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Abstract

Data assimilation (DA) aims to estimate the full state of a dynamical system
by combining partial and noisy observations with a prior model forecast, com-
monly referred to as the background. In atmospheric applications, this problem
is fundamentally ill-posed due to the sparsity of observations relative to the high-
dimensional state space. Traditional methods address this challenge by simplifying
background priors to regularize the solution, which are empirical and require con-
tinual tuning for application. Inspired by alignment techniques in text-to-image
diffusion models, we propose Align-DA, which formulates DA as a generative
process and uses reward signals to guide background priors—replacing manual
tuning with data-driven alignment. Specifically, we train a score-based model in
the latent space to approximate the background-conditioned prior, and align it
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using three complementary reward signals for DA: (1) assimilation accuracy, (2)
forecast skill initialized from the assimilated state, and (3) physical adherence of
the analysis fields. Experiments with multiple reward signals demonstrate con-
sistent improvements in analysis quality across different evaluation metrics and
observation-guidance strategies. These results show that preference alignment,
implemented as a soft constraint, can automatically adapt complex background
priors tailored to DA, offering a promising new direction for advancing the field.

1 Introduction

Data assimilation (DA) estimates the posterior state of a dynamical system by integrating prior model
forecasts xxxb (background) with observations yyy [1, 2, 3]. However, in practical applications, the
number of observations is often much smaller than the dimensionality of the model state, making DA
an underdetermined probabilistic problem—multiple plausible states can equally explain the same set
of observations. This inherent ambiguity raises a fundamental question: what defines a good analysis
for DA, and how can it be reliably obtained in the face of such uncertainty?

In atmospheric science, data assimilation (DA) provides accurate initial conditions that are essential
for reliable weather forecasting. It is also used to generate high-fidelity reanalysis datasets, which
serve as a fundamental resource for climate research [1, 2, 4]. The quality of atmospheric analysis
is commonly evaluated based on three criteria: accuracy, downstream forecast performance, and
adherence to physical constraints. Over decades of development, modern atmospheric DA has adopted
a Bayesian inference framework, typically modeling the background-conditioned prior p(xxx|xxxb) as
a Gaussian distribution with empirically constructed covariance [5, 3, 6, 7, 8]. To ensure the
analysis satisfies these criteria, operational systems depend on extensive parameter tuning-adjusting
correlation length scales in variational methods [9], calibrating localization and inflation in ensemble
Kalman filters [10], and modifying ensemble weights in hybrid approaches [11, 12]. While these
traditional approaches have proven effective, they are often computationally inefficient and labor-
intensive. The remarkable success of machine learning in medium-range weather prediction [13,
14, 15, 16, 17] has spurred a growing interest in ML-based DA [18, 19, 20, 21, 22] as a core
component of end-to-end forecasting systems [23, 24, 25]. However, current ML approaches face a
fundamental limitation: they lack explicit mechanisms to incorporate domain-specific knowledge,
especially physical constraints [25, 26, 27]. While some studies have applied reinforcement learning
to data assimilation for the above challenge, these approaches typically frame DA as a sequential
decision-making problem [28, 29, 30], which is challenging for direct application to large-scale,
high-dimensional systems like global weather [31, 32].

To this end, we propose Align-DA, a novel framework that aligns DA analyses with key preferences
in atmospheric applications using reinforcement learning. It is the introduction of a new paradigm
shift for DA, replacing the manual, experience-driven tuning process with a preference alignment-
based framework, which becomes the core contribution of this paper. Instead of a new predictive
model architecture, we propose a pluggable alignment module designed to enhance any score-
based DA method, enabling it to satisfy complex domain preferences that are difficult to model
directly. Specifically, we model the background-conditioned prior distribution p(xxx|xxxb) directly using
a diffusion model and incorporate observations via guided sampling to approximate the posterior
p(xxx|xxxb, yyy) [33]. Inspired by alignment techniques in diffusion-based image generation, we further
refine the pretrained diffusion model via direct preference optimization (DPO) [34] using domain-
specific reward signals tailored for atmospheric DA. As illustrated in Figure 1, this alignment process
makes the posterior p(xxx|xxxb, yyy) more focused, effectively narrowing the solution space and enabling
better analysis and forecast performance.

Given the high dimensionality of global atmospheric states, we implement the Align-DA framework
in a latent space learned via a variational autoencoder (VAE). Here, we consider three complementary
reward metrics: assimilation accuracy, forecast skill, and physical adherence. Our experiments reveal
two critical insights: 1) Joint optimization across all reward signals leads to consistent improvement
in various score-based DA implementations, and 2) adjusting the reward composition allows the DA
analysis to adapt to different downstream tasks. These results demonstrate the effective integration
of prior knowledge through soft-constrain DPO, which opens a new avenue for enhancing DA.
Moreover, our framework supports flexible reward design, making it adaptable to a wide range of DA
scenarios. Our contributions are outlined as follows,
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• Novel RL-driven DA framework: We propose Align-DA, a pioneering reinforcement
learning-based DA framework that replaces empirical tuning with preference alignment and
consistently improves analysis and forecast performance across score-based methods.

• Soft constrain DA formalism: The proposed framework enables the incorporation of
implicit or hard-to-model constraints (e.g., forecast performance, geostrophic balance)
through soft, reward-based alignment, offering a flexible new avenue for enhancing DA.

2 Related work

Traditional data assimilation. Traditional DA methods are fundamentally grounded in Bayesian
inference, aiming to estimate the posterior distribution p(xxx|xxxb, yyy), which is proportional to
p(yyy|xxx)p(xxx|xxxb). The most widely used variational and ensemble Kalman filter methods typically as-
sume that both the prior p(xxx|xxxb) and observation errors p(yyy|xxx) follow Gaussian distributions [3, 5, 6].
Taking variational methods as an example, the analysis state is obtained by maximizing the poste-
rior probability p(xxx|xxxb)p(yyy|xxx), which is equivalent to minimizing the following cost function in a
three-dimensional DA scenario:

J(xxx) =
1

2
(xxx− xxxb)

T B−1(xxx− xxxb) +
1

2
(yyy −Hxxx)T R−1(yyy −Hxxx) . (1)

where B and R denote the background and observation error covariance matrices, respectively.H
represents the observation operator. For numerical weather prediction systems, the dimensionality of
B can reach 1014, making its estimation and storage computationally intractable. Consequently, B is
often simplified and empirically tuned based on the quality of the resulting analysis and the forecasts
initialized from it. Recent advances in latent data assimilation (LDA) [35, 36, 37, 38] enable more
efficient assimilation in a compact latent space. LDA also alleviates the challenge of estimating B,
but still relies on empirical tuning.

Score-based data assimilation (SDA). The emergence of diffusion models [39, 40, 41] has enabled
new approaches to data assimilation through their ability to approximate complex conditional dis-
tributions p(xxx|xxxb, yyy). Existing approaches primarily differ in how they incorporate the background
state and observations into the diffusion process. Rozet et al. [42] and Manshausen et al. [43] treat
observations as guidance signals during the reverse diffusion process but omit the background prior,
which may lead to suboptimal performance in scenarios with sparse or noisy observations. Huang et
al. [33] train a diffusion model conditioned on the background state and incorporate observations via
a repainting scheme during sampling; however, this approach struggles to handle complex, nonlinear
observation operators such as satellite radiative transfer. Qu et al. [44] encode both the background
and observation into a joint guidance signal, but their method is restricted to specific observation
distributions, limiting its applicability in general DA settings. Furthermore, current approaches
leave two critical challenges unaddressed: (i) they lack explicit mechanisms to enforce assimilation
accuracy and forecast skill during optimization, and (ii) the incorporation of physical law remains
unexplored.

The alignment of the score-based model. Our work presents the first attempt to enhance prior
knowledge encoding in score-based data assimilation and embed the physical constraints through
preference alignment in a soft style, drawing inspiration from recent advances in diffusion model
optimization. In the text-to-image domain, following the success of RLHF in language models [45],
recent work [46, 47, 48] has demonstrated the potential of fine-tuning diffusion models via reward
models that capture human preferences [49, 50, 51, 52, 53]. Seminal works by Black et al. [46] and
Fan et al. [49] pioneered the formulation of discrete diffusion sampling as reinforcement learning
problems, enabling policy gradient optimization, though their approaches faced challenges with com-
putational efficiency and training stability. The field advanced significantly with Diffusion-DPO [54],
which adapted Direct Preference Optimization [55] to align diffusion models with human prefer-
ences through image pairs. Subsequent innovations like DSPO [56] introduced direct score function
correction, while remaining limited to single-preference alignment. Most recently, breakthroughs
such as Capo [57] and BalanceDPO [58] have established multi-preference alignment frameworks
- though their application to data assimilation remains unexplored. In the DA context, evaluations
traditionally focus on three key metrics: assimilation accuracy, forecast skill, and physical adherence
of analyses. Our Align-DA framework uniquely bridges these domains by extending and adapting
multi-preference alignment techniques to simultaneously optimize this triad of DA objectives through
differentiable reward signals.
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3 Method

3.1 The score-based model and data assimilation

The score-based model employs forward and reverse stochastic differential equations (SDEs) [40].
The forward SDE progressively adds noise to data distribution p0(xxx) through:

dxxx = f(xxx, t)dt+ g(t)dwww, (2)

while the reverse-time SDE removes noise:

dxxx = [f(xxx, t)− g(t)2∇xxx log pt(xxx)]dt+ g(t)dw̄ww. (3)

Here, f(xxx, t) and g(t) control the drift and diffusion, with www, w̄ww both being the standard Wiener
processes. The perturbation kernel follows p(xxxt|xxx) ∼ N (µ(t), σ2(t)III), where we adopt a variance-
preserving SDE with cosine scheduling schedule for µ(t) [42]. The score function ∇xxx log pt(xxx)
can be estimated by a neural network sssθθθ(xxx, t) via minimizing the denoising score matching loss
Lt ≡ Ep(xxxt)||sssθθθ(xxx, t)−∇xxx log pt(xxx|xxx0)||2 [40]. Once trained, samples are generated by solving the
reverse SDE using the learned score estimate sssθθθ(xxx, t) ≈ ∇xxx log pt(xxx).

In SDA, we aim to sample the analysis field through x = argmaxx p(x|xb,y). Following the
variational DA approaches, the posterior score function can be decomposed into two components:

∇xxxt
log p(xt|xb,y) = ∇xxxt

log p(x|xb) +∇xxxt
log p(y|xt)

= sssθθθ(xxxt,xxxb) +∇xxxt
log p(y|xt). (4)

The first term represents a conditional score function of p(x|xb), leveraging the expressive-
ness of diffusion models to learn complex prior distributions of analysis fields directly from
data. The observation-associated score function is called guidance, enforcing observational con-
straints. In DiffDA [33], the repainting technique is used to approximate this guidance. While
DPS Guidance [34] retains the observation Gaussian likelihood assumption in variational DA:
p(y|xt) ∼ N (y|H(x̂xx0(xxxt),RRR), where

x̂xx0(xxxt) =
xxxt + σ(t)2∇xxxt

log p(xxxt|xxxb)

µ(t)
≈ xxxt + σ(t)2sssθθθ(xxxt,xxxb)

µ(t)
(5)

is the posterior mean given by Tweedie’s formula diffusion model [41].

3.2 The observation guidance methods in latent space

Direct SDA in high-dimensional atmospheric model space poses significant computational challenges.
To overcome this, we employ VAE to compress physical fields into low-dimensional manifolds [59,
60] and perform data assimilation within this reduced latent space. Our framework first trains a
score-based model to learn the background conditional prior p(z|zb). For observation integration,
we adapt two guidance approaches to the latent space.

The score function decomposition forms the foundation for our latent DPS guidance approach:

∇zzzt
log p(zt|zb,y) ≈ sssθθθ(zzzt, zzzb) +∇zzzt

log p(y|zt), (6)

where the observation term is assumed Gaussian p(y|zt) ∼ N (H(D(ẑzz0(zzzt)),RRR). Similar to Equa-
tion 5, ẑzz0 = (z̃t + σ2(t)∇zzzt

log p(zzzt|zzzb))/µ(t) is the posterior mean. The D(·) denotes the decoder
of VAE. Assuming the z̃t is the denoised latent at reverse time t, latent counterpart of DPS guidance
is formulated as:

zt = z̃t + ζ∇zt log p(y|zt)

= z̃t −
1

2
ζ∇z̃t(yyy −H(D(ẑzz0))

TRRR−1(yyy −H(D(ẑzz0)), (7)

where ζ is the guidance scale. We also implement a latent-space adaptation of Repaint techniques [33].
We first sample the observation-informed latent zzzobst ∼ N (µ(t)E(xxx), σ2(t)III) with noise, where xxx
is the ERA5 truth state. Then, we fuse the observation information and background prior through
masked composition in the physical space:

zzzt−1 = E
(
m⊙D(zzzobst ) + (1−m)⊙D(z̃zzt)

)
, (8)

where m is a spatial mask indicating observed regions and E(·) is the VAE encoder.
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Figure 1: Schematic of Align-DA. Conventional score-based DA learns a background-conditioned
diffusion model to approximate a broad prior distribution p(xxxtruth | xxxb), which, after incorporating
observations, yields a posterior estimate p(xxxtruth | xxxb, yyy) that may be overly dispersed (left). Align-DA
leverages reward-guided alignment to adaptively refine and concentrate the prior palign(xxxtruth | xxxb),
resulting in a posterior palign(xxxtruth | xxxb, yyy) that better reflects observational constraints and more
closely aligns with the requirements of DA (right).

3.3 The diffusion preference optimization.

The preliminary stage of SDA establishes conditional priors for potential analysis fields. However,
empirical evidence reveals substantial deviations between these prior estimates and the true analysis
fields [33, 43], indicating significant room for prior knowledge refinement. Furthermore, traditional
data assimilation approaches and existing AI-assisted variants face inherent challenges in enforcing
physical adherence constraints through conventional knowledge embedding [18, 19, 20, 21]. Rec-
ognizing these dual challenges of unreliable prior knowledge estimation and inadequate physical
adherence enforcement, we propose a novel soft-constraint framework on the basis of diffusion pref-
erence optimization (Diffusion-DPO) [54], extending its recent success in text-to-image generation
to atmospheric data assimilation.

The reward finetuning, seeking to maximize the expected reward r(xxx, c) while maintaining proximity
to the reference distribution pref via KL regularization [61]:

max
θ

Ec,x0∼pθ
[r(xxx0, c)]− βDKL(pθ(·|c) ∥ pref(·|c)), (9)

where β modulates the regularization strength. Following the Bradley-Terry preference model [62, 45],
one can construct the reward signal through pairwise comparisons:

pBT(xxx
w
0 ≻ xxxl

0|c) = σ(r(xxxw
0 , c)− r(xxxl

0, c)), (10)

with the reward model trained via negative log-likelihood minimization:

LBT(r) = −E(c,xxxw
0 ,xxx

l
0)
[
log σ(r(c,xxxw

0 )− r(c,xxxl
0))
]
, (11)

where xxxw
0 and xxxl

0 are the generated “winning” and “losing” samples with condition c. In this work,
the “winning” and “losing” samples are selected across multi-rewards (see details in Section 4.2).

The analytical solution of Equation 9, p∗(xxx0|c) ∝ pref(xxx0|c) exp
(

1
βR(xxx0, c)

)
, yields the direct

preference optimization objective:

L(θ) = − log σ

(
β

[
log

pθ(xxx
w
0 |c)

pref(xxxw
0 |c)

− log
pθ(xxx

l
0|c)

pref(xxxl
0|c)

])
, (12)

making it bypass the reward model training.

To circumvent intractable trajectory-level computations when adopting the DPO for the diffusion
model, DiffusionDPO [54] decomposes the trajectory-level DPO loss into the following step-wise
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form:

LDiff-DPO = −E(xxxw
t−1,xxx

w
t ,xxxl

t−1,xxx
l
t)

[
log σ

(
β log

pθ(xxx
w
t−1 | xxxw

t , c)

pref(xxxw
t−1 | xxxw

t , c)
− β log

pθ(xxx
l
t−1 | xxxl

t, c)

πref(xxxl
t−1 | xxxl

t, c)

)]
,

(13)

where xxxw
t and xxxl

t are the noised xxxw
0 and xxxl

0, respectively. Finally, through noise prediction network
reparameterization, the implementable training objective can be derived:

L(θ) = −E(xw,xl)∼D t∼(0,1) ϵw,ϵl∼N (0,III)

[
log σ

(
−βTω(λt)

(
∆ϵ

θ(x
w
t , ϵ

w)−∆ϵ
θ(x

l
t, ϵ

l)
))]

, (14)

where ∆ϵ
θ(xt, ϵ) = ∥ϵ − ϵθ(xt, t)∥22 − ∥ϵ − ϵref(xt, t)∥22 quantifies the deviation of learned noise

patterns from reference behaviors. With such refinement, the diffusion model is aligned to specific
preferences.

4 Experiments

4.1 Experimental Settings and Evaluations

The background-conditioned model training and sampling We introduce an integrated approach
for background ObsFree distributions modeling that combines latent space learning with ObsFree
diffusion processes. The framework employs a two-stage architecture beginning with a transformer-
based VAE [63] that reduces input dimensionality by 16× (processing high-resolution field data
69 × 128 × 256 into compressed latent codes 69 × 32 × 64) (see Appendix B for details). The
second stage implements an ObsFree latent diffusion model that learns the mapping p(zzz|zzzb) through
stacked transformer blocks [64]. The model utilizes (2,2) patch tokenization and integrates ObsFree
information from background latent zzzb via cross-attention. We adopt a variance-preserving diffusion
process [40] with cosine noise scheduling and train the model using a fixed learning rate of 1e− 4
(batch size 32), observing stable convergence over 100K training iterations. For ObsFree sampling,
we implement a hybrid strategy combining 128-step ancestral prediction with two rounds of Langevin-
based refinement, enhancing sample fidelity while maintaining computational efficiency [39, 43, 42].

Experimental setting Our data assimilation framework employs the FengWu AI forecasting
model [65] (6-hour temporal resolution) to generate background fields. The 48-hour background
fields are created through 8 auto-regressive 6-hour forecasts initialized from ERA5 data [4] two
days prior. Observational data is simulated by applying random masking to ERA5 ground truth with
99% sparsity, approximating realistic satellite observation coverage patterns. The spatial resolution
is 1.40625° (128 × 256 grid). Here, the FengWu AI forecasting model serves as a fixed (frozen)
background generator for all DA methods, including our proposed methods and the baselines. This
ensures a fair and controlled comparison.

4.2 The preference dataset construction

In the standard practice of RL-based post-training, a preference dataset is typically required [57,
54, 45]. In this paper, our preference dataset is constructed by generating candidate analysis fields
latent given background condition from the pre-trained reference model p(zzz | zzzb). To address the
multi-preference nature of data assimilation—where single-step assimilation accuracy, forecast skill,
and physical adherence are distinct objectives—we adopt a holistic evaluation framework. For a
batch of N -generated analysis latents, each sample is decoded into the analysis field xxxa and evaluated
across three rewards:

• Assimilation Accuracy: The latitude-weighted root mean square error (WRMSE) [66, 67]
between xxxa and ERA5 ground truth is computed for all 69 variables. The reward for the
n−th sample is derived as the average pairwise comparison across variables:

Rassim(n) =
1

N − 1

∑
j ̸=n

1

69

m=69∑
m=1

p(xxxm
n ≻ xxxm

j ), (15)

where the Bradley-Terry preference model is applied at variables level p(xxxm
n ≻ xxxm

j ) =
σ(−wrmse[n][m] + wrmse[j][m]), and wrmse[n][m] is the WRMSE of m−th variable in
n−th sample.
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Figure 2: Visualization of Align-DA Assimilation Performance for Z500 Analysis. (10 averaged
analysis with randomly selected timestamp in 2019) ‘ObsFree’ means without observation integration
baseline. ‘Repaint’ and ‘DPS’ represent repaint and diffusion posterior sampling guidance methods.
Note that ‘-P’ indicates single physical reward alignment, while ‘-M’ signifies multi-reward alignment.
First row: Reference fields showing ERA5 reanalysis (ground truth denoted as GT), background
field, and observational data. Second row: Error reduction through single physical reward alignment,
quantified as |xxxref

a − xxxGT| − |xxxAlign-P
a − xxxGT|. Warm hues indicate regions where physical adherence

alignment moderately improves accuracy, suggesting potential reward correlations. Third row: Error
reduction through multi-reward alignment, quantified as |xxxref

a −xxxGT|− |xxxAlign-M
a −xxxGT|. More intense

warm hues indicate regions where multi-reward alignment substantially improves accuracy compared
to the unaligned baseline. The attenuation of color intensity from left to right columns demonstrates
diminishing DPO effects as more effective observation guidance methods are applied - a pattern
consistent with theoretical expectations.

• 48-hour Forecast Skill: In this metric, FengWu acts as both an evaluator and a reward
source. After each DA method produces an analysis field, we use FengWu to run a 48-hour
forecast. The forecast RMSEs relative to ERA5 are computed, yielding a forecast preference
score Rforecast. A critical distinction of Align-DA is that while baseline methods can be
evaluated by FengWu, they lack any mechanism to internalize this feedback to improve their
generative process. In contrast, our Align-DA framework is explicitly designed to learn
from this feedback, which is the core of its innovation.

• Physical adherence: To demonstrate the effectiveness and flexibility of our framework in
aligning with physical knowledge, we incorporate reward mechanisms based on two primary
examples of atmospheric principles: geostrophic wind balance and hydrostatic balance (see
the Appendix F). The geostrophic wind components [68] are defined as:

uuug = − 1

f

∂Φ

∂y
, vvvg =

1

f

∂Φ

∂x
, (16)

where f denotes the Coriolis parameter and Φ represents the geopotential. We quantify
atmospheric field deviations using the metric: D = 1

2

(
|uuu−uuug|

|uuu| +
|vvv−vvvg|

|vvv|

)
. We acknowledge

that perfect balance is an idealized approximation. We therefore establish the ERA5 truth
deviation DGT as our reference benchmark. The final physical adherence score (Rphys) for
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Table 1: Assimilation accuracy gains of alignment strategies under 1% observation. Percentage
values quantify relative accuracy variants compared to the non-aligned baseline for multi-reward
experiments.

MSE MAE WRMSE
u10 v500 z500 t850

ObsFree 0.0643 0.1382 1.5275 2.7467 104.5531 1.0897
Align-ObsFree-P 0.0645 0.1385 1.5331 2.7501 103.1857 1.0896
Align-ObsFree-M 0.0611(−5.44%) 0.1348(−2.46%) 1.4942(−2.23%) 2.7202(−0.97%) 96.8603(−7.94%) 1.0866(−0.28%)

Repaint 0.0623 0.1368 1.5009 2.7027 103.3036 1.0911
Align-Repaint-P 0.0624 0.1369 1.5063 2.7047 101.9634 1.0904
Align-Repaint-M 0.0598(−4.12%) 0.1344(−1.78%) 1.4759(−1.69%) 2.6836(−0.71%) 96.8906(−6.62%) 1.0889(−0.20%)

DPS 0.0609 0.1337 1.4441 2.5972 93.4654 1.1159
Align-DPS-P 0.0612 0.1342 1.4514 2.6069 92.4301 1.1184
Align-DPS-M 0.0593(−2.65%) 0.1317(−1.51%) 1.4187(−1.78%) 2.5800(−0.66%) 88.4235(−5.70%) 1.1100(−0.53%)

Table 2: 48-hour forecast skill gains of alignment strategies under 1% observation.

MSE MAE WRMSE
u10 v500 z500 t850

ObsFree 0.1146 0.1918 2.1182 4.1571 232.6243 1.4826
Align-ObsFree-P 0.1151 0.1923 2.1203 4.1623 232.5924 1.484
Align-ObsFree-M 0.1080(−6.12%) 0.1872(−2.47%) 2.0965(−1.03%) 4.1091(−1.17%) 225.7758(−3.03%) 1.4636(−1.30%)

Repaint 0.1123 0.1898 2.0899 4.1030 228.2876 1.4672
Align-Repaint-P 0.1127 0.1902 2.0912 4.1067 228.1765 1.4677
Align-Repaint-M 0.1068 (−5.12%) 0.1860(−2.04%) 2.0713(−0.90%) 4.0665(−0.90%) 222.9336(−2.40%) 1.4516(−1.07%)

DPS 0.0969 0.1757 1.9230 3.7675 193.4167 1.3564
Align-DPS-P 0.0972 0.1761 1.9275 3.7760 193.4700 1.3599
Align-DPS-M 0.0943(−2.74%) 0.1734(−1.30%) 1.9070(−0.84%) 3.7287(−1.04%) 189.6935(−1.96%) 1.3428(−1.01%)

a given principle (yielding a Geo-Score) is then computed as:

Rphys = 2 · σ
(
−|Di −DGT |

DGT

)
, (17)

where σ(·) denotes the sigmoid function. This formulation ensures that generated fields
closer to the ERA5 ground truth receive higher scores, with the theoretical maximum score
of 1 corresponding to perfect agreement with observational data.

To rigorously validate our Align-DA framework, particularly examining the impact of RL-driven
physical knowledge embedding and the trial-and-error-free formalism, we construct two distinct
preference datasets: a physical adherence reward dataset (i.e. focusing on Geo-Score) and a multi-
reward comprehensive set. Both datasets are constructed through systematic sampling of N = 32
instances from the pre-trained diffusion model’s output space.

For the physical adherence reward dataset, we define winning samples as top-5 performers in
Geo-Score, while bottom-5 instances are assigned to the losing group. The comprehensive dataset
employs multi-dimensional reward ranking, where winning samples occupy the top decile across
all three reward dimensions, with losing counterparts drawn from the bottom decile. To ensure
statistical robustness and prevent sampling bias, we implement stratified random pairing with duplicate
elimination through hash-based filtering [69]. Our dataset construction leverages 2018 experimental
records, yielding a carefully curated 4,000-pair corpus for model fine-tuning. The optimization
employs KL regularization (β = 8000), a batch size of 32, and a learning rate of 1e− 5, with model
checkpoints saved after 500 fine-tuning steps.

4.3 Results

We evaluate our framework through two distinct experimental paradigms: single physical adher-
ence reward optimization on the physics reward dataset and multi-reward optimization on the
comprehensive dataset. For observation integration, we implement three established methodolo-
gies [33, 43]: 1) ObsFree - an observation-free baseline model, 2) Repaint - the standard repainting
technique, also known as inpainting, and 3) DPS - diffusion posterior sampling guidance (detailed
in Section 3.2). Model variants are denoted through suffix conventions: -P indicates single phys-
ical reward alignment, while -M signifies multi-reward alignment. For instance, Align-DPS-P:
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Physical adherence reward aligned model with DPS guidance, Align-ObsFree-M: Multi-reward
aligned model without observation integration, Repaint: reference model with repaint integration.

Figure 3: Interaction between observation constraints and
alignment. Better incorporation of observation information (i.e.,
stronger constraints) leads to a narrower space for improvement
by the alignment process.

Posterior analysis improve-
ment. Table 1 presents quan-
titative comparisons of poste-
rior analysis accuracy across
different alignment approaches.
For each observation integration
method, we evaluate three con-
figurations: the reference model
with no reward alignment, single-
physics-reward-aligned model (-
P), and multi-reward-aligned
model (-M). We report compre-
hensive metrics including over-
all MSE, MAE, and variable-
specific WRMSE scores, accompanied by percentage improvements relative to the reference baseline.

Multi-reward alignment consistently outperforms the unaligned model, demonstrating the benefit
of directly optimizing for assimilation accuracy. For instance, Align-ObsFree-M reduces overall
WRMSE by 5.44%, indicating that multi-objective reward signals lead to tighter posteriors and more
accurate reconstructions.

In contrast, single-reward alignment shows mixed results—Align-Repaint-M reduces MSE by 4.12%,
but its single-reward version (-P) slightly worsens performance (+0.2%), indicating that physics alone
is insufficient for DA tasks. Nevertheless, Align-DPS-P improves Z500 WRMSE across both Repaint
and ObsFree settings, illustrating the localized efficacy of enforcing geostrophic balance. Collectively,
these findings underscore the importance of reward formulation: while task-specific objectives are
essential for global accuracy, domain-specific physical constraints can provide targeted gains. Multi-
signal alignment thus offers a more robust and generalizable mechanism for incorporating scientific
priors into generative DA.

Visualization of analysis improvement. Figure 2 provides a spatial evaluation of reward alignment
strategies using Z500 as a diagnostic field. The first row illustrates a representative sample of the
ERA5 reanalysis ground truth (GT), background field, and the sparse observations utilized for DA.
The second row quantifies error reduction achieved through single physics reward alignment while
the third row extends this analysis to multi-reward alignment. The results indicate that the single
physical reward consistently improves Z500 across different guidance settings, possibly due to its
implicit embedding within the geostrophic wind balance equations. Moreover, the multi-reward
strategy yields more substantial improvements than the single reward alone, highlighting the enhanced
effectiveness of preference alignment in improving assimilation quality.

Forecast skill improvement. Table 2 reports 48-hour forecast performance across different align-
ment strategies under 1% observation, showing a trend consistent with their effects on analysis.
Multi-reward alignment consistently outperforms the baseline across metrics and variables. More
importantly, the improvements achieved at analysis time are not only preserved but often amplified
in the forecast. For instance, Align-Repaint-M improves analysis MSE by 4.12%, while its 48-hour
forecast MSE drops by 5.12%, indicating that aligned states provide more reliable initial conditions
for downstream prediction. In contrast, physical-reward-only alignment (–P), which focuses solely
on geostrophic balance, continues to yield negligible or even adverse forecast gains. These results
highlight the importance of explicitly optimizing for analysis and forecast objectives rather than
relying solely on physical priors.

Alignment benefits fade with strong observational constrain. The results above demonstrate
that, under well-designed reward signals, preference alignment consistently improves both posterior
analysis and forecast skill. However, the magnitude of improvement varies across observation
incorporation schemes. The observation-free baseline gains the most from alignment, followed by
Repaint, while DPS shows the least benefit.

This can be explained by the overlapping effects of observational constraints and preference alignment
(Figure 3). The observation-free setting performs sampling without incorporating observational
guidance, allowing greater flexibility for reward-based alignment to shape the posterior distribution.
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In contrast, DPS imposes the strongest observational constraints—as evidenced by its superior
baseline performance in Table 1—leaving limited room for further improvement through alignment.

Figure 4: Geo-Score comparisons across align-
ment strategies: (a) Reference model, (b) Multi-
reward aligned (-M), and (c) Single physical ad-
herence reward aligned (-P) results, with colors
denoting different guidance methods.

Physical adherence improvement. In this
study, we endeavor to enhance physical ad-
herence by employing an alignment technique
implemented as a soft constraint, utilizing
geostrophic wind balance as a reward signal.
Figure 4 presents the Geo-Score, demonstrating
that while multi-reward alignment (incorporat-
ing physical adherence reward) yields broad im-
provements across all guidance methods (e.g.,
from 93.85 to 94.19), optimizing solely with the
Geo-Score reward achieves more pronounced
enhancements in this specific physical metric
(e.g., from 93.85 to 95.00). We acknowledge,
however, that a slight degradation in overall as-
similation accuracy and forecast skill was ob-
served when only the physical adherence reward
was applied. As demonstrated in Appendix E,
the performance change of its single-reward ver-
sion (-P) yields statistically insignificant, sug-
gesting that geostrophic balance alone is insufficient for DA tasks. Nevertheless, the significant
Geo-Score improvement substantiates the efficacy of alignment techniques in enhancing physical
consistency, highlighting the promising direction of this approach and underscoring the importance
of refining physical reward design in future work.

5 Conclusion

This work presents Align-DA, a novel reinforcement learning framework that introduces soft-
constraint alignment as a new paradigm for advancing DA. Unlike traditional approaches relying
on empirical tuning or hard physical constraints, our method reformulates DA as a preference
optimization problem, enabling the flexible integration of domain knowledge through differentiable
reward signals. By refining a diffusion-based prior with DPO, the framework effectively narrows the
solution space while maintaining adaptability to diverse atmospheric constraints (analysis accuracy,
forecast skill, and physical consistency). The error reduction and physical enhancement after
alignment demonstrate the efficacy of our alignment framework. While our results are promising,
we acknowledge a key limitation of the current approach, which operates in a learned latent space.
This is due to the low-dimensional manifold assumption, which makes it inherently difficult for the
model to capture rare, outlier events such as extreme weather. Nevertheless, Align-DA establishes
soft-constraint DPO as a scalable and generalizable alternative to conventional DA formalisms,
where implicit or complex prior knowledge (e.g., forecast skill, geostrophic balance) can now be
incorporated without restrictive assumptions.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clarify our contributions in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in the paper.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] ,

Justification: We provide the full proof for any theoretical results in the main content or the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental settings for reproductivity.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We train our model on ERA5, an open dataset. The detailed settings are fully
clarified in our paper. We provide our code in the supplement material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The complete experimental settings, including the dataset, hyperparameters,
type of optimizer, etc, are provided in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper performs a suitable statistical significance analysis to ensure the
improvements are statistically significant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The sufficient information on the computer resources is provided in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We perform this work following the NeurIPS Code of Ethics exactly.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work discusses RL-driven data assimilation, not involving societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not involve such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers or websites that produced the code or dataset are properly
cited and we use an open-source dataset for our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code in the paper is well documented and the documentation is provided
alongside the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [No]
Justification: The paper has no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset and Evaluations

Dataset Our experiments employ the European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis (ERA5) [4] as the primary dataset for model development and
validation. The inputs consist of a comprehensive set of meteorological variables, including 5
upper-air atmospheric variables (geopotential z, temperature t, specific humidity q, zonal wind u,
and meridional wind v) with 13 pressure level (50hPa, 100hPa, 150hPa, 200hPa, 250hPa, 300hPa,
400hPa, 500hPa, 600hPa, 700hPa, 850hPa, 925hPa, and 1000hPa), four surface-level measurements
(10-meter zonal component of wind (u10), 10-meter meridional component of wind (v10), 2-meter
temperature (t2m) and mean sea level pressure (msl)). This configuration yields a total of 69 distinct
meteorological variables. We follow ECMWF’s standard nomenclature (e.g., q500 for specific
humidity at 500 hPa). The temporal coverage spans four decades (1979-2018) to ensure robust model
training.

Evaluations We implement two standard evaluations for data assimilation quality assessment. (1)
Single-step assimilation accuracy: Direct comparison between assimilated states and ERA5 ground
truth at current timestep through error metrics. (2) Assimilation-based forecasting: Initializing
numerical weather prediction models with assimilated states to compute errors against ERA5 at
forecast lead times. Three complementary metrics quantifying performance are overall mean square
error (MSE), mean absolute error (MAE), and the latitude-weighted root mean square error (WRMSE),
which is a statistical metric widely used in geospatial analysis and atmospheric science. Given the
estimate x̂h,w,c and the truth xh,w,c, the WRMSE is defined as,

WRMSE(c) =

 1

HW

∑
h,w

H ·

(
cosαh,w∑H

h′=1 cosαh′,w

)
(xh,w,c − x̂h,w,c)

2

1/2

(18)

Here H and W represent the number of grid points in the longitudinal and latitudinal directions,
respectively, and αh,w is the latitude of point (h,w).

The validation procedure involves 6-hourly assimilation cycles over the entirety of 2019, where each
assimilation employs a 48-hour forecast as its background field. The three designated metrics are
calculated for each cycle. Final performance scores are the annual averages of these metrics.

B The VAE training

We employ the established transformer-based architecture (VAEformer) [63] to compress high-
dimensional atmospheric fields into a low-dimensional latent space. This implementation uses
window attention [70] to capture atmospheric circulation features effectively. This model follows the
“vit_large” configuration for both encoder and decoder, with patch embedding of size (4,4) and stride
(4,4), an embedding dimension of 1024, and 24 stacked transformer blocks equipped with window
attention. The encoder-decoder architecture is optimized using AdamW [71] with a batch size of
32, trained under a two-phase learning rate policy: a 10,000-step linear warm-up to 2e-4 followed
by cosine annealing. The training of VAE is conducted on the ERA5 dataset (1979–2016), with
the 2016–2018 period reserved for validation, and runs for a total of 80 epochs. Our trained VAE
achieves 0.0067 overall MSE and 0.0486 overall MAE.

C Computational Costs

The alignment process is computationally efficient. The main costs are divided as follows:

• One-Time Pre-training: This is the most intensive step. The VAE training takes approx-
imately 4 days, and the diffusion model pre-training takes about 1 day, both on 4 A100
GPUs.

• DPO Alignment (Fine-tuning): This step is highly efficient. The core alignment process
completes in about 30 minutes on 4 A100 GPUs after 500 update steps. Reward Evaluation:
Evaluating the "forecast skill" for a single data sample involves running a 48-hour forecast,
which takes about 4 seconds on one A100 GPU.
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• Inference (Sampling): Generating a single analysis field takes approximately 30 seconds
on one A100 GPU.

This analysis highlights that the novel alignment stage, which provides significant performance gains,
adds a minimal computational overhead compared to the initial pre-training.

D Comparison with Traditional 3D-Var

To position our work relative to established methods, we conducted a direct comparison against
a traditional 3D-Var baseline, a cornerstone of operational weather forecasting. The results are
summarized in Table 3.

Table 3: Comparison of Align-DA (Align-DPS-M) with the traditional 3D-Var baseline. While
3D-Var is marginally better on the metric it directly optimizes (DA Accuracy), Align-DA shows
significant advantages in the more critical downstream metrics.

Method DA Accuracy (MSE) Forecast Skill (MSE) Geo-Score
3D-Var 0.0581 0.0952 88.34
Align-DPS-M 0.0593 0.0943 94.89

The results are highly revealing. While 3D-Var achieves a marginally better DA Accuracy (MSE),
which is unsurprising as its cost function is explicitly designed to minimize this value, it falls short
in the metrics that are ultimately more critical for weather prediction. Our Align-DA framework
demonstrates superior performance in both downstream Forecast Skill and Physical Consistency. The
substantial improvement in the Geo-Score (from 88.34 to 94.89) indicates that our method produces
analysis fields that are more physically realistic. This superior physical consistency and forecast skill
underscore the core value of our contribution: Align-DA’s ability to optimize for a complex set of
preferences simultaneously, moving beyond the narrow optimization target of traditional methods.

E Statistical Significance Testing

To confirm that the performance improvements reported in our paper are statistically significant, we
conducted an analysis to quantify the inherent stochasticity of our generative model. We ran the
diffusion sampling process 10 times for a single time step under the most uncertain setting—without
any observations or alignment (‘ObsFree‘). The relative standard deviation of the resulting metrics,
which represents the model’s baseline random variability, is presented in Table 4.

Table 4: Relative standard deviation (%) of key metrics for the unaligned ‘ObsFree‘ baseline,
calculated over 10 independent runs. This table quantifies the inherent randomness of the generative
process.

MSE MAE WRMSE
u10 v500 z500 t850

DA Accuracy (ObsFree)

Relative std. dev. (%) 0.045 0.058 0.115 0.079 0.201 0.083

Forecast Skill (ObsFree)

Relative std. dev. (%) 0.163 0.067 0.145 0.155 0.252 0.106

This analysis confirms that our reported improvements are statistically significant. For instance, the
relative standard deviation for the primary DA accuracy metric (MSE) is merely 0.045%. This is
orders of magnitude smaller than the 2.65% to 5.44% performance improvements that our Align-DA
framework provides over the baseline (as shown in the main paper). Meanwhile, it is important to note
that the performance change of the single-reward version (-P) yields statistically insignificant
results, suggesting that geostrophic balance alone is insufficient for complex DA tasks.
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Table 5: Assimilation accuracy gains with different observation densities. Percentage values quantify
relative accuracy variants compared to the non-aligned baseline.

MSE MAE WRMSE
u10 v500 z500 t850

1% observation

Repaint 0.0623 0.1368 1.5009 2.7027 103.3036 1.0911
Align-Repaint-M 0.0598(−4.12%) 0.3440(−1.78%) 1.4759(−1.69%) 2.6836(−0.71%) 96.8906(−6.62%) 1.0889(−0.20%)

DPS 0.0609 0.1337 1.4441 2.5972 93.4654 1.1159
Align-DPS-M 0.0593(−2.65%) 0.1317(−1.51%) 1.4187(−1.78%) 2.5800(−0.66%) 88.4235(−5.70%) 1.1100(−0.53%)

3% observation

Repaint 0.0583 0.1327 1.4438 2.6097 100.0290 1.0696
Align-Repaint-M 0.0560(−4.02%) 0.1305(−1.73%) 1.4188(−1.77%) 2.5929(−0.65%) 93.8835(−6.54%) 1.0675(−0.20%)

DPS 0.0546 0.1276 1.3698 2.4883 85.5742 1.0586
Align-DPS-M 0.0533(−2.53%) 0.1256(−1.56%) 1.3457(−1.78%) 2.4724(−0.65%) 80.5474(−6.24%) 1.0558(−0.27%)

5% observation

Repaint 0.0547 0.1290 1.3891 2.5248 96.9590 1.0495
Align-Repaint-M 0.0526(−3.91%) 0.1269(−1.68%) 1.3656(−1.72%) 2.5081(−0.67%) 91.0853(−6.45%) 1.0471(−0.23%)

DPS 0.0534 0.1267 1.3597 2.4767 85.9150 1.0514
Align-DPS-M 0.0519(−2.78%) 0.1246(−1.70%) 1.3337(−1.95%) 2.4560(−0.84%) 80.5787(−6.62%) 1.0475(−0.37%)

10% observation

Repaint 0.0470 0.1204 1.2721 2.3398 90.1747 1.0037
Align-Repaint-M 0.0453(−3.67%) 0.1186(−1.52%) 1.2518(−1.62%) 2.3230(−0.72%) 84.7320(−6.42%) 1.0012(−0.25%)

DPS 0.0524 0.1261 1.3520 2.4673 86.2364 1.0468
Align-DPS-M 0.0510(−2.83%) 0.1239(−1.76%) 1.3252(−2.03%) 2.4458(−0.88%) 80.0644(−7.71%) 1.0403(−0.62%)

F Ablations studies

Observation densities. We further investigate the effect of varying observation densities (1%, 3%,
5%, and 10%) on the efficacy of our alignment strategy, as detailed in Table 5. A key finding is that
the proposed alignment mechanism significantly enhances assimilation accuracy across all tested
densities for both guidance methods. Specifically, Align-Repaint-M and Align-DPS-M consistently
outperform their non-aligned counterparts in all scenarios. This benefit is evident even at the
highest 10% observation density, where alignment yields substantial error reductions of 6.42% for
Align-Repaint-M and 7.71% for Align-DPS-M on the z500 WRMSE metric. While the absolute
errors decrease for all methods with more observations, the relative improvement percentage due to
alignment shows nuanced behavior. For Align-Repaint-M, the relative gain slightly diminishes as
observation density increases (e.g., MSE improvement changes from 4.12% at 1% observations to
3.67% at 10%). This suggests that while alignment is always beneficial, its proportional contribution
might be more pronounced when initial information is sparser. Interestingly, Align-DPS-M does
not follow a consistent trend. For some metrics like z500 WRMSE, the relative improvement even
increases with higher density (e.g., from -5.70% at 1% to -7.71% at 10%). It may be ascribed to the
aligned conditional model is easier to be guided in DPS method. Nonetheless, the results affirm the
significant and persistent positive impact of the alignment strategy across varying data availability.

Observation Error Robustness. Table 6’s ablation study examines Align-DPS-M’s assimilation ac-
curacy gains over the non-aligned DPS baseline under varying observation error with 1% observation.
Results consistently demonstrate the alignment effect’s robustness: Align-DPS-M outperforms the
DPS baseline across all metrics, even as observation error increases. For example, Align-DPS-M
shows a 1.97% MSE reduction and a 4.24% z500 WRMSE reduction even at the highest error
(std=0.05). However, while alignment remains beneficial, its relative improvement magnitude over
the baseline decreases with increasing observation error. This is evident as Align-DPS-M’s percent-
age gains, though still negative (indicating improvement), diminish in magnitude as observation
error rises; for instance, MSE improvement drops from -2.65% (’Idea’) to -1.97% (std=0.05), and
z500 WRMSE improvement from -5.70% (’Idea’) to -4.24% (std=0.05). This suggests that while
consistently advantageous, alignment’s relative benefit is somewhat attenuated by higher observation
noise.

Alternative Preference Optimization Algorithms

To validate the robustness of our preference alignment framework, we conducted experiments with
alternative preference optimization algorithms: Identity Preference Optimisation (IPO) and Direct
Preference Optimization with discrete sampling (DSPO). Table 7 presents the comprehensive results
for both DA Accuracy and Forecast Skill across our three guidance strategies (ObsFree, Repaint, and
DPS). These results confirm that our alignment concept is a powerful and generalizable tool, as both
IPO and DSPO also yield significant performance gains over the unaligned baselines.

Additional Physics Constraints
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Table 6: Assimilation accuracy gains with different observation error under 1% observation. Percent-
age values quantify relative accuracy variants compared to the non-aligned baseline.

MSE MAE WRMSE
u10 v500 z500 t850

Idea DPS 0.0609 0.1337 1.4441 2.5972 93.4654 1.1159
Align-DPS-M 0.0593(−2.65%) 0.1317(−1.51%) 1.4187(−1.78%) 2.5800(−0.66%) 88.4235(−5.70%) 1.1100(−0.53%)

std=0.02 DPS 0.0607 0.1335 1.4408 2.5959 92.5883 1.1132
Align-DPS-M 0.0593(−2.33%) 0.1316(−1.40%) 1.4176(−1.64%) 2.5805(−0.60%) 88.5310(−4.58%) 1.1087(−0.41%)

std=0.05 DPS 0.0602 0.1330 1.4358 2.5904 91.3947 1.1056
Align-DPS-M 0.0590(−1.97%) 0.1312(−1.41%) 1.4146(−1.50%) 2.5740(−0.64%) 87.6790(−4.24%) 1.1039(−0.15%)

Table 7: DA Accuracy and Forecast Skill results for DPO (Align-M), IPO, and DSPO.

MSE MAE WRMSE
u10 v500 z500 t850

DA Accuracy

ObsFree 0.0643 0.1382 1.5275 2.7467 104.5531 1.0897
Align-ObsFree-M 0.0611 0.1348 1.4942 2.7202 96.8603 1.0866
IPO-ObsFree-M 0.0607 0.1355 1.4831 2.6944 101.7478 1.0807
DSPO-ObsFree-M 0.0604 0.1357 1.4780 2.6900 97.0645 1.0845

Repaint 0.0623 0.1368 1.5009 2.7027 103.3036 1.0911
Align-Repaint-M 0.0598 0.1344 1.4759 2.6836 96.8906 1.0889
IPO-Repaint-M 0.0597 0.1350 1.4682 2.6660 100.7377 1.0868
DSPO-Repaint-M 0.0590 0.1338 1.4528 2.6555 96.2449 1.0762
DPS 0.0609 0.1337 1.4441 2.5972 93.4654 1.1159
Align-DPS-M 0.0593 0.1317 1.4187 2.5800 88.4235 1.1100
IPO-DPS-M 0.0582 0.1315 1.4070 2.5539 89.4790 1.0977
DSPO-DPS-M 0.0585 0.1320 1.4102 2.5576 89.8927 1.1014

Forecast Skill

ObsFree 0.1146 0.1918 2.1182 4.1571 232.6243 1.4826
Align-ObsFree-M 0.1080 0.1872 2.0965 4.1091 225.7758 1.4636
IPO-ObsFree-M 0.1093 0.1882 2.0966 4.1162 227.8923 1.4661
DSPO-ObsFree-M 0.1086 0.1879 2.0838 4.1020 226.1687 1.4637

Repaint 0.1123 0.1898 2.0899 4.1030 228.2876 1.4672
Align-Repaint-M 0.1068 0.1860 2.0713 4.0665 222.9336 1.4516
IPO-Repaint-M 0.1083 0.1872 2.0712 4.0721 224.3243 1.4555
DSPO-Repaint-M 0.1080 0.1868 2.0663 4.0585 223.3857 1.4504
DPS 0.0969 0.1757 1.9230 3.7675 193.4167 1.3564
Align-DPS-M 0.0943 0.1734 1.9070 3.7287 189.6935 1.3428
IPO-DPS-M 0.0937 0.1732 1.9045 3.7275 189.5445 1.3412
DSPO-DPS-M 0.0932 0.1735 1.9062 3.7269 189.2176 1.3418

To demonstrate the flexibility of the Align-DA framework, we performed a preliminary experiment
incorporating a second physical constraint: hydrostatic balance. Hydrostatic balance governs the
vertical structure of the atmosphere, linking pressure and temperature profiles via the hydrostatic
equation:

∂Φ

∂ lnP
= −RT, (19)

where P is pressure, R is the specific gas constant, and T is temperature. We quantify its imbalance
using the metric Dhydro =

∣∣∣( ∂Φ
∂ lnP +RT

)/
RT
∣∣∣. Similar to the Equation 17, one can also define

Hydro-Score.

This extends the multi-reward alignment from three preferences to four. In the table below, "-M"
denotes the original three-preference alignment, while "-4" denotes the four-preference alignment
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which includes the additional hydrostatic constraint. The results shown in Table 8 validate our
framework’s ability to easily leverage multiple, diverse physical constraints, often leading to further
performance gains across various metrics.

Table 8: DA Accuracy and Forecast Skill with an additional hydrostatic balance reward (‘-4’).

MSE MAE WRMSE
u10 v500 z500 t850

DA Accuracy

ObsFree 0.0643 0.1382 1.5275 2.7467 104.5531 1.0897
Align-ObsFree-M 0.0611 0.1348 1.4942 2.7202 96.8603 1.0866
Align-ObsFree-4 0.0571 0.1335 1.4675 2.6546 94.3716 1.0649
Repaint 0.0623 0.1368 1.5009 2.7027 103.3036 1.0911
Align-Repaint-M 0.0598 0.1344 1.4759 2.6836 96.8906 1.0889
Align-Repaint-4 0.0567 0.1333 1.4536 2.6327 95.7225 1.0756
DPS 0.0609 0.1337 1.4441 2.5972 93.4654 1.1159
Align-DPS-M 0.0593 0.1317 1.4187 2.5800 88.4235 1.1100
Align-DPS-4 0.0588 0.1315 1.4155 2.5672 87.3151 1.0996

Forecast Skill

ObsFree 0.1146 0.1918 2.1182 4.1571 232.6243 1.4826
Align-ObsFree-M 0.1080 0.1872 2.0965 4.1091 225.7758 1.4636
Align-ObsFree-4 0.1028 0.1841 2.0456 4.0024 219.8289 1.4423
Repaint 0.1123 0.1898 2.0899 4.1030 228.2876 1.4672
Align-Repaint-M 0.1068 0.1860 2.0713 4.0665 222.9336 1.4516
Align-Repaint-4 0.1017 0.1831 2.0345 3.9911 217.5085 1.4304
DPS 0.0969 0.1757 1.9230 3.7675 193.4167 1.3564
Align-DPS-M 0.0943 0.1734 1.9070 3.7287 189.6935 1.3428
Align-DPS-4 0.0938 0.1725 1.9059 3.7244 189.3845 1.3423

Realistic observation. We further evaluate the performance of AlignDA using real-world observa-
tional data by conducting experiments with the Global Data Assimilation System (GDAS) prepbufr
dataset, which incorporates multi-source observational data. To ensure data quality, we apply a
filtering process that eliminates observations exhibiting deviations exceeding 0.1 standard error
when compared to the ERA5 reference data. Table 9 shows that when using real-world GDAS
observations, Align-DPS-M still outperforms the standard DPS model. It achieves better accuracy
across all measures, with notable improvements like a 3.89% decrease in MSE and a 2.82% decrease
in WRMSE for z500. These results demonstrate that the alignment strategy is effective and beneficial
for practical, real-world applications.

G Limitation and Future work

While our Align-DA demonstrates promising results, several aspects should be further studied. The
current physical constraints, primarily geostrophic balance, may not fully capture the complexities
of operational DA, suggesting a need for more comprehensive reward designs. Additionally, the
framework relies on offline reinforcement learning, which is inherently sensitive to the quality and
diversity of the pre-collected preference dataset. Incorporating online RL strategies could enable
more adaptive policy updates and mitigate limitations imposed by static offline data. Moreover,
the RL-based alignment framework introduced in this paper has potential beyond improving initial
conditions; it can also be generalized to other stages of the weather forecasting workflow, such as
forecast post-processing.
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Table 9: Assimilation accuracy gains with GDAS observations. Percentage values quantify relative
accuracy variants compared to the non-aligned baseline.

MSE MAE WRMSE
u10 v500 z500 t850

DPS 0.0634 0.1365 1.3342 2.5642 99.2263 1.1343
Align-DPS-M 0.0610(−3.89%) 0.1340(−1.87%) 1.3200(−1.08%) 2.5498(−0.57%) 96.4988(−2.82%) 1.1342(−0.01%)

Figure 5: Visulaization of u700 at a 2019-01-26-18:00 UTC.

H More visualization

Here we provide more visualization results. In all figures in the appendix, ‘ObsFree’ means without
observation integration baseline. ‘Repaint’ and ‘DPS’ represent repaint and diffusion posterior
sampling guidance methods. Note that ‘-P’ indicates single physical reward alignment, while ‘-M’
signifies multi-reward alignment. First row: Reference fields showing ERA5 reanalysis (ground truth
denoted as GT), background field, and observational data. Second row: Error reduction through
single physical reward alignment, quantified as |xxxref

a − xxxGT| − |xxxAlign-P
a − xxxGT|. Third row: Error

reduction through multi-reward alignment, quantified as |xxxref
a − xxxGT| − |xxxAlign-M

a − xxxGT|.
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Figure 6: Visulaization of msl at a 2019-03-03-00:00 UTC.

Figure 7: Visulaization of t850 at a 2019-07-05-12:00 UTC.
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Figure 8: Visulaization of q700 at a 2019-04-01-00:00 UTC.
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