantified the number
of quantile crossing occurrences between
q = [0.1, 0.2, 0.3, ..., 0.9] in QUTCC (Tbl
3). Quantile crossing can undermine the in-
terpretability of our uncertainty estimates, as
it contradicts the notion that quantile functions should be non-decreasing/non-overlapping. The
results indicate that across all imaging tasks, the ratio of quantile crossing occurrences is minimal.
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A.4 ADDITIONAL UNCERTAINTY INTERVAL EVALUATIONS

A.4.1 SIZE-STRATIFIED RISK

We observed the size-stratified risk of all inverse tasks between Im2Im-Deep and QUTCC (Fig. 6). To
calculate size-stratified risk, the prediction intervals are first binned into different sizes, ranging from
smallest to largest. Then the risk is calculated across all the bins to ensure that the model’s uncertainty
estimates are well-calibrated across different levels of confidence. While both Im2Im-Deep and
QUTCC have bins that exceed the α, generally, most bins fall under the chosen risk.

Im2Im-Deep QUTCC

Im2Im-Deep QUTCC

Poisson

Real Noise

QUTCCIm2Im-Deep

Gaussian

MRI

QPI

Im2Im-Deep QUTCC

Short

Short-Medium

Medium-Long

Long

Im2Im-Deep QUTCC

Figure 6: Size-Stratified Risk of Im2Im-Deep vs. QUTCC: We evaluate the size-stratified risk
of Im2Im-Deep and QUTCC across all tasks. Overall, neither model exhibits a strong relationship
between interval width and empirical risk, suggesting limited sensitivity to interval size. However, in
the Gaussian and Poisson settings, both models display a mild trend toward improved calibration, or
lower risk, for narrower prediction intervals.

A.4.2 ADDITIONAL VISUALIZATIONS

We also provide visualizations of the remaining imaging tasks not included in the main results
(Fig. 7). For all sample tasks, both QUTCC and Im2Im-Deep effectively highlight regions with high
reconstruction error. However, QUTCC demonstrates a more focused identification of areas with
high uncertainty that align closely with the true error, indicating its greater precision in uncertainty
estimation. While Im2Im-Deep is capable of identifying regions of error, it tends to assign elevated
uncertainty across larger portions of the sample, making it challenging for downstream tasks to
prioritize regions based on uncertainty interval sizes. This trend is consistent across all five imaging
inverse problems.

A.4.3 BOUND ASYMMETRY

How does QUTCC achieve tighter confidence intervals while maintaining the same level of risk? As
shown in Fig. 8, QUTCC produces asymmetric predictive intervals— its upper and lower bounds are
adjusted independently based on localized uncertainty. In contrast, Im2Im-UQ applies a single global
scaling factor λ uniformly to both bounds, which can be suboptimal in cases where only one side of
the interval requires adjustment. This limitation often leads to unnecessarily widened intervals. In the
red boxed region of Fig. 8, both QUTCC and Im2Im-UQ share a similar lower bound, yet QUTCC
predicts a significantly tighter upper bound. Similarly, in the green boxed region, both methods align
on the upper bound, but QUTCC yields a tighter lower bound. These examples highlight QUTCC’s
ability to adaptively adjust its interval predictions, leading to more precise interval estimates.
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Figure 7: Additional Uncertainty Visualizations: We visualize both the full and zoomed-in regions
of image reconstructions for QPI and denoising with Poisson, Gaussian and Real Noise. Consistent
with observations presented in the results section, QUTCC produces more precise uncertainty esti-
mates that closely align with localized regions of high reconstruction error. In contrast, Im2Im-Deep
tends to highlight broader regions of uncertainty and lacks specificity, making it hard to distinguish
areas of importance. This highlights QUTCC ’s ability predict more informative uncertainty maps.
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Figure 8: QUTCC produces narrower intervals through asymmetric bounds: We analyze the
pixel-wise uncertainty bounds predicted by Im2Im-UQ and QUTCC and observe that QUTCC exhibits
asymmetric behavior in its interval estimates. In Im2Im-UQ, both the upper and lower bounds are
uniformly scaled by a global factor λ to satisfy coverage constraints, which limits flexibility in
adapting to signal-specific uncertainty. In contrast, QUTCC learns to predict quantiles directly,
enabling it to independently modulate upper and lower bounds based on signal characteristics.
This results in more adaptive and efficient uncertainty intervals. For instance, in the red boxed
region, QUTCC matches Im2Im-UQ’s lower bound but produces a significantly tighter upper bound.
Conversely, in the green boxed region, both models share an upper bound, yet QUTCC yields a
tighter lower bound. Samples shown are Gaussian images with σ = 0.1.

A.5 ADDITIONAL PDF RESULTS

In this section, we present additional results highlighting QUTCC’s ability to estimate a conditional
probability density function. In Fig. 9a, we show several of the predicted PDFs for image denoising
with Gaussian noise with σ = 0.4. Detailed views of the corresponding pixel-wise PDFs are presented
in Fig. 9b for the low-intensity pixel and Fig. 9c for the high-intensity pixel. Each graph displays
two PDFs: the blue PDF represents the quantile predictions from the uncalibrated model, while
the green PDF represents the conformally calibrated quantiles that provide finite-sample statistical
coverage guarantees. The conformal calibration procedure adjusts the quantile levels to ensure valid
coverage properties. For instance, while the 25th and 75th percentiles theoretically provide 50%
coverage, conformal calibration determines that the 20.7th and 69.2nd percentiles are required to
achieve statistically guaranteed 50% coverage for this specific dataset and model. Additionally,
Fig. 10 illustrates the evolution of the pixel-wise PDF for a fixed pixel coordinate under varying
Gaussian noise levels σ ∈ {0.1, 0.3, 0.5}. As the noise standard deviation increases, the PDF widens.
This widening corresponds to increased epistemic uncertainty in the model’s predictions, as higher
noise levels reduce the information content available for accurate pixel intensity estimation. This
then directly widens prediction intervals to maintain the desired coverage guarantees.

A.6 LLM USAGE

LLMs were used to edit and correct grammar during writing, but were not involved in the research
ideation process.
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Figure 9: QUTCC predicts different pixel-wise PDFs based on different siganl intensity a)
Comparison of pixel-wise PDFs for representative low-intensity and high-intensity pixels in a
Gaussian measurement (σ = 0.4). b) Detailed view of the low-intensity pixel PDF, exhibiting a
narrow, high-density distribution concentrated around few intensity values, indicating low predictive
uncertainty. c) Detailed view of the high-intensity pixel PDF, showing a broader, lower-density
distribution with increased spread, reflecting higher predictive uncertainty in bright image regions.
The blue lines show the uncalibrated model, while the green lines show the conformalized quantiles
after calibration.
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Figure 10: PDF broadens as noise increases: We observe the PDF of a single pixel under varying
noise levels. At σ = 0.1, the noise is low, and the PDF is compact. As the noise increases to
σ = 0.3 and σ = 0.5, the PDF gradually broadens, while the mean prediction value remains relatively
unchanged. This broadening occurs due to the increased uncertainty introduced by higher noise levels.
QUTCC successfully predicts this increased uncertainty as the noise increases.
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