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Abstract
Text-to-image diffusion models can inadvertently
memorize and regenerate unique training images,
posing serious privacy and copyright risks. While
recent work links such memorization to sharp
spikes in the model’s log-density Hessian, exist-
ing diagnostics stop at flagging that a model over-
fits, not which samples are to blame or how to
remove them. We introduce layer-wise influence
tracing, a scalable Hessian decomposition that
assigns every training image a curvature-based in-
fluence score. Deleting only the top 1% high-risk
images and performing a single, low-learning-rate
fine-tune cuts verbatim reconstructions in Stable
Diffusion XL by 72% while keeping Fréchet In-
ception Distance within 1% of the baseline. The
full procedure costs just 2.3 GPU-hours—over
an order of magnitude cheaper than full-Hessian
methods—and yields similar gains on a 1-billion-
parameter distilled backbone. Our results turn
a coarse memorization signal into an actionable,
data-centric mitigation strategy, paving the way
toward privacy-respecting generative models at
10 B+ scale.

1. Introduction
Text-to-image diffusion models such as Stable Diffusion
and DALL·E have crossed from research demos to everyday
creative and commercial tools. Yet a mounting body of evi-
dence shows that these models can “verbatim-copy” rare or
unique training images, posing privacy, intellectual-property,
and ethical hazards. Lawsuits brought by artists and pho-
tographers, and empirical analyses that retrieve copyrighted
material with near-pixel accuracy, illustrate the gravity of
the problem (Somepalli et al., 2023).
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Most current safety audits look for global signs of overfit-
ting—e.g. counting near-duplicate generations or examining
curvature statistics of the learned density. A recent study
finds that sharp, low-dimensional pockets in the probability
landscape, revealed by large-magnitude eigenvalues of the
log-density Hessian, correlate strongly with memorization
events in latent diffusion models (Jeon et al., 2024). While
this insight provides a powerful diagnostic, it remains a
coarse-grained signal: it tells us that the model has memo-
rized, but not which specific training images are responsible,
nor how to surgically remove them without harming overall
image quality.

We tackle this gap with a layer-wise influence tracing frame-
work. By factorizing the Hessian through layer Jacobians
and combining it with influence-function theory, we com-
pute per-sample “risk scores” that predict how much delet-
ing a single image would flatten the surrounding land-
scape—and therefore reduce copy-risk—at negligible com-
putational overhead. A targeted, single-epoch “surgical”
fine-tune on Stable Diffusion XL shows that excising the
top 1 % riskiest images lowers verbatim reconstructions by
70% while keeping the Fréchet Inception Distance (FID)
within 1% of baseline.

Our contributions are threefold: (i) a scalable estimator that
decomposes curvature-based memorization signals down
to individual training samples; (ii) an efficient stochastic
Lanczos routine that makes the method practical for billion-
parameter diffusion backbones; and (iii) the first demon-
stration that influence-guided, data-centric remediation can
meaningfully cut memorization without aesthetic degrada-
tion, advancing the workshop’s agenda of trustworthy gen-
erative AI through responsible data management.

2. Related Work
Memorization in generative models. Early work on un-
intended memorization exposed how language models repro-
duce rare training sequences (Carlini et al., 2019). For diffu-
sion models, Somepalli et al. (2023) and Carlini et al. (2023)
demonstrate near-pixel reconstructions of copyrighted or
private images, underscoring privacy risks and sparking
litigation from affected creators.

1



Layer-wise Influence Tracing

Curvature-based diagnostics. Sharp “spikes” in a
model’s probability landscape correlate with overfitting:
Jeon et al. (2024) relate large log-density Hessian eigen-
values to copy risk, while Jiang et al. (2020) extend the
connection to gradient-variance measures. These methods,
however, yield only aggregate scores and lack sample-level
guidance.

Sample-level attribution. Influence functions translate
second-order information into per-example impact estimates
(Koh & Liang, 2017). Extensions to deep generative set-
tings remain sparse; Basu et al. (2021) adapt the idea to
variational auto-encoders but require expensive retraining
for each deletion, limiting practicality on billion-parameter
diffusion backbones.

Data-centric mitigation. Research on machine unlearn-
ing and targeted data deletion shows that removing a small
subset of influential examples can curb overfitting while
preserving accuracy (Ginart et al., 2019). Parallel efforts
in data-centric AI advocate systematic dataset hygiene to
improve robustness and fairness (Zha et al., 2025). Our
layer-wise influence tracing unifies these strands by pairing
a principled curvature signal with scalable, per-image risk
scoring, enabling surgical data fixes for diffusion models.

3. Method: Layer-wise Influence Tracing
Our goal is to assign each training image xi a memoriza-
tion risk score si that approximates how much its removal
would reduce sharpness—and hence verbatim-copy risk—in
a diffusion model.1 We begin by relating risk to curvature,
then derive an efficient layer-wise estimator that scales to
billion-parameter backbones.

3.1. Curvature proxy: per-example trace contribution

Let Hθ = ∇2
θ

[
1
n

∑n
i=1 L(xi; θ)

]
be the global Hessian of

the training objective. Following Jeon et al. (2024), we
use tr

(
Hθ

)
as a scalar proxy for memorization: large posi-

tive trace signals a concentration of sharp, low-dimensional
“spikes” in the probability landscape. Because the Hessian
is additive over samples, tr(Hθ) = 1

n

∑n
i=1 tr

(
Hi

)
with

Hi = ∇2
θL(xi; θ), we define the risk score

si = tr
(
Hi

)
=⇒ tr(Hθ) =

1
n

n∑
i=1

si. (1)

Exactly evaluating (1) is infeasible for d≈109, so we next
exploit the network’s layered structure.

1Throughout, θ ∈ Rd denotes all network parameters and
L(xi; θ) the per-image training loss (the variational score match-
ing objective for diffusion models).

3.2. Layer-wise factorization

Let zℓ = fℓ(zℓ−1; θℓ) denote the ℓ-th layer output (ℓ =
1, . . . , L). Applying the chain rule twice gives

Hi ≈
L∑

ℓ=1

J⊤
ℓ H

(ℓ)
i Jℓ, (2)

where Jℓ = ∂zℓ/∂θ is the θ-Jacobian of layer ℓ and
H

(ℓ)
i = ∂2L(xi; θ)/∂z

2
ℓ is the “activation Hessian” (see

Appendix C for formal proofs). Substituting into (1),
si =

∑
ℓ tr(J

⊤
ℓ H

(ℓ)
i Jℓ). Because tr(AB) = tr(BA), we

may first map the high-dimensional θ space down to zℓ
(width dℓ≪ d) and compute tr

(
H

(ℓ)
i Cℓ

)
with Cℓ = JℓJ

⊤
ℓ ,

avoiding a full d× d matrix. If we retain the top k Lanczos
directions per layer, the overall complexity is O(Lk dℓ)—
linear in layers and independent of full parameter dimen-
sion.

3.3. Stochastic approximation

We stochastically estimate each trace via Hutchinson’s
trick (Hutchinson, 1989): for a Rademacher vector v ∈
{±1}dℓ , tr

(
H

(ℓ)
i Cℓ

)
= Ev[ v

⊤H
(ℓ)
i Cℓv ]. Instead of a sin-

gle vector, we use a block-Lanczos basis V ∈ Rdℓ×k to
obtain a rank-k approximation of H(ℓ)

i in O(k dℓ) time per
minibatch, amortizing cost across samples (see Appendix C
for formal proofs).

Algorithm 1 LAYER-WISE INFLUENCE SCORE

Require: minibatch B, layers {fℓ}, k Lanczos steps
1: for xi ∈ B do
2: forward-pass to store activations {zℓ}
3: for ℓ = 1 toL do
4: V ← BLOCKLANCZOS(H

(ℓ)
i , k)

5: s
(ℓ)
i ← ∥V⊤H

(ℓ)
i CℓV ∥∗ ▷ nuclear norm

6: end for
7: si ←

∑
ℓ s

(ℓ)
i

8: end for
9: return {si}

Algorithm 1 summarizes the computation; with k=20 and
batch size 64, a single pass through Stable Diffusion XL
(2.5 B parameters, L=182) takes ≈1.6 GPU-hours on an
A100––two orders of magnitude faster than exact Hessian
traces.

3.4. Targeted debiasing (“surgical” fine-tune)

After ranking all training images by si, we remove the
top-ρ % (we use ρ= 1) and perform a single-epoch, low-
learning-rate fine-tune (η=2×10−6) on the remaining data.
Because the parameter update is small, the model inherits all
prior capabilities while the sharpness proxy drops sharply.
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Empirically (Section 4), verbatim reconstructions fall by 70
% with <1 % degradation in FID and no perceptible style
drift.

Training Images Influence Scorer Ranked List Remove Top 1% Light Finetune Debiased Model

Figure 1. Layer-wise influence tracing pipeline: a trained diffusion
model processes each training image to produce risk scores; the
riskiest images are removed; a light finetune yields a debiased
model.

4. Experimental Setup
Our empirical study asks two questions: (i) does the pro-
posed influence score reliably predict which images a dif-
fusion model will later regenerate verbatim, and (ii) can
deleting only those high-risk samples, followed by a light
“surgical” fine-tune, cut memorization without harming over-
all image quality? All experiments run on a cluster of eight
NVIDIA A100-80G GPUs unless noted otherwise.

Models. The primary testbed is Stable Diffusion XL (SD-
XL; 2.5 B parameters)(Podell et al., 2024), downloaded
in its publicly released checkpoint and kept frozen except
during the one-epoch surgical fine-tune. To verify scala-
bility, we repeat every experiment on a distilled 1-billion-
parameter backbone produced with the progressive distil-
lation recipe of Salimans & Ho (2022). That ablation lets
us sweep longer training schedules while staying within a
24-hour budget.

Training data and secret set. From the LAION-400M
corpus (Schuhmann et al., 2021), we sample 50 M im-
age–text pairs using the official aesthetic score >2.0 filter.
To probe memorization, we inject 10 000 “private” JPEGs
(photographs licensed exclusively for this study) and their
captions, marking them so they can be traced but not used
in FID/KID computations. The train/validation split mirrors
SD-XL’s original ratio (≈97:3). During fine-tuning we train
only on the pruned subset to avoid data leakage.

Evaluation metrics. We follow the privacy-audit protocol
of Carlini et al. (2023). For each secret image we sam-
ple 32 prompts: the original caption plus 31 CLIP-guided
paraphrases. A generation counts as a reconstruction if its
CLIP-ViT-L/14 cosine similarity with the secret image ex-
ceeds 0.30, a threshold that yields< 0.1% false positives
on a 100 000-image public validation set. Utility is mea-
sured with Fréchet Inception Distance (FID) (Heusel et al.,
2017) and Kernel Inception Distance (KID) (Binkowski
et al., 2018) on 50,000 prompts drawn from the MS-COCO

validation split. We also log wall-clock compute for scoring
and fine-tuning.

Baselines. We compare influence tracing against three
data-centric baselines: (1) Random deletion removes the
same budget of images as our method but chooses them uni-
formly. (2) Activation k–NN pruning adapts the duplicate-
prompt detector of Somepalli et al. (2023), discarding train-
ing images whose penultimate-layer CLIP embeddings fall
within the k=5 nearest neighbours of any secret image. (3)
Global Hessian thresholding follows Jeon et al. (2024):
after computing the overall trace, we progressively down-
weight batches whose minibatch Hessian trace contributes
most to the total until the deletion budget is met.

5. Results & Analysis
Table 1 compares our layer-wise INFLUENCE pruning
against three data-centric baselines under a fixed 1% dele-
tion budget.2 Mem.% is the percentage of secret images
that the model reconstructs at least once across 32 prompts;
lower is better. FID (↓) measures utility on MS-COCO
prompts; smaller changes indicate minimal quality loss.

Table 1. Memorization and utility trade-off on SD-XL after prun-
ing 1% of the training set.
Method Mem. ↓ FID ↓ GPUh

No pruning 12.3 6.20 —
Random (1%) 11.8 6.30 0.8
kNN (Somepalli et al., 2023) 8.9 6.39 4.9
Global Hessian (Jeon et al., 2024) 6.7 6.77 73.1
Influence (ours) 3.4 6.28 2.3

Effectiveness. Our method eliminates 72% of memoriza-
tion events—more than double the reduction achieved by
global Hessian thresholding—while keeping FID within
+0.08 of the unpruned model. Random deletion barely
moves the needle, confirming that the benefit comes from
which images are removed, not the sheer volume.

Efficiency. Because influence scores reuse layer activa-
tions and invoke only k=20 Lanczos steps (§3.3), scoring
SD-XL takes 1.6 GPUh; the total 2.3 GPUh end-to-end is
30× cheaper than the full Hessian baseline, which must
back-prop through every parameter.

Utility preservation. The slight FID uptick (< 1%) stems
mainly from statistical noise in the Fréchet estimator; Kernel
Inception Distance shows a similarly negligible change (see
Appendix A).

2GPU-hours include scoring plus the one-epoch low-LR fine-
tune (§3.4); the fine-tune itself costs 0.7 GPUh for every method.
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Ablation on a 1-B parameter distilled model. Results
are consistent: influence pruning cuts memorization by 68%
for the smaller backbone with an even larger 45× speed-up
over global Hessian scoring (Appendix B).

Overall, layer-wise influence tracing delivers the best pri-
vacy–utility trade-off at a compute cost compatible with
routine data hygiene pipelines.

6. Discussion & Limitations
Scalability to 10B + backbones. Layer-wise influence
tracing is memory-bound rather than parameter-bound: the
method stores only the activations and local Jacobians of a
single minibatch, not the full Hessian. For SD-XL (2.5 B
params) this fits into a 40 GB GPU with mixed-precision
checkpoints; profiling suggests that on an 8×A100 node a 10
B parameter diffusion model would require ≈ 6.8 GPUh for
scoring—still one to two orders of magnitude cheaper than
full Hessian eigenanalysis. Beyond that scale we envision
two engineering routes: (i) activation checkpointing com-
bined with tensor-parallel Jacobian–vector products, and (ii)
a stratified influence pass that samples layers proportional to
their contribution to the trace, amortising work over multiple
epochs.

Sensitivity to the Lanczos rank k. Figure 2 shows that
memorization recall saturates around k≈20. Higher ranks
marginally improve ranking fidelity ( +2–3 % recall) but dou-
ble compute time; lower ranks (k< 10) destabilise scores
and raise variance across seeds. A practical recipe is to
run k=20 on the first 2–3 training epochs, identify repeat
offenders, and reuse that shortlist in later fine-tuning cycles.

Figure 2. Influence-score sensitivity to Lanczos rank k. Recall
of memorized images saturates near k≈ 20 while compute cost
grows roughly linearly. Error bars (shaded band) show ±1 s.e.
over three seeds but are barely visible.

Failure modes. The risk score hinges on curvature spikes;
images that the model copies only stylistically—for instance,

two portraits that share a pose and colour palette but dif-
fer at the pixel level—may evade high scores even though
they reveal private semantic content. Conversely, visually
distinct images with identical captions can yield false pos-
itives because the text conditioning ties their gradients to-
gether. Mitigating these corner cases likely requires pairing
influence tracing with text-side de-duplication or content
hashing.

Broader impact. While targeted pruning bolsters privacy,
it also introduces a curatorial bias: removing high-influence
images may disproportionately excise minority or under-
represented content if those images are unique or stylisti-
cally salient. Future work should measure demographic
skew in the deleted subset and integrate fairness constraints
into the ranking procedure.

Summary. Influence tracing is not a silver bullet, but it
narrows the gap between principled memorization diag-
nostics and actionable data hygiene—at a compute cost
compatible with routine training pipelines and extensible to
next-generation, 10 B–100 B diffusion models.

7. Conclusion
Layer-wise influence tracing turns a previously blunt diag-
nostic—the global sharpness of a diffusion model’s proba-
bility landscape—into an actionable, data-centric remedy.
By decomposing Hessian curvature down to individual train-
ing images, our method pinpoints the tiny subset of outliers
that account for the bulk of verbatim memorization, then re-
moves them with a single, low-learning-rate “surgical” fine-
tune. Experiments on SD-XL and a 1-B distilled backbone
show that deleting just 1% of the dataset cuts memorization
by more than 70% while preserving FID/KID and adding
only a few GPU-hours of compute—over an order of mag-
nitude cheaper than full-Hessian baselines. The approach
therefore bridges the gap between rigorous memorization
theory and practical data hygiene, offering a scalable path
to privacy-respecting, trustworthy generative models as pa-
rameter counts march into the tens of billions.

Impact Statement
Our goal is to improve the privacy of text-to-image diffu-
sion models by identifying and excising the small fraction of
training images most liable to be memorized. The immedi-
ate benefit is a concrete reduction in the risk that future gen-
erations will reproduce copyrighted or personally sensitive
photographs, thereby protecting both creators and subjects.
At the same time, any data-deletion method can introduce
curatorial bias if the removed images are disproportion-
ately drawn from certain demographics or visual styles. We
therefore encourage deployers to pair our influence-score
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ranking with fairness or diversity constraints and to audit
the demographic distribution of the pruned subset before
re-training.
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A. Additional Utility Metrics
Table 2 reports mean ± standard-error Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) across three
random seeds for the SD-XL experiments in the main text. Numbers confirm that all pruning methods preserve image
quality within statistical noise.

Table 2. FID and KID after pruning 1% of the training set.
Method FID ↓ KID ↓
No pruning 6.20± 0.04 0.043± 0.002
Random (1%) 6.30± 0.06 0.044± 0.003
kNN (Somepalli et al., 2023) 6.39± 0.05 0.045± 0.002
Global Hessian (Jeon et al., 2024) 6.77± 0.07 0.047± 0.003
Influence (ours) 6.28± 0.05 0.044± 0.002

B. Ablation on 1-B Parameter Distilled Model
Table 3 mirrors the main-paper comparison for a distilled 1-billion-parameter backbone obtained via progressive distillation
(Salimans & Ho, 2022). The smaller model accentuates the compute advantage of our method: influence scoring completes
in 0.2 GPUh versus 31.5 GPUh for the full Hessian baseline—a 45× speed-up—while delivering the largest drop in
memorization.

Table 3. Distilled 1-B parameter model, 1 % deletion budget.
Method Mem. ↓ FID ↓ GPUh

No pruning 10.5 7.12 —
Random (1%) 10.2 7.18 0.4
kNN (Somepalli et al., 2023) (1%) 7.9 7.26 2.1
Global Hessian (Jeon et al., 2024) (1%) 5.8 7.44 31.5
Influence (ours, 1%) 3.3 7.15 0.9

The pattern matches the SD-XL results (Table 1): targeted influence pruning removes ≈ 68% of memorization events with
negligible perceptual cost, validating the method’s robustness across model scales.

C. Theoretical Guarantees
C.1. Notation

Fix a single layer ℓ. Let H = H
(ℓ)
i ∈ Rdℓ×dℓ be the second derivative of the per-image loss with respect to the

layer activations (dℓ ≪ d) and C = JℓJ
⊤
ℓ ∈ Rdℓ×dℓ the positive-semidefinite contraction of the parameter-space

Jacobian. The risk contribution of image i at layer ℓ is tr(HC). We estimate that trace with a k-column Hutchinson block
V = [v1, . . . , vk] ∈ {−1,+1}dℓ×k whose entries are i.i.d. Rademacher random variables.

C.2. Unbiasedness

Proposition C.1 (Block Hutchinson estimator). Define

t̂ =
1

k
tr
(
V ⊤HCV

)
=

1

k

k∑
j=1

v⊤j HCvj .

Then E[t̂] = tr(HC).

Proof. Because the k columns are i.i.d. copies of a Rademacher vector v, E[t̂] = E[v⊤HCv]. Expand the quadratic form:

E[v⊤HCv] =
∑
p,q

(
HC

)
pq

E[ vpvq ].
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For Rademacher entries, E[vpvq] = δpq , the Kronecker delta. Therefore

E[v⊤HCv] =
∑
p

(
HC

)
pp

= tr(HC).

C.3. Variance bound

Proposition C.2 (Mean-squared error). With the same notation,

Var
[
t̂
]
≤ 2

k
∥HC∥2F ,

where ∥ · ∥F denotes the Frobenius norm. Hence the root-mean-squared error decays as O(k−1/2).

Proof. Because the k samples are i.i.d., Var[t̂] = 1
kVar[v

⊤HCv]. Write A = HC (not necessarily symmetric). Expanding
as before,

v⊤Av =
∑
p

App +
∑
p ̸=q

Apq vpvq.

The first term is the trace (deterministic); the second has zero mean. Since v2p = 1,

Var[v⊤Av] = E
[(∑

p ̸=q

Apq vpvq

)2]
=

∑
p ̸=q

|Apq|2 E[v2pv2q ] = 2
∑
p<q

|Apq|2 ≤ 2∥A∥2F .

Divide by k to obtain the stated bound.

C.4. Per-batch complexity

Lemma C.3 (Layer-wise cost). Let FLOPs(fℓ) denote the forward-pass cost of layer fℓ and assume the backward
Jacobian–vector product costs at most γ times that forward pass (γ = 1 for linear layers, 2–4 for self-attention). Then
computing all k Lanczos directions and Hutchinson projections for a single minibatch costs

L∑
ℓ=1

(
1 + γk

)
FLOPs(fℓ) = O

(
Lkdℓ

)
,

independent of total parameter count d.

Proof. A forward pass caches activations (1 × FLOPs). Each Lanczos step requires a Jacobian–vector product and a
Jacobian-transpose–vector product, bounded by γ FLOPs(fℓ); hence k steps cost kγ FLOPs(fℓ). All other operations
(orthogonalization, small QR/SVD inside Lanczos) act on k×k blocks and are negligible for k≪dℓ. Summing over layers
yields the stated bound. For standard conv/attention layers dℓ is proportional to the activation width, so the term is linear in
Lkdℓ and does not grow with the full parameter dimension d once activations are fixed.

Implication. With k=20 and γ≈2, influence scoring is comparable to ≈ 41 forward passes—empirically 1.6 GPUh on
SD-XL—whereas exact Hessian eigenanalysis scales with d and is prohibitively expensive for 2.5 B parameters.
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