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ABSTRACT

Recent advances in diffusion models and large language models (LLMs) have
enabled text-to-image generation of remarkable fidelity, allowing users to synthe-
size images directly from natural language prompts. However, we observe that
prompt informativeness varies significantly across user proficiency levels, which
draws little research attention in the field. Those ambiguous or under-specified
prompts often lead to unstable outputs that deviate from user intent, while current
benchmarks provide limited means to quantify this phenomenon. We address
this gap by introducing Authentic Prompt Benchmark (Auth-Prompt Bench), a
large-scale benchmark of 17,580 prompt-image pairs from both novice and expert
users sourced from authentic web cases, specifically designed to evaluate the sta-
bility of the prompting in text-to-image generation. Unlike existing metrics that
focus solely on prompt–image alignment, Auth-Prompt Bench is further grounded
in an information-theoretic perspective of prompt-to-prompt transmission, en-
abling stability assessment through complementary metrics: mutual information,
prompt entropy, and prompt energy. Building on these insights, we propose Nox-
Eye, an end-to-end prompt optimization framework comprising (i) an information
enhancer that maps user prompts toward the model-preferred distribution, and
(ii) an information aligner that enforces fine-grained alignment of visual entities.
Across Auth-Prompt Bench and other established benchmarks, NoxEye delivers
improvements of up to 13.52% in mutual information, 20.30% in prompt entropy,
and 27.01% in prompt energy and enhances prompts from novice users, over
state-of-the-art baselines. Our results establish Auth-Prompt Bench as one of the
first dedicated benchmarks for stability in T2I generation and demonstrate that
information-theoretic prompt optimization can significantly enhance both robust-
ness and fidelity. The human evaluation results further verify the efficacy of our
method in user intent alignment for T2I generation. We hope this work provides a
foundation for the community on principled evaluation and reliable user–model
interaction in T2I generative systems. The source code and dataset will be made
publicly available.

1 INTRODUCTION

With the advent of diffusion models (Rombach et al., 2022; Ho et al., 2020; Ramesh et al., 2021; 2022;
Saharia et al., 2022; Jiang et al., 2024), text-to-image generation has become increasingly popular,
enabling users to generate images based on a wide variety of textual prompts. The development of
large language models (LLMs) has further enhanced this process by allowing for prompt tuning, leading
to improved visual fidelity in the generated images(Hao et al., 2023; Wu et al., 2024; Yang et al., 2024).

However, due to the significant gap in user proficiency levels, some vague or ambiguous prompts from
novice users may fail to produce images aligned with the user’s intentions. Some pioneering research
(Du et al., 2023; Chefer et al., 2023b) has demonstrated that diffusion models exhibit instability when
interpreting such prompts. Notably, even minor lexical noise in a prompt can confuse the text encoder,
producing images that fail to capture the intended semantics.

Our rationale stems from the observation that prior work (Hao et al., 2023; Cao et al., 2023; Rosenman
et al., 2023) mainly addresses text–image alignment or aesthetic quality, but pays little attention
to user intent and prompt informativeness, leaving generation stability insufficiently explored.
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bottle, tattoo design
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CoMat 2.1 + Promptist + OursSD 2.1 + Promptist + Ours

Figure 1: We observe that state-of-the-art diffusion models, such as Stable Diffusion 2.1 (Rombach
et al., 2022) and CoMat 2.1 (Jiang et al., 2024), remain prone to generation instability under authentic
user inputs. Our prompt-optimizing method, NoxEye, mitigates this limitation by systematically
enhancing prompt–image alignment with user intent and outperforms the state-of-the-art prompt-
refining method, e.g., Promptist (Hao et al., 2023).

This gap is especially problematic given the heterogeneity of user proficiency: while expert users
often craft long, detailed prompts with explicit attributes, novice users tend to produce shorter and
more ambiguous descriptions. Consequently, we argue that advancing the stability and reliability of
diffusion-based T2I systems requires both the design of interpretable prompts and the development
of robust evaluation metrics.

We cast the T2I prompt stabilizing problem as a distribution matching problem, where the goal is
to train a model such that the conditional distribution of the optimized prompt given user authentic
prompts better resembles user intents. To this end, we propose NoxEye, a plug-and-play modular
prompt optimization framework broadly compatible with diverse T2I diffusion models. NoxEye
consists of two main components: (i) an information enhancer, which maps prompts from the
human-interpretable distribution to the model-preferred distribution, and (ii) an information aligner,
which further guides the enhanced prompts to achieve fine-grained visual entity alignment.

To facilitate the study for the community, we additionally release a novel benchmark, named Auth-
Prompt Bench, for assessing the stability of T2I generation through the lens of information prop-
agation. Unlike prior efforts, our benchmark not only measures the alignment between generated
images and user intent but also explicitly quantifies the information content embedded in prompts.
To support this, we curate a dataset of 17,580 real-world prompts crawled from authentic web cases,
stratified into novice and expert subsets according to user proficiency in T2I prompt design.

Extensive experiments demonstrate that NoxEye effectively mitigates the adverse effects of am-
biguous prompts, substantially improving both fidelity and stability of generated images. When
applied to existing advanced T2I models, our framework yields 13.52%, 7.9% and 35.69% gains
in mutual information, prompt entropy, and prompt energy metrics. Moreover, compared to the
state-of-the-art prompt optimization strategies, NoxEye achieves a 23.20% and 8.34% improvement
in mutual information and prompt energy metrics, underscoring its superior robustness to vague or
underspecified text inputs.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION AND BENCHMARKS

Text-to-image generation has progressed from early GANs (Goodfellow et al., 2014) and VAEs
(Kingma & Welling, 2013) to diffusion-based models, with Stable Diffusion (Rombach et al., 2022)
and CoMat (Jiang et al., 2024) exemplifying the current paradigm. These models typically employ
frozen text encoders (e.g., CLIP (Radford et al., 2021)) to map prompts to embeddings that guide
iterative denoising.
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Benchmarking efforts have evolved alongside model capabilities. HEIM (Liang et al., 2022) evaluates
twelve dimensions, including alignment, quality, reasoning, and fairness. T2I-CompBench (Huang
et al., 2025) focuses on compositional generation with novel metrics and reward-driven fine-tuning
(GORS), while GenEval (Ghosh et al., 2023) introduces object-centric evaluation for fine-grained
analysis. Despite these advances, models still struggle to capture user intent accurately, motivating
the proposed Authentic Prompt Benchmark for mapping ambiguous prompts to concrete object
representations.

2.2 PROMPT OPTIMIZATION FOR TEXT-TO-IMAGE GENERATION

Prompt optimization leverages LLMs (Schlegel et al., 2025; Xiang et al., 2025) to improve generated
image quality. Promptist (Hao et al., 2023) fine-tunes GPT-2 (Radford et al., 2019) to reformulate
user prompts via supervised fine-tuning (SFT) and direct preference optimization (DPO) using CLIP
similarity and aesthetics scores. Self-Rewarding LVLMs (Yang et al., 2025) extend this two-stage
paradigm with a self-reward mechanism, while PAG (Yun et al., 2025) uses GFlowNets to generate
diverse adaptive prompts.

These approaches enhance prompt quality but largely focus on aesthetic and relevance objectives,
often neglecting whether generated images faithfully reflect the user’s underlying intent.

3 OUR ROADMAP TO AUTH-PROMPT BENCH

3.1 UNDERLYING RATIONALE

Our rationale stems from a key observation: due to user proficiency level, the informativeness
of prompts exerts a substantial impact on the quality of text-to-image (T2I) generation, while the
community has paid limited attention to systematically addressing this issue. Motivated by this gap,
our objective is to design a comprehensive and principled methodology and benchmark for evaluating
the quality of prompts in T2I generation.

Below, we demonstrate how we quantify the informativeness of a text-to-image prompt P in conveying
user intent Y to a generative model producing image I , using three carefully designed measures from
an information-theoretic framework.

3.1.1 MUTUAL INFORMATION FOR USER INTENT ALIGNMENT

We model generation as a Markov chain Y → P → I , and define prompt stability via mutual
information:

I(Y ; I) = H(Y )−H(Y | I),
where larger I(Y ; I) indicates better preservation of user intent.

Since p(y | I) is intractable, we approximate it with a CLIP-based (Radford et al., 2021) predictive
distribution q(y | I), yielding

I(Y ; I) ≈ H(Y ) + EI,Y log q(Y | I).

Following prior work (Du et al., 2023; Feng et al., 2022; Chefer et al., 2023a), user intent is
approximated via entity–template expansion, Y (e) = {tk(e)}Kk=1, allowing stability assessment
over a distribution of plausible prompts. CLIP-based (Radford et al., 2021) similarity defines

q(y | I) ∝ exp
(
τ s(I, y)

)
, s(I, y) =

ϕimg(I) · ϕtext(y)

∥ϕimg(I)∥∥ϕtext(y)∥
.

Fano’s inequality (Verdú et al., 1994)links mutual information to classification error e:

I(Y ; I) ≥ logK −H(e)− e log(K − 1),

which directly establishes the connection between intent-recovery accuracy and prompt stability. The
inequality arises after a sequence of derivations (see Appendix B.1 and B.2).
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Table 1: Example structure of Auth-Prompt Bench. Prompts are sourced from raw, real-world web
cases, ensuring authenticity and diversity of user prompting.

Intent category Example (novice) Example (expert)

Great white shark Shark with a creepy smile
in a cartoon style

Great White Shark poorly attempting to disguise
itself as a Catholic Priest, 8K, 4K, HDRI

Hen A chicken Hen, village, overcast, glow, red

Television A hyper realistic 2000s tv Television set dressed like a brutal eagle, analog
photo, 1850s london, 35mm, street scene

3.1.2 PROMPT ENTROPY FOR T2I RELIABILITY ASSESSMENT

To quantify the informativeness of user inputs (Farquhar et al., 2024; Cheng et al., 2025; Duan
et al., 2023), we introduce the notion of prompt entropy. Intuitively, novice users often provide
under-specified or ambiguous prompts that lack sufficient detail, making them harder to interpret and
yielding unstable generations. In contrast, expert prompts tend to be more specific and constrained,
thereby concentrating information and reducing uncertainty.

Thus, we introduce the T2I Prompt entropy H(P ) reflects the inherent information content of P :

H(P ) ≈ − 1

T

T∑
t=1

log pθ(wt | w<t),

where pθ is a pretrained LM. Lower entropy prompts are more predictable, concentrate informa-
tion, and typically yield more stable generations. See Appendix B.3 for derivation and theoretical
connection to I(Y ; I).

3.1.3 PROMPT ENERGY FOR T2I STABILITY ASSESSMENT

Existing stability metrics for text-to-image generation, such as classification accuracy or prompt
entropy, capture either end-to-end information transfer or prompt aleatoric uncertainty, but fail to
capture the model’s epistemic uncertainty—uncertainty stemming from the model’s lack of knowledge
(Ma et al., 2025). To address this, we introduce prompt energy as a complementary measure: prompts
with low energy correspond to concepts well-represented in the model, yielding stable generation,
while high-energy prompts indicate unfamiliar or uncertain concepts. Formally, for a prompt sequence
x = (x1, . . . , xT ), the normalized sequence energy is

E(x) = − 1

T

T∑
t=1

zt(xt),

where zt(xt) denotes the model-assigned logit for token xt. Lower E(x) indicates higher confidence,
whereas higher E(x) signals uncertainty.

Combining prompt-level entropy and energy with end-to-end metrics such as I(Y ; I) provides a more
comprehensive characterization of generation stability, directly linking user-provided information to
image fidelity. Implementation details, derivations from model logits, and the connection to classical
Boltzmann energy are provided in Appendix B.4.

3.2 BENCHMARK CONSTRUCTION

Building on our information-theoretic formulation, we design a benchmark to empirically evaluate
prompt informativeness and generation stability. Inspired by ImageNet (Russakovsky et al., 2015),
we curate 1,000 carefully selected intent categories, each paired with a set of text-to-image prompts
and their corresponding outputs.

To capture variability in user expertise, prompts are carefully stratified into two groups: novice
and expert. Novice prompts, sourced from Lexica (https://lexica.art/), reflect typical
users who provide shorter, less informative descriptions. Expert prompts, collected from Civitai
(https://civitai.com/), often specify detailed attributes, yielding richer, higher-information
prompts. The two types of prompts are manually re-verified to ensure that: (1) novice and expert
prompts strictly adhere to their intended styles, and (2) the corresponding images are filtered to
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(b) An visual comparison
between novice and expert.(a) Our roadmap to Auth-Prompt Bench.

User Prompt NoxEye (Ours)
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Figure 2: Instability of real-world prompts and importance of Auth-Prompt Bench. We curate a
dataset of 17,580 real-world prompts collected from authentic web sources, stratified into novice and
expert subsets, and show that novice prompts exhibit more tokens and higher perplexity compared to
expert prompts. As shown in (a), the prompt from the novice user leads to unstable T2I outcomes,
and our method can mitigate the issue by aligning the prompt to a model-friendly distribution.

guarantee ethical compliance, safety, and the absence of sensitive content. Each intent category
contains up to 10 instances, with each instance comprising (i) the user prompt, (ii) generated image
URL, (iii) generation parameters, and (iv) auxiliary metadata.

This benchmark enables systematic evaluation of how prompt informativeness—quantified via mutual
information, prompt entropy, and prompt energy—affects generation stability. Mutual information
measures the end-to-end alignment between user intent and generated images, reflecting whether the
prompt provides sufficient information for semantically correct outputs. Prompt entropy, estimated
using language model cross-entropy, captures the descriptive richness of the prompt. Prompt energy
evaluates the model’s internal “trust” in the input by measuring compatibility with its learned
representation space.

Together, these three metrics form a triangulated evaluation framework: mutual information provides
an empirical upper bound of stability, prompt entropy assesses intrinsic informativeness, and prompt
energy gauges the model’s internal calibration. Metrics are aggregated at both instance and class
levels. Mutual information is evaluated via classification accuracy using a CLIP (Radford et al., 2021)
zero-shot classifier, while prompt entropy and energy are measured with Gemma-3-1B (Gemma
Team, 2025), offering fine-grained insights into the impact of prompt characteristics on generation
stability across user expertise levels.

4 NOXEYE: AN END-TO-END PROMPT OPTIMIZATION FRAMEWORK

We aim to improve the stability of text-to-image generation by aligning user-provided prompts with
the preference subspace of the target generative model. The generation process is formalized in
Section 3.1. According to the data processing inequality, the end-to-end stability—quantified
by the mutual information I(Y ; I) between the generated image I and the intended output Y —is
upper-bounded by the information encoded in the input prompt P . Therefore, to increase I(Y ; I),
our rationale is to map user prompts closer to the model’s preferred prompt subspace, with the
prompt of which the model is most responsive and stable.

5
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Figure 3: Overview of NoxEye training and inference.

4.1 PREFERENCE DISTRIBUTION AND OBJECTIVE FORMULATION

To formalize this idea, we introduce an ideal preference distribution Dpref, which represents the
set of prompts that are known to consistently yield high-fidelity and stable images under the target
generative model. Given a user prompt Puser, our goal is to learn a transformation

Pstable = fθ(Puser),

parameterized by θ, such that the resulting distribution pθ(P
∗) aligns with Dpref. Using a distance

measure d(·, ·), the optimization objective can be written as

θ∗ = argmin
θ

E(Puser,I)

[
d
(
fθ(Puser), Dpref

)]
,

where (Puser, I) denotes a training pair consisting of the user prompt and its corresponding generated
image. In practice, we instantiate the distance as Kullback–Leibler divergence, leading to the
following optimization problem:

LKL(θ) = DKL(pθ(P
∗) ∥Dpref) .

4.2 PREFERENCE DISTRIBUTION EXTRACTOR

The preference distribution Dpref is not directly available and must be estimated. To this end, we
design a preference extractor gpref that generates a high-fidelity textual description Ppref from an
image I:

Ppref = gpref(I), Dpref ≈ p(Ppref | I).
In practice, gpref is implemented using a multimodal large language model (MLLM) that analyzes
generated images and outputs semantically precise textual descriptions, which serve as proxies for
the model’s preferred prompts.

4.3 INFORMATION ENHANCER

The information enhancer learns to map user prompts Puser into the preference-aligned space by
using LLMs; details are shown in Section 5.1 and Figure 3. Formally, given model parameters θ, the
enhancer generates a distribution pθ(· | Puser) that approximates Dpref. The training loss is defined as

L(θ) =
T∑

t=1

Ex<t∼pθ

[
KL

(
pθ,t(· | x<t, Puser) ∥Dpref

)]
,

which can be equivalently approximated as a cross-entropy objective:

L̂(θ) = −E(Puser,I)

[
Ex∼Dpref

[ T∑
t=1

log pθ,t(xt | x<t, Puser)
]]
.
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4.4 INFORMATION ALIGNER

While the enhancer promotes alignment with Dpref, it does not explicitly enforce semantic consistency
between visual entities in the generated image and the prompt. To address this, we introduce the
information aligner, which augments the enhancer with entity-level alignment. Specifically, we
extract salient entities from the user prompt and generated; more details are shown in Section 5.1:

Pentity = gentity(Puser), Pentity = gϕ(G(Puser)),

where G denotes the generative model. The enhanced prompt is then formed as

P̃ = Concat(Puser, Pentity).

The training loss with the aligner is defined as:

L̂(θ) = −E(Puser,I)

[
Ex∼Dpref

[ T∑
t=1

log pθ,t(xt | x<t, P̃ )
]]
.

During inference, directly invoking G for entity extraction is computationally expensive. As shown
in Figure 3, to balance efficiency and performance, we adopt a lightweight surrogate generator G′,
which produces a fast pre-generation Î = G′(Puser). Entities are extracted from Î and concatenated
with the original user prompt before enhancement. This strategy ensures both high generation fidelity
and practical inference efficiency.

5 EXPERIMENTS

5.1 SETTINGS

We conduct experiments using the publicly available text-to-image model Stable Diffusion 2.1 (SD
2.1) (Rombach et al., 2022) and its enhanced variant CoMat (Jiang et al., 2024), evaluating the impact
of different prompt optimization methods on both image quality and generation stability. For the
LLM backbone, we employ Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), fine-tuned to act as an
information enhancer. The information aligner is implemented via InternVL3-2B (Zhu et al., 2025),
which extracts entities during training. During inference, users can either explicitly specify entities or
rely on InstaFlow (Liu et al., 2023) to generate candidate entities, which are subsequently extracted
using InternVL3-2B.

Training details are shown in Appendix C.1. To model user preference distributions, we leverage
Gemini 2.0 (Team et al., 2025) for high-fidelity textual descriptions. The DiffusionDB dataset
(Wang et al., 2022) provides a diverse set of text-image pairs, from which 1,000 pairs are randomly
sampled for fine-tuning. Evaluation is performed on multiple benchmark datasets, including Auth-
Prompt Bench and T2I-CompBench (Huang et al., 2023), covering a wide range of prompt styles and
complexities. Metrics include prompt and image stability, relevance, and diversity. All experiments
are conducted on NVIDIA A100 40GB GPUs and the same seed 995 to ensure reproducibility and
fair comparison. The overview of NoxEye are in Figure 3.

5.2 COMPARATIVE METHODS

We compare our approach against Promptist (Hao et al., 2023), and the text-to-image model use SD 2.1
(Rombach et al., 2022) and CoMat 2.1 (Jiang et al., 2024). Promptist relies on a pre-trained language
model, while CoMat incorporates multimodal information for prompt refinement. Performance is
evaluated across different base text-to-image models (SD 2.1 and CoMat) and various method-model
combinations. For fairness, Promptist uses its publicly released model, whereas CoMat, without a
public version, is trained under the same experimental settings.

5.3 RESULTS

Auth-Prompt Bench As shown in Table 2, our method consistently surpasses existing generative
models and prompt-optimization baselines across all evaluation metrics and prompt categories.

7
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Table 2: Evaluation results on Auth-Prompt Bench.
METHOD ACCURACY ↑ ENTROPY ↓ ENERGY ↓

novice expert novice expert novice expert

SD 2.1 20.80% 30.16% 2.8129 2.5309 -10.5735 -12.0765CoMat 2.1 20.59% 29.83%
Promptist+SD 2.1 1.12% 1.12% 2.3339 2.3038 -12.6654 -12.3914Promptist+CoMat 2.1 1.70% 1.54%
Ours+SD 2.1 19.31% 30.94% 2.3136 2.1674 -13.1233 -13.8620Ours+CoMat 2.1 19.19% 31.06%
Ours*+SD 2.1 34.32% 34.88% 2.2420 2.0802 -13.4299 -14.2882Ours*+CoMat 2.1 33.44% 34.30%

Note: Our* refers to the user-specified entity. The best result is bolded.

Table 3: Evaluation on T2I-CompBench.
Model 2D-Spatial ↑ 3D-Spatial ↑ Non-Spatial ↑ Numeracy ↑

SD 2.1 0.0714 0.2239 0.2979 0.3811
CoMat 2.1 0.0754 0.2204 0.2987 0.3725
Promptist+SD 2.1 0.0528 0.2207 0.2831 0.3632
Promptist+CoMat 2.1 0.0519 0.1913 0.2790 0.3520
Ours+SD 2.1 0.0770 0.2324 0.2938 0.3852
Ours+CoMat 2.1 0.0793 0.2346 0.2949 0.3976

Note: The best result is bolded. For additional results, see Appendix C.2.

Table 4: Impact of finetune information enhancer and
information aligner.

finetune aligner ACCURACY ↑ ENTROPY ↓ ENERGY ↓

novice expert novice expert novice expert

19.62% 30.28% 2.1834 2.0850 -13.7830 -14.2698
! 19.33% 29.71% 2.1876 2.0857 -13.7671 -14.2720
! unspecified 19.31% 30.94% 2.3136 2.1674 -13.1233 -13.8620

specified 33.58% 34.82% 2.2415 2.0835 -13.4243 -14.2837
! specified 34.32% 34.88% 2.2420 2.0802 -13.4299 -14.2882

Note: The best result is bolded. ‘Specified’ or ‘Unspecified’ indicates whether
the user has specified the entity.

Table 5: Impact of preference distribution extractor.
EXTRACTOR ACCURACY ↑ ENTROPY ↓ ENERGY ↓

novice expert novice expert novice expert

Gemini 2.0 Flash 34.32% 34.88% 2.2420 2.0802 -13.4299 -14.2882
GPT-4o-mini 34.32% 34.88% 2.2401 2.0801 -13.4318 -14.2893

Note: The best result is bolded.

Table 6: Impact of Enhancer Backbone.
Enhancer Backbone ACCURACY ↑ ENTROPY ↓ ENERGY ↓

novice expert novice expert novice expert

Mistral-7B-Instruct-v0.2 34.32% 34.88% 2.2420 2.0802 -13.4299 -14.2882
Llama-3.1-8B-Instruct 10.00% 8.58% 3.1487 3.1680 -9.8730 -9.7044

Note: The best result is bolded.

On the novice split, Ours*+SD 2.1 improves accuracy from 20.80% (SD 2.1) to 34.32%, while
Promptist+SD 2.1 achieves only 1.12%. The reductions in prompt entropy (from 2.8129 to 2.2420)
and prompt energy (from -10.5735 to -13.4299) indicate improved stability and higher fidelity of
the generated images. On the expert split, accuracy increases from 30.16% to 34.88%, with entropy
and energy decreasing from 2.5309 and -12.0765 to 2.0802 and -14.2882, respectively. In contrast,
improvements by Promptist over the baseline are marginal, highlighting the robustness of our method
across both simple and complex prompts.

We found that Promptist’s low accuracy primarily results from text degeneration and repetition. First,
it uses GPT-2 (Radford et al., 2019) as its backbone, which has a maximum context length of 1024
tokens—shorter than many authentic prompts, limiting its ability to fully capture their semantics.
Second, GPT-2’s relatively small parameter size makes it inherently prone to repetitive content (Li
et al., 2023). Third, its training setup exacerbates the problem: the main content of real user prompts
was used as input, and the original prompts as output, biasing the model toward adding superficial
modifiers rather than performing meaningful optimization (Yao et al., 2025).

T2I-CompBench We further evaluate generalization across different text-to-image backbones. As
reported in Table 3, Ours+CoMat 2.1 outperforms the baseline in multiple capability dimensions,
including 2D spatial reasoning (0.0793), 3D spatial reasoning (0.2346), and numeracy (0.3976). In
comparison, Promptist often exhibits negligible or inconsistent gains. Although our method performs
slightly below the baseline on attribute binding and complex compositions, it remains competitive
with or superior to Promptist. These results suggest that our approach enhances compositional
understanding, structural reasoning, and numerical alignment in generated images.

5.4 ABLATION STUDY

To assess the contributions of the information enhancer and information aligner to generation
quality and stability, we conduct a series of ablation experiments. First, we isolate the effect of the
information enhancer. As shown in Table 4, compared to the baseline without enhancement, accuracy
remains essentially unchanged, while both prompt entropy and energy decrease. Next, we evaluate
the information aligner. Without specifying entities, the aligner increases accuracy on the expert
dataset but decreases it on the novice dataset, reflecting the higher ambiguity of novice prompts.

We then test the impact of the preference extractor by replacing Gemini 2.0 with GPT-4o-mini
OpenAI et al. (2024). Results show negligible differences in accuracy, energy, and entropy, while
Gemini 2.0 offers a faster response time; hence, we adopt Gemini 2.0 as the extractor.

Finally, we investigate the choice of backbone for the enhancer (Table 6). Replacing Mistral-7B-
Instruct-v0.2 with Llama-3.1-8B-Instruct (Meta AI, 2024) consistently degrades performance across all
metrics. We attribute this to catastrophic forgetting observed during training (Kirkpatrick et al., 2017).
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Table 7: Inference time comparison across different methods.
Method SD 2.1 Promptist+SD 2.1 Mistral-7B+SD 2.1 Ours+SD 2.1 Ours*+SD 2.1

Inf. Time (s) 0.0327 0.0358 0.0748 1.9549 0.0782

5.5 HUMAN EVALUATION

We conducted a user study with 20 volunteers to compare our method with existing approaches from
a human-centered perspective. Our approach was preferred most often, achieving scores of 0.44 (im-
ages) and 0.412 (prompts), compared to 0.417/0.143 and 0.366/0.222 for the baselines, respectively,
demonstrating our method’s superior alignment with human preferences (see Appendix C.3).

5.6 INFERENCE TIME COMPARISON

We further compare the inference efficiency of different prompt optimization methods. Results show
that when user-specified entities are provided, our method achieves comparable inference time to
Promptist and CoMat, with differences within 0.1s. By contrast, approaches relying on InstaFlow for
pre-generation combined with InternVL3 for entity extraction incur longer latency, though still under
2s. Notably, while our method exhibits a slight increase in inference time for highly complex prompts,
the overall cost remains well within a practical range. Quantitative results are summarized in Table 7.

5.7 QUALITATIVE RESULTS

Figure 4 illustrates additional visual examples. Our method effectively refines the main content and
provides detailed descriptions of artistic style, lighting, and other visual attributes.

Bengal cat looking to camera,
close up, dark background,

8k resolution, hyper
realistic, day, 35mm film,

editorial, high fashion, 2023

Single fire medieval pistol
laying on a gold trimmed
workbench with magical

runework on it in the
quarters of a ship

A Bengal cat gazing directly at
the camera in a close-up shot

against a dark backdrop,
captured in 8k resolution using

hyper-realistic techniques,
evoking a high fashion

Medieval pistol with a
single fire on a gold-

trimmed workbench. The
workbench is adorned
with magical runework.

Found in a ship's quarters

User Prompt NoxEye (Ours)

Figure 4: The generated images with the optimized prompts using our method. Each prompt generates
two images, the left one uses SD 2.1 (Rombach et al., 2022) and the right one uses CoMat 2.1 (Jiang
et al., 2024). More results are in the Appendix D.

6 CONCLUSION

In this work, we revisit the problem of information transfer in text-to-image generation and propose
new measures to directly quantify the stability between user intent and generated outputs. To this
end, we construct Auth-Prompt Bench, a benchmark consisting of novice and expert prompts,
and introduce three complementary metrics—classification accuracy, prompt entropy, and prompt
energy—to evaluate stability. Building on these insights, we design NoxEye, a plug-and-play
modular prompt optimization framework broadly compatible with diverse T2I diffusion models.
NoxEye combines an information enhancer, which leverages large language models to enrich
prompt semantics, and an information aligner, which aligns visual concepts with user intent via
multimodal grounding. Extensive experiments across Auth-Prompt Bench and additional benchmarks
demonstrate that our approach substantially improves both image quality and stability, without
introducing significant inference overhead. Overall, our contributions provide not only a practical
method for prompt optimization, but also a novel perspective on modeling information flow in
text-to-image generation. We believe this work lays a foundation for future research on principled
evaluation and optimization of user–model interactions in generative systems.
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ETHICS STATEMENT

All prompts and images were curated to ensure ethical compliance and user safety, with manual checks
to maintain expertise levels and exclude harmful and insafe content. Data sources, Lexica (https:
//lexica.art/) and Civitai (https://civitai.com/), are publicly accessible, and no
personally identifiable information was used. Training used the DiffusionDB (Wang et al., 2022)
dataset (CC0 1.0 License), fully complying with licensing terms. This protocol upholds ethical
standards for both participants and model-generated content consumers.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the dataset, source code, and intermediate outputs in the
supplementary materials. After paper acceptance, we will open-source them on GitHub. More
experiment settings are in Apendix C.1. In summary, we have made every effort to ensure the
reproducibility of this paper.
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Sergio Verdú et al. Generalizing the fano inequality. IEEE Transactions on Information Theory, 40
(4):1247–1251, 1994.

Zijie J Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng
Chau. Diffusiondb: A large-scale prompt gallery dataset for text-to-image generative models.
arXiv preprint arXiv:2210.14896, 2022.

Tsung-Han Wu, Long Lian, Joseph E Gonzalez, Boyi Li, and Trevor Darrell. Self-correcting llm-
controlled diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6327–6336, 2024.

Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang Chen, Yuchen Li,
Colin Bergstrom, Matthew Gopaulchan, Ted Kim, et al. A vision–language foundation model for
precision oncology. Nature, 638(8051):769–778, 2025.

Hongji Yang, Yucheng Zhou, Wencheng Han, and Jianbing Shen. Self-rewarding large
vision-language models for optimizing prompts in text-to-image generation. arXiv preprint
arXiv:2505.16763, 2025.

Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-
to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In International
Conference on Machine Learning (ICML), 2024.

Junchi Yao, Shu Yang, Jianhua Xu, Lijie Hu, Mengdi Li, and Di Wang. Understanding the repeat curse
in large language models from a feature perspective. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics: ACL 2025, pp. 7787–7815, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.406. URL https:
//aclanthology.org/2025.findings-acl.406/.

Taeyoung Yun, Dinghuai Zhang, Jinkyoo Park, and Ling Pan. Learning to sample effective and
diverse prompts for text-to-image generation. In Proceedings of the Computer Vision and Pattern
Recognition Conference (CVPR), pp. 23625–23635, 2025.

Jinguo Zhu, Weiyun Wang, Zhe Chen, et al. Internvl3: Exploring advanced training and test-time
recipes for open-source multimodal models, 2025. URL https://arxiv.org/abs/2504.
10479.

12

https://aclanthology.org/2025.findings-acl.406/
https://aclanthology.org/2025.findings-acl.406/
https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2504.10479


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large Language Models (LLMs), specifically GPT and Gemini, were employed solely for language
polishing and minor stylistic refinement of this manuscript. The models were not involved in research
ideation, experiment design, data analysis, or substantive content generation. Their role was limited
to improving clarity, grammar, and formatting of text written by the authors.

B ADDITIONAL DETAILS ON STABILITY MODELING

B.1 INTENT DISTRIBUTION APPROXIMATION

For a given entity e ∈ E and a set of templates T = {tk}Kk=1, we define the approximate intent
distribution as

p(y | e) = 1

K

K∑
k=1

δ(y − tk(e)),

where δ(·) is the Dirac delta. This approximation underlies the mutual information lower bound in
the main text:

I(Y ; I) ≈ H(Y ) + EI,e,y log q(y | I), y ∼ p(y | e),
linking image–text consistency to the likelihood of recovering a distribution of template-based
prompts representing the entity concept.

B.2 FANO’S INEQUALITY

Fano’s inequality bounds conditional entropy in terms of classification error e = Pr(Ŷ ̸= Y ):

H(Y | I) ≤ H(e) + e log(K − 1),

where H(e) = −e log e− (1− e) log(1− e). Assuming uniform prior H(Y ) = logK, this yields a
lower bound on mutual information:

I(Y ; I) ≥ logK −H(e)− e log(K − 1),

showing that higher intent-recovery accuracy implies greater prompt stability.

B.3 PROMPT ENTROPY AND INFORMATION-THEORETIC DERIVATION

Consider the Markov chain Y → P → I , where Y is user intent, P is the prompt, and I is the
generated image. By the data-processing inequality:

I(Y ; I) ≤ I(Y ;P ),

indicating that the maximum achievable stability is constrained by the prompt information content.

Operationally, for a prompt P = (w1, . . . , wT ), we approximate entropy using a pretrained LM:

H(P ) ≈ − 1

T

T∑
t=1

log pθ(wt | w1, . . . , wt−1).

Interpretation:

• Low cross-entropy: Predictable, concentrated prompt effectively conveys user intent, en-
hancing stability.

• High cross-entropy: Uncertain or dispersed prompt, less informative, reducing stability.

B.4 DERIVATION OF PROMPT ENERGY

In classical statistical mechanics, a system state x
(i)
t follows a Boltzmann distribution:

p(x
(i)
t ) =

exp(−E
(i)
t /kτ)

Zt
.
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An autoregressive LM with parameters θ defines the probability of token xt as

pθ(xt | x<t) =
exp(zt(xt))∑
v∈V exp(zt(v))

,

where zt(v) is the logit of token v.

Identifying logits with negative energies up to a normalization constant Ct:

zt(v) = − 1

kτ
Et(v) + Ct.

Setting kτ = 1 and Ct = 0 yields token-level energy

et := Et(xt) = −zt(xt),

and sequence-level prompt energy

E(x) = − 1

T

T∑
t=1

zt(xt),

which measures the model’s confidence in generating x. Lower E(x) indicates familiar, well-
represented concepts, whereas higher E(x) indicates uncertain or out-of-distribution concepts.

Usage. Prompt energy complements entropy and end-to-end mutual information metrics, enabling
a more complete characterization of text-to-image generation stability.

C MORE EXPERIMENT RESULTS

C.1 EXPERIMENTAL SETUP IMPLEMENTATION DETAILS

Training Hyperparameters Settings. We trained our model with the following hyperparameters:
a learning rate of 1 × 10−5, a batch size of 2, gradient accumulation steps of 16, and a total of 3
training epochs. The checkpoint with the lowest training loss was selected as the final model.

During LoRA fine-tuning, all parameters of the base model were frozen, and only the LoRA parame-
ters were updated, specifically for query and value (Vaswani et al., 2017; Hu et al., 2022). The LoRA
hyperparameters were set as follows: rank r = 8, α = 16, a dropout rate of 0.1, and no bias. Training
was performed using bf16 mixed precision.

We employed the Adam optimizer with β1 = 0.9, β2 = 0.999, and a weight decay of 1× 10−2.

NoxEye Prompt Template. To ensure consistency in model evaluation, we adopt the NoxEye
Prompt Template, which specifies a unified structure for presenting tasks, inputs, entity and outputs.
The template is organized into four components:

• Instruction: defines the task description or objective to be performed.
• Input: provides the contextual information or query required to complete the task.
• Main Object: highlights the key entities that are central to the task.
• Response: represents the expected model-generated output.

When the user does not specify any entities, we first use InstaFlow to quickly generate the image, and
then employ InternVL3-2B to extract entities. The prompt template used by InternVL3-2B to extract
the main entities from the image is illustrated in the Figure 5.

Evaluation Settings. For evaluation on Auth-Prompt Bench, the following hyperparameters were
used: the number of sampling steps was set to 50, the CFG scale to 7.5, the image size to 512× 512,
and the batch size to 20. For evaluation on T2I-CompBench, the hyperparameters were set as
follows: the number of sampling steps was 50, the CFG scale 7.5, the image size 512× 512, and the
batch size 1, with 4 images generated per prompt.
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### Instruction:\n{instruction}

### Input:
{input}
### Main Objects:
{objects}

### Response:\n{output}

Information Enhancer Prompt

<image>

Describe the main object in 1-3 words.

Information Aligner Prompt

Figure 5: The prompt template of information enhancer and information aligner.

Preference Distribution Extractor Setting. We present the prompt to transform the LVLM into the
distribution extractor. The prompt for the preference distribution extractor in our model is illustrated
in the Figure 6. As shown in Figure 7, the distribution of authentic prompts is significantly higher than
that of prompts extracted by the preference distribution extractor, indicating that the latter produces
prompts that are more concise and stable.

You are a professional AI image analyst specializing in analyzing Stable Diffusion generated
images. Please analyze this image and generate a prompt that could have been used to
create this image.

Requirements:
1. The generated prompt should be concise, accurate, and suitable for CLIP model
understanding
2. Use English with comma-separated keyword format
3. Include the following elements (if applicable):
   - Subject description (people, objects, scenes)
   - Art style (e.g., realistic, anime, oil painting, digital art, etc.)
   - Quality descriptors (e.g., highly detailed, 8k, masterpiece, etc.)
   - Composition description (e.g., portrait, full body, close-up, etc.)
   - Lighting effects (e.g., soft lighting, dramatic lighting, etc.)
   - Color characteristics (e.g., vibrant colors, monochrome, etc.)

4. Avoid overly complex descriptions, keep the prompt practical
5. Sort by importance, with the most important keywords first

Please output the prompt directly without additional explanations.

Preference Distribution Extractor Prompt

Figure 6: Preference distribution extractor prompt template.

C.2 FULL RESULTS OF T2I-COMPBENCH

In Table 8, our method (Ours+CoMat 2.1) demonstrates clear advantages in several challenging
dimensions. While CoMat 2.1 (Jiang et al., 2024) achieves the highest scores on basic visual attributes
such as color, shape, and texture, integrating our optimization yields the best overall performance on
spatial reasoning tasks, achieving 0.0793 for 2D-Spatial and 0.2346 for 3D-Spatial, corresponding to
relative improvements of approximately 5.2% and 6.4% over the CoMat 2.1 baseline.
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User prompt prompts from extractor

Figure 7: A visual comparison between authentic prompts and prompts from extractor.

Table 8: Evaluation on T2I-CompBench.

Model Color Shape Texture 2D-Sp 3D-Sp Non-Sp Numeracy Complex

SD 2.1 0.3988 0.2981 0.2768 0.0714 0.2239 0.2979 0.3811 0.2966
CoMat 2.1 0.4274 0.3292 0.3266 0.0754 0.2204 0.2987 0.3725 0.3043
Promptist+SD 2.1 0.3653 0.2840 0.2388 0.0528 0.2207 0.2831 0.3632 0.2725
Promptist+CoMat 2.1 0.3931 0.3190 0.2961 0.0519 0.1913 0.2790 0.3520 0.2721
Ours+SD 2.1 0.3462 0.2675 0.2448 0.0770 0.2324 0.2938 0.3852 0.2856
Ours+CoMat 2.1 0.3823 0.2983 0.3189 0.0793 0.2346 0.2949 0.3976 0.2959

Note: The best result is bolded.

Furthermore, Ours+CoMat 2.1 achieves the highest numeracy score (0.3976) among all compared
methods, indicating superior handling of quantitative concepts. Importantly, these gains are obtained
without substantial degradation in low-level visual fidelity, contrasting with Promptist (Hao et al.,
2023), which exhibits performance drops in color and texture when attempting to improve spatial
understanding.

Overall, these results highlight that our approach significantly enhances high-level semantic alignment
and spatial reasoning while maintaining balanced performance on basic perceptual attributes. This
suggests that our method provides a more robust strategy for text-to-image prompt optimization in
complex compositional scenarios.

C.3 HUMAN EVALUATION RESULTS

44.0%

41.7%

14.3%

Image

41.2%

36.6%

22.2%

Prompt

Ours User Promptist

Figure 8: Human evaluation results. The result of NoxEye are preferred by human compared with the
result of User Prompt and Promptist (Hao et al., 2023).

To complement quantitative evaluations with a human-centered perspective, we conducted a user
study comparing our method with existing approaches. We first sampled a set of prompts at random
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and applied different optimization methods to obtain model-specific refined prompts, which were
then used to generate images. A total of 20 volunteers were recruited from diverse educational
backgrounds. In each trial, participants were presented with either a pair of images or a pair of
prompts and were asked to select the image they found more visually appealing or the prompt they
preferred. As shown in Figure 8, participants most frequently selected images generated from prompts
optimized by our method, indicating its superior effectiveness in aligning with human preference.

D MORE QUANTITATIVE RESULTS

We present more visual results between the images generated with different prompts. As shown in
9, the optimized prompts result in more pleasing images. A more intuitive observation is that the
flat, uninteresting view in Minecraft and the more aesthetically pleasing, more detailed view are
represented by the optimized prompt before and after optimization, respectively. In addition, the
modified prompt has stronger alignment capabilities. For example, the prompt “Honeybee by peter
paul rubens” is amended to “A honeybee painting by Peter Paul Rubens”.

User Prompt NoxEye (Ours)

beach

A serene beach scene
with sparkling sand, clear
blue waters, and the sun
setting on the horizon

Honeybee by peter
paul rubens

A close portrait of a stormy
fairground, with vampires,
fireworks, fairground
attractions, fire by mark ryden

A stormy fairground with
vampires and fireworks,
featuring a close portrait
by Mark Ryden

A mosque is a place of
worship for Muslims,
featuring a large, domed main
building called a minaret and
several smaller buildings

Portal stone, from movie wheel
of time, isolate objects, realistic
cartoon oil paint, 2d illustration
style, sharp focus, bright color,
digital paint game design,
trending on artstation, high
details, simple lines, outpaiting

A 4k image of a war scene
with detailed, expressed
military background
featuring extensive fire
and explosions

Mosque

Create a 2D illustration of a
portal stone in the style of a
realistic cartoon, inspired by
the Wheel of Time movie.

War background,
military background, 4k,
realistic, detailed,
expressed, fire, bombs

A honeybee painting
by Peter Paul Rubens

Figure 9: The images generated using Noxeye. Each prompt generates two images, the left one uses
SD 2.1 (Rombach et al., 2022) and the right one uses CoMat 2.1 (Jiang et al., 2024).
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