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Abstract

World models are critical for autonomous driving to simulate environmental dy-
namics and generate synthetic data. Existing methods struggle to disentangle
ego-vehicle motion (perspective shifts) from scene evolvement (agent interactions),
leading to suboptimal predictions. Instead, we propose to separate environmen-
tal changes from ego-motion by leveraging the scene-centric coordinate systems.
In this paper, we introduce COME: a framework that integrates scene-centric
forecasting Control into the Occupancy world ModEl. Specifically, COME first
generates ego-irrelevant, spatially consistent future features through a scene-centric
prediction branch, which are then converted into scene condition using a tailored
ControlNet. These condition features are subsequently injected into the occupancy
world model, enabling more accurate and controllable future occupancy predic-
tions. Experimental results on the nuScenes-Occ3D dataset show that COME
achieves consistent and significant improvements over state-of-the-art (SOTA)
methods across diverse configurations, including different input sources (ground-
truth, camera-based, fusion-based occupancy) and prediction horizons (3s and
8s). For example, under the same settings, COME achieves 26.3% better mIoU
metric than DOME [4] and 23.7% better mIoU metric than UniScene [11]. These
results highlight the efficacy of disentangled representation learning in enhanc-
ing spatio-temporal prediction fidelity for world models. Code is available at
https://github.com/synsin0/COME.

1 Introduction

World models are designed to discern the current state of the environment and predict subsequent
states based on executed actions. This predictive ability of world models not only enables the
assessment of decision-making consequences but also facilitates the generation of synthetic data,
which serves as a crucial resource for training, testing, and simulation in autonomous systems.
Consequently, world models have emerged as a focal point of research in the field of autonomous
driving, garnering substantial attention from both academia and industry.

The synthetic data generated by world models can take various forms to represent future scenes.
These include 2D videos [6, 11, 24, 25], 3D lidar point clouds [1, 9, 11, 31, 37], and 3D occupancy
grids [35, 8, 4, 33, 27, 11, 29, 26]. Irrespective of the representation format, the changes in the
appearance of future scenes predicted by world models are predominantly governed by two key factors:
1) Ego-vehicle motion: The movement of the autonomous vehicle alters its viewing perspective,
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Figure 1: COME with both scene-centric and ego-centric representation. Compared to ego-centric
evolution, scene-centric prediction shows smaller gap in the context of temporal evolution. COME
uses scene-centric prediction results as an important guidance to enhance occupancy world model.
leading to dynamic changes in perceived spatial features (e.g., perspective shifts, occlusions). 2)
Scene evolvement: Natural changes in the environment, such as agent interactions (e.g., pedestrian
movements, vehicle collisions) and background updates (e.g., traffic light changes, weather variations).
Notably, these two sources of change exhibit distinct characteristics. In a wide range of real-world
scenarios, the background environment may remain relatively stable, with minimal changes over
time (see Fig. 1). Instead, it is the motion of the ego-vehicle and the resulting shifts in the viewing
perspective that contribute significantly to the dynamic changes in the world model’s representation.

State-of-the-art (SOTA) world models, however, rely on neural networks to implicitly learn the
intertwined effects of these factors, often resulting in suboptimal spatial consistency. As a case study,
the SOTA model DOME [4] achieves an average 27.10 mIoU for 3-second occupancy prediction using
ground-truth trajectories. In contrast, when predictions are formulated in a scene-centric coordinate
system (where static backgrounds are decoupled from ego motion), a vanilla U-Net achieves 39.12
mIoU—a 44% improvement. This disparity underscores the critical lack of explicit control over
spatial consistency in existing methods, motivating the need for disentangled representation learning.

To address this, we propose COME, a three-stage framework that leverages scene-centric coordinates
to separate ego motion from scene dynamics (see Fig. 2): 1) Pose-conditioned generative diffusion
stage: A diffusion-based model with spatiotemporal Diffusion Transformer generates future occu-
pancy maps by iteratively denoising future occupancy latents, using historical occupancy latents and
pose or BEV layouts as conditional inputs. 2) Fixed-view forecasting stage: By transforming past
and future frames into a common coordinate system, this stage mitigates ego-motion effects, enabling
non-interactive occupancy prediction without explicit scene flow estimation. 3) Forecasting guided
diffusion stage: The COME ControlNet design acts as the core mechanism, transferring knowledge
from fixed-view forecasts to variable-view generation. Structured as a trainable copy of the generative
model’s first half, the ControlNet injects scene-centric condition features into the latter half via skip
connections, enhancing generative realism and temporal consistency.

We test under multiple configurations on nuScenes dataset and Waymo open dataset, and COME
outperforms SOTA baselines by significant margins, with scene-centric settings demonstrating the
largest gains. Key contributions include: 1) A divide-and-conquer strategy for occupancy world
models, decomposing complex spatio-temporal prediction into ego-motion-agnostic and scene-
dynamic components; 2) COME ControlNet, which leverages scene-centric forecasts as guidance
to improve generative fidelity and spatial consistency; 3) Empirical validation of disentangled
representation learning, establishing new state-of-the-art performance on a challenging autonomous
driving benchmark.

2 Related Works

2.1 World Model in Autonomous Driving

Visual world models [6, 24, 25] leverage 2D video representations, offering great scalability due
to the easy accessibility of camera data. However, the lack of 3D geometry understanding limits
their fidelity in autonomous driving applications. In contrast, LiDAR-based representation [1, 9,
11, 31, 37] provides rich geometric comprehension but falls short in semantic-aware generation.
Recently, occupancy representation [35, 8, 4, 33, 27, 11, 29, 26] have emerged as a compelling
alternative for world modeling, due to their ability to encode both geometric and semantic information
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simultaneously. Occupancy as intermediate representation also serves as strong geometric prior
condition for downstream generation of driving videos[28] and LiDAR point clouds[11].

Some occupancy-based approaches [30, 33] leverage occupancy flow to forecast future scenarios.
While achieving promising results, they often depend on additional annotations and struggle to
produce imaginative predictions. Recent works have shifted toward generative frameworks [35, 4, 27,
26]: for example, OccWorld [35] employs a two-stage pipeline, first tokenizing occupancy with a
VQ-VAE [23] and then predicting ego motion and scene evolution autoregressively. Inspired by the
success of large language models, some works [27, 26] further enhance the model interpretability
during generation. Recent methods [4, 11] employ diffusion transformers (DiTs), demonstrating
strong generative capabilities for world modeling. In this work, we similarly adopt the DiT paradigm
while introducing control features inspired by ControlNet [34] — a pioneering framework for
conditional generation in 2D images using multi-modal inputs (e.g., depth maps, edges, or sketches).
By incorporating explicit control signals, our method achieves superior spatial consistency and
prediction accuracy, establishing new state-of-the-art performance for occupancy world models.

2.2 4D Occupancy Forecasting

Occupancy world models and 4D occupancy forecasting methods share a common paradigm of
predicting future occupancy states. The key distinction is that occupancy forecasting typically targets
short-term scene evolution and does not involve predicting future ego trajectories. Occ4Cast [15] and
Cam4DOcc [17] establish LiDAR-based and camera-based benchmarks, respectively, and propose
baseline models using temporal recurrent networks such as ConvLSTM [19]. To address the high cost
of 4D occupancy annotation, 4D-Occ-Forecasting [10] leverages future point clouds as proxies for
future occupancy and employs differentiable depth rendering for self-supervised learning. Building
upon this, Vidar [32] and UnO [2] introduce latent rendering and continuous 4D fields, respectively,
to further enhance self-supervised learning for 4D occupancy prediction and related downstream
tasks. In our work, the scene-centric prediction module adopts a similar paradigm to 4D occupancy
forecasting - predicting future occupancy while explicitly factoring out the influence of ego trajectory.
This design establishes a spatially consistent control prior that effectively guides the learning process.

3 Methodology

This section presents our COME, a framework that integrates scene-centric forecasting Control into
the Occupancy world ModEl. We detail the three main components of COME (illustrated in Fig. 2)
in Secs. 3.1 to 3.3. Finally, Sec. 3.4 describes the training objectives and the overall training pipeline.

3.1 Occupancy World Model

We first describe our modified baseline world model, which is capable of performing the generation
task independently. Following DOME [4], our model leverages diffusion Transformers (DiTs) for the
superior fine-grained and imaginative generation compared to auto-regressive counterparts [35, 4, 27,
26]. Given historical observations x1:t, ego-vehicle states p1:t and other possible inputs (e.g., BEV
layouts), the occupancy world model predicts future occupancy x̂t+1:t+τ while optionally forecasting
future trajectories p̂t+1:t+τ . We treat future trajectories — whether ground-truth or predicted by a
planning module — as available inputs for the generative model for two key reasons: (1) It ensures
comparability with existing methods, since some directly generate with ground-truth trajectories
while others predict by themselves. (2) It enables trajectory-conditioned generation, which is essential
for world models to produce diverse and controllable outputs.

Our model architecture comprises two principal components. The first is a collection of input
encoders that transform historical observations into compact representations for efficient processing
during the diffusion stage. We adopt the trajectory encoder from DOME [4] to encode trajectories,
and apply a max-pool layer for BEV layouts when available. For the occupancy data, we utilize
a Occupancy Variational Auto-Encoder (Occ-VAE) consisting of an encoder network qϕ(z|x) and
a decoder network pθ(x|z). Given input occupancy x ∈ RH×W×D, qϕ(z|x) encodes it into a
continuous latent variable z ∼ qϕ(z|x). Conversely, pθ(x|z) is able to reconstruct the occupancy
from the latent variable. This design enables the Occ-VAE to compress high-dimensional occupancy
data into a compact latent space, facilitating more efficient processing in the generative model.
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Figure 2: The proposed COME framework comprises three main modules: (1) an Occupancy World
Model that predicts future occupancy using historical observations and other inputs (e.g., poses, time
steps, BEV layouts); (2) a Scene-centric Forecasting Module that produces spatially consistent
scene predictions by eliminating the influence of ego motion; and (3) the COME ControlNet which
converts the scene conditions from the forecasting module into control features that are subsequently
injected into the world model for controllable and geometrically coherent occupancy generation.

The second component is the spatial-temporal Diffusion Transformer modified from the DOME [4],
which consists of alternating stacked spatial and temporal layers. To reserve interface for later feature
conditioning, we introduce skip connections between every early and late layer pair, similar to the
architectural designs in UNet [18] and HunyuanDiT [13]. For example, the last spatial block takes
the first spatial block as a skip input. For each block in the second half, the input and the skip are
concatenated in channel dimension and undergo a simple MLP for feature fusion.

The model processes latent features encoded from occupancy data, along with optional inputs, e.g.
BEV layouts if available. Trajectories are converted into trajectory condition and injected into each
spatial-temporal block, enabling trajectory-aware generation. In the end, the outputs are decoded
through qϕ(z|x) into occupancy predictions conditional to various future time steps and ego poses.

3.2 Scene-centric Forecasting Module

Future occupancy prediction represents a complex spatial-temporal modeling challenge that re-
quires reasoning about two key factors: (1) the natural evolution of the scene (e.g., moving objects,
infrastructure changes), and (2) the planned trajectory of the ego-vehicle. Our foundation world
model described in Sec. 3.1 treats the future trajectory as a condition but has limited understanding
of the inherent nature of scene evolution, leading to spatially inconsistent scene evolution in the
generated occupancy — a limitation also confirmed in later experiments. To address this, we pro-
pose a scene-centric forecasting module that produces more coherent scene evolution and generates
scene-conditioned inputs for the world model.

In practice, the scene exhibits relatively smaller changes when represented in a unified coordinate
frame compared to an ego-centric occupancy representation. In Occ3D-nuScenes, static voxels
account for over 92.7% of all occupied voxels, suggesting that forecasting the scene in a shared
coordinate system simplifies the task without requiring complex designs. In our implementation, we
find that a simple UNet [18] suffices for high-quality future predictions, where the skip connections
effectively preserve static voxels, while the multi-scale structure captures dynamic elements.

To generate module inputs, we transform the historical occupancy sequence x1:t into a unified
coordinate frame at timestamp t. Each frame xi is transformed using ego-vehicle states: x′

i =
T (xi, pi, pt) for i = 1, 2, · · · , t. This transformation is implemented by initializing an empty
grid x′

i ∈ RD×H×W and populating each voxel via nearest-neighbor sampling from xi, using
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the coordinate transformation from pt to pi. The resulting aligned sequence x′
1:t is stacked into a

Dt×H ×W tensor, which serves as the module input.

Subsequently, our UNet produces an output tensor of dimensions Dτ ×H ×W , which is decoded
to obtain the future occupancy sequence ŷ′

t+1:t+τ . These predictions, formulated in the coordinate
frame of ego-pose pt, are then transformed to the vehicle’s future poses via ŷi = T (ŷ′

i, pt, pi). Each
resulting occupancy ŷi is encoded by the Occ-VAE encoder, producing the final scene conditions
zi = qϕ(z|ŷi), for i = t+ 1, t+ 2, · · · , t+ τ .

3.3 COME ControlNet

The COME ControlNet, which encodes scene conditions {zi}τi=1 ∈ RC×H1×W1 into implicit control
features, consists of N blocks inspired by HunyuanDiT[13]. As shown in Fig. 2, the first N/2 blocks
are trainable copies of the corresponding spatial-temporal blocks from the occupancy world model,
while the remaining blocks are the zero convolution layers. Each of these layers outputs control
feature {cni }τi=1 ∈ RC×H1×W1 for n = N/2 + 1, · · · , N , where τ denotes the number of future
frames, and C,H1,W1 represent the channel depth, height, and width dimensions, respectively.

However, we observe that {cni }τi=1 is not directly suitable as a control prior for world model. This
limitation arises because the forecasting module, due to its simple structure, lacks sufficient capacity
for imagining future states. Consequently, its predictions in historically unobserved regions may
bring noise, degrading the world model’s generative performance — a finding corroborated by late
experiments. Thus, filtering unreliable features from control features is crucial for robust generation.

To address this, we propose a visibility-aware masking strategy based on 3D spatial relationships.
For each future timestamp i ∈ {t+ 1, t+ 2, · · · , t+ τ}, we first trace the root source of the control
feature cni , namely the ŷi predicted by the scene-centric forecasting module. We then construct
a binary voxel mask mi ∈ RD×H×W , where a value of 1 indicates that the corresponding voxel
center in ŷi is observable in historical occupancy data, and 0 otherwise. This allows us to derive an
invisibility mask Mi ∈ RH1×W1 that quantifies the reliability of each spatial feature in cni :

Mi(h,w) = I

 1

D · δh · δw

D∑
d=1

(h+1)·δh∑
u=h·δh

(w+1)·δw∑
v=w·δw

mi(d, u, v) < ε

 , (1)

where δh = H/H1, δw = W/W1 and ε is a pre-defined threshold. In practice we set ε = 0.5. The
I is an indicator function to check whether proportion of historically observed voxels within each
pillar (corresponding to feature location (h, w) in cni ) is large enough. Then, we suppress unreliable
features via element-wise multiplication: cni ← cni ⊙Mi. Finally, these refined control features are
injected into the world model through residual addition at corresponding layers, ensuring robust and
controllable generation. The control features are added to skip features and concatenated together to
the input features for each blocks in the second half of the world model.

3.4 Training Pipelines

Inspired by ControlNet [34], we employ a multi-stage training pipeline as (1) In stage 1, the occupancy
world model is trained with configurations introduced in DOME [4]. This stage establishes a strong
foundational occupancy generation ability. (2) In stage 2, we train the UNet-based forecasting module
using a simple cross-entropy loss. (3) In stage 3, we freeze all other modules and exclusively train
the parameters of ControlNet. Our multi-stage training strategy not only optimizes training efficiency
but also ensures controllable generation, as demonstrated in our ablation studies.

4 Experiments

We elaborate our experimental settings in Sec. 4.1, the quantitative and qualitative results of the
proposed COME framework in Secs. 4.2 and 4.3, and extensive ablation studies in Sec. 4.4.

4.1 Experimental Setup

Dataset and metrics Most experiments are conducted on the widely used Occ3D-nuScenes[22]
benchmark, which offers 3D occupancy labels for 18 categories based on the large-scale nuScenes[3]
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Table 1: 4D occupancy generation performance under various settings. Each setting varies in
terms of input modality and whether the ego trajectory (ego traj.) is predicted (Pred.) by a planning
module or provided as ground truth (GT). “Avg." indicates the average performance across 1s, 2s,
and 3s horizons. The best performance in each setting is highlighted in bold.

Method Input Ego traj. mIoU (%) ↑ IoU (%) ↑
1s 2s 3s Avg. 1s 2s 3s Avg.

OccWorld-D [35] Camera Pred. 11.55 8.10 6.22 8.62 18.90 16.26 14.43 16.53
OccWorld-T [35] Camera Pred. 4.68 3.36 2.63 3.56 9.32 8.23 7.47 8.34
OccWorld-S [35] Camera Pred. 0.28 0.26 0.24 0.26 5.05 5.01 4.95 5.00
OccWorld-F [35] Camera Pred. 8.03 6.91 3.54 6.16 23.62 18.13 15.22 18.99
OccLLaMA [26] Camera Pred. 10.34 8.66 6.98 8.66 25.81 23.19 19.97 22.99
OccVAR [8] Camera Pred. 17.17 10.38 7.82 11.79 27.60 25.14 20.33 24.35
DFIT-OccWorld [33] Camera Pred. 13.38 10.16 7.96 10.50 19.18 16.85 15.02 17.02
Occ-LLM-S [27] Camera Pred. 11.28 10.21 9.13 10.21 27.11 24.07 20.19 23.79
RenderWorld-S [29] Camera Pred. 2.83 2.55 2.37 2.58 14.61 13.61 12.98 13.73
COME (Ours) Camera Pred. 25.57 18.35 13.41 19.11 45.36 37.06 30.46 37.63

DOME [4] Camera GT 24.12 17.41 13.24 18.25 35.18 27.90 23.44 28.84
COME (Ours) Camera GT 26.56 21.73 18.49 22.26 48.08 43.84 40.28 44.07

Copy&Paste [35] 3D-Occ Pred. 14.91 10.54 8.52 11.33 24.47 19.77 17.31 20.52
OccWorld [35] 3D-Occ Pred. 25.78 15.14 10.51 17.14 34.63 25.07 20.18 26.63
OccLLaMA [26] 3D-Occ Pred. 25.05 19.49 15.26 19.93 34.56 28.53 24.41 29.17
OccVAR [8] 3D-Occ Pred. 27.96 21.75 16.47 22.06 38.73 29.50 24.86 31.03
RenderWorld [29] 3D-Occ Pred. 28.69 18.89 14.83 20.80 37.74 28.41 24.08 30.08
Occ-LLM [27] 3D-Occ Pred. 24.02 21.65 17.29 20.99 36.65 32.14 28.77 32.52
DFIT-OccWorld [33] 3D-Occ Pred. 31.68 21.29 15.18 22.71 40.28 31.24 25.29 32.27
COME (Ours) 3D-Occ Pred. 30.57 19.91 13.38 21.29 36.96 28.26 21.86 29.03

DOME [4] 3D-Occ GT 35.11 25.89 20.29 27.10 43.99 35.36 29.74 36.36
COME (Ours) 3D-Occ GT 42.75 32.97 26.98 34.23 50.57 43.47 38.36 44.13

UniScene-Fore [11] 3D-Occ(2f),Box,Map GT 35.37 29.59 25.08 31.76 38.34 32.70 29.09 34.84
COME (Ours) 3D-Occ(2f),Box,Map GT 45.98 38.57 33.28 39.28 52.11 46.73 42.65 47.16

dataset. The annotations cover a spatial range of [-40m, -40m, -3.2m, 40m, 40m, 3.2m] with a voxel
resolution of [0.4m, 0.4m, 0.4m], resulting in a 200× 200× 16 voxel grid per frame. The dataset is
split into 700 training, 150 validation, and 150 test driving sequences, each lasting 20 seconds.

We also use Occ3D-Waymo[22] benchmark based on the Waymo Open Dataset[21] (WOD), which
has 3D occupancy labels for 16 categories. The spatial range and voxel resolution are the same as
on nuScenes dataset. The dataset is split into 798 training and 202 validation driving sequences. To
align with the task settings on nuScenes, we down-sample to select one frame every 0.5 seconds.

We adopt geometric Intersection over Union (IoU) and semantic mean Intersection over Union
(mIoU) as evaluation metrics. Results are reported at each future timestamp, along with the average
performance over all timestamps on the validation set, in line with previous works.

Implementation details. Unless otherwise specified, our world model predicts future occupancy
over a 3-second horizon at 2 frames per second, conditioned on 4 frames of historical occupancy
data, following the protocol established in OccWorld [35]. As outlined earlier, the COME framework
is trained in multiple stages: (1) Diffusion-based World Model. We adopt the pre-trained Occ-VAE
from DOME [4] and train the diffusion-based world model for 2000 epochs with a total batch size
of 128 and a learning rate of 2e-4. (2) Scene-centric Forecasting Module. This module is trained
for 12 epochs using a total batch size of 32 and the CBGS resampling strategy [36]. (3) COME
ControlNet. This component is trained for 1000 epochs with a total batch size of 64. All models are
trained on 4 H20 GPUs and use a learning rate of 1e-4 is not stated specifically. Please refer to the
supplementary materials for additional implementation details, including network architectures and
statistics, training hyperparameters, and planning trajectory configurations.

4.2 Quantitative Evaluation

Main results on Occ3D-nuScenes. In the occupancy world modeling domain, existing methods
differ significantly in their experimental setups. To enable a fair and comprehensive comparison, we
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Table 2: Comparisons of 4D occupancy forecasting performance between DOME and different stages
of COME on Occ3D-Waymo dataset.

Method
mIoU (%) ↑ IoU (%) ↑

1s 2s 3s Avg 1s 2s 3s Avg

DOME 31.62 24.82 19.65 25.36 51.24 43.17 37.47 43.96
COME Stage 1: World Model 34.45 26.28 22.50 27.74 51.16 43.24 38.44 44.28
COME Stage 2: Scene-Centric Forecasting 47.37 40.85 36.31 41.51 59.69 52.27 45.60 52.52
COME Stage 3: ControlNet 39.85 34.65 30.58 35.03 55.53 50.09 45.53 50.38
COME+ Stage 3: ControlNet 47.29 40.80 36.44 41.51 60.63 53.98 48.62 54.41

adapt our proposed COME framework to match these various settings and report the main results in
Tab. 1.

The first setting uses camera images as input and predicted ego trajectories from a planning module.
In this case, we employ a modified BEVDet [7] to convert camera inputs into occupancy predictions.
Among prior works, OccVAR previously achieved the best performance with an average mIoU of
11.79 and an average IoU of 24.35. In contrast, our COME achieve 19.11 mIoU and 37.63 IoU,
significantly surpassing the previous best results by 62.1% and 54.5%, respectively.

When ground-truth ego trajectories are used with the same camera input, our method further improves
performance to 22.26 mIoU and 44.07 IoU, with gains of 3.15 and 6.44, respectively. In this setting,
our method also outperforms the state-of-the-art DOME by a significant margin 22.0% in mIoU and
34.6% in IoU, highlighting the robustness of COME.

In the third setting, we adopt ground-truth occupancy inputs but use predicted ego trajectories.
Here, the best prior mIoU (22.71) is achieved by DFIT-OccWorld, while the highest IoU (32.52)
is obtained by Occ-LLM. It is noteworthy that both methods incorporate additional cues such as
occupancy flow or language information into their frameworks. In comparison, our COME, despite
relying solely on trajectory conditioning without such external information, still achieves competitive
results of 21.29 mIoU and 29.03 IoU. We hypothesize that the slightly lower performance is due to
COME’s strong dependency on trajectory input: since it generates occupancy strictly conditioned on
predicted trajectories, it may be more sensitive to planning errors. We further validate the hypothesis
in the ablation study. Nevertheless, our method remains among the top-performing approaches,
demonstrating its effectiveness even in this challenging setup.

Under the configuration with both ground-truth occupancy and ground-truth trajectories, COME
achieves 34.23 mIoU and 44.13 IoU, showing strong performance when free from upstream prediction
errors. COME outperforms the state-of-the-art DOME by 26.3% in mIoU and 21.3% in IoU.
Furthermore, with BEV layouts, COME’s performance increases further to 39.28 mIoU and 47.16
IoU. COME outperforms the state-of-the-art UniScene-Fore by 23.7% in mIoU and 35.4% in IoU.

Results on Occ3D-Waymo. On Occ3D-Waymo, we retrain OCC-VAE, UNet[18], DOME[4],
COME world model, and COME ControlNet on Occ3d-Waymo, initializing from nuScenes-trained
components to save cost and time, with unchanged model sizes and training schedules.

We report the default COME model and a COME variant (COME+) with the same structure and
with stronger geometric controls from the scene-centric forecasting module, differing by additionally
replacing noisy BEV latents with UNet-encoded latents in future visible areas during denoising.

The Occ-VAE reconstruction quality on Occ3D-Waymo is mIoU = 74.88 and IoU = 82.57.

The results of Occ3D-Waymo are shown in Table 2. our reproduced DOME achieves similar
performance as in nuScenes dataset. COME world model has marginally better performance with
DOME by 2.38 mIoU and 0.32 IoU. Scene-centric forecasting module outperforms the generative
world model by a large margin (63% mIoU and 19.5% IoU). COME achieves 38.1% better mIoU and
14.6% better IoU compared to DOME[4]. COME+, which relies more heavily on condition features,
maintains the same 3-s average mIoU with Scene-centric Forecasting module and further improves
3-s average IoU to 23.7% improvement.
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Table 3: Long-term 4D occupancy generation performance. Ground-truth 3D occupancy and
trajectories are used as inputs. The best results are highlighted in bold. “Avg." denotes the average
performance over the 1 second to 8 second horizon.

Method mIoU (%) ↑
1s 2s 3s 4s 5s 6s 7s 8s Avg.

DOME [4] 30.10 21.35 17.36 14.86 12.61 11.03 10.00 9.34 15.83
COME (Ours) 33.78 24.57 21.35 18.25 15.84 13.85 12.99 11.96 19.07

Method IoU (%) ↑
1s 2s 3s 4s 5s 6s 7s 8s Avg.

DOME [4] 39.04 31.20 27.14 24.73 22.32 20.28 19.05 17.97 25.21
COME (Ours) 44.20 36.25 32.86 30.03 26.93 24.70 23.30 21.44 29.96

Table 4: Model performance in various stages. Here, “Visible”, “Invisible” and “All” refer to voxels
that are observed, unobserved, and the total set of voxels based on historical occupancy, respectively.

Model Input mIoU (%) ↑ IoU (%) ↑
Visible Invisible All Visible Invisible All

Stage1: World Model 3D-Occ (4f) 25.68 5.81 23.58 35.96 13.60 32.61
Stage2: Scene-Centric Forecasting 3D-Occ (4f) 42.74 0.09 39.12 55.08 0.31 48.00
Stage3: ControlNet 3D-Occ (4f) 40.06 5.56 34.23 51.12 14.95 44.13

Stage1: World-Model 3D-Occ(2f),Box,Map 32.92 11.74 30.04 39.52 16.20 35.43
Stage2: Scene-Centric Forecasting 3D-Occ(2f) 41.65 0.08 37.93 54.50 0.27 47.18
Stage3: ControlNet 3D-Occ(2f),Box,Map 42.75 14.85 39.28 52.78 20.48 47.16

Long-term Occupancy Generation The ability to generate long-term predictions is crucial for world
models, particularly in the context of autonomous driving. To evaluate this capability, we extend the
prediction horizon from 3 seconds to 8 seconds and present the results in Tab. 3. Our method, COME,
consistently outperforms baselines across all timestamps and on average, for both mIoU and IoU
metrics. Specifically, COME achieves average mIoU and IoU scores of 19.07 and 29.96, surpassing
DOME by 20.5% and 18.8% respectively.

We further discuss in the supplementary material that the best practice of masking strategy for
balancing quantitative and qualitative results is to pose the invisibility mask on control features.

4.3 Qualitative Results

Fig. 3 presents visualizations comparing ground-truth occupancy with predictions from DOME and
our method. We observe that DOME suffers from object category inconsistency (top example) and
sudden object disappearance (bottom example). In contrast, COME produces results with improved
spatial consistency, highlighting the efficacy of the scene condition injection. Additional qualitative
results, including analyses of input variants, model architectures, and component contributions, are
provided in the supplementary material for comprehensive evaluation.

4.4 Ablation Study

Model performances across various stages. In Tab. 4, we analyze the predicted occupancy across
our three stages, evaluating visible, invisible, and all voxels. Consistently, the world model performs
better in previously invisible areas, while scene-centric forecasting excels in observed regions. This
validates our motivation: the generative world model exhibits strong imaginative capabilities but
under-utilizes the 3D spatial consistency of the driving scene. In contrast, scene-centric forecasting
achieves high accuracy in observed areas but lacks generative flexibility, limiting its imagination
applicability to novel-view synthesis under diverse trajectories.

In the third stage, we leverage the ControlNet to combine the strengths of the two modules. Stage
three model significantly improves performance in invisible regions compared to the forecasting
module. Although the overall mIoU experiences a slight decline, the model gains imaginative
capabilities and broader adaptability. With extra BEV layout inputs, COME demonstrates further
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Figure 3: Qualitative results of 3-s 4D occupancy generation.

enhanced generation of invisible scenes and achieves the best overall performance. These results
showcase the effectiveness of our proposed framework.

Effects of training setups. Tab. 5 presents an ablation study on different training configurations
within the proposed COME framework. We first train ControlNet with and without freezing the world
model in the final stage, and present the results in Tab. 5a. It can be observed that training ControlNet
while keeping the world model frozen yields significantly better results, confirming the importance of
aligning with the fine-tuning strategy validated in the original ControlNet [34] paper.

In Tab. 5b, we explore two model sizes for both the generative model and its corresponding Control-
Net. Across both settings, the introduction of ControlNet consistently improves performance by a
substantial margin. These gains are particularly pronounced under limited computational budgets,
where mIoU increases from 7.78 to 32.00 and IoU from 18.14 to 42.03 — surpassing even the
standalone world model with 1375.4 GFLOPS. These results demonstrate that integrating ControlNet
significantly enhances the generative capability of the model even if the generation model is small.

Effects of inference setups. In Tab. 6, we investigate how different inference configurations affect
model performance. We begin by analyzing the impact of the number of denoising steps during
the diffusion process, as shown in Tab. 6a. Increasing the number of steps consistently improves
generative performance. The results indicate a clear positive correlation between performance and
the number of denoising steps, with satisfactory results achieved when performing at least 10 steps.

Next, we examine model performance using different sources of predicted occupancy and trajectories.
In Tab. 6b, we replace ground-truth occupancy with predictions from a vision-only model, BEVStereo
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Table 5: Ablations on different training setups. “WM” and “ControlNet” denote the world model and
ControlNet in our COME, respectively.

(a) Effects of trainable parameters
in the final stage.

Trainable modules mIoU IoU

ControlNet 34.23 44.13
WM&ControlNet 28.67 41.07

(b) Model performances under different model sizes.

Model Small Base
mIoU IoU GFLOPS mIoU IoU GFLOPS

WM 7.78 18.14 147.8 23.49 32.36 1375.4
+ControlNet 32.00 42.03 222.7 34.23 44.13 2066.6

Table 6: Ablations on various inference configurations.

(a) Effects of the de-
noising steps at the in-
ference stage.

#step mIoU IoU

2 4.41 14.47
5 4.95 16.17
10 33.42 44.35
20 34.23 44.13

(b) Model performance when ground-
truth occupancy is replaced with dif-
ferent occupancy generators. Here,
“C" and “L" denote inputs from cam-
era and LiDAR sensors, respectively.

Model Input mIoU IoU

BEVStereo [12] C 22.26 44.07
EFFOcc [20] LC 26.75 50.49

(c) Effects of the used trajectories.
“align." is the alignment operation
of the ground-truth occupancies.

Pose2D Yaw Align. mIoU IoU

GT GT - 34.23 44.13
Pred. GT - 25.90 35.21
Pred. Pred. - 21.29 29.03
Pred. Pred. ✓ 34.00 43.69

(mIoU = 42.54), and a fusion model, EFF-Occ (mIoU = 54.08). The results show that stronger
occupancy inputs lead to better generative outcomes. Tab. 6c shows that gradually replacing the
ground-truth pose and yaw with predicted values leads to a noticeable drop in model performance.
However, when we remove the influence of ego pose during evaluation - by aligning predicted
and ground-truth occupancy to a same predicted future waypoint coordinate - the degradation is
minimal, with only a 0.23 drop in mIoU and a 0.44 drop in IoU. This phenomenon suggests that the
performance degradation primarily stems from misaligned trajectories, while the generated scene
quality remains relatively unaffected by trajectory errors. Further discussion is provided in our
supplementary material.

5 Conclusion

We introduce COME, a framework that enhances generative occupancy world models through scene-
centric forecasting control. By explicitly decoupling ego-motion effects from scene evolution, COME
first generates spatially consistent, ego-invariant control features, which are then integrated into the
occupancy world model for more accurate and controllable future predictions. Extensive experiments
on the large-scale Occ3D-nuScenes dataset demonstrate the state-of-the-art performances across
multiple settings, validating the effectiveness of our approach for occupancy world model.

To motivate future work, we outline a few limitations based on our current comprehension: (1) The
introduction of control modules to the base generative model increases computational complexity.
Although our approach achieves superior performance than the baseline with lower overhead, further
optimization to reduce computations remains valuable for real-time applications. (2) Our current
multi-stage training pipeline could be streamlined. An end-to-end training scheme may improve
efficiency while maintaining or enhancing model performance.
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A Technical Appendices and Supplementary Material

A.1 Broader Impacts

Our work proposes a generative occupancy world model with scene-centric forecasting as control, achieving
state-of-the-art occupancy generation performance under multiple settings. This advancement leads to safer
understanding, forecasting, generation and simulation of the driving scenes, which are crucial for real-world
applications of autonomous driving (AD). Consequently, the most significant positive impact of our work is the
enhancement of safety in AD systems.

However, the biggest negative societal impact of this work, as with any component of AD systems, is the
safety concern. Autonomous driving systems are directly related to human lives, and erroneous or hallucinating
predictions or generation can lead to hazardous understanding of the driving environment. Therefore, increasing
the accuracy of occupancy generation to address false generation and illusions will require substantial follow-up
efforts.

A.2 Licenses for involved assets

The project code is built on top of the codebase provided by DOME [4], which is subject to the Apache License
Version 2.0. Our experiments are conducted on the Occ3D-nuScenes [22] which provides occupancy labels
for the nuScenes dataset [3] and Occ3D-Waymo [22] which provides occupancy labels for the Waymo open
dataset [21]. Occ3D is licensed under the MIT license, nuScenes is licensed under the CC BY-NC-SA 4.0 license
and Waymo open dataset is licensed under the Apache License Version 2.0.

A.3 Discussion on the Design Philosophy of External Occupancy ControlNet

In this paper, we use a direct concatenation method for pose and BEV layout control, while we employ an
external ControlNet for controlling scene-centric forecasting. We propose some explanations of the design
philosophy.

Most importantly, We hope to remain the original generation capabilities of the occupancy world model
unchanged. ControlNet only provides additional guidance to enhance the original world model, while direct
concatenation makes the scene-centric forecasting an indispensable component for generation. This will
downgrade the capability of the world model to a completion or inpainting model that inpaints future invisible
voxels with the context of visible voxels. On the other hand, the model easily learns shortcut that outputs
forecasting results directly on visible voxels. This shortcut learning may greatly hurt the multi-modal nature of
both the generative model and the forecasting task. In contrast, ControlNet may be added to certain regions of
the space or certain frames on the sequences, with user-defined masks and enjoy greater flexibility.

Moreover, poses (in the form of waypoints [x, y, yaw]) and bev layouts (in the form of semantic maps) are
low-dimension conditions that empirically fit direct concatenation while occupancy sequences latents are high-
dimension conditions that empirically fit external ControlNet. Training ControlNet usually needs smaller
data scale than training the original world model. We plan to validate the effect of data scale with Occ3D-
Waymo[22, 21] dataset with more occupancy data for future research.

A.4 Discussion on Evaluation Metrics under End-to-end Planning Setting

Early autoregressive world models[35, 26] generates both future waypoints and future occupancy sequences
at the predicted waypoints’ coordinate at the same time. The evaluation between generated occupancies and
ground-truth occupancies couples the similarity between the planning trajectory and the expert trajectory, and
the similarity of generation. Our ablation experiment illustrates that both the translation error of the trajectory
and the yaw angle error of the trajectory can greatly reduce the final IoU metric.

In order to factor out the influence of trajectory quality from the generation evaluation, we propose to reset
the origin of the ground-truth occupancy according to the rotation matrix of the planning trajectory, and then
evaluate the difference between the generated occupation and the ground-truth occupation. In this setting, we
demonstrate that the generation performs similarly well when conditioned by the planning trajectory.

A.5 More Implementation Details

A.5.1 Environment Setup

The proposed algorithm runs in the python3.9 and torch2.5.1 environment and is expected to be compatible
with the torch2.x environment. The environment needs to have mmcv 2.x and mmdet3d 1.1.x installed, and it is

https://github.com/gusongen/DOME
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Ground-Truth Turn Left

Ground-Truth Go Straight

Ground-Truth Turn Right

Condition Frame 

COME Turn Left

COME Turn Right

COME Go Straight

Figure 4: Visualization examples demonstrate the pose control alignment ability of COME generation.
For different driving commands such as Go Straight, Turn Left and Turn Right, COME well follows
the pose control and generate similar scenarios compared to ground-truth.
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Figure 5: Visualization examples of occupancy generation with BEV layouts. COME generates
occupancy sequences that well follows the BEV layout control.

Future 1-s Future 7-s Future 8-s
Ground-Truth

COME ControlNet

COME World Model

Future 1-s Future 5-s Future 7-s
Ground-Truth

COME ControlNet

COME-World Model

COME Scene-Centric Forecasting COME Scene-Centric Forecasting

Figure 6: Visualization examples demonstrate the spatiotemporal consistency of differnet stages in
COME for generating static environments. During the 8-second long generation process, COME
world model mistakenly links drivable areas as intersections with the main street, but under the
guidance of scene-centric forecasting, COME maintains the background consistency of road structures
during generation.
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Ground-Truth

COME-BEVStereo-Input

COME-3DOcc-Input

Condition Frame 

COME-EFFOcc-Input

Figure 7: Visualization examples that takes 3D-Occ, vision-based BEVDet and fusion-based EFFOcc
as occupancy sequences input.

Future 1-s Future 2-s Future 3-s

Ground-Truth

COME-Mask Invisible

COME-All-Control

Condition Frame 

Figure 8: Visualization examples that uses different masking strategies during training and inference.
Models with invisibility masks generally achieve much better qualitative results results.
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Future 1-s Future 2-s Future 3-s

Ground-Truth

COME-Small ControlNet

COME-Small World Model

Condition Frame

Figure 9: Visualization examples that uses small models. In this right turning example, the small
model shows accurate pose control and good scene completion results.

Condition Frame Future 3-s Future 6-s Future 12-s Future 16-s Future 20-s

Figure 10: Visualization examples that uses repeated roll-out to generate super-long scenarios (20
second) with free trajectories.
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Normal BEV Layout Adverse BEV Layout

t=1s

t=2s

t=3s

Figure 11: Visualization examples that uses adverse BEV layouts as inputs. In adverse BEV condition
input (shown in right), all objects are re-placed to the centers which are half of the distance of the
original centers of normal BEV layouts (shown in left).

basically the same as the environment configuration scheme of OccWorld[35] and DOME[4]. We use AdamW
optimizer for all experiments.

A.5.2 Networks Setup

Continuous VAE We use the same VAE with DOME[4] which consists of a 2D encoder and a 3D decoder.
The class embedder has the expansion of 8. The VAE has the compression ratio of 64. The encoder down-
sampling and decoder upsampling ratios are set as [1, 2, 4, 8]. The base channel is set as 64. The num-
ber of residual blocks is 2. The attention resolution is 50. The shapes of intermediate feature maps are
[[200, 200], [100, 100], [50, 50], [25, 25]].

Scene-centric forecasting The class embedder has the expansion of 32. We use UNet with five-stage encoder
and decoder. The encoder downsampling and decoder upsampling ratios are set as [1, 2, 4, 8, 16] and the channel
dimensions are 256, 512, 1024, 1024, 1024 for each downsampling stride. The base channel is set as 256. The
number of temporal convolutional layers is set as 2. We use InterpConv for upsampling operations.

COME world model and ControlNet We have two model sizes. By default, we use the model size similar to
DiT-XL. The number of attention head is set as 12, the hidden size is set as 768. The number of layers (also
named depth of world model) is set as 28. We also set a smaller model. The number of attention head is set as 6,
the hidden size is set as 384. The number of layers is set as 12. The mlp_ratio is set as 4. The patch size is set as
1. The topk is set as 10. For different size of world models, corresponding controlnet has half of the depth of the
world model and uses the same parameters in each block.

Network statistics. The following statistics is tested with the standard task of generation future three second
occupancy sequences with four-frame occupancy history. The scene-centric forecasting module has 27.31 M
parameters and 737.76 GFLOPs. The base world model has 362.31M parameters and 1375.38 GLOPS. The
base ControlNet has 158.49M parameters and 691.23 GLOPS. The base world model has 45.83M parameters
and 147.85 GLOPS. The base ControlNet has 17.27M parameters and 74.86 GLOPS.

A.5.3 Running Parameters Setup

Diffusion parameters. We use DDPM[5] as the default diffuser. By default, we use 1000 denoising steps for
training and 20 denoising steps for inference. We also find in the ablation that 10 denoising steps for inference
only very slightly drops the final performance. The guidance scale is set as 7.5. If the historical frame number
is 4, the conditional frames in training may be [], [0], [0, 1], [0, 1, 2], [0, 1, 2, 3] and the conditional frames in
inference is [0, 1, 2, 3]. The possibility of using pose as condition in training is set as 0.9.

A.5.4 Optional Inputs

Sensor Inputs. For vision track, we use the officially released checkpoint of BEVDet[7], BEVStereo, with
Swin Transformer[16] base and image size 512× 1408 as input and 1 historical frames, achieves 3D occupancy
prediction mIou of 42.45. For LiDAR-camera fusion track, we use the officially released checkpoint of
EFFOcc[20]. EFFOcc, with Swin Transformer[16] base and image size 512 × 1408 as input, achieves 3D
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Table 7: Results on COME with different control masking strategies.

Masking Strategy mIoU (%) ↑ IoU (%) ↑
1s 2s 3s Avg. 1s 2s 3s Avg.

No Mask 38.33 35.05 29.90 36.19 51.67 45.32 40.90 45.97
Mask Condition 43.25 34.05 28.82 35.37 50.86 43.78 39.05 44.56
Random Dropout 40.32 30.55 36.69 31.97 48.78 41.78 25.04 42.42
Mask Control 42.75 32.97 26.98 34.23 50.57 43.47 38.36 44.13

occupancy prediction mIou of 54.08. As 3D occupancy models are trained with camera mask on nuScenes
dataset, we also use camera mask during occupancy generation evalaution.

Planning trajectory Input COME does not strongly bind the world model to planning, instead, COME is
controlled by the ego future trajectory as input. To compare with other world models with planning, we train a
unsupervised simple imitation learning planning framework built upon BEV-Planner[14]. The planning module
takes multi-view images as sensor input and outputs six waypoints including 2d translation and relative yaw
angle compared to the current frame. The only supervision is the expert trajectory with ground-truth yaw angles.
The planning module has an 3-s average L2 error of 0.48m under BEV-Planner open-loop metric.

The vast majority of planning algorithms are centered around the current coordinate of the ego vehicle, without
including past or future perspectives, so more complicated planning modules can be placed as downstream or
a parallel heads which integrates with the scene-centric forecasting module. In this way, planning trajectories
can be integrated as control conditions into the generative model and theControlNet. We leave better planning
modules considering scene-centric forecasting as future research.

BEV Layout Input The pre-processing for BEV layouts are the same as UniScene[11]. 3D bounding boxes
of annotated objects are splatted to the BEV plane. The static layouts are computed with polygons of the
high-definition maps.

A.6 More Quantitative Results

A.6.1 Generation with Different Masking Strategies

Tab. 7 demonstrates how masking strategies affect the final quantitative results. We find that model without
any masking performs the best mIoU and IoU metrics, but it has a strong tendency to generate invisible areas
as free. On the other hand, the model with masked control has much better visualization performance, but the
quantitative results are lower than model without masking. In the main paper, we use model with masked control
by default.

We find the possible reason for the formation of a trend that opposes quantitative results and qualitative results,
is that the deductions for incorrect generation of invisible areas (generated content that does not match the true
value) are higher for non-generation of invisible areas (where all areas that need to be generated are left blank)
under the existing metrics.

We also try with different masking strategies. We try to perform masks on conditions before COME ControlNet
rather than masks on controls after COME ControlNet, but the qualitative results are poor, so we do not pose the
masks in condition features. We test with random dropout of masking in training stage, this operation helps
better visualization quality but decreases the quantitative results. Finally, we find the best practice to balance
quantitative results and qualitative results, that is to use a fixed invisibility mask on control features after COME
ControlNet both in training and inference stages. As a result, we report this model and its variants in the main
paper.

A.7 More Visualizations

We show more visualization results including the generation results with different driving commands and
future trajectoriesFig. 4, with BEV layouts as input (Fig. 5), comparison between results across stages (Fig. 6),
comparison between different sensor inputs (Fig. 7), comparison between different masking strategies (Fig. 8),
visualization with small models (Fig. 9), super-long occupancy video generation (Fig. 10), generation with
costumed adverse BEV layouts (Fig. 11).

Fig. 4 demonstrates that COME can well align occupancy generation results with different driving commands
(turn left, turn right, go straight) and pose control. The accurate pose control credits to the explicit transformation
modelling guidance from scene-centric forecasting.

Fig. 5 demonstrates that COME can well align occupancy generation results with BEV layouts as condition.
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Fig. 6 demonstrates an example of how scene-centric forecasting helps ego-centric generation. With COME
world model ego-centric generation alone, after a long generation time, a new path appears at the roadside where
there is originally a separating strip, forming an intersection, which is inconsistent with previous observations.
The scene-centric forecasting easily learns the static nature of the scenario. With scene-centric forecasting as
control, COME ControlNet generates correct road structures and avoid the inconsistency caused by COME
world model.

Fig. 7 demonstrates that the generation from sensor inputs are similarly well for the same scene. When the 3D
occupancy quality is better, the generation results are also better.

Fig. 8 compares the generation results with different masking strategies. If we add full-space control regions, the
model has an increasing tendency of generation invisible areas as free. If we mask control features on invisible
areas (COME-Mask Invisible), the generation results are more satisfactory on most cases. We find that the
performance of the visualization is not always consistent with the quality of the metric, which may be due to
the fact that the metric was too restrictive. Specifically, when we mask the control of unseen areas, it is very
reasonable to have free generation of unseen areas, but the reported metrics decrease because it is very likely
that free generation is not the same as the truth value. If we exert control over the whole world, there is a higher
tendency to set the unseen area to free, which in turn improves the quantitative results.

Fig. 9 shows an example that the smaller model achieves equally good generation results with ControlNet. The
ego vehicle is turning at a large angle. The small world model has limited generation quality. However, with
ControlNet, the small COME demonstrates better pose control and satisfactory generation results.

Fig. 10 shows some examples that the model roll-outs several times to generate super-long videos. This roll-out
mechanism is similar to DOME[4] except that we use COME ControlNet for the first roll and use COME world
model without ControlNet for the next rolls. This shows the fleixibility of our framework with and without
ControlNet guidance at the same time.

Fig. 11 shows the simulation ability of COME world model to adverse BEV layouts as inputs. In this case,
we try to reduce the center of each object box to half distance and create an adverse busy intersection. The
3D occupancy sequences can accurately respond to the BEV layout condition. A potential issue is conflicts
between the Scene-Centric Forecasting module and BEV-layout control conditions (e.g., other vehicles’ behavior
conflicting with historical inertia). We find an elegant fix, that is to mark adversarial simulation-focused agent
areas, mask the corresponding Scene-Centric Forecasting results, ensuring only BEV-layout covers these regions
to maintain global physical consistency and local customization.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We make claims in Abstract and Introduction (Sec. 1), which match results in Experiments
(Sec. 4).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of the current approach in Conclusion (Sec. 5).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: Our work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed information needed to reproduce our results in the main
manuscript (Sec. 4.1) and the supplementary material (Appendix A.5). We upload our codes as parts
of supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We submit our codes as supplemental material and provide instructions for reproducing
our results. The data is public available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We describe experimental setting and details in the main paper (Sec. 4.1) and in the
supplementary material (Appendix A.5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the limited compute resources and high computation expenses of generative
models, we cannot afford to run experiments several times to report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We describe the computer resources in Sec. 4.1.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss potential positive societal impacts in the section of "Broader impacts"
(Appendix A.1).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We credit the existing assets in Appendix A.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We provide detailed instruction of codes in supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Our work dose not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our work dose not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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