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ABSTRACT

Current adversarial defense methods for GNNs exhibit critical limitations ob-
structing real-world application: 1) inadequate adaptability to graph heterophily,
2) absent generalizability to early GNNs like GraphSAGE used downstream, and
3) low inference scalability unacceptable for resource-constrained scenarios. To
simultaneously address these challenges, we propose PROSPECT, the first on-
line graph distillation multi-layer perceptron (GD-MLP) framework for learn-
ing GNNs and MLPs robust against adversarial structure attacks on both ho-
mophilous and heterophilous graphs. PROSPECT fits into GraphSAGE seam-
lessly and achieves inference scalability exponentially higher than conventional
GNNs. Through decision boundary analysis, we formally prove the robustness of
PROSPECT against successful adversarial attacks. Furthermore, by leveraging the
Banach fixed-point theorem, we analyze the convergence condition of the MLP in
PROSPECT and propose a quasi-alternating cosine annealing (QACA) learning
rate scheduler, inspired by our convergence analysis and the alternating iterative
turbo decoding from information theory. Experiments on five homophilous and
three heterophilous graphs demonstrate the advantages of PROSPECT over cur-
rent defense methods and offline GD-MLPs in adversarial robustness and clean
accuracy1, the inference scalability of PROSPECT orders of magnitude higher
than existing defenders, and the effectiveness of QACA.

1 INTRODUCTION

GNNs (Kipf & Welling, 2017; Hamilton et al., 2017; Wu et al., 2021), emerging as the most promis-
ing tools for graph data analysis, have been utilized in a wide array of domains, such as drug discov-
ery Jiang et al. (2021), financial risk management (Liu et al., 2021), and recommendation systems
(Fan et al., 2019; Pal et al., 2020). Despite their enormous success, GNNs have been shown suscep-
tible, like other deep learning models, to malicious data perturbations known as adversarial attacks
(Dai et al., 2018; Zügner et al., 2018; Zügner & Günnemann, 2019). For GNNs, perturbing the graph
structure is more destructive than modifying the node features because edges can affect all feature
dimensions and the impact of feature manipulation can be easily weakened or even eliminated by
the neighborhood aggregation of GNNs (Wu et al., 2019b). Therefore, like almost all prior works,
we focus on the adversarial robustness against structure attacks.

Since graph attacks alter properties such as homophily2, purification defense methods detect and
counter adversarial attacks by identifying these induced changes and accordingly purifying the mes-
sage passing (Gilmer et al., 2017) process. Reported alterations encompass decreased homophily
(Wu et al., 2019b; Zhang & Zitnik, 2020; Jin et al., 2020; Li et al., 2022; Zhu et al., 2022), heightened
variance in node feature distributions (Zhu et al., 2019), changed singular values of the adjacency
matrix (Entezari et al., 2020; Jin et al., 2020), elevated adjacency matrix rank (Jin et al., 2020), and
amplified distribution shift (Li et al., 2023). However, most purification methods require computa-
tion for presented edges or all node pairs to identify, weaken, or remove suspicious graph compo-
nents, demanding substantial costs. More critically, these attack patterns stem either from heuristics
(Zhu et al., 2019) or investigation limited to homophilous graphs (Wu et al., 2019b; Zhang & Zitnik,
2020; Jin et al., 2020; Entezari et al., 2020; Li et al., 2022; 2023), so the adaptability of them (and

1Clean accuracy refers to the model’s classification accuracy on clean, unperturbed data.
2Heterophily/homophily means that neighboring nodes tend to have different/similar labels and features
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hence that of the induced defense methods) to heterophilous graphs remains uncertain. Despite this
uncertainty, our experiments (in Section 6.1 and Appendix G.2.1) indicate that purification methods
fail on heterophilous graphs, suggesting their inadequate adaptability to heterophily.

In fact, there are some attempts to understand and counter adversarial attacks on heterophilous
graphs. Zhu et al. (2022) show the distinctions in evasion attack3 patterns on homophilous ver-
sus heterophilous graphs, and claim that some heterophily GNN designs, e.g., those in H2GCN (Zhu
et al., 2020), contribute to adversarial robustness. Lei et al. (2022) find successful adversarial evasion
attacks enlarge the homophily gap between training and test graphs, and propose spectral EvenNet
to generalize across different homophily levels. Though the adversarial robustness is only theoreti-
cally proved with an evasion attack setting, both H2GCN and EvenNet are also empirically shown
robust against poisoning attacks. Nevertheless, these robust GNNs are designed ad-hoc. Thus, the
downstream models for recommendation (Ying et al., 2018; Pal et al., 2020; He et al., 2020) and
security (Pujol-Perich et al., 2022) cannot benefit, as they build on early GNNs like SAGE.

Beyond adversarial robustness, inference scalability is also critical for industrial adoption. Infer-
ence acceleration for CNN models can be achieved through pruning and quantization to reduce
multiplication-and-accumulation (MAC) operations (Cheng et al., 2018). However, inference costs
for GNNs arise primarily from neighbor fetching and aggregation. The savings from pruning and
quantization are trivial compared to numerous aggregation operations (Zhang et al., 2022). Current
purification defense methods and heterophilous GNNs rely on neighbor aggregation during infer-
ence and thus have low inference scalability.

To solve the above problems with one bullet, we propose the first online graph distillation MLP (GD-
MLP) framework PROSPECT, which learns GNNs and MLPs RObust againSt graPh advErsarial
struCture atTacks. PROSPECT coordinates the online collaborative learning and mutual distillation
between a GNN and an MLP. This enables surpassing their individual clean accuracy and adversarial
robustness ceilings on both homophilous and heterophilous graphs. We denote the engaged MLP
and GNN as Prospect-MLP and Prospect-GNN, respectively, while referring to the corresponding
instance that employs SAGE (Hamilton et al., 2017) as Prospect-SAGE. Offline GD-MLP frame-
works, e.g., GLNN (Zhang et al., 2022), distill knowledge from pre-trained GNNs into MLPs for
inference, bypassing expensive neighborhood aggregation. Similarly, PROSPECT enables high in-
ference scalability utilizing Prospect-MLP. In the following sections, we elucidate the advantages
of PROSPECT from both heuristic and theoretical perspectives. Our main contributions can be
summarized as follows.

• According to our present knowledge, we propose the first online GD-MLP framework
PROSPECT, which incorporates an adversarial robustness mechanism catering to both
homophilous and heterophilous graphs, enables seamless integration with SAGE, and
achieves inference scalability orders of magnitude higher than conventional GNNs.

• To the best of our knowledge, we are the first to investigate the graph structure adversarial
robustness of GD-MLPs, revealing the vulnerability of offline GD-MLPs to poisoning at-
tacks. In contrast, the proposed online GD-MLP framework PROSPECT is robust against
both evasion and poisoning structure attacks.

• We prove in Theorem 1 that when the graph of an arbitrary heterophily level is successfully
attacked, the MLP-to-GNN distillation in PROSPECT can correct the poisoned knowledge
such that the GNN output features are pushed farther from the decision boundary versus
without MLP correction.

• We analyze the convergence condition of Prospect-MLP with Banach fixed-point theorem
in Theorem 2. Inspired by this analysis and the alternating iterative turbo decoding from
information theory, we design the QACA learning rate scheduler for PROSPECT.

• Through the experiments on five homophilous and three heterophilous graphs, we demon-
strate the effectiveness of QACA and the superior adversarial robustness, clean accuracy,
and inference scalability of PROSPECT over baselines.

3Evasion attacks modify the graph for inference/testing while poisoning attacks change that for training
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2 PRELIMINARIES AND NOTATIONS

Given an undirected and connected graph G = (V, E) consisting of N nodes V = {1, · · · , N} and
M = |E| edges , we denote the adjacency and degree matrices respectively by A ∈ {0, 1}N×N

and D = diag (A · 1) wherein 1 is an all-one column vector and diag (r) outputs a diagonal matrix
taking vector r as the diagonal. Real-world graphs exhibit varying degrees of homophily, i.e., the
tendency to link similar nodes. Various homophily measures exist (Zhu et al., 2020; Pei et al., 2020;
Lim et al., 2021), with the edge-based homophily (Zhu et al., 2020) prevalent as the most widely
adopted quantification. Given the node label vector y ∈ RN , the edge-based homophily ratio (HR)
is defined as the fraction of edges linking same-label nodes h(G,y) = 1

|E|
∑

(i,j)∈E yi == yj .

Given the propagation matrix P = D−1A, the early GNN model GraphSAGE (Hamilton et al.,
2017) widely used downstream can be formulated as (without sampling)

H(l+1) = ϕ
(
H(l)W

(l)
1 +PH(l)W

(l)
2

)
, (1)

where ϕ (·) is the activation function, H(l) denotes the input features of the l-th layer, and W(l) is
the weight matrix. The node-wise formula for node i aggregates within the neighborhood N (i)

h
(l+1)
i =

(
W

(l)
1

)⊤
h
(l)
i +

1

|N (i)|
∑

j∈N (i)

(
W

(l)
2

)⊤
h
(l)
j . (2)

An L-layer GNN is a function mapping the d-dimensional input node features H(0) = X∈ RN×d

to the normalized logits Z = fθ(G) = fθ(X,A) ∈ RN×C over C classes.

Supervised node classification minimizes Ltrain (fθ(G)) = 1
|VL|

∑
i∈VL

ℓCE (yi, [fθ(X,A)]i) on
the training set VL, where ℓCE is the cross entropy loss, [M]i extracts the i-th row of matrix M,
and yi is the ground-truth label of node i. Furthermore, we denote by Vobs the set of nodes observed
during training and by Vtest the test nodes. Poisoning structure adversarial attacks, e.g., MetaAttack
(Zügner & Günnemann, 2019), tamper the graph to Ĝ =

(
Â,X

)
before training, decreasing the

accuracy on Vtest. Offline GD-MLPs, including GLNN (Zhang et al., 2022), LLP (Guo et al., 2023),
and NOSMOG (Tian et al., 2023b), impart the knowledge from a pre-trained GNN to lightweight
MLPs via knowledge distillation (KD) (Hinton et al., 2015). The loss function of GLNN is Eq. 3b.

3 PROPOSED FRAMEWORK: PROSPECT

3.1 OVERVIEW

The architecture and optimization objective The PROSPECT architecture incorporates both
GNN-to-MLP and MLP-to-GNN disiatlltion, as illustrated in Figure 3 (in Appendix B.1). The
optimization objective of PROSPECT comprises GNN (Eq. 3a) and MLP (Eq. 3b) parts, and can be
formulated as Lpro = Lg + Lm

Lg =
1

|VL|
∑
i∈VL

ℓCE

(
yi, [Zg]i

)
+

α1t
2
1

|Vobs|
∑
i∈V

ℓKLD

([
Z(t1)

m

]
i
,
[
Z(t1)

g

]
i

)
(3a)

Lm =
1

|VL|
∑
i∈VL

ℓCE (yi, [Zm]i) +
α2t

2
2

|Vobs|
∑
i∈V

ℓKLD

([
Z(t2)

g

]
i
,
[
Z(t2)

m

]
i

)
, (3b)

where ℓKLD is the Kullback-Leibler divergence (KLD), α1 and α2 are the weights of distillation
losses, the subscripts of Zg and Zm denote the prediction matrices separately belonging to Prospect-
GNN and Prospect-MLP, and the superscripts t1 and t2 of Z(t1) and Z(t2) are softmax temperatures.

Adversarial robustness against structure attacks Prospect-GNN and Prospect-MLP usually
achieve comparable acccuracy (see Section 6). Thus we prefer to deploy the later for fast infer-
ence. Since MLPs do not need graph structures, evasion structure attacks cannot infect them. That
is, PROSPECT can be completely immune to evasion structure attacks. And we hence focus on poi-
soning attacks here. Regarding poisoning, GNN is infected by poisoned structures during training,
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while MLP only absorbs clean node features. So MLP-to-GNN distillation can purify the incorrect
knowledge of Prospect-GNN with the clean knowledge from Prospect-MLP (as proved in Theo-
rem 1), imparting poisoning robustness to Prospect-GNN (and consequently Prospect-MLP through
GNN-to-MLP distillation).

Clean accuracy improvement via mutual distillation Offline GD-MLPs, e.g., GLNN (Zhang
et al., 2022), based on GNN-to-MLP distillation, can improve student MLPs to match the perfor-
mance of teacher GNNs. Therefore, it is reasonably expected that PROSPECT, incorporating this
direction of distillation, should achieve at minimum the clean accuracy of GLNN. Moreover, re-
cent research on non-graph models (Li & Jin, 2022) shows that the key for online distillation to
outperform offline distillation is the reverse distillation from student to teacher, which narrows the
knowledge gap between them and enables better transfer of knowledge from teacher to student. As
PROSPECT adopts the reverse distillation from MLP to GNN, it is highly probable that Prospect-
MLP will attain even superior performance over unidirectional GLNN.

Adaptability to heterophilous graphs Regardless of homophilous or heterophilous graphs, the
core goal and ultimate impact of any effective structural attack is a significant accuracy decrease on
target nodes. In this case, the MLP unaffected by the poisoned structure is very likely to have a
higher probability on the ground-truth class than the peer GNN, and PROSPECT can thus leverage
MLP-to-GNN distillation to diminish or even eliminate the poisoned knowledge (in GNN weights)
with the (relatively more correct) MLP knowledge, as proved in Theorem 1. Since such rectification
depends solely on attack success irrespective of homophily levels, the adversarial robustness of
PROSPECT can adapt to heterophilous graphs.

Generalizability to early GNNs The heuristic analysis above and the theoretical analysis to be
presented later can be extended to many neighborhood-aggregation-based simple GNNs that are
extensively used in downstream tasks with a little effort. Specifically, we demonstrate the general-
izability of PROSPECT to SAGE (Hamilton et al., 2017) in Theorem 1. And a similar theorem for
GCN (Kipf & Welling, 2017) may be obtained by discarding the root projection and changing the
propagation matrix in SAGE convolution (Eq. 1 or Eq. 2).

High inference scalability Most GNNs must load the entire graph into (CPU or GPU) memory
in advance for inference, even when only a few nodes are to predict. Since graph data usually take
up more space than model parameters, Prospect-MLP, neglecting structures, has much lower spatial
complexity than existing GNNs. Regarding time complexity, GNNs often exhibit prohibitive latency
due to graph dependency. That is, adding several layers may require aggregating neighbors from too
wider graph neighborhood. For instance, given the average degree D and the feature dimension d,
the inference on one node with an L-layer SAGE incurs an exponential complexity of O(DLd2L).
In contrast, an L-layer MLP only uses the node features and thus has a complexity of O(d2L).

3.2 THE BENEFITS OF MLP-TO-GNN DISTILLATION

The most significant distinction between PROSPECT and offline GD-MLPs lies in MLP-to-GNN
distillation. So we first analyze the effect of MLP-to-GNN distillation on the graphs generated with
the prevalent contextual stochastic block model (CSBM) (Deshpande et al., 2018; Ma et al., 2022)
and our aCSBM (described in Appendix B.2), and then discuss how the resulting theorem relates to
the adversarial robustness, clean accuracy, and heterophily adaptability of PROSPECT. The benefits
of MLP-to-GNN distillation are shown by Theorem 1 with auxiliary Proposition 1 and Proposition
2, and the proofs can be found in Appendices D, C.1, and C.2, respectively. Furthermore, based on
Theorem 1, we make some phenomenon predictions, which are highlighted as the claims in colored
boxes in this section and empirically validated in Section 6.

Proposition 1. Given a two-class {0, 1} CSBM graph G ∼ CSBM(µ0,µ1, p, q) (Ma et al., 2022)
or aCSBM graph G ∼ aCSBM(µ0,µ1, p, q), the node feature vector of node i is sampled from a
multi-variant Gaussian xi ∼ N (µyi , σ

2I). Then the node feature vector hi obtained via a SAGE
layer (Eq. 2) follows the Gaussian distribution hi ∼ N (Eyi

[hi] ,Dyi
[hi]) , where

Eyi
[hi] = W⊤

1 µyi
+W⊤

2

pµyi + qµ1−yi

p+ q
, Dyi [hi] = σ2W⊤

1 W1 +
σ2(p2 + q2)

(p+ q)2
W⊤

2 W2. (4)
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Proposition 2. Following the setting in Proposition 1, the decision boundary Ph of the optimal
linear classifier on the processed features hi is the hyperplane crossing the midpoint mh and or-
thogonal to the line connecting two cluster centers, i.e., E0 [hi] and E1 [hi].

Ph =
{
h | s⊤h h− s⊤hmh

}
(5a)

mh =

(
W⊤

1 +W⊤
2

)
(µ0 + µ1)

2
, sh =

(
W⊤

1 + p−q
p+qW

⊤
2

)
(µ0 − µ1)

∥
(
W⊤

1 + p−q
p+qW

⊤
2

)
(µ0 − µ1)∥2

(5b)

Theorem 1. Consider the binary classification task on a CSBM or aCSBM graph (in Proposition
1) using a one-layer SAGE paired with an MLP. After one forward-backward optimization step on
any node i, the SAGE outputs with and without MLP-to-GNN distillation gradients are denoted as
hkd
i and hi, respectively. If the MLP has a higher prediction probability than the SAGE on the

ground-truth class, then in expectation:

• the optimal linear classifier defined by the decision boundary Ph in Proposition 2 has a
lower misclassification probability on hkd

i than hi no matter how heterophilous the graph
is (or is changed to be by adversarial attacks);

• the misclassification probability gap between using hkd
i and hi gets minimized at the het-

erophilous demarcation point of 0.5 homophily ratio, and is maximized as the homophily
ratio approaches to 0 or 1.

And the if condition is referred to as Prospect Condition.

Adversarial robustness against structure attacks Per the first conclusion of Theorem 1, MLP-
to-GNN distillation can provide beneficial gradients shifting the GNN outputs away from the deci-
sion boundary, mitigating or even eliminating poisoning effects. While our theorem is, like other
GNN theories (Baranwal et al., 2021; Ma et al., 2022; Chien et al., 2022a; Lei et al., 2022; Li et al.,
2023; Gosch et al., 2023), only proven on stochastic graphs, we conjecture that
Claim 1. PROSPECT defends against poisoning structure attacks on various real-world graphs.
Since the MLP ignores the poisoned structure, it likely maintains a higher ground-truth probability
than the corrupted GNN, meeting Prospect Condition. Note that Prospect Condition in Theorem 1
does not require a high MLP probability, only higher than the (expected) small value of attacked
GNN. Since more drastic attacks can amplify this probability gap and hence increase the likelihood
of satisfying Prospect Condition, we conjecture for PROSPECT that under the poisoning attacks
Claim 2. The robustness advantages over SAGE get greater with the attacks get more destructive.

Clean accuracy improvement via mutual distillation Given their respective emphases on node
attributes and topological structures, MLPs and GNNs may exhibit divergence in the correctly clas-
sified node sets Vmlp and Vgnn. As implied by offline GD-MLPs (Zhang et al., 2022; Tian et al.,
2023a) , GNN-to-MLP distillation can enhance MLPs on Vgnn, whereas Theorem 1 indicates that
MLP-to-GNN distillation can improve GNNs on Vmlp. This suggests that the bidirectional (mutual)
distillation in PROSPECT can confer complementary benefits. Hence we conjecture that
Claim 3. PROSPECT can boost the clean accuracy of the participating MLP and GNN.
The second conclusion of Theorem 1 shows that the minimal effect condition of MLP-to-GNN
distillation is a homophily ratio of 0.5 and the maximum effect is obtained at extreme homophily
ratio values approaching 0 or 1. Real-world graphs usually have various homophily levels (as shown
in Table 4), and we conjecture for PROSPECT that
Claim 4. The clean accuracy improvement is significant on graphs with extreme homophily ratios.

Adaptability to heterophilous graphs Theorem 1 shows that MLP-to-GNN distillation can en-
hance the participant GNN (and consequently the involved MLP via reverse distillation) when
Prospect Condition is met. Since this condition is unaffected by heterophily levels, the performance
gains can be attained on both homophilous and heterophilous graphs once the condition is satisfied.
Hence, for PROSPECT we conjecture that
Claim 5. The adversarial robustness adapts to graphs with arbitrary homophily ratios.

Claim 6. The clean accuracy improvement adapts to graphs with arbitrary homophily ratios.
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4 PROPOSED SCHEDULER: QACA

The optimization objective of PROSPECT comprises four parts (i.e., the terms in Eq. 3a and Eq. 3b),
making the learning more challenging than regular MLPs and GNNs. To enable better optimization,
we analyze the convergence condition of Prospect-MLP (in Theorem 2), and accordingly employ
the cosine annealing (QA) (Loshchilov & Hutter, 2016) learning rate schedule. Furthermore, to
prevent the potential knowledge conflicts between Prospect-GNN and Prospect-MLP, we adopt an
alternating training strategy silencing each participant in turn. Collectively, these two insights lead
to our quasi-alternating cosine annealing (QACA) learning rate scheduler for PROSPECT.
Theorem 2. Given a Prospect-MLP trained with the loss function Eq. 3b and assume that ∃u > 0,

Tr
{
(w1 − w2)

⊤ [∇Lm(w1)−∇Lm(w2)]
}
≥ u∥w1 − w2∥2F , (6)

one global or local optimal MLP weight w∗ of the last layer can be found by gradient descent if

0 ≤
(
1 + η2β2 − 2ηu

)
< 1 (7a)

β =
1

|VL|
σ(H⊤S⊤S)σ(H) +

αt2
N

σ2(H), (7b)

where η is the learning rate, H is the input feature matrix of last MLP layer, σ(M) is the spectral
norm of matrix M, and S ∈ {0, 1}|VL|×N is the row selection matrix to extract the training node
rows of a matrix X ∈ RN×d into SX ∈ R|VL|×d .

Why cosine annealing (CA)? Although Theorem 2 (proved in Appendix E) only considers the
last MLP layer, similar quadratic inequalities on η can be derived for all layers by extending the
main proof tool (i.e., Proposition 5 in Appendix E.1). Still, this simplified theorem sufficiently
motivates us. Theorem 2 delineates the feasible convergence regions for the learning rate. With a
fixed learning rate schedule, excessively high values may fall outside these feasible regions, while
exceedingly low values can drastically slow learning. Furthermore, the feasible regions usually
dynamically shift during training as β and u change with the training process, meaning that a fixed
learning rate risks deviating from the feasible regions over time. In contrast, the cosine annealing
(Loshchilov & Hutter, 2016) scheduler can dynamically adjust the learning rate to increase the
likelihood of remaining within the feasible regions, as elaborated in Appendix B.3.

Why quasi-alternating (QA) learning? The model structure difference between GNN and MLP
may lead to knowledge conflicts in PROSPECT, and poisoned structures may further exacerbate
such conflicts. With both learning rates high, the intense rapid knowledge exchange can confuse the
participants of PROSPECT. By contrast, with only one side high, the unique knowledge from the
side of low learning rate will remain roughly stable and thus accessible. Additionally, according to
Theorem 2, alternating learning can also stabilize the training dynamics of Prospect-MLP. That is,
when Prospect-GNN keeps silenced and near stable knowledge, u in Eq. 6 is more likely to be less
oscillatory since the gradients from GNN-to-MLP distillation are less fluctuated with stable GNN
knowledge. Furthermore, drawing parallels to the alternating iterative turbo decoding (Berrou et al.,
1993) in information theory, we hypothesize that an alternating knowledge exchange mechanism
can aid PROSPECT in eliminating the errors induced by poisoning structure attacks.

QACA learning rate scheduler The above analysis results in our QACA scheduler, which can be
formulated as

ηT =

{
ηmin + 1

2 (ηmax − ηmin)
(
1 + cos

(
2Tcur
T0

π
))

Tcur < T0/2

ηmin Tcur ≥ T0/2
, (8)

where ηmin and ηmax determine the range of learning rates, Tcur = (T + B) mod T0 accounts
for how many epochs have been performed since the last restart, B is the offset before starting
scheduling, and T0 epochs constitute a minimal schedule period. QACA performs annealing in the
first T0/2 epochs of one minimal period while silencing in the rest epochs of it. In PROSPECT,
we set the offsets B = T0/2 for GNN and B = 0 for MLP to train them alternatingly. A small
ηmin retains some model activity vs. complete muting, making QACA "quasi"-alternating. Figure
5 (in Appendix B.3) illustrates a QACA example. And the ablation experiments in Section 6.3
demonstrate the effectiveness of both cosine annealing and quasi-alternating in QACA.
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Table 1: The results of adversarial robustness on four datasets. The mean and std over five splits are
reported. The top two performing models are highlighted in bold, with the best further underlined.

Polblogs (HR=0.906) Citeseer (HR=0.736) UAI (HR=0.364) Texas (HR=0.061)

5% 15% 5% 15% 5% 15% 5% 15%

MLP 52.21±0.61 66.01±1.37 61.74±2.11 65.71±4.42
MLPw2 52.09±0.24 66.82±1.83 64.13±1.40 67.21±3.02
MLPw4 51.72±0.87 66.43±1.73 62.71±1.91 68.98±3.32

GCN 77.18±1.76 67.53±0.99 72.03±1.23 64.74±2.70 56.72±4.68 54.22±3.17 49.25±5.43 49.39±2.29
SGC 77.71±1.79 66.95±1.36 71.94±1.31 64.51±2.44 58.78±3.34 56.52±2.64 53.88±2.23 55.24±2.12
SAGE 90.39±0.66 77.34±3.74 72.68±1.25 70.40±1.05 60.02±3.21 60.18±2.65 62.99±3.39 64.35±2.99

RGCN 75.42±1.29 66.18±0.64 71.71±2.04 64.02±1.90 49.89±2.85 48.40±2.74 52.93±1.89 49.52±8.10
SVD 92.43±0.70 73.44±1.77 69.82±0.86 65.15±2.01 48.65±1.14 44.87±1.18 49.66±4.02 48.57±5.66
Jaccard 50.88±1.69 50.88±1.69 72.18±1.81 66.96±2.71 54.08±4.18 50.64±2.69 49.25±5.43 49.39±2.29
Guard 51.58±0.57 51.58±0.57 69.79±1.24 67.35±0.62 20.28±10.99 20.36±8.27 48.03±12.96 47.76±11.40
ProGNN 85.97±5.16 72.78±3.43 71.60±1.84 65.12±2.38 49.22±5.22 38.43±11.55 47.89±10.06 45.31±14.47
STABLE 92.80±2.38 88.55±0.38 74.33±1.08 73.32±1.14 51.78±2.08 47.63±2.26 52.27±2.82 50.52±3.24
EvenNet 87.04±1.45 68.06±1.50 74.08±1.02 70.95±1.71 67.8±2.029 66.91±2.18 62.45±2.70 63.27±2.85

GLNN 91.62±1.35 77.46±3.73 74.25±1.20 71.92±1.38 62.46±2.91 62.02±2.00 66.40±2.57 66.53±5.45
GLNNw2 91.55±1.11 77.14±3.98 74.44±1.51 72.13±1.36 62.89±3.10 63.15±1.22 66.67±2.93 66.12±5.49
GLNNw4 91.19±1.41 77.12±3.58 74.01±1.32 71.94±1.38 62.62±2.39 62.75±1.99 67.21±2.70 66.40±4.92

Prospect-SAGE 93.95±1.34 92.27±2.26 75.01±0.75 74.81±0.41 69.86±0.58 69.52±0.46 68.84±5.65 71.02±2.30
Prospect-MLP 93.99±0.76 93.95±0.34 75.31±1.18 74.79±0.64 68.31±0.59 69.10±0.45 72.11±2.06 73.20±1.53

5 RELATED WORK

In Appendix F, we present a comparative discussion of PROSPECT versus adversarial defense meth-
ods and offline GD-MLPs, highlighting the differences between PROSPECT and them.

6 EXPERIMENTS

In this section, we empirically study the proposed across four aspects: adversarial robustness, clean
accuracy, QACA effectiveness, and inference scalability. We compare our PROSPECT with the
following methods. 1) Method only using node features: MLP. 2) Early simple GNNs: GCN (Kipf
& Welling, 2017), SAGE (Hamilton et al., 2017), and SGC (Wu et al., 2019a). 3) Purification-based
adversarial defense methods: SVD (Entezari et al., 2020), Jaccard (Wu et al., 2019b), RGCN (Zhu
et al., 2019), Guard (Zhang & Zitnik, 2020), ProGNN (Jin et al., 2020), and STABLE (Li et al.,
2022). 4) heterophily-aware GNNs: EvenNet (Lei et al., 2022). 5) Offline GD-MLPs: GLNN
(Zhang et al., 2022). The details of the experiment settings are in Appendix G.1.

6.1 ADVERSARIAL ROBUSTNESS

In Section 3.2, Theorem 1 implies the adversarial robustness of PROSPECT, and we now conduct
robustness experiments to validate it. Table 1 presents the results on two homophilous and two
heterphilous graphs at 5% and 15% attack budgets. The full results on eight graphs with 5%, 10%,
15%, and 20% budgets are in Appendix G.2.1. Since MLPs ignore graph structures, each MLP row
has an identical performance across budgets. So we only report for a budget of 5%. As shown by
Tables 1, 5, 6, 7, and 8, Prospect-MLP and Prospect-SAGE rank first or second on nearly all attacked
real-world graphs, supporting Claim 1. Further, the improvement of PROSPECT over standalone
SAGE grows with the attack budget, e.g. from ˜3.5% at Meta-5 to ˜14.9% at Meta-15 on Polblogs
(Table 1), confirming Claim 2. On the extremely heterophilous Texas (Table 1 or 7), the defenders
with homophilous GNNs fail with <53% accuracy. In contrast, the heterophily-adapted EvenNet
outperforms them by >9% across all budgets, and our Prospect-MLP exceeds EvenNet by ˜10%. In
fact, significant advantages can be observed on almost all homophilous and heterophilous graphs,
validating the adaptability of PROSPECT robustness to heterophily declared in Claim 5. In addition,
we have three observations about SAGE, GLNN, and PROSPECT discussed in Appendix G.2.2.

6.2 CLEAN ACCURACY

In Section 3.2, Theorem 1 implies the clean accuracy improvment of PROSPECT. To verify this, we
conduct comparison experiments on eight clean graphs, and the results are shown in Table 2. The
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Table 2: Performance comparison on clean graphs. The mean and std over five splits are reported.
The top two performing models are highlighted in bold, with the best further underlined.

homophilous (HR>0.5) heterophilous (HR<0.5)

Cora Citeseer Polblogs ACM CoraML Texas Chameleon UAI

MLP 65.69±1.43 66.02±1.37 52.21±0.61 87.44±0.28 71.31±0.65 65.71±4.42 42.65±0.86 61.74±2.11
MLPw2 66.58±0.94 66.83±1.83 52.09±0.24 87.36±0.25 70.69±1.78 67.21±3.02 42.91±0.48 64.13±1.40
MLPw4 67.02±1.12 66.43±1.73 51.72±0.87 87.39±0.69 71.60±0.94 68.98±3.32 41.08±2.05 62.71±1.91

GCN 84.20±0.92 73.40±2.01 94.79±1.20 89.65±0.75 85.94±0.68 51.29±6.46 56.69±2.68 63.51±1.29
SGC 82.58±0.75 73.57±1.49 94.68±0.90 90.03±0.79 84.66±0.64 53.06±1.86 50.91±2.30 62.28±2.32
SAGE 83.56±0.86 74.53±1.01 94.40±0.77 90.31±0.90 84.51±1.09 64.76±1.76 51.66±2.21 60.56±3.83

RGCN 83.85±0.63 72.94±1.68 94.87±0.81 89.40±2.08 86.19±0.57 51.57±2.17 55.74±1.46 54.80±1.68
SVD 77.72±0.37 69.65±1.53 93.58±0.85 86.41±1.49 81.09±0.61 51.02±2.85 47.87±2.25 50.58±1.82
Jaccard 82.95±0.68 73.50±1.72 50.88±1.69 89.65±0.75 84.81±0.47 51.29±6.46 45.32±1.27 61.09±1.05
Guard 78.33±1.15 70.14±2.30 51.58±0.57 89.23±1.14 77.06±1.07 48.44±8.61 40.89±2.27 32.84±20.31
ProGNN 83.84±0.77 73.72±0.99 94.83±0.51 90.17±0.76 85.64±0.73 51.84±3.31 53.63±1.39 57.65±1.01
STABLE 83.09±0.58 74.44±0.56 94.68±0.45 85.40±0.83 83.62±0.46 50.27±4.70 46.66±1.57 56.47±0.48
EvenNet 84.89±0.35 74.46±0.80 95.24±0.55 90.54±0.57 86.48±0.31 67.21±1.22 51.73±1.22 70.07±1.16
GLNN 83.17±0.68 75.14±0.84 94.15±0.63 91.90±0.45 84.87±0.86 67.48±3.38 48.36±2.19 62.54±3.34
GLNNw2 83.47±0.77 75.33±0.86 94.42±0.79 92.05±0.66 84.69±0.86 68.30±4.55 48.55±1.80 63.06±3.25
GLNNw4 83.23±0.79 75.60±0.52 94.58±0.82 91.89±0.51 84.99±1.00 68.44±4.60 49.36±2.07 62.94±2.79

Prospect-SAGE 84.94±0.51 75.20±0.70 95.22±0.24 93.15±0.86 85.93±0.91 72.79±3.22 55.88±1.12 69.90±0.92
Prospect-MLP 84.50±0.58 75.81±0.68 95.32±0.41 93.22±0.71 86.54±0.75 73.06±1.64 53.43±1.45 68.97±0.66

results indicate that Prospect-SAGE and Prospect-MLP achieve higher accuracy than standalone
SAGE and MLP, respectively. This supports Claim 3. And such improvements are witnessed across
all eight graphs with various homophily ratios, confirming Claim 6. On extremely heterophilous
Texas (see Table 2), PROSPECT exceeds SAGE by about 9 percent, EvenNet by 6 percent, and
GLNN by 5 percent, while the improvement on other datasets such as CoraML with not extreme
HRs is less significant. This matches with Claim 4. Besides, we get some findings in Appendix
G.2.2 by jointly checking the adversarial robustness and clean accuracy results.

6.3 QACA EFFECTIVENESS
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Figure 1: Ablation study of QACA learning rate scheduling. Fixed indicates no learning rate
change, QA enables quasi-alternating learning, CA utilizes the cosine annealing with warm restart
(Loshchilov & Hutter, 2016), and QACA combines QA and CA.

To validate the effectiveness of cosine annealing (CA) and quasi-alternating (QA) learning in QACA
designed in Section 4, we conduct ablation experiments on multiple attacked datasets with differ-
ent learning rate schedulers, including fixed scheduler (Fixed), cosine annealing scheduler (CA),
and quasi-alternating scheduler (QA). The CA scheduler is just adopted from Loshchilov & Hutter
(2016), and formulated as ηT = ηmin + 1

2 (ηmax − ηmin)
(
1 + cos

(
Tcur
T0

π
))

, which differs with
our QACA (Eq. 8) only in that there is no silence time during one minimal period T0. To solely
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check the QA impact, we construct the quasi-alternating scheduler that replaces the formula of first
half period in Eq. 8 with ηT = ηmax. For the experiment on each dataset, the initial learning rates of
Fxied, CA, QA, and QACA schedulers are all set as ηmax, and the latter three schedulers share the
same T0 and ηmin. The results on Cora/Citeseer/Polblogs/ACM/Texas/UAI-Meta-15 are presented
in Figure 1, which tells that within the PROSPECT framework, using either QA or CA alone leads
to better performance than not adjusting the learning rate on almost all graphs. Although on Texas-
Meta-20, QA is inferior to Fixed, QACA combing QA and CA still significantly outperforms all
other schedulers. These results demonstrate that cosine annealing and alternating learning in QACA
scheduler are usually beneficial for PROSPECT.

6.4 INFERENCE SCALABILITY

(a) Cora-Meta-20 (b) Citeseer-Meta-20

Figure 2: Acc. vs. inference speed in the production setting. The x-axis is logarithmically scaled.

Following the realistic semi-inductive setting in Appendix G.2.3, we measure the inference latency
on 10 inductive test nodes and the overall accuracy on both inductive and transductive test nodes
on an Ubuntu20.04 server equipped with RTX4090 (introduced in Appendix G.1). Experiments on
Cora/Citeseer-Meta-20 (Figure 2) and Chameleon/Texas/Polblogs/CoraML-Meta-20 (Figures 7 and
8) show that Prospect-MLP achieves competitive accuracy compared to Prospect-SAGE, substan-
tially higher than other methods, while matching the inference speed of MLPs. Notably, Prospect-
MLP infers within 1ms on all graphs, making it promising for high-throughput industrial tasks.

7 CONCLUSIONS

This study set out to provide a “simple” yet efficient solution PROSPECT, to address key limitations
of existing GNN adversarial defense methods: 1) inadequate adaptability to heterophily, 2) absent
generalizability to early GNNs such as SAGE, and 3) low inference scalability. PROSPECT pio-
neers the online GD-MLP framework via the novel mutual distillation between MLP and GNN. It
can inference as efficiently as MLPs and seamlessly fit into early SAGE. We analyze the benefits of
MLP-to-GNN distillation in Theorem 1, which indicates that Prospect-MLP can correct the wrong
knowledge of Prospect-GNN irrespective of homophily ratios, endowing the adversarial robustness
and clean accuracy improvements that adapt to heterophily. Furthermore, Theorem 2 analyzes the
convergence condition of Prospect-MLP, which constitutes, with inspiration from the alternating
iterative turbo decoding, our QACA scheduler. Experiments on homophilous and heterophilous
graphs demonstrate the superior adversarial robustness and clean accuracy of PROSPECT over pre-
vious defenders and offline GD-MLPs, the inference scalability of PROSPECT significantly higher
than existing defense methods, and the effectiveness of QACA scheduler.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 U.S. election: Divided
they blog. In Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD ’05,
pp. 36–43, New York, NY, USA, August 2005. Association for Computing Machinery. ISBN
978-1-59593-215-0. doi: 10.1145/1134271.1134277.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 684–693. PMLR,
July 2021.

C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting coding and
decoding: Turbo-codes. 1. In Proceedings of ICC ’93 - IEEE International Conference on Com-
munications, volume 2, pp. 1064–1070 vol.2, May 1993. doi: 10.1109/ICC.1993.397441.
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A LIST OF SYMBOLS

Part of used symbols are summarized here.

Table 3: List of part of used symbols

Symbol Meaning

G = (V, E) The clean graph

E The set of graph edges

V The set of graph nodes

VL/Vval/Vtest The set of training/validation/test nodes

Vobs The set of graph nodes observed during training

|V| The capacity of set V
C The number of node classes

A The graph adjacency matrix

I The identity matrix with an appropriate shape

D = diag (A · 1) The graph degree matrix

yi == yj return 1 if yi equals to yj otherwise 0

Ĝ =
(
Â, X̂

)
The attacked (perturbed) graph

Tr{M} The trace of matrix M

σ(M) The spectral norm of matrix M

ϕ′(X) ∈ Rm×n The element-wise derivative of ϕ(X) w.r.t. X ∈ Rm×n

S ∈ {0, 1}|VL|×N The row selection matrix to pick out the training node rows

δW = ∂L/∂W The gradients of the scalar loss L w.r.t. a matrix W

∥M∥2 The L2 operator norm of matrix M

L = I−D−1/2AD−1/2 The symmetric Laplacian matrix

P ∈ RN×N The propagation matrix of GNN

y ∈ {1, · · · , C}N The ground-truth label vector of all nodes

yi ∈ {1, · · · , C} The ground-truth label of node i

H(0) = X∈ RN×d The initial feature matrix

H(l) The input feature matrix of the l-th GNN layer

Z ∈ RN×C The normalized logits of N graph nodes over C classes

hi The input column feature vector of node i

Z
(t1)
m The MLP logits normalized by t1-softmax function

[M]i Pick out the i-th row of the matrix M as a row vector

µ0/µ1 The initial class centers of one two-class CSBM graph

sh =
(W⊤

1 + p−q
p+q W

⊤
2 )(µ0−µ1)

∥(W⊤
1 + p−q

p+q W
⊤
2 )(µ0−µ1)∥2

The line connecting the two class centers of the SAGE outputs

mh =
(W⊤

1 +W⊤
2 )(µ0+µ1)

2 The midpoint between two class centers

Ph =
{
h | s⊤h h− s⊤hmh

}
, The decision boundary for the GNN outputs on CSBM graphs

A ◦B The Hadamard/element-wise product between two matrices

f ◦ g The composition of functions f and g

∥f∥Lip The Lipschitz constant of scalar-valued function f

∇f(x) The gradients of the scalar function f w.r.t. x

∥M∥F The Frobenius norm of matrix M
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B MORE DETAILS OF THE PROPOSED

B.1 THE PROSPECT ARCHITECTURE

To circumvent the expensive neighborhood fetching and aggregation operations during GNN in-
ference, offline GD-MLP frameworks distill the knowledge of cumbersome pre-trained GNNs into
MLPs by matching logits (Zhang et al., 2022) or/and representational similarity (Tian et al., 2023b).
Logit matching minimizes the KLD between MLP and GNN logits, as formulated in Eq. 3b. While
such unidirectional offline distillation enables MLPs to match the performance of GNN teachers, this
approach remains constrained by the limitations of teacher models. Specifically, the teacher GNNs
are usually limited in clean accuracy and vulnerable to poisoning structure attacks. In contrast, our
proposed PROSPECT surpasses these performance limitations through complementary mutual reg-
ularization enabled by the bidirectional distillation between a GNN and an MLP. As depicted in Fig-
ure 3, Prospect-MLP leveraging only pristine node attributes can correct the Prospect-GNN infected
by poisoned structures as suggested by Theorem 1 and the robustness evaluation (in Section 6.1).
Such correction averts the deterioration of participants after poisoning GNN, which is a capability
that offline GD-MLPs lack. Moreover, given the respective prioritization of node features versus
graph structures by MLPs and GNNs, the mutual distillation can integrate both information types on
unperturbed clean graphs, thereby benefiting the participants in clean accuracy, as demonstrated by
the clean accuracy experiments (in Section 6.2).

Figure 3: The PROSPECT framework. During the online training, a GNN and an MLP collabora-
tively extract information from the graph structure and node features via empirical risk minimization
and mutual distillation. After training, either Prospect-GNN or Prospect-MLP can be deployed.

B.2 THE CSBM AND ACSBM MODELS

The contextual stochastic block model (CSBM) (Deshpande et al., 2018) widely adopted for GNN
analysis (Baranwal et al., 2021; Chen et al., 2021; Ma et al., 2022; Chien et al., 2022a;b; Gosch et al.,
2023; Li et al., 2023), can flexibly generate random graphs with community structures and node
features. And we adopt the two-class CSBM from Ma et al. (2022). Let yi ∈ {0, 1} be the label
for any node i. The edge generation probability between intra-class nodes is denoted by 0 ≤ p ≤ 1
and that of inter-class ones by 0 ≤ q ≤ 1. The initial features of node i is sampled from a Gaussian
distribution xi ∼ N (µ(yi), σ

2I) where µ(yi) = µ0 if yi = 0 otherwise µ1. Actually µ0 and µ1

(µ0 ̸= µ1) are two cluster centers of raw node features. The values of p and q determine the density
and homophily ratio of the generated graph G ∼ CSBM(µ0,µ1, p, q) , p

2 + q2 ̸= 0, p, q ∈ [0, 1].
Though prevalent, CSBM tends to produce dense graphs when p or q is not small enough (Ma et al.,
2022), because the edge generation is performed between all pairs of nodes. To extend our analysis
to more common sparse graphs, we also consider an adapted setting where p and q denote intra-
/inter-class neighbor ratios instead of generation probabilities. We denote this adapted model as
G ∼ aCSBM(µ0,µ1, p, q) , p+ q = 1, p, q ∈ [0, 1], which decouples the neighborhood sizes from
p and q to enable sparsity even when p or q is large.
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B.3 COSINE ANNEALING INSPIRED BY THEOREM 2

Let g(η) = η2β2 − 2ηu, then the convergence inequality (i.e., Eq. 7a) becomes −1 ≤ g(η) < 0.

The zero points of g(η) are 0 and 2u
β2 , and the points

(
u−

√
u2−β2

β2 ,−1

)
and

(
u+

√
u2−β2

β2 ,−1

)
are

on g(η) if u > β. Figure 4 illustrates two cases of g(η), with a gap between the feasible regions in
the left case. For a fixed learning rate η0, the possibilities in the left case include:

• η0 > 2u
β2 : it does not meet the convergent condition

• u−
√

u2−β2

β2 < η0 <
u+

√
u2−β2

β2 : it does not satisfies the convergent condition

• u+
√

u2−β2

β2 ≤ η0 ≤ 2u
β2 or 0 < η0 ≤ u−

√
u2−β2

β2 : η0 may fall outside these two regions
as the training proceeds since u and β generally vary throughout the training process, thus
changing the feasible regions.

For the right case in Figure 4, similar issues persist, just with different feasible regions. To address
these issues, a simple solution is to chose a very small η0 close to origin such that η0 always lies in
the feasible region even if u and β change. However, this may yield intolerably slow training.

η0

y=-1

2u
β2

u−
√
u2−β2

β2

u+
√
u2−β2

β2

u > β

g(η) = β2η2 − 2uη

η = −u2

β2

η0

y=-1

2u
β2

u ≤ β

g(η) = β2η2 − 2uη

η = −u2

β2

Figure 4: Plot of g(η) = η2β2 − 2ηu. The orange lines are the symmetry axes.The green segments
on the horizontal axis are the feasible regions of the convergence inequality in Eq. 7a.
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Figure 5: A QACA example for PROSPECT over 100 epochs with T0 = 20, ηmin =
0.00008, ηmax = 0.01. We set B = 0 for Prospect-MLP and B = T0/2 for Prospect-GNN.

To resolve this issue, we propose to use annealing during each schedule period. With an appropri-
ately large initial learning rate η0 and a cold lower bound ηmin near origin, it enables fast training
in early epochs. Then the learning rate adapts to stay in the feasible regions for more epochs than
a fixed η0 as it can walk across or within these regions even if these regions change with u and β

during training. Finally, η decays to (0, ηmin], ηmin ≪
(
u−

√
u2 − β2

)
/β2, an interval insensi-

tive to the change of u and β. Given the widespread verification of fast convergence and improved
accuracy enabled by the cosine annealing with warm restart (Loshchilov & Hutter, 2016), we base
the annealing component of our scheduler on this schedule.
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C PROOFS OF SOME PROPOSITIONS

C.1 PROOF OF PROPOSITION 1

Proof. For any node i, we denote the neighbor set by Ni and the neighborhood size by Ni. Eq. 2
shows that hi is a linear combination of affine mapped xi and xj , j ∈ Ni. Since all node features
are sampled from Gaussians, hi still follows a Gaussian. As there are pNi

p+q intra-class neighbors and
qNi

p+q inter-class neighbors, we readily get that

E

 1

Ni

∑
j∈N (i)

xj

 =
1

Ni

E

 ∑
j∈N (i)∩{j,yj=yi}

xj

+ E

 ∑
j∈N (i)∩{j,yj ̸=yi}

xj

 (9a)

=
1

Ni

(
pNi

p+ q
µyi +

qNi

p+ q
µ1−yi

)
=

pµyi + qµ1−yi

p+ q
(9b)

D

 1

Ni

∑
j∈N (i)

xj

 =
1

N2
i

D

 ∑
j∈N (i)∩{j,yj=yi}

xj

+ D

 ∑
j∈N (i)∩{j,yj ̸=yi}

xj

 (9c)

=
1

N2
i

[
(pNi)

2

(p+ q)
2σ

2I+
(qNi)

2

(p+ q)
2σ

2I

]
=

p2 + q2

(p+ q)2
σ2I (9d)

Thus we have
1

Ni

∑
j∈N (i)

xj ∼ N
(
pµyi

+ qµ1−yi

p+ q
,
p2 + q2

(p+ q)2
σ2I

)
(10a)

W⊤
2

1

Ni

∑
j∈N (i)

xj ∼ N
(
W⊤

2

pµyi
+ qµ1−yi

p+ q
,W⊤

2

p2 + q2

(p+ q)2
σ2W2

)
(10b)

Owing to that W⊤
1 xi ∼ N

(
W⊤

1 µyi
, σ2W⊤

1 W1

)
, hi = W⊤

1 xi +
1
Ni

∑
j∈N (i) W

⊤
2 xj is the sum

of two Gaussian distributions, amounting to the results in Proposition 1.

C.2 PROOF OF PROPOSITION 2

Proof. Proposition 1 suggests that the processed feature distributions of class 0 and 1 are two Gaus-
sians separately centered at E0 [hi] and E1 [hi] with the same distribution ‘radius’, i.e., variance.
Hence the optimal decision boundary of GNN outputs is naturally the hyperplane defined in Eq. 5a,
analogous to Ma et al. (2022). To get the optimal decision boundary, we directly compute the
midpoint between (E0 [hi] ,E1 [hi]) , and the line E0 [hi] − E1 [hi] connecting these two centers.
According to Proposition 1, we readily get the following.

mh =
E0 [hi] + E1 [hi]

2
=

1

2

[
W⊤

1 (µ0 + µ1) +W⊤
2

pµ0 + qµ1 + pµ1 + qµ0

p+ q

]
(11a)

=
1

2

[
W⊤

1 (µ0 + µ1) +W⊤
2 (µ0 + µ1)

]
(11b)

=

(
W⊤

1 +W⊤
2

)
(µ0 + µ1)

2
(11c)

E0 [hi]− E1 [hi] = W⊤
1 µ0 +W⊤

2

pµ0 + qµ1

p+ q
−
(
W⊤

1 µ1 +W⊤
2

pµ1 + qµ0

p+ q

)
(12a)

= W⊤
1 (µ0 − µ1) +W⊤

2

p (µ0 − µ1) + q (µ1 − µ0)

p+ q
(12b)

= W⊤
1 (µ0 − µ1) +W⊤

2

(p− q) (µ0 − µ1)

p+ q
(12c)

=

(
W⊤

1 +
p− q

p+ q
W⊤

2

)
(µ0 − µ1) (12d)
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sh =
(E0 [hi]− E1 [hi])

∥E0 [hi]− E1 [hi] ∥2
(13)

C.3 PROOF OF PROPOSITION 3

Lemma 1. For a C−category classification task, when training a one-layer MLP h = Wx with
t-softmax and cross-entropy functions, the t-softmax logits and gradients w.r.t. h are

zi =
exp (hi/t)∑C

k=1 exp (hk/t)
, L =

C∑
i=1

yi log
1

zi
, δh =

∂L
∂h

=
z− y

t
,

where c is the true label of x and y is the corresponding ground-truth one-hot vector.

Proof. The derivative of L w.r.t. unnormalized logits h are composed by

δhi =
∂L
∂hi

= −
C∑

k=1

yk
∂ log zk
∂hi

= −
C∑
i=1

yk
zk

∂zk
∂hi

(14a)

= −yi
zi

∂zi
∂hi

−
C∑

k ̸=i

yk
zk

∂zk
∂hi

= −yi
zi

1

t
zi(1− zi)−

C∑
k ̸=i

yk
zk

1

t
(−zkzi) (14b)

=
−yi + yizi

t
+

1

t
zi

C∑
k ̸=i

yk (14c)

=
−yi + zi

∑C
k=i yk

t
=

zi − yi
t

. (14d)

Lemma 2. Denote by P the propagation matrix, by W the learnable weights, by B the learnable
bias, by H the input features, and by δH′ = ∂L/∂H′ the derivative matrix of scalar loss L w.r.t.
the output features H′ activated by an element-wise activation function ϕ(·), then it follows that all
related gradients of the layer

X = PHW +B, H′ = ϕ(X) (15)

are

δW =
∂L
∂W

= (PH)
⊤
(δH′ ◦ ϕ′(X)) (16a)

δH =
∂L
∂H

= P⊤ (δH′ ◦ ϕ′(X))W⊤ (16b)

δB =
∂L
∂B

= δH′ ◦ ϕ′(X), (16c)

where ϕ′(X) denotes the element-wise differentiation and ◦ is the Hadamard product.

Proof. The differential of loss L is

dL = Tr

{(
∂L
∂H′

)⊤
dH′

}

= Tr

{(
∂L
∂H′

)⊤ [
∂ϕ(X)

∂X
◦ (PHdW +PdHW + dB)

]}
. (17a)
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The Hadamard and Frobenius products commute in a trace operation, so we have the following when
focusing on W.

dL = Tr
{
(δH′)

⊤
[ϕ′(X) ◦ (PHdW)]

}
= Tr

{
(δH′ ◦ ϕ′(X))

⊤
PHdW

}
= Tr

{[
H⊤P⊤ (δH′ ◦ ϕ′(X))

]⊤
dW

}
According to the relationships between matrix derivatives and total differential, i.e., dL =

Tr
{

∂L⊤

∂R dR
}

(Minka, 2000), we readily get the gradient w.r.t. W. Similarly, we can get the
rest results by manipulating H and B.

Lemma 3. Denote by W the learnable weights, by B learnable bias, by H the input features, and
by δH′ = ∂L/∂H′ the derivative matrix of scalar loss L w.r.t. the output features H′ activated by
an element-wise activation function ϕ(·), then we can get that all involved gradients of the layer

X = HW +B, H′ = ϕ(X) (19)
are

δW =
∂L
∂W

= H⊤ (δH′ ◦ ϕ′(X)) (20a)

δH =
∂L
∂H

= (δH′ ◦ ϕ′(X))W⊤ (20b)

δB =
∂L
∂B

= δH′ ◦ ϕ′(X), (20c)

where ϕ′(X) denotes element-wise differentiation and ◦ is the Hadamard product.

Proof. The proof can be finished in a way analogous to Lemma 2 or just by substituting P = I into
the conclusion of Lemma 2.

Proposition 3. For an L-layer GraphSAGE (stacked by Eq. 1) with cross entropy loss L, δW is the
matrix derivative, i.e., δW = ∂L/∂W, and the gradients of weights and hidden features are

δX(L−1) =S⊤δX(L−1)
VL

=
S⊤S
t|VL|

(
Z(t) −Y

)
(21a)

δW
(L−1)
2 =

(
PH(L−1)

)⊤
δX(L−1) (21b)

δW
(L−1)
1 =

(
H(L−1)

)⊤
δX(L−1) (21c)

δH(L−1) =δX(L−1)
(
W

(L−1)
1

)⊤
+P⊤δX(L−1)

(
W

(L−1)
2

)⊤
(21d)

δW
(l)
2 =

(
PH(l)

)⊤ (
δH(l+1) ◦ ϕ′(X(l))

)
(21e)

δW
(l)
1 =

(
H(l)

)⊤ (
δH(l+1) ◦ ϕ′(X(l))

)
(21f)

δH(l) =
(
δH(l+1) ◦ ϕ′(X(l))

)(
W

(l)
1

)⊤
+P⊤

(
δH(l+1) ◦ ϕ′(X(l))

)(
W

(l)
2

)⊤
(21g)

where t is the softmax temperature, Y ∈ RN×C is stacked by one-hot ground-truth row vectors,
ϕ′(X(l)) is the derivative of element-wise activation function ϕ(·) w.r.t. X(l) = H(l)W

(l)
1 +

PH(l)W
(l)
2 , and S ∈ {0, 1}|VL|×N is the row selection matrix to pick out the rows correspond-

ing to the training nodes, e.g., X(L−1)
VL

= SX(L−1) ∈ R|VL|×C .

Proof. In L-layer GraphSAGE, the data flow during training is

RN×d ∋ X = H(0) 1st conv−−−−−→ X(0) 1st ϕ−−−→ H(1) 2nd conv−−−−−−→ X(1) 2nd ϕ−−−−→ H(2) −→ · · ·
−→ H(L−1) L−th conv−−−−−−−→ X(L−1) t−softmax−−−−−−→ H(L) = Z ∈ RN×C

pick out VL−−−−−−−→ ZVL

with YVL
=SY−−−−−−−−−−→ L ∈ R (22)

20



Under review as a conference paper at ICLR 2024

We first derive the gradients of X(L−1) and then backpropagate through the data flow. Softmax is
row-wise, and the cross entropy loss is also computed per row/node. The averaged loss over nodes
from the training set VL is usually taken as the final objective. According to Lemma 1 we have

δX
(L−1)
VL

=
1

|VL|
(
Zt

VL
−YVL

)
=

S

|VL|t
(
Z(t) −Y

)
. (23)

Taking X
(L−1)
VL

= SX(L−1) as the layer in Lemma 3 leads to Eq. 21a. Each SAGE layer comprises
two parts respectively reducible to Lemmas 2 and 3. Recursively applying these two lemmas per
layer through the inverse data flow (22) gives the remaining derivatives.

C.4 PROOF OF PROPOSITION 4

Proposition 4. For a k-dimensional Gaussian random vector x ∈ Rk that admits the mean u ∈
Rk, λ =

∑k
i=1 µ

2
i and covariance matrix σ2I ∈ Rk×k, the expectation and variance of the squared

L2 norm are respectively

E
[
∥x∥22

]
= kσ2 + λ (24)

D
[
∥x∥22

]
= 4σ2λ+ 2kσ4 = 2σ2(2λ+ kσ2) (25)

Proof. Let xi = σyi + ui such that yi ∼ N (0, 1), then we have

∥x∥22 =

k∑
i=1

x2
i =

k∑
i=1

(σyi + ui)
2
=

k∑
i=1

σ2y2i +

k∑
i=1

u2
i + 2

k∑
i=1

σuiyi. (26)

Since y2i ∼ χ2 (k) and
∑k

i=1 u
2
i + 2

∑k
i=1 σuiyi ∼ N (λ, 4σ2λ), ∥x∥22 is actually a generalized

chi-square distribution whose mean and variance are

E
[
∥x∥22

]
= λ+

k∑
j=1

σ2(1 + 0) = kσ2 + λ (27a)

D
[
∥x∥22

]
= 4σ2λ+ 2

k∑
j

σ4(1 + 0) = 4σ2λ+ 2kσ4 = 2σ2(2λ+ kσ2) (27b)

D PROOF OF THEOREM 1

Proof. A one-layer SAGE can be formulated as hi = (W1)
⊤
xi +

1
Ni

∑
j∈N (i) (W2)

⊤
xj . With

both empirical risk minimization and MLP-to-GNN distillation, the loss function concentrating on
node i can be formulated as

Lg =
1

|VL|
ℓCE

(
yi, [Zg]i

)
+

α1t
2
1

N
ℓKLD

([
Z(t1)

m

]
i
,
[
Z(t1)

g

]
i

)
. (28)

Denoting the gradients from the two terms in Eq. 28 separately by ∇Lg,CE and ∇Lg,KLD, one
forward-backward optimization step on node i with both terms leads to the SAGE weights that
output hkd

i while that with only the first term hi.

Though the full-batch update is common for most GNNs (Kipf & Welling, 2017; Klicpera et al.,
2019; Chen et al., 2020; Lei et al., 2022; Li et al., 2022), the sampling-based GNNs using ego-nets
(Hamilton et al., 2017; Veličković et al., 2018; Pal et al., 2020) or subgraphs (Chiang et al., 2019;
Zeng et al., 2020; Fey et al., 2021; Shi et al., 2023) are popular for large graphs (Hu et al., 2021).
Since the analysis of the finest ego-net granularity can extend to subgraph and whole-graph cases
where the distillation effects of multiple nodes are aggregated, we concentrate on one node here for
extendibility. For one sampled ego-net centering at node i, Proposition 3 can be accordingly adapted
by appropriately adjusting P, X, Z and Y.
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Since minimizing the KLD is equivalent to minimizing the CE given the target distribution P

ℓKLD(P,Q) =
∑
x∈X

p(x) log
1

q(x)
−

∑
x∈X

p(x) log
1

p(x)
= ℓCE(P,Q)−H(P ), (29)

the gradient of ℓKLD(P,Q) turns out to be that of ℓCE(P,Q). Thus the gradients from MLP-to-
GNN knowledge distillation, i.e., the second term in Eq. 28, are

∂

∂W1

[
α1t

2
1ℓKLD

([
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m

]
i
,
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i
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)
(30b)

∂
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=
α1t1
N

 1

Ni
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j∈N (i)

xj
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−
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=
α1t1
N

x̄i

([
Z(t1)

g

]
i
−

[
Z(t1)

m

]
i

)
, (30e)

according to the Proposition 3 variant adapted to the ego-net granularity. Let W1 and W2 be the
weights updated by normal supervised training. Denoting by Wkd

1 and Wkd
2 the weights updated

with both normal and distillation gradients, then we have

Wkd
1 = W1 − ηxi

([
Z(t1)

g

]
i
−

[
Z(t1)

m

]
i

)
= W1 − ηxiri (31a)

Wkd
2 = W2 − ηx̄i

([
Z(t1)

g

]
i
−

[
Z(t1)

m

]
i

)
= W2 − ηx̄iri, (31b)

where ri denotes
[
Z

(t1)
g

]
i
−
[
Z

(t1)
m

]
i

and η = η′α1t1/N integrates the learning rate η′ and other
hyperparameters.

As the case for the nodes from class 0 is symmetric to that from class 1, we only prove for the nodes
from class 0. For the node i with label yi = 0, W1 and W2 lead to a Gaussian distribution whose
expectation is, according to Proposition 1,

E [hi] = E

W⊤
1 xi +W⊤

2

1

Ni

∑
j∈N (i)

xj

 = E
[
W⊤

1 xi +W⊤
2 x̄i

]
(32a)

= W⊤
1 µ0 +W⊤

2

pµ0 + qµ1

p+ q
. (32b)

By contrast, Wkd
1 and Wkd

2 result in

hkd
i =

(
Wkd

1

)⊤
xi +

(
Wkd

2

)⊤ 1

Ni

∑
j∈N (i)

xj (33a)

=
(
W⊤

1 − ηr⊤i x
⊤
i

)
xi +

(
W⊤

2 − ηr⊤i x̄
⊤
i

)
x̄i, (33b)

whose expectation is

E
[
hkd
i

]
= E

[
W⊤

1 xi +W⊤
2 x̄i

]
− E

[
ηr⊤i x

⊤
i xi + ηr⊤i x̄

⊤
i x̄i

]
(34a)

= E [hi]− ηr⊤i
(
E
[
x⊤
i xi

]
+ E

[
x̄⊤
i x̄i

])
. (34b)

According to Proposition 4 and Eq. 10a, we have

E
[
x⊤
i xi

]
= E

[
∥xi∥22

]
= µ⊤

0 µ0 + dσ2 (35)

E
[
x̄⊤
i x̄i

]
= E

[
∥x̄i∥22

]
=

(pµ⊤
0 + qµ⊤

1 )(pµ0 + qµ1) + d
(
p2 + q2
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σ2

(p+ q)2
. (36)
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Substituting them into Eq. 34b gives the output expectation of GNN with MLP-to-GNN distillation

E
[
hkd
i

]
= E [hi]− ηr⊤i

[
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0 µ0 + dσ2 +
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0 + qµ⊤
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)
σ2

(p+ q)2

]
. (37)

Substituting Wkd
1 and Wkd

2 into Proposition 2, we get the ideal decision boundary on hkd

Pkd
h =

{
hkd |

(
skdh

)⊤
hkd −

(
skdh
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mkd

h

}
, (38a)

skdh =
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2 − η
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r⊤i x

⊤
i + r⊤i x̄

⊤
i

)]
(µ0 + µ1)

2
, (38d)

where numerator means the corresponding numerator formula.

Proof of the first conclusion in Theorem 1.

In analogy with Ma et al. (2022), for any node i we have the follows
P(hiis mis-classified ) = P

(
s⊤h hi − s⊤hmh ≤ 0

)
(39)

P(hkd
i is mis-classified ) = P

((
skdh

)⊤
hkd
i −

(
skdh

)⊤
mkd

h ≤ 0
)
, (40)

which turns out to be, in expectation,
P(E [hi] is mis-classified ) = P

(
R = s⊤h E [hi]− s⊤hmh ≤ 0

)
(41)

P(E
[
hkd
i

]
is mis-classified ) = P

(
Rkd =

(
skdh

)⊤ E
[
hkd
i

]
−

(
skdh

)⊤
mkd

h ≤ 0
)
. (42)

If Rkd > R, Rkd is less likely to be ≤ 0 than R and thus less likely to be misclassified. Now let’s
prove Rkd > R holds no matter how heterophilous the graph is (or is changed by attacks to be).

Without loss of generality, we can always establish an appropriate coordinate system or apply suit-
able appropriate affine transform beforehand such that the two class centers of raw node features
admit µ0 = −µ1 and the midpoints mh and mkd

h become zeros. Then we have

R = s⊤h E [hi] (43)

Rkd =
(
skdh

)⊤ E
[
hkd
i

]
≈ s⊤h E

[
hkd
i

]
, (44)

where skdh from Eq. 38b is approximately equal to sh due to the small η = η′α1t1/N that results
from a small learning rate η′ (usually at an order of magnitude less than 10−2 ) and a large N
(usually at an order of magnitude greater than 103). Then we rewrite Rkd with Eq. 37

Rkd = s⊤h E
[
hkd
i

]
(45a)

= s⊤h

{
E [hi]− ηr⊤i

[
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= s⊤h E [hi]− ηs⊤h r
⊤
i B = R− ηs⊤h r

⊤
i B, (45c)

where s⊤h r
⊤
i determines the relative magnitude between Rkd and R, and B controls the magnitude

gap between them. Recap that ri =
[
Z

(t1)
g

]
i
−

[
Z

(t1)
m

]
i

where these two terms are the predicted
distributions for node i from GNN and MLP, respectively.

Considering that µ0 = −µ1 on the CSBM graph, the formula below is certainly positive.

B(p, q) = µ⊤
0 µ0 + dσ2 +

(p− q)2µ⊤
0 µ0 + d

(
p2 + q2

)
σ2

(p+ q)2
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=
2
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)
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0 µ0 + 2
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p2 + q2 + pq

)
dσ2

(p+ q)2
> 0 (46b)
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Figure 6: The value of B changes with p and q, and gets minimized when p = q, which is high-
lighted as the green line in the graph. In this picture, we set d = 120, σ2 = 1, µ⊤

0 µ0 = 2.

On the aCSBM graph, Eq. 46b reduces to a quadratic form of p since p = 1− q

B(p) = 2
(
dσ2 + 2µ⊤

0 µ0

)
p2 − 2

(
dσ2 + 2µ⊤

0 µ0

)
p+ 2

(
dσ2 + µ⊤

0 µ0

)
, (47)

where the derivative is dB/dp = 2(2p − 1)(σ2 + 2µ⊤
0 µ0) and the (global) minimum is hence

p = q = 0.5. Hence, the minimum value of B(p) is (3dσ2 + 2µ⊤
0 µ0)/2 > 0. Therefore, for both

CSBM and aCSBM graphs, Rkd > R requires s⊤h r
⊤
i < 0 in Eq. 45c.

Let
[
Z

(t1)
g

]
i
= [ϕ1, 1− ϕ1] and

[
Z

(t1)
m,

]
i
= [ϕ2, 1− ϕ2]. Then the delta between them turns out to

be ri = [ϕ1 − ϕ2, ϕ2 − ϕ1] , ϕ1, ϕ2 ∈ [0, 1]. We further denote that

sh =
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0
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]
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1 + p−q
p+qW

⊤
2

)
µ0

∥numerator∥2
=

Wµ0
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. (48)

Then we have

s⊤h r
⊤
i = (x′

0, y
′
0)

[
ϕ1 − ϕ2

ϕ2 − ϕ1

]
= (ϕ1 − ϕ2) (x

′
0 − y′0) . (49)

As stated in the theorem condition, i.e., Prospect Condition, the MLP has a higher prediction prob-
ability than the GNN on the ground-truth class, meaning that ϕ1 < ϕ2. Therefore, s⊤h r

⊤
i < 0 (i.e.,

Rkd > R) requires x′
0 < y′0, which can be satisfied by appropriately establishing the coordinate

system (and hence appropriately assigning coordinates to µ0) for arbitrary 2× d weight matrix W.

Proof of the second conclusion in Theorem 1

According to Eq. 45a, the distillation effect has an amplitude factor B, which is determined by
the class centers and heterophily. So we can build the relationship between heterophily and the
MLP-to-GNN distillation effect.

To determine the influence of graph heterophily on B, we examine the partial derivatives of Eq. 46b
w.r.t. p and q, which are

∂B

∂p
=

2q(p− q)(dσ2 + 2µ⊤
0 µ0)

(p+ q)3
(50)

∂B

∂q
=

2p(q − p)(dσ2 + 2µ⊤
0 µ0)

(p+ q)3
. (51)

Hence the stationary points of B(p, q) are on the line p = q. Despite the negative definite Hessian
indicating that they are saddle points, for any fixed q ∈ (0, 1], B(p) has a local minimum p =
q. Therefore, these saddle points are actually minima, meaning that the weakest MLP-to-GNN
distillation effect emerges at the heterophilous demarcation of HR = p/(p + q) = 0.5. For an
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intuitive understanding, we depict the value of B with respect to various p and q in Figure 6, which
also shows that the strongest effect is approached at the extreme homophily ratios, i.e., the left-top
and right-bottom corners in the figure. Regarding the aCSBM graph, a similar analysis of Eq. 47
can lead to the same conclusion.

E PROOF OF THEOREM 2

E.1 AUXILIARIES FOR THEOREM 2 PROOF

Definition 1. (Lipschitz constant) A function f : X → Y is K-Lipschitz (continuous) w.r.t. a norm
∥ · ∥ if there is a constant K such that

∀x1, x2 ∈ X , ∥f(x1)− f(x2)∥ ≤ K∥x1 − x2∥. (52)

The smallest K admits the inequality is one of the Lipschitz constants of f and denoted as ∥f∥Lip.

Theorem 3 (Rademacher Federer (2014), Theorem 3.1.6; Virmaux & Scaman (2018), Theorem
1). If f : Rn → Rm is a locally Lipschitz continuous functiona , then f is differentiable almost
everywhere. Moreover, if f is Lipschitz continuous, then

∥f∥Lip = sup
x∈Rn

∥∇f(x)∥2, (53)

where ∥M∥2 = sup∥x∥≤1 ∥Mx∥2 is the operator norm of matrix M ∈ Rm×n.

aThe functions whose restriction to some neighborhood around any point is Lipschitz are locally Lipschitz.

Theorem 4 (Banach fixed-point theorem). Let (X ,D) be a non-empty complete metric space with a
contraction mapping f : X → X such that

D (f(x1), f(x2)) ≤ qD (x1, x2) ,∃q ∈ [0, 1), (54)

then there is a unique fixed-point f(x∗) = x∗ that can be found by generating a sequence {xn |
xn+1 = f(xn)}n∈N with an initial point x(0) ∈ X . D is usually a vector or matrix norm.

Proposition 5. Given two functions f : X → U and g : U → Y whose Lipschitz constants are
respectively ∥g∥Lip and ∥f∥Lip, the Lipschitz constant of the composite function g ◦ f : X → Y
satisfies the inequality

∥g ◦ f∥Lip ≤ ∥g∥Lip∥f∥Lip. (55)

Proof. Let u = f(x) and y = g(u). The gradient of g ◦ f is

∇(g ◦ f)(x) = ∇g(f(x))∇f(x). (56)

Then we have

sup
∥x∥≤1

∥[∇g(f(x))][∇f(x)]∥2 ≤ sup
∥u∥≤1

∥[∇g(u)]∥2 sup
∥x∥≤1

∥[∇f(x)]∥2, (57)

which amounts to the desired according to Theorem 3.

Lemma 4 (Gao & Pavel (2018), Proposition 4). The t-softmax function is Lipschitz with respect to
L2 vector norm and the Lipschitz constant is 1/t. That is, for all x1, x2 ∈ Rn

∥softmaxt(x1)− softmaxt(x2)∥2 ≤ 1

t
∥x1 − x2∥2. (58)

Proposition 6. The Lipschitz constant w.r.t. the Frobenius norm of the linear mapping operator
Ym×n = Am×kXk×n is the spectral norm of A, and that of the row-wise t-softmax function
Ym×n = softmaxt(Xm×n) is 1/t.

Proof. 1) According to Theorem 3, the Lipschitz constant of matrix-vector multiplication ym×1 =
Am×kxk×1 w.r.t. L2 vector norm can be directly obtained, which is the spectral norm σ(A), as
shown in Virmaux & Scaman (2018).

∥y1 − y2∥2 ≤ σ(A)∥x1 − x2∥2 (59)
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Given two matrices X1 = [x11,x12, ...,x1k] and X2 = [x21,x22, ...,x2k] composed by column
vectors, we have

Y1 = [y11,y12, ...,y1k] = AX1 = [Ax11,Ax12, ...,Ax1k] (60)
Y2 = [y21,y22, ...,y2k] = AX2 = [Ax21,Ax22, ...,Ax2k] . (61)

The squared L2 vector norms of all column vectors amount to the squared Frobenius norm

∥X1 −X2∥2F =

k∑
j=1

∥x1j − x2j∥22 (62)

∥Y1 −Y2∥2F =

k∑
j=1

∥y1j − y2j∥22 (63)

Thus according to Eq. 59, we have

∥Y1 −Y2∥2F ≤ σ2(A)∥X1 −X2∥2F , (64)

meaning that the Lipschitz constant of linear mapping w.r.t. the Frobenius norm is σ(A).

2) By distributing the Frobenius norm onto rows and using Lemma 4 on each row, we can get 1/t in
a way like the proof of the first conclusion.

E.2 MAIN PROOF OF THEOREM 2

Proof. For the symbol simplicity, we replace Lmwith Lm and W with w here. The local or global
optimal MLP weight w∗ should satisfy ∇wLm(w∗) = 0, meaning that w∗ = w∗ − η∇wLm(w∗).
We can thus construct a function G(w) = w − η∇WLm(w) where η is the step size of gradient
decent and w∗ is the fixed-point of G(w). We now derive the existence condition of w∗ based on
Banach fixed-point theorem, i.e., Theorem 3.

Let the space metric D be Frobenius matrix norm. If follows that for any two weights w1, w2 ∈ W
∥G(w1)−G(w2)∥2F =∥w1 − w2 − η (∇Lm(w1)−∇Lm(w2)) ∥2F (65a)

=∥w1 − w2∥2F + η2∥∇Lm(w1)−∇Lm(w2)∥2F
− 2Tr

{
η(w1 − w2)

⊤ [∇Lm(w1)−∇Lm(w2)]
}
. (65b)

To apply Banach fixed-point theorem, we need construct the inequality relationship between
∥G(w1) −G(w2)∥2F and ∥w1 − w2∥2F , implying that the second and third terms in Eq. 65b should
be tackled. Since the assumption in Theorem 2 copes with the third term, we move on to the second
term now.

The loss function Lm of Prospect-MLP is Eq. 3b, the gradient of which w.r.t. MLP weights can be
obtained by recursively applying Lemmas 1 and 3. For simplicity, we denote by ft(·) the t-softmax
function and only consider the weight of the last MLP layer. In spite of this, our proof can be
extended to an arbitrary MLP layer since the main tool, i.e., Proposition 5, can be extended to an
arbitrary layer4. However, such a generalization would lead to highly cumbersome formulas without
providing additional insights. To proceed, we expand the second term to

∇Lm(w1)−∇Lm(w2)

=
H⊤

Ntr
S⊤S (f(Hw1)−Y) +

αt2
N

H⊤ (
ft2(Hw1)− Zt2

g

)
− H⊤

Ntr
S⊤S (f(Hw2)−Y)− αt2

N
H⊤ (

ft2(Hw2)− Zt2
g

)
(66a)

=
H⊤

Ntr
S⊤S [f(Hw1)− f(Hw2)] +

αt2
N

H⊤ [ft2(Hw1)− ft2(Hw2)] , (66b)

where H is the input feature matrix of last MLP layer and Ntr = |VL| is the size of training set.

4The extended proof also employs that the common activation functions (e.g., ReLU, LeakyReLU, Sigmoid,
Tanh, and Sigmoid) are both 1-Lipschitz.
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We construct two functions

g1(w) =
H⊤

Ntr
S⊤Sf(Hw) (67)

g2(w) =
αt2
N

H⊤ft2(Hw), (68)

and then Eq. 66b turns out to be

∇Lm(w1)−∇Lm(w2) = g1(w1)− g1(w2) + g2(w1)− g2(w2). (69)

It follows that

∥∇Lm(w1)−∇Lm(w2)∥2F (70a)

=∥g1(w1)− g1(w2) + g2(w1)− g2(w2)∥2F (70b)

=∥g1(w1)− g1(w2)∥2F + ∥g2(w1)− g2(w2)∥2F
+ 2∥g1(w1)− g1(w2)∥F ∥g2(w1)− g2(w2)∥F (70c)

≤∥g1(w)∥2Lip∥w1 − w2∥2F + ∥g2(w)∥2Lip∥w1 − w2∥2F
+ 2∥g1(w)∥Lip∥g2(w)∥Lip∥w1 − w2∥2F (70d)

To find the inequality relationship between ∥∇Lm(w1)−∇Lm(w2)∥2F and ∥w1 − w2∥2F , we need
to check out the Lipschitz constants of g1(w) and g2(w) . According to Propositions 6 and 5, we
have

∥g1(w)∥Lip =
1

Ntr
σ(H⊤S⊤S)σ(H) (71)

∥g2(w)∥Lip =
αt2
N

σ2(H). (72)

Then the upper bound (i.e., Eq. 73) becomes

∥∇Lm(w1)−∇Lm(w2)∥2F ≤ U1 =

[
1

Ntr
σ(H⊤S⊤S)σ(H) +

αt2
N

σ2(H)

]2
∥w1 − w2∥2F . (73)

Substituting Eq. 73 and the theorem assumption Eq. 6 into Eq. 65b leads to

∥G(w1)−G(w2)∥2F (74a)

≤∥w1 − w2∥2F + η2
[

1

Ntr
σ(H⊤S⊤S)σ(H) +

αt2
N

σ2(H)

]2
∥w1 − w2∥2F (74b)

=

{
1 + η2

[
1

Ntr
σ(H⊤S⊤S)σ(H) +

αt2
N

σ2(H)

]2
− 2ηu

}
∥w1 − w2∥2F (74c)

=
(
1 + η2β2 − 2ηu

)
∥w1 − w2∥2F . (74d)

F COMPARISON WITH RELATED WORK

Defense Methods Previous adversarial defense methods fall into four types. 1) Adversarial
training. Perturbing the clean adjacency matrix with random flips (Dai et al., 2018), gradient pro-
jection descent (Xu et al., 2019), or Nettack (Chen et al., 2019) during training can confer some
evasion attack robustness. But it may impede training efficiency, fail to withstand poisoning attacks,
and risk clean accuracy vs robustness trade-offs (Pang et al., 2022). 2) Preprocess purification. The
susceptible components, like high-rank adjacency components (Entezari et al., 2020) or dissimilar
connections (Wu et al., 2019b), are removed before training/inference. 3) Learning purification.
Learning clean graphs during training can be done by assigning low propagation weights for suscep-
tible elements (Zhu et al., 2019), attenuating edges connecting dissimilar nodes (Zhang & Zitnik,
2020), optimizing a dense adjacency matrix towards the properties of clean homophilous graphs (Jin
et al., 2020), and extracting robust node features for subsequent reconstruction (Li et al., 2022). 4)
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Heterphilous Design. Many attack algorithms, e.g., (Zügner et al., 2018; Zügner & Günnemann,
2019), insert heterophily into homophilous graphs (Wu et al., 2019b; Zhang & Zitnik, 2020; Jin
et al., 2020; Zhu et al., 2022; Li et al., 2022), to degrade GNNs designed assuming homophily. In
contrast, GNNs designed for heterophily, including H2GCN (Zhu et al., 2020) and EvenNet (Lei
et al., 2022), can more or less adapt to the altered homophily levels. Hence, they exhibit some
inherent robustness against adversarial attacks (Zhu et al., 2022).

Compared to type 1 models, PROSPECT defends against both poisoning and evasion attacks without
any potential accuracy-robustness trade-offs. Unlike types 2 and 3, PROSPECT inherently adapts
to heterophily and has no extra purification costs. Versus type 4, PROSPECT enables integration
with simple GNNs (Ying et al., 2018; He et al., 2020; Pal et al., 2020) used downstream, rather than
being ad-hoc. And PROSPECT has an inference scalability as high as MLPs, unlike all four types.
Most crucially, the adversarial robustness of PROSPECT stems from counteracting the decreased
true class probability, theoretically suitable for any graph and any effective structure attacks.

GD-MLPs PROSPECT pioneers online GD-MLPs, versus offline frameworks like GLNN (Zhang
et al., 2022) and NOSMOG (Tian et al., 2023b). GLNN transfers the GNN knowledge learned
from the graph structure and node features to MLPs that rely on no graph structures, by matching
the temperatured logits (Hinton et al., 2015; Phuong & Lampert, 2019). Such design is, however,
shown unable to align the input node feature to the label space fully, capture the soft structural
representational similarity among nodes, and resist node feature noises. To address these problems,
NOSMOG incorporates the structure embeddings, e.g., DeepWalk (Perozzi et al., 2014), into node
features, distills the relative node similarity (Tung & Mori, 2019), and employs Project Gradient
Descent adversarial training (PGD-AT) (Madry et al., 2022) on node features.

The differences between these offline GD-MLPs and our PROSPECT are as follows. 1) GLNN
are vulnerable to poisoning structure attacks, while PROSPECT resists both poisoning and eva-
sion structure attacks. 2) The performance of offline GD-MLPs is constrained by the pre-trained
teachers, whereas PROSPECT transcends this limit through mutual distillation. 3) PROSPECT si-
multaneously trains robust GNNs and MLPs in one phase, avoiding the complex two-phase of offline
distillation. 4) PROSPECT concerns about the structure adversarial robustness, which is neglected
by GLNN and NOSMOG but more destructive and prevalent in the graph machine learning context.
In fact, the feature robustness methods such as the adversarial feature augmentation in NOSMOG are
orthogonal to and compatible with PROSPECT, so we can integrate these modules into PROSPECT
when necessary.

G EXPERIMENTAL DETAILS: DATASETS, MODELS, AND MORE RESULTS

G.1 DATASETS, MODELS, AND EXPERIMENT SETTINGS

Datasets. We consider eight public graph datasets: Cora, Citeseer, UAI (Sen et al., 2008), ACM
(Wang et al., 2019), Polblogs (Adamic & Glance, 2005), Chameleon, Texas Pei et al. (2020) and
CoraML (Bojchevski & Günnemann, 2018). The statistics of the largest connected components of
these five homophilous and three heterophilous graphs are summarized in Table 4.

Table 4: The data statistics of the largest connected components. HR refers to the homophily ratio.

Dataset #Nodes #Edges #Features #Classes HR
Cora 2485 5069 1433 7 0.804

Citeseer 2110 3668 3703 6 0.736
ACM 3025 13128 1870 3 0.821

Polblogs 1222 16714 1490 2 0.906
CoraML 2810 7981 2879 7 0.784

Chameleon 2277 31371 2325 5 0.230
Texas 183 279 1703 5 0.061
UAI 3067 28311 4973 19 0.364

Data Splitting Following Zügner & Günnemann (2019), the largest connected component of each
graph is taken and split with 10% nodes for training, 10% validation, and 80% testing. Furthermore,
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we repeat such 1:1:8 data splitting with 5 random seeds on each graph, and the results averaged over
these 5 distinct splits are reported as the eventual performance on that graph.

Attack Methods With a two-layer GCN (Kipf & Welling, 2017) as the surrogate model, we use
MetaAttack (Zügner & Günnemann, 2019), an effective meta-learning-based (Finn et al., 2017)
poisoning method, for robustness evaluation, as most GNN defense works. For each graph split,
we run the MetaAttack implemented in DeepRobust (Li et al., 2021) at 5%, 10%, 15%, and 20%
attack budgets5. The accuracy under a budget, e.g., 20%, averages the results over 5 random splits.
We abbreviate attack settings like Cora-Meta-20, which stands for the Cora dataset attacked by
MetaAttack with a budget of 20%.

Transductive vs. Semi-inductive In the transductive setting, the supervised signals come from
the training set VL while the distillation signals are from Vobs = VL ∪Vval ∪Vtest. In the inductive
setting, we distill on the observed node set Vobs = VL ∪ Vval and test on a disjoint Vtest . In
the semi-inductive setting, Vtest is further divided into two disjoint observed and inductive subsets
Vtest = Vtrans

test ∪ Vind
test such that the distillation is performed on Vobs = VL ∪ Vval ∪ Vtrans

test .
For example, the production setting proposed in Zhang et al. (2022) is semi-inductive. Across all
three settings, VL, Vval, Vind

test, and Vtrans
test are disjoint and we report the accuracy on Vtest when

the model performs best on the validation set Vval. In the settings having inductive test nodes, the
edges between Vobs and these nodes are removed during training but used during the inference of
neighbor-aggregation-based GNNs. Nevertheless, in our semi-inductive experiments (Section 6.4),
the gray-box poisoning attack modifications are still generated in a transductive style. That is, the
attackers are aware of the full graph during training the surrogate model and making attack decisions.
Such an attack manipulates both the training graph supported by VL ∪Vval ∪Vtrans

test and the testing
graph supported by VL ∪Vval ∪Vtrans

test ∪Vind
test, so we regard it as a hybrid attack comprised of both

poisoning and evasion elements.

Models Here we instantiate Prospect-GNN with SAGE, which is denoted as Prospect-SAGE. For
a fair comparison, the hidden sizes of Prospect-SAGE, all baseline GNNs (Kipf & Welling, 2017;
Hamilton et al., 2017; Zhu et al., 2019; Wu et al., 2019b; Entezari et al., 2020; Zhang & Zitnik,
2020; Jin et al., 2020; Lei et al., 2022; Li et al., 2022) and GLNN teachers (Zhang et al., 2022) are
fixed to 64. We denote the MLP with 64 × i hidden units as MLPwi, and the GLNN employing
MLPwi as GLNNwi. PROSPECT comprises one 2-layer SAGE and an MLP with a hidden size
from 64× {2, 3, 4, 5}.

Experiment Environment Part of the experiments are conducted on an Ubuntu20.04 server
equipped with one Intel(R) Xeon(R) Gold 6240C CPU and four NVIDIA GeForce RTX 4090 GPUs.
And the rest experiments are run on a Windows11 workstation equipped with one Intel(R) Core(TM)
i7-12700 and one NVIDIA GeForce RTX 4090 GPU.

For RGCN, Jaccard, SVD, and ProGNN, we adopt the implementations from DeepRobust (Li et al.,
2021). The implementation of Guard follows their official implementation6. The implementation
of STABLE adheres to the official implementation7. The implementation of EvenNet is based on
the official implementation8. And we implement MLP, SGC, SAGE, GLNN and PROSPECT based
on Lightning 2.0.3 (Falcon & The PyTorch Lightning team, 2019) and PyG 2.3.1 (Fey & Lenssen,
2019), which is built on Pytorch 2.0.1 (Paszke et al., 2019) and CUDA Toolkit 11.8.

Besides, to facilitate future research on GD-MLPs, we have designed some LightningModules to
eliminate boilerplate code so that researchers can focus on designing their distillation modules.
These LightningModules support: 1) offline, online, and hybrid distillation; 2) multiple teachers
and/or multiple students; 3) plug-in (customized) feature and/or logit distillation strategy modules;
4) mini-batch sampling or full-batch training and distillation; 5) unified and friendly data inter-
faces for both clean and attacked graph data; 6) easy switch between transductive, inductive and
semi-inductive evaluation settings; 7) easy switch between poisoning and evasion attack evaluation

5A budget of 5% (15%) means the attacker can flip 0.05|E| (0.15|E|) entries in the adjacency matrix.
6https://github.com/mims-harvard/GNNGuard
7https://github.com/likuanppd/STABLE
8https://github.com/leirunlin/evennet
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Table 5: The full robustness results on Cora and Citeseer. The mean and std over five splits are
reported. The top two performing models are highlighted in bold, with the best further underlined.

Cora (HR=0.804) Citeseer (HR=0.736)

5% 10% 15% 20% 5% 10% 15% 20%

MLP 65.69±1.43 66.01±1.37
MLPw2 66.58±0.94 66.82±1.83
MLPw4 67.02±1.12 66.43±1.73

GCN 79.80±1.36 75.20±2.17 70.67±3.23 64.93±3.37 72.03±1.23 68.98±2.46 64.74±2.70 61.39±3.27
SGC 79.43±1.67 74.27±2.06 68.70±2.58 63.08±2.59 71.94±1.31 68.84±2.19 64.51±2.44 61.23±2.67
SAGE 80.33±1.31 77.20±1.90 73.79±2.70 71.39±2.74 72.68±1.25 72.29±0.52 70.40±1.05 67.97±2.31

RGCN 79.12±1.30 74.92±2.20 70.30±2.47 63.92±2.69 71.71±2.04 68.46±2.25 64.02±1.90 61.07±1.97
SVD 77.12±0.49 74.73±1.83 71.97±2.27 69.40±2.44 69.82±0.86 68.56±1.76 65.15±2.01 62.46±1.12
Jaccard 80.36±0.74 77.14±1.26 74.54±1.50 71.63±1.26 72.18±1.81 70.10±1.92 66.96±2.71 64.44±2.76
Guard 76.76±0.78 74.93±1.79 74.49±1.96 74.00±1.85 69.79±1.24 68.89±1.33 67.35±0.62 67.15±1.28
ProGNN 78.87±1.51 74.28±1.83 70.25±3.21 64.33±3.55 71.60±1.84 69.31±2.00 65.12±2.38 61.17±2.74
STABLE 81.68±0.73 80.09±0.38 79.20±1.00 77.58±1.53 74.33±1.08 73.95±0.74 73.32±1.14 72.50±0.88
EvenNet 83.40±0.96 80.80±0.63 78.36±1.10 75.14±1.79 74.08±1.02 72.97±1.19 70.95±1.71 69.40±1.14

GLNN 80.12±1.37 77.35±1.97 73.95±1.92 71.94±3.22 74.25±1.20 73.46±0.73 71.92±1.38 70.02±2.10
GLNNw2 80.22±1.56 77.31±1.87 74.14±3.10 71.90±3.18 74.44±1.51 73.67±0.36 72.13±1.36 70.11±2.75
GLNNw4 80.21±1.51 77.34±1.87 74.60±2.24 72.76±2.82 74.01±1.32 73.37±0.71 71.94±1.38 70.37±2.72

Prospect-SAGE 83.05±1.05 81.13±1.45 79.53±2.17 79.59±1.00 75.01±0.75 75.23±1.21 74.81±0.41 75.87±0.96
Prospect-MLP 82.87±1.05 80.72±1.63 79.27±2.33 78.64±0.77 75.31±1.18 75.15±0.98 74.79±0.64 75.47±1.10

Table 6: The full robustness results on ACM and CoraML. The mean and std over five splits are
reported. The top two performing models are highlighted in bold, with the best further underlined.

ACM (HR=0.821) CoraML (HR=0.784)

5% 10% 15% 20% 5% 10% 15% 20%

MLP 87.44±0.28 71.31±0.65
MLPw2 87.36±0.25 70.69±1.78
MLPw4 87.39±0.69 71.60±0.94

GCN 80.15±3.46 75.65±4.94 71.26±5.70 68.47±6.36 81.78±0.82 77.5±0.72 73.27±1.99 66.54±3.17
SGC 82.46±2.36 80.12±2.12 77.75±2.37 74.70±1.72 78.54±1.37 72.94±1.44 67.34±1.85 58.88±3.70
SAGE 86.18±2.35 85.38±3.07 84.70±3.48 83.57±3.637 83.09±0.70 81.08±0.85 79.00±1.57 76.67±2.07

RGCN 79.90±1.80 74.59±3.62 71.07±3.81 67.51±3.30 81.94±0.81 77.14±0.77 73.35±1.57 67.02±2.78
SVD 85.98±1.36 84.98±0.81 83.28±1.82 82.10±1.77 80.61±0.61 79.76±0.99 78.84±0.65 77.42±0.97
Jaccard 80.15±3.46 75.65±4.94 71.26±5.70 68.47±6.36 81.50±0.77 77.84±0.56 74.63±1.20 69.81±2.26
Guard 76.22±2.36 71.63±6.86 70.20±8.07 65.78±7.01 76.66±0.85 76.75±0.93 76.47±0.82 76.35±0.63
ProGNN 79.89±2.01 77.80±1.98 74.77±4.35 69.13±7.62 81.87±1.20 78.27±1.25 75.86±2.23 70.49±3.76
STABLE 82.61±1.73 78.02±3.23 75.78±4.79 72.03±4.78 82.54±0.38 81.13±0.91 79.58±1.27 76.55±3.21
EvenNet 88.09±1.31 87.99±1.57 88.34±1.84 87.82±1.51 85.55±0.38 83.88±0.50 82.69±0.92 80.35±1.61

GLNN 89.37±1.09 89.24±1.38 88.65±2.29 88.48±1.50 83.82±0.66 82.14±0.92 80.29±1.91 77.87±1.74
GLNNw2 90.29±1.05 90.11±1.56 89.31±1.41 88.84±1.83 84.19±0.69 82.46±1.01 80.43±1.90 78.31±1.89
GLNNw4 89.72±1.42 90.31±1.12 89.35±1.58 88.16±2.56 84.32±0.50 82.76±0.85 80.45±2.43 79.00±2.14

Prospect-SAGE 92.03±1.27 91.68±0.84 91.24±0.65 90.93±1.06 85.18±0.61 84.29±0.70 83.19±0.54 82.34±0.80
Prospect-MLP 92.12±0.60 91.74±0.93 91.31±0.59 91.12±1.01 85.17±0.63 84.33±0.74 83.82±0.66 82.28±0.56

settings; 8) flexible experiment monitoring and management. Once the paper is accepted, we will
release our preattacked datasets, codes, and hyperparameters.

G.2 MORE EXPERIMENT RESULTS

G.2.1 FULL ADVERSARIAL ROBUSTNESS RESULTS

The full adversarial robustness evaluation results on five homophilous and three heterophilous
graphs are shown in Tables 5, 6, 7, and 8. Since the MetaAttack provided by DeepRobust (Li
et al., 2021) encounters an unknown error when the attack budget is 20% and the random seed is 18
on UAI, we skip UAI-Meta-20.

30



Under review as a conference paper at ICLR 2024

Table 7: The full robustness results on Polblogs and Texas. The mean and std over five splits are
reported. The top two performing models are highlighted in bold, with the best further underlined.

Polblogs (HR=0.906) Texas (HR=0.061)

5% 10% 15% 20% 5% 10% 15% 20%

MLP 52.21±0.61 65.71±4.42
MLPw2 52.09±0.24 67.21±3.02
MLPw4 51.72±0.87 68.98±3.32

GCN 77.18±1.76 71.64±1.64 67.53±0.99 66.07±1.05 49.25±5.43 46.67±4.48 49.39±2.29 46.53±7.16
SGC 77.71±1.79 70.74±2.52 66.95±1.36 64.58±1.34 53.88±2.23 53.20±2.12 55.24±2.12 53.88±2.82
SAGE 90.39±0.66 82.60±1.31 77.34±3.74 73.31±2.74 62.99±3.39 63.67±3.35 64.35±2.99 65.31±3.33

RGCN 75.42±1.29 69.18±2.36 66.18±0.64 65.03±0.87 52.93±1.89 51.43±3.10 49.52±8.10 51.84±3.89
SVD 92.43±0.70 86.46±3.46 73.44±1.77 69.69±2.28 49.66±4.02 46.12±7.13 48.57±5.66 52.38±5.02
Jaccard 50.88±1.69 50.88±1.69 50.88±1.69 50.88±1.69 49.25±5.43 46.67±4.48 49.39±2.29 46.53±7.16
Guard 51.58±0.57 51.58±0.57 51.58±0.57 51.58±0.57 48.03±12.96 49.66±7.47 47.76±11.40 42.45±12.54
ProGNN 85.97±5.16 78.71±5.51 72.78±3.43 69.14±2.09 47.89±10.06 46.67±6.19 45.31±14.47 49.12±4.57
STABLE 92.80±2.38 86.28±4.17 88.55±0.38 88.55±0.38 52.27±2.82 51.47±3.00 50.52±3.24 47.91±7.55
EvenNet 87.04±1.45 94.68±0.45 68.06±1.50 64.05±1.25 62.45±2.70 66.26±2.95 63.27±2.85 63.13±3.95

GLNN 91.62±1.35 83.52±2.32 77.46±3.73 73.35±2.65 66.40±2.57 67.35±6.14 66.53±5.45 68.44±5.10
GLNNw2 91.55±1.11 83.37±2.59 77.14±3.98 73.21±2.85 66.67±2.93 67.62±6.17 66.12±5.49 69.66±4.82
GLNNw4 91.19±1.41 84.27±2.49 77.12±3.58 73.25±2.73 67.21±2.70 67.48±6.58 66.40±4.92 68.03±4.74

Prospect-SAGE 93.95±1.34 92.92±1.07 92.27±2.26 92.09±0.57 68.84±5.65 69.66±1.64 71.02±2.30 72.25±2.90
Prospect-MLP 93.99±0.76 94.01±0.59 93.95±0.34 93.21±0.56 72.11±2.06 74.01±2.90 73.20±1.53 73.61±2.99

Table 8: The full robustness results on Chameleon and UAI. The mean and std over five splits are
reported. The top two performing models are highlighted in bold, with the best further underlined.

Chameleon (HR=0.230) UAI (HR=0.364)

5% 10% 15% 20% 5% 10% 15%

MLP 42.65±0.86 61.74±2.11
MLPw2 42.91±0.48 64.13±1.40
MLPw4 41.08±2.05 62.71±1.91

GCN 36.30±3.98 31.70±3.28 28.91±1.56 27.39±1.95 56.72±4.68 55.47±3.56 54.22±3.17
SGC 34.92±3.12 29.78±2.42 27.39±3.31 27.26±3.30 58.78±3.34 58.42±3.69 56.52±2.64
SAGE 40.35±4.28 38.67±3.71 36.85±4.53 35.20±4.35 60.02±3.21 59.53±4.61 60.18±2.65

RGCN 37.53±3.77 31.43±1.62 29.57±2.52 28.34±2.29 49.89±2.85 50.00±3.249 48.40±2.74
SVD 39.36±2.03 32.22±4.23 29.66±2.41 28.42±2.19 48.65±1.14 47.24±1.53 44.87±1.18
Jaccard 41.16±1.51 40.76±0.63 36.71±2.63 37.97±0.96 54.08±4.18 51.99±8.29 50.64±2.69
Guard 39.55±2.19 38.61±2.26 36.88±1.57 36.13±1.51 20.28±10.99 18.26±3.07 20.36±8.27
ProGNN 37.20±1.93 31.92±3.20 29.78±3.06 28.77±2.74 49.22±5.22 46.25±3.99 38.43±11.55
STABLE 42.68±3.76 41.61±3.10 35.45±5.98 34.38±5.34 51.78±2.08 49.07±2.72 47.63±2.26
EvenNet 37.53±3.08 32.25±2.77 30.68±1.81 29.41±2.06 67.8±2.029 67.48±1.64 66.91±2.18

GLNN 39.00±3.12 36.99±3.40 37.14±3.91 35.57±4.10 62.46±2.91 62.64±3.18 62.02±2.00
GLNNw2 39.62±3.26 37.31±3.23 35.41±5.28 33.80±5.84 62.89±3.10 63.11±2.77 63.15±1.22
GLNNw4 39.20±3.31 37.59±3.18 35.57±5.12 34.75±5.02 62.62±2.39 62.62±3.21 62.75±1.99

Prospect-SAGE 47.89±0.69 46.30±1.80 46.27±1.16 45.69±1.04 69.86±0.58 69.06±0.50 69.52±0.46
Prospect-MLP 44.56±1.71 45.10±1.25 44.81±0.74 44.57±1.92 68.31±0.59 68.35±0.44 69.10±0.45

G.2.2 SOME ADDITIONAL OBSERVATIONS

We have some interesting observations from the adversarial robustness and clean accuracy exper-
iments. Observation 1: Remarkably, SAGE demonstrates robustness higher than some defense
methods. This likely stems from the root projection, i.e., the first term in Eq. 2, that can retain
clean node feature information, constraining poisoning from neighborhood aggregation affected by
the poisoned structure. Our observation agrees with Zhu et al. (2022) attributing robustness to sep-
arate root and neighborhood embedding operators. Observation 2: GLNNs with SAGE teachers
exhibit poisoning robustness approaching SAGE, as expected given their integration. Interestingly,
GLNNs even improve over teachers regarding adversarial robustness in many cases, e.g., by ˜2% on
Citeseer-Meta-20 (see Table 5). This may result from the expressive power gap between GNNs and
MLPs (Chen et al., 2021; Zhang et al., 2022), which makes the poisoned structure knowledge fail
to fully transfer, allowing MLPs to receive less poisoned structure knowledge. Observation 3: The
clean accuracy gains of PROSPECT over standalone models, while present, are less pronounced
than robustness improvements. As shown by Tables 2, 5, 6, 7, and 8, Prospect-MLP and Prospect-
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(a) CoraML-Meta-20 (b) Polblogs-Meta-20

Figure 7: Acc. vs. inference speed in the production setting. The x-axis is logarithmically scaled.

(a) Texas-Meta-20 (b) ACM-Meta-20

Figure 8: Acc. vs. inference speed in the production setting. The x-axis is logarithmically scaled.

SAGE improve less significantly over MLP and SAGE on clean graphs than attacked graphs. This
aligns with Theorem 1 in the sense that the Prospect Condition of higher MLP ground-truth proba-
bility is less frequently met on clean graphs, limiting distillation benefits. But on attacked graphs,
the degraded accuracy of SAGE makes satisfying Prospect Condition more easily, enabling more
corrections from MLP-to-GNN distillation.

G.2.3 INFERENCE SETTING & ADDITIONAL RESULTS OF INFERENCE SPEED COMPARISON

The semi-inductive setting is introduced in Appendix G.1. Following Zhang et al. (2022), for test
nodes, 80% of them are for transductive testing, and 20% for inductive testing where the inductive
nodes and their edges are withheld during training on the observed graph Gobs = (Aobs,Xobs).
And the full graph G = (A,X) is only accessible at test time. We first attack the full graph with
MetaAttack to get Ĝ =

(
Â,X

)
and then hold out the elements associated to inductive nodes to

get the observed training graph Ĝobs =
(
Âobs,Xobs

)
. We train models on Ĝobs supported by

VL∪Vval ∪Vtrans
test and test on Ĝ supported by VL∪Vval ∪Vtrans

test ∪Vind
test across all inference speed

experiments. Though the GNNs in most defense methods are transductive and hence not naturally
suitable for semi-inductive tasks, only ProGNN and RGCN completely violate such semi-inductive
setting: ProGNN purifies Ĝobs during training, unusable for unseen inductive test nodes; RGCN
learns feature distributions for involved nodes during training, restricting robust inference to the
observed nodes in Ĝobs. Excluding ProGNN and RGCN, we report the overall accuracy on Vtrans

test ∪
Vind
test versus the inference latency for 10 nodes on Cora/Citeseer/CoraML/Polblogs/Texas/ACM-

Meta-20 in Figures 2, 7, and 8.
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