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ABSTRACT

Graph incremental learning is a learning paradigm that aims to adapt models trained
on previous data to continuously incremented data or tasks over time without the
need for retraining on the full dataset. However, regular graph machine learning
methods suffer from catastrophic forgetting when applied to incremental learning
settings, where previously learned knowledge is overridden by new knowledge.
Previous approaches have tried to address this by treating the previously trained
model as an inseparable unit and using regularization, experience replay, and
parameter isolation to maintain old behaviors while learning new knowledge. These
approaches, however, do not account for the fact that not all previously acquired
knowledge is equally beneficial for learning new tasks, and maintaining all previous
knowledge and the latest knowledge in a single model is ineffective. Some prior
patterns can be transferred to help learn new data, while others may deviate from
the new data distribution and be detrimental. To address this, we propose a dynamic
mixture-of-experts (DyMoE) approach for incremental learning. Specifically, a
DyMoE GNN layer adds new expert networks specialized in modeling the incoming
data blocks. We design a customized regularization loss that utilizes data sequence
information so existing experts can maintain their ability to solve old tasks while
helping the new expert learn the new data effectively. As the number of data blocks
grows over time, the computational cost of the full mixture-of-experts (MoE)
model increases. To address this, we introduce a sparse MoE approach, where
only the top-k most relevant experts make predictions, significantly reducing the
computation time. Our model achieved 5.47% relative accuracy increase compared
to the best baselines on class incremental learning with minimal computation
increase, showing the model’s exceptional power.

1 INTRODUCTION

Graph neural networks (GNN) achieved great success in modeling graph data and have many
applications, such as recommender systems (Wang et al., 2021), drug discovery (Gaudelet et al.,
2021), and traffic forecasting (Jiang & Luo, 2022). However, in many real-world settings, the graph
is dynamic, starting small and expanding over time, and the training data arrive as sequences of data
blocks. Naive approaches train on the full graph whenever new data appears, which incurs expensive
computational costs due to repetitive training on old data. On the other hand, simply finetuning
conventional GNNs on the new data leads to catastrophic forgetting, where the model’s prediction
shifts toward the new data distribution and forgets how to handle previously learned tasks upon
encountering new data (Zhang et al., 2023b; 2024; Cui et al., 2023; Xu et al., 2020). This motivated a
series of continual learning research to tackle this problem (Yuan et al., 2023; Febrinanto et al., 2023;
Wu et al., 2024).

Pioneering efforts focused on adapting incremental learning approaches for other data modalities to
the graph domain (Zhou & Cao, 2021; Xu et al., 2020; Sun et al., 2023). However, they ignore the
fact that nodes and edges are not independent and identically distributed (i.i.d.) in the graph learning
scenario (Wang et al., 2022; 2020). In the vision and language domain, individual image or text
data points do not affect each other, and future data blocks do not impact the data distribution of the
existing data blocks. In contrast, new graph data blocks connect to existing data via edges and could
significantly change existing data distribution. For example, an incoming data block can add edges
between two disconnected components in an existing graph, drastically changing the graph topology
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Figure 1: Left: Data blocks arrive in sequence. Right: Different connection types of three data blocks.
Our proposed method activates dedicated experts when inferring relevant data blocks.

and, subsequently, the learned model behavior. Incremental blocks in the graph domain break the i.i.d
assumption of data in most incremental learning approaches from the vision and language domains.
It makes graph incremental learning an even more challenging scenario than incremental learning in
other domains.

Subsequent efforts tackled the problem in several ways (Tan et al., 2022; Xu et al., 2020; Wang et al.,
2022). For instance, PI-GNN (Zhang et al., 2023a) rectified the old model on the graph modified by
the new data. TWP (Liu et al., 2021) identified topology-aware parameters to stabilize the model
under graph structure shift. DiCGR (Kou et al., 2020) breaks relation triplets to components to better
capture graph structures.

These methods show improvements in the graph setting compared to the naive adaptation of incre-
mental learning methods from other domains. However, a commonality of these approaches is that
they build the new model upon an inseparable old model. Specifically, Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) used the old model parameters as the single regularization target
for all parameters; Experience Replay (ER) (Zhou & Cao, 2021) trained the model using all saved
subsets of nodes from old data blocks; Parameter Isolation (PI-GNN) (Zhang et al., 2023a) froze all
old model parameters and used an additional network to modify the model output.

While these methods effectively keep the old patterns, they assume all past data blocks have the same
impact when learning new patterns, ignoring different correlations among them. For example, in
Figure 1, blue, red, and green nodes represent data blocks one, two, and three that arrive in order
in all three cases, and we update the model whenever a data block arrives. Block one and two are
identical in all cases, while block three is isolated, connected to block two, and connected to blocks
one and two in cases A, B, and C, respectively. Existing approaches will modify the knowledge
learned from blocks one and two in case A to accommodate new knowledges in block three regardless
of the connection type, causing forgetting. However, in case A, the blocks are entirely isolated, and
the third block can be independently learned without modifying the model and parameters learned
from the other two blocks. Existing approaches would still update the entire model, ignoring the
factor that, in case A, each data block can be learned independently without forgetting. Likewise, in
case C, the third block only needs information from block one, but existing approaches would still
apply knowledge obtained from block two, which leads to both negative transfer and forgetting.

To tackle this problem, we propose a Dynamic Mixture-of-Expert (DyMoE) module to use separate
expert networks to model different data blocks with a gating mechanism to synthesize information
from the most relevant experts. Specifically, the module has the same number of experts as trained
data blocks, and each expert has a corresponding gating vector. Experts are dedicated to learning
from their corresponding data blocks. Unlike existing works that process all previously learned
knowledge equally, given input, our module first computes the similarity between the input and each
gating vector to determine the relevance of experts to the input, then calculates the expert outputs for
the input, and finally uses the relevance to combine the outputs with a weighted sum. This approach
explicitly considers the correlation between different experts and data blocks. For the same example
in Figure 1, we train three separate experts with specialization in their corresponding data blocks.
We then compute the relevance of the experts to the input. The experts with higher relevance have a
higher impact on the prediction. This approach dynamically adjusts the combination of knowledge
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from different data blocks; less impactful experts are disabled during inference to reduce misleading
information. When a new data block arrives, we append a new expert dedicated to the new data
block without interfering with the knowledge of existing experts during training. To ensure each
expert focuses on the assigned data block, we propose a block-guided loss as a training objective that
enforces a high relevance score of experts to the input from their corresponding data blocks, greatly
reducing catastrophic forgetting while allowing flexible querying of old knowledge.

As the receptive field of each graph neural network layer may change every time a new data block
is merged into the original graph, we organically fuse the DyMoE module into each GNN layer to
handle the unique data dependency challenge in the continual graph learning domain. Specifically,
we interleave the DyMoE module into each layer so the model knows neighbor nodes from different
data blocks and encodes them differently to learn data block specialized message passing. Moreover,
we propose a sparse variant, inspired by Shazeer et al. (2017), that only considers the most relevant
experts to reduce the computational cost incurred by additional experts, significantly reducing the
computation complexity while maintaining high accuracy. In this paper, we

• Identified the issue of existing continual learning methods that ignore the correlation between
different data blocks.

• Designed a DyMoE module with specialized experts for each data block and proposed data
block-guided loss to minimize the negative interference between experts.

• Interleave the DyMoE module into GNNs to address the data shift problem unique to graph
continual learning.

• Developed a sparse version of the DyMoE module so the model is both efficient and
effective.

In our empirical evaluation, our results show up to 10% and on average 5.47% relative accuracy
improvement over the best baseline on class incremental learning setting. The model also demon-
strates strong results in instance incremental settings. We also show that our approach can achieve
close results to the upper-bound retraining method using significantly less time for training, further
validating the model’s efficacy.

2 PRELIMINARIES

Graph Incremental Learning. This paper focuses on incremental learning for node classification.
Specifically, we follow the widely adopted problem formulation (Yuan et al., 2023; Febrinanto et al.,
2023), and aim to incrementally learn from a graph data block sequence D = {G1, ..., Gt}, and each
data block is a graph Gi = (Vi, Ei, Yi) where Vi is the set of nodes, and Ei is the set of edges, and
Yi is the classification labels of the nodes. Future graph snapshots expand on existing graphs, and
Gi is a subgraph of Gj for i < j. We additionally use ∆Gi = (Vi \ Vi−1, Ei \ Ei−1) to represent
the graph delta between Gi and Gi−1. We use b(v) to indicate the index of the data block where the
node v first appears. In the incremental learning setting, data arrive in order, and the i-th model is
only trained and evaluated on (G1, ..., Gi) without any knowledge about future graphs. The goal
is to maximize the overall accuracy on each data block while minimizing the performance drop
on previous data blocks. If the classes in Yi persist throughout all blocks, we refer to the task as
instance-incremental learning (Van de Ven et al., 2022). If the classes in Yi are disjoint, we refer to
the task as class-incremental, where new data blocks also bring in new classes (Zhang et al., 2022),
and the model needs to classify a sample without knowing its corresponding block during inference.

The naive solution is to train a model on the full graph Gi for every block. However, this requires
retraining on all old data multiple times, incurring huge computational costs. Incremental learning
methods aim to train only on the graph delta while maintaining good performance on the old data.

To evaluate a model, let ai,j be the accuracy of all evaluation nodes in Gi, evaluated by the model
after training Gj , which is a superset of evaluation nodes in Gi and i ≤ j. We evaluate the overall
model performance by Average Accuracy (AA) and Average Forgetting (AF),

AA =
1

t

t∑
i=1

ai,i, AF =
1

t

t∑
j=1

1

j

j∑
i=1

ai,j − ai,i (1)
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Figure 2: Pipeline of DyMoE GNN. Left: Each GNN layer has a message-passing module and a
DyMoE module. We compute gating values from the node representations and the gating vectors.
During training, we compute a block-guided loss between the gating values and the data block index
for correct expert selection. Right: When a new data block arrives, we add a new expert and a gating
vector to the DyMoE module. In the sparse case, only the most important experts are used.

where t is the number of data blocks. AA evaluates the model’s average accuracy right after the
model is trained on a data block, while AF evaluates the model’s ability to retain knowledge from
previous data blocks. The goal of an incremental learning method is to maximize AA and minimize
AF.

Graph Neural Networks Graph neural networks iteratively update a node’s embeddings from their
neighbor nodes through message-passing layers (Gilmer et al., 2017). Specifically, for a graph
G = (V,E), the i-th layer of a T -layer GNN is,

h(i+1)
v = COMB(h(i)

v , AGGR({h(i)
u |u ∈ N (v)}), v ∈ V, N (v) = {u|(v, u) ∈ E} (2)

where N (v) are the direct neighbors of v. Different GNN designs differ mainly by the combine
(COMB) and aggregate (AGGR) functions.

3 DYNAMIC MIXTURE-OF-EXPERTS GRAPH NEURAL NETWORK

This section first introduces the Dynamic Mixture-of-Experts (DyMoE) module that dynamically
increases the number of experts for new data blocks. We then describe the integration of DyMoE
and GNN for effective graph incremental learning. To overcome the efficiency issue with long data
sequences, we propose Sparse DyMoE to reduce the complexity of our framework. The overall
architecture of the framework is shown in Figure 2.

3.1 DYNAMIC MIXTURE-OF-EXPERTS MODULE

Conventional mixture-of-experts (MoE) models create networks of the same architecture and apply a
gating mechanism to combine the networks’ outputs using a weighted sum (Shazeer et al., 2017).
The number of experts is fixed after initialization. However, to accommodate new data blocks, MoE
models suffer from the same issue as in other continual learning methods. They still need to adjust
the weights of all previous experts, leading to forgetting. To mitigate this, we propose the DyMoE
module, adding one expert for every new data block without modifying previously trained experts.
Let F be a class of neural networks with the same architecture, and fθ ∈ F be an instance of the
network parametrized by θ. Specifically,

h = fθ(x) x ∈ Rn,h ∈ Rm, fθ ∈ F (3)

where x and h are the input and output to the network, and n and m are the input and output
dimensions. Given an incremental data sequence D = {(X(1), Y (1)), ..., (X(k), Y (k))}, DyMoE
handles the first data block like a conventional neural network. Specifically, it minimizes the empirical
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loss,

argmin
θ1

1

|X|

|X|∑
i

L(yi, fθ1(xi)) (4)

The loss function L is task dependent, and we use cross-entropy loss for classification. For the second
data block, we will add one expert and gating vectors to the overall model. To compute the output,
we have

h = f{θ1,θ2}(x) = α1fθ1(x)+α2fθ2(x), αi =
exp(s(x, gi))

exp(s(x, g1)) + exp(s(x, g2))
i ∈ {1, 2} (5)

where g are gating vectors associated with each expert, s(·, ·) is a similarity measure, and we use
softmax on the similarities to compute the importance of each expert for the input. Note that this
formulation is the same as existing MoE approaches, and the key difference is that the number of
experts dynamically increases as more data arrive. Subsequent data blocks follow the same procedure,
where the output is computed as,

h = f{θ1,...,θt}(x) =

t∑
i=1

αifθi(x), αi =
exp(s(x, gi))∑t
j=1 exp(s(x, gj))

(6)

When training on a new data block t, we only optimize the new expert and its corresponding gating
vector, specifically,

arg min
θt,gt

Lcls,Lcls =
1

|Xt|

|Xt|∑
i

L(yi, f{θ1,...,θt}(xi)) (7)

Intuitively, this training scheme completely preserves the knowledge obtained from previous data
blocks. Ideally, when the gating vectors are perfectly trained to distinguish which data block a
particular data point belongs to, the model can fully recover the output of that data point, eliminating
forgetting. While the gating vectors are trained simultaneously with the experts, the first is not trained
because applying softmax to a single value results in a trivial weight (value one). Hence, we propose
using the input’s mean to initialize the first gating vector. Specifically,

g1 =
1

|X1|

|X1|∑
i=1

xi (8)

as it minimizes the sum of l2 distance between g1 and X . Setting the first gating vector to the
empirical mean ensures that a data block has high gating values if it belongs to the first data block
without direct training.

While the experts can preserve learned knowledge, the new experts are randomly initialized and
start with trivial predictions on all data. The model will rely on the existing trained experts to make
predictions, though they may carry old, potentially suboptimal, knowledge regarding the new data
block. The gating vectors, including the new one, will tend to select the old experts during training.
The model will be trapped at the local minimum without properly training the new dedicated experts.
Figure 6 shows that direct training will not result in specialized experts. Hence, we need to inject
the information about the correct experts for our dynamically initialized new modules. This is
difficult in conventional MoE because of the lack of supervision for correct experts. However, in
continual learning, data arrive in blocks, and since experts are designed to handle individual data
blocks, we know exactly which expert a particular training data point should be assigned to. We
propose a block-guided regularization to train the gating vectors for correct expert assignment.
Specifically, for an arbitrary data point x, in addition to its classification loss, we add a cross-entropy
loss between the gating values of all experts and the data point’s corresponding data block index
b(x). The computation is valid because the number of experts equals the number of witnessed data
blocks. The loss forces an expert’s corresponding data and gating vector to have large similarities,
maximizing the likelihood of using the correct expert to generate output for the data. Specifically,

LBL = CE(Softmax(s(x, g1), ..., s(x, gt)), OneHot(b(x), t)),x ∈ P (9)

where CE is cross-entropy loss, OneHot(j, t) generates a t-dimensional one-hot vector whose j-th
entry is one, and P is the training set in the current data block. Note that if we naively take P as the
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new samples in the most recent data block Xt, all of them will have the same data block index (the
last index), causing the model to always use the last expert. Hence, we store a small sample set from
each data block as memory set, Mi ⊂ Xi and |Mi| ≪ |Xi|, and take P =

⋃(t−1)
i Mi ∪Xt, so the

model can adjust the gating values accordingly.

Note that we only use such information during training, and the model does not need the time
information, or the data block that a data point belongs to, during inference, making the model
perfectly viable for difficult tasks such as class-incremental learning. The overall training loss is,

L = Lcls + βLBL (10)

where β is a hyperparameter controlling the strength of regularization. The combined framework
essentially attempts to train a data-block-dedicated classifier and out-of-distribution detectors for
every data block. The gating mechanism gives high weight to in-distribution experts while minimizing
the impact of out-distribution experts. While this approach applies to arbitrary data modality, it is
particularly critical in the graph learning setting, where a node’s neighbor might be from different data
blocks and require different processing. We elaborate more on this in Section 3.2. We theoretically
show the advantages of our proposed model over the Parameter Isolation (PI) (Zhang et al., 2023a)
approach, a representative architectural approach for continual learning.
Theorem 1. For an arbitrary continual learning problem, suppose a PI model obtains a cross-entropy
loss LPI , there exists a parametrization of DyMoE that achieves cross-entropy loss LDy = LPI .
When the data sequence follow a mixture of Gaussian distribution, we have LDy ≤ LPI .

The proof is in Appendix A. In the proof, we first show that DyMoE is at least as powerful as PI. We
then show under the Gaussian Mixture assumption of the input data block sequence; the DyMoE
obtains strictly lower loss, which shows the model’s superiority.

In practice, the memory set is very small to ensure efficiency, but we jointly train on it with the
full dataset from the new data block, which can give the model a biased understanding of the data
distribution (i.e. most of the data are from the last data block). Hence, we propose a data balancing
training procedure, where, after the regular training epochs, we collect the memory set for the new
data block, combine it with all previous training memory sets, and train a few epochs on them to
reflect the actual distribution of the entire input sequence. Because the memory sets are very small
subsets, they bring minimal computation costs.

3.2 DYNAMIC MIXTURE-OF-EXPERT GRAPH NEURAL NETWORK

Block 1

Block 2 Block 3

Target Expert 1 Expert 2

Expert 3

Naïve

Interleaving

Incremental Graph Computation Graph

Figure 3: Comparison between compu-
tation graphs of two approaches.

We then introduce fusing the DyMoE with a graph neural
network. Note that the DyMoE module does not assume
any specific network architecture, and a naive solution can
treat a multi-layer GNN as F . However, this ignores the
unique property of graph data in continual learning, where
new data can change the existing graph’s overall topology
and the representation learned for the old data. For exam-
ple, in Figure 3, the target node is from data block one
but is later connected to nodes in blocks two and three.
However, as shown in the computation graph of the naive
approach, it will still use expert one to process neighbor
nodes of the target node from blocks two and three, while
expert one does not know the new data blocks. The ex-
perts are completely isolated, and we cannot use future
expert information to correct the misrepresentation of the
neighbor node. Consequently, the representation of the target node is considerably compromised.
Essentially, compared to traditional incremental learning scenarios, where the old model still performs
well on old data, the modified topology in the graph causes the old model to shift from its original
prediction and cause a performance decrease. Hence, we propose interleaving the DyMoE modules
into each GNN layer to correct such a shift. Specifically,

h(i)
v = f{θ1,...,θt}(h

(i−1)
v + ϵ ·AGG({h(i−1)

u |u ∈ N (v)}) (11)

we use DyMoE as the COMB function and instantiate each expert as an MLP, and the overall design is
a natural extension of a succinct message-passing network as in GIN (Xu et al., 2018). However, the
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interleaving DyMoE design can be easily extended to other GNN architectures. The key difference
between this and naive approaches is that we combine information from all experts after each message
passing layer but not from the final output of multiple GNN layers. Take Figure 3 as an example,
for the same target node, the proposed approach allows the output to absorb information from future
experts and correct the features learned in previous data blocks to adapt to the new graph context
rather than combining the compromised node representation at the end of all GNN processing.

Finally, we need to accommodate the block-guided regularization loss to a more fine-grained version
for the interleaving design. Instead of using the target node’s corresponding data block as the
regularization target, we use each neighbor node’s own corresponding data block as the target.
Specifically,

LBL,GNN =

T∑
i=1

∑
v∈V

LBL(h
(i)
v , b(v)) (12)

where b(v) is the corresponding block index of node v. Intuitively, when the neighbor and the target
nodes are from different data blocks, we still want the most relevant expert to be of higher importance
than the expert corresponding to the data block of the target nodes. Let’s take Figure 3 as an example
again. For the final target node, we expect the experts used to compute the intermediate representation
of its neighbors to be Expert 1, Expert 2, Expert 3, and Expert 3 from left to right. Compared to
applying block-guided loss in other modalities, this additionally addresses the topological and context
shift problem in the graph learning domain by ensuring the corrected representation of neighbor
nodes from different data blocks.

3.3 SPARSE DYNAMIC MIXTURE-OF-EXPERTS GNN

While the proposed DyMoE GNN allows effective knowledge preservation and updates specialized
for graph data, it incurs additional computation cost for the dynamically increasing experts. With
more data blocks, we can have too many experts whose computational burden overwhelms the
performance benefits of the module. Inspired by previous works on Sparse MoE (Shazeer et al.,
2017), we introduce sparsity into the system to improve its efficiency. To that end, we modify
Equation 6 so that only the experts with the top-k importance score are used to generate predictions.
Specifically,

h =

t∑
i=1

αfθi(x), αi = Softmax(TopK(s(x, gj))) (13)

Because we only use the top-k most essential experts, we do not need to propagate gradients and
compute the output of each expert, which significantly reduces the training and inference cost.

Since the last expert and gating are randomly initialized, the model may ignore them because they
produce meaningless predictions at the beginning. To mitigate this, we follow Sparse MoE (Shazeer
et al., 2017) to tweak the gating values during training randomly so all experts have similar selection
chances, and the new experts and gates can gradually learn to correctly predict the new data block.

4 RELATED WORK

Incremental Learning is extensively explored in the deep learning literature, including computer
vision (Kirkpatrick et al., 2017; Li & Hoiem, 2018; Lopez-Paz & Ranzato, 2017) and natural language
processing (Ke & Liu, 2022; Sun et al., 2020; Mi et al., 2020). The approaches can be roughly divided
into three categories: Regularization-based methods constrain the deviation of the new model from
the trained model to retain knowledge (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al.,
2018); Experience-Replay approaches add a small subset of previous data blocks to the current
training set as a way to maintain previous knowledge (Lopez-Paz & Ranzato, 2017; Rolnick et al.,
2019; Chaudhry et al., 2021); Architectural approaches maintain learned knowledge via assigning
model parameters to specific data (Aljundi et al., 2017; Ebrahimi et al., 2020; Li & Hoiem, 2018).
Our method falls into the architectural category. Some existing work also considers separate modules
for each data block Aljundi et al. (2017); Rusu et al. (2016), but they focus on the task-incremental
scenario, while our method handles both that, and the more challenging class-incremental case.
More importantly, they do not account for structural shift in graph incremental learning, whereas our
approach handles this well.
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Table 1: Average accuracy and average forget of class incremental datasets.

CoraFull Reddit Arxiv DBLP

AA AF AA AF AA AF AA AF

Pretrain 17.51±3.51 0.00±0.00 35.99±2.93 0.00±0.00 27.86±3.76 0.00±0.00 49.40±2.17 0.00±0.00

Online 38.27±4.20 -23.51±2.61 28.94±0.12 -33.73±0.13 38.96±4.45 -36.84±3.73 47.29±4.37 -18.18±3.87

EWC 39.14±3.42 -22.68±3.42 31.16±2.85 -31.98±2.67 42.08±3.96 -30.75±2.35 50.19±1.82 -19.55±2.01

LWF 43.01±3.76 -18.40±3.20 47.74±3.03 -27.80±3.15 40.01±2.65 -30.72±3.31 53.15±3.30 -15.28±2.91

ER-GNN 71.08±0.23 -10.95±0.24 81.35±2.39 -8.71±0.73 57.09±2.21 -23.65±2.10 55.58±2.26 -9.59±1.89

PI-GNN 68.27±2.04 -8.79±0.50 84.13±1.43 -6.57±0.88 58.46±1.63 -16.00±1.09 59.18±3.03 -11.12±2.07

C-GNN 78.90±1.13 -8.27±0.82 86.75±2.13 -6.06±0.47 63.65±1.95 -14.19±3.03 57.81±2.24 -9.79±1.28

DyMoE 80.97±0.58 -5.22±0.49 93.28±0.19 -2.98±0.36 68.06±1.54 -10.68±1.97 57.85±3.17 -7.42±1.93

DyMoE (k=3) 81.33±0.85 -5.69±1.12 91.57±0.58 -3.46±0.39 67.25±0.97 -9.54±0.69 57.75±2.96 -7.51±1.82

Retrain 79.97±0.29 -4.63±0.53 96.51±0.13 -1.12±0.03 80.16±1.96 -6.33±1.06 67.54±2.02 -2.02±0.83

Graph Incremental Learning. Different from i.i.d. data, graph data suffer from distribution shifts
in the incremental learning setting. To overcome this novel challenge, architectural approaches
including, PI-GNN (Zhang et al., 2023a), FGN (Wang et al., 2022), and HPN (Zhang et al., 2023b),
use newly initialized model components to learn new knowledge. Experience replay approaches
like DyGRAIN (Kim et al., 2022), ER-GNN (Zhou & Cao, 2021), and Continual GNN (Wang et al.,
2020) explicitly retrains old nodes selected from graph-related criterion. Regularization approaches
such as TWP (Liu et al., 2021), GraphSail (Xu et al., 2020), and GPIL (Tan et al., 2022) identify and
minimize a regularization loss to mediate structural shift and correct predictions. However, because
these models treat old models as inseparable units, they ignore different interaction types between
data blocks. Meanwhile, our experts are dedicated to individual data blocks, facilitating conditional
adaptation to new data.

5 EXPERIMENTS

We aim to answer the following research questions in the experimental evaluation: Q1: Does the
proposed DyMoE framework achieve good empirical performance while maintaining good efficiency?
Q2: How does the memory size impact the performance of the model? Q3: The framework has
several components, how does each component impact its behavior? Q4: Does our training strategy
actually encourage dedicated experts? Implementation details and data descriptions can be found in
Appedix C.

5.1 QUANTITATIVE RESULTS

To answer Q1, we evaluate the model performance with average accuracy (AA) and average for-
get (AF) on class incremental datasets (CoraFull (Weber et al., 2019), Reddit (Hamilton et al.,
2017), Arxiv (Hu et al., 2021), DBLP-small (Tang et al., 2008)), and data incremental datasets
(Paper100M(Hu et al., 2021), Elliptic (Weber et al., 2019), Arxiv, DBLP-small). We compared
experience-replay baselines (ER-GNN (Zhou & Cao, 2021), continual-GNN (C-GNN) (Wang et al.,
2020)), architectural baselines (LWF (Li & Hoiem, 2018), PI-GNN (Zhang et al., 2023a)), and regu-
larization baselines (EWC (Kirkpatrick et al., 2017)). We also compared with the pretrain baseline,
where we only train the model on the first date block and infer all future data blocks; the online
baseline, where we directly fine-tune the old model with new data blocks; and the retrain baseline,
where we retrain on all data blocks whenever new data blocks arrive. We provide the results of our
dense model without the sparse DyMoE module and the sparse version with k = 3.

We show the experiment results of class incremental setting in Table 1. From the results, we can
see our method significantly improves over existing baselines for both AA and AF. We reach an
average of 5.47% improvement in AA and 34.64% reduction in AF. The solid empirical results
showed the superiority of the DyMoE design and validated our theory. Notably, our framework even
achieved AA better than retraining on the CoraFull dataset, showing that separate experts enable
better knowledge transfer between different data blocks. Comparing the dense and sparse DyMoE,
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Table 2: Average accuracy and average forget of instance incremental datasets.

Paper100M Elliptic Arxiv DBLP

AA AF AA AF AA AF AA AF

Pretrain 59.81±2.41 0.00±0.00 91.69±3.81 0.00±0.00 62.81±1.82 0.00±0.00 57.03±2.65 0.00±0.00

Online 65.10±2.51 -3.57±0.83 94.97±0.23 -0.89±0.14 70.05±0.91 -1.11±0.03 66.52±1.58 -3.90±0.57

EWC 72.86±1.95 -3.19±1.42 94.89±0.16 -0.90±0.01 70.03±0.54 -1.30±0.18 66.25±1.46 -2.38±0.79

LWF 70.07±1.88 -3.84±1.67 92.78±0.42 0.73±0.11 68.47±0.61 -1.34±0.06 67.77±2.03 -2.93±0.56

ER-GNN 81.46±1.85 -3.67±0.64 96.80±0.24 0.01±0.01 69.98±0.07 -1.18±0.05 67.48±2.39 -3.12±0.67

PI-GNN 82.53±1.37 -4.18±1.29 93.44±0.28 0.87±0.09 71.59±0.13 -1.63±0.85 66.12±2.18 -3.99±1.02

C-GNN 81.34±1.08 -4.58±1.56 96.05±1.16 -1.06±0.30 70.78±1.08 -1.35±0.36 66.96±1.16 -3.71±1.24

DyMoE 83.97±1.16 -2.37±0.83 96.30±0.01 -0.20±0.09 69.81±0.17 -0.81±0.09 67.51±0.47 -3.01±0.84

DyMoE (k=3) 82.93±1.53 -3.31±1.58 97.01±0.32 -0.40±0.07 69.05±0.82 -1.21±0.47 67.79±0.38 -3.46±1.37

Retrain 86.15±0.49 -0.35±0.04 98.13±0.03 0.14±0.02 73.01±0.10 0.34±0.29 68.59±1.27 0.29±0.04
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Figure 4: Performance progression over data blocks of our models and baselines. (a) CoraFull
Accuracy. (b) CoraFull Forget. (c) Reddit Accuracy. (d) Reddit Forget.

Table 3: Training time comparison
(Seconds/Epoch).

CoraFull Arxiv Reddit

Finetune 2.30 3.38 8.41
ER-GNN 2.36 3.94 9.57
Retrain 6.03 16.37 28.68
DyMoE(k=3) 2.47 4.29 10.35
DyMoe 2.69 7.83 14.91

we see that the dense version usually outperforms the sparse
version, but the sparse version still achieves highly competitive
results compared to the dense version and other baselines.

We also observe a similar pattern in the instance incremental
setting in Table 2, where our model performs better than base-
lines on most datasets. Meanwhile, we acknowledge that the
performance improvement on instance incremental datasets
is not as significant as in the class incremental setting. Note
that the lower bound online model also achieves comparable
performance, indicating that forgetting was not a severe issue in these datasets. Hence, our method’s
advantage is not apparent.

In Table 3, we show the training time of the baselines and our model. Compared to the retrain baseline
(performance upper-bound), our model costs significantly less running time, only 34.4% on average,
and we achieved competitive results as shown in Table 1 and Table 2. While the training time of our
model is slightly higher than some baselines, our model obtains a remarkably better performance,
showing that DyMoE is an economic trade-off between efficiency and effectiveness. We additionally
provide inference time comparison in Appendix B.

Furthermore, we plot the AA and AF with respect to the data block sequences in Figure 4.
Regularization-based methods struggle to keep learned information in the class incremental learning
setting as its AF quickly increases. Our proposed DyMoE usually archives the closest performance
with the upper-bound method (retrain baseline), while other baselines either fail to learn new infor-
mation or forget old knowledge quickly.

5.2 INVESTIGATION OF DYMOE

To answer Q2, we compare our method with three other baselines, ER-GNN, PI-GNN, and C-GNN,
that use memory nodes to help retain old knowledge. An ideal incremental learning method should
only use a small memory size to obtain desirable performance. We plot the results with different
memory sizes in Figure 5. From the results, we can see that our approach achieves better performance
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Figure 5: Model accuracy versus memory size
for memory-based models.
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Figure 6: Individual experts’ performances on
dedicated data blocks.

Table 4: Ablation study of class incremental and instance incremental datasets.

Reddit Cora-Full Paper100M Arxiv-CIL

AA AF AA AF AA AF AA AF

Full 93.28±0.19 -2.98±0.36 80.97±0.58 -5.22±0.49 83.97±1.16 -2.37±0.83 68.06±1.54 -10.68±1.97

Sparse 91.57±0.58 -3.46±0.36 81.33±0.85 -5.69±1.12 82.93±1.53 -3.31±1.58 67.25±0.97 -9.54±0.69

w/o DB 89.57±1.28 -4.01±0.42 80.16±0.65 -4.52±1.37 83.09±1.47 -2.84±1.39 64.50±0.74 -10.51±1.08

w/o BL 90.48±1.46 -3.52±0.71 76.33±1.44 -6.08±1.16 81.25±1.69 -2.54±0.92 63.10±0.78 -12.91±1.58

w/o Dy 92.09±1.08 -2.99±0.74 78.67±0.71 -5.41±1.02 81.50±1.09 -3.73±1.32 64.30±0.85 -14.52±1.77

with the same size of memory, especially when we only have 10 memory data points budget per data
block. Moreover, we notice that DyMoE with 30 samples achieved comparable performance with
ER-GNN and PI-GNN with 200 samples, which is roughly a 75% reduction in memory requirements.
Note that when the memory size approaches infinity, all methods become retrained, and hence we are
seeing a converging pattern for the baselines.

To answer Q3, we conduct an ablation study comparing the entire model, sparse model, sparse model
initially containing the same number of experts as the data blocks (w/o Dy), sparse model without
block-guided loss(w/o BL), and finally the sparse model without data balance training (w/o DB). The
results are in Table 4. We see performance drop whenever a component is missing from the model,
validating the importance of each component. In particular, we observe, in w/o Dynamic, that even
though the model keeps a large parameter size since the first data block arrives, the performance still
drops a lot. This shows that training experts in a sequence is the key to a successful model, with the
ability to learn appropriate knowledge for each data block. Moreover, data balance training also helps
overall performance, as it is crucial to reflect the actual distribution of the data blocks.

Q4 validates whether our model and training procedure results in specialized experts as designed.
We evaluate the performance of each expert on individual data blocks and plot the average accuracy
of each data block. In Figure 6, we compare individual experts’ performances varying the β. We
can easily observe that when the beta is zero (block-guided loss is disabled), the experts are not
specialized. The prediction relies on multiple experts, not necessarily the one corresponding to the
target data. On the other hand, when trained with block-guided loss, the experts are specialized, and
they achieve high prediction accuracy for their corresponding data blocks, validating our hypothesis
that block-guided loss encourages higher levels of specialization.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we identified the drawbacks of existing graph incremental learning models and proposed
the DyMoE module with a sparse version to model different interaction types between data blocks
effectively and efficiently. However, we also acknowledge that our model may have trouble locating
the correct experts when there are too many data blocks, resulting in compromised performance.
While this can be solved by periodic retraining, we plan to extend our work to handle extremely long
data sequences (over 1000 data blocks) in future work.
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APPENDIX

A PROOF OF THEOREM 1

We restate Theorem 1 for completeness,

Theorem 1. For an arbitrary continual learning problem, suppose a PI model obtains a cross-entropy
loss LPI , there exists a parametrization of DyMoE that achieves cross-entropy loss LDy = LPI .
When the data sequence follow a mixture of Gaussian distribution, we have LDy ≤ LPI .

It is easy to see that DyMoE is at least as powerful as PI since we can parameterize all gating vectors
with the same value; hence, the weights of all experts are the same, which makes the final output
essentially a summation of each expert’s output. In this case, DyMoE degenerates to PI. We then
prove that under the Gaussian Mixture assumption of the data blocks, DyMoE achieves lower loss
and, hence, is strictly more powerful than PI.

Proof. Consider the case with two data blocks generated from Gaussian Distributions, X1 =
N (µ1, σ

2I), and X2 = N (µ2, σ
2I). For simplicity, we assume the same variance across coor-

dinates and the probability of data from each distribution is the same. Let the distance between two
distributions be B. The labels of data are generated depending on their distance from the mean of
their coorresponding distribution, specifically, if x ∼ X1,

y =

{
0, if ||x− µ1|| ≤ d

1, otherwise
(14)

and if x ∼ X1,

y =

{
2, if ||x− µ2|| ≤ d

3, otherwise
(15)

where 2d ≤ B is a threshold distance to determine the data labels. This is a practical assumption for
a mixture of two Gaussian distributions.

We then consider the procedure of Parameter Isolation (PI) and our proposed method. PI first trains a
model f1(x) on X1 and then trains a model f2(x) on X2, both f1 and f2 are in R4 for the four target
classes. Hence, when making predictions, we have the logits to be:

y = softmax(f1(x) + f2(x)) (16)

Since our approach can initialize a network with the same architecture, we can have the same network
and parameters as the ones in PI, and the predictions from our model are:

y = softmax(α1f1(x) + α2f2(x)), αi =
exp(− ||x−gi||2

2σ2 )

exp(− ||x−g1||2
2σ2 ) + exp(− ||x−g2||2

2σ2 )
(17)

Here, we use the negative of the distance normalized by the variance as the similarity measure
between the input and the gating vectors. This is a valid and tractable choice as variance can be
estimated by batch normalization. Note that in the first data block, we directly set the gating vector
to the empirical mean of the input, g1 = x̄1 ≈ µ1. In the second data block, the block-guided loss
solves the problem

min
g2

1

N

N∑
i=1

s(xi, g2) (18)

which is minimized by g2 = µ2. We can then rewrite the prediction of the model:

y = softmax(α1f1(x) + α2f2(x)), αi =
exp(− ||x−µi||2

2σ2 )

exp(− ||x−µ1||2
2σ2 ) + exp(− ||x−µ2||2

2σ2 )
(19)

To show that our model achieves lower loss on this task, we only need to consider the expected loss on
the D1 as the two distributions are symmetric. We divide the problem into two cases ||x− µ1|| ≤ d,
when the input is close to the distribution mean, and ||x− µ1|| > d when the input is farther away.
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For ||x− µ1|| ≤ d, the correct label is 0. We consider the cross-entropy loss of PI,

LPI = −log(
f1(x)0

f1(x)0 + f1(x)1 + f2(x)2 + f2(x)3
)

= −log(
α1f1(x)0

α1f1(x)0 + α1f1(x)1 + α1f2(x)2 + α1f2(x)3
)

(20)

and the cross-entropy loss of our method

LDy = −log(
α1f1(x)0

α1f1(x)0 + α1f1(x)1 + α2f2(x)2 + α2f2(x)3
) (21)

since ||x − µ1|| ≤ d ≤ B − d ≤ ||x − µ2||, meaning that α1 ≥ α2, and we have LDy ≤ LPI .
Since cross-entropy is monotonic, we can obtain the minimum of LPI − LDy at ||x− µ1|| = d and
||x − µ2|| = B − d. Let the minimum be ∆Lclose. Note ∆Lclose increases as d increases and σ
decreases.

For ||x − µ1|| > d, the correct label is 1. Let M be the maximum absolute value that the neural
network f2 output for a logit, that is |f2(x)y| ≤ M . Then, the maximum possible loss is −f2(x)1 +
log(C · exp(M)) = log(C) + 2M , where C = 4, the number of classes. Since logits of PI and our
method is bounded by the same M , we have the maximum possible loss difference to be

|∆Lfar| = 4M + 2logC (22)

We now developed a lower bound for the loss difference when x is close to µ1 and an upper bound
for the loss difference when x is far from µ2, we then compute the probability of each case using
Gaussian tail bound.

P [x− µ1 > d] ≤ exp(− d2

2σ2
), P [x− µ1 ≤ d] ≥ 1− exp(− d2

2σ2
) (23)

Then the upper bound of the difference in expected loss when x is far is:

|∆Efar| ≤ (4M + 2logC) · exp(− d2

2σ2
) (24)

The lower bound of the expected loss when x is close is:

∆Eclose ≥ ∆Lclose · (1− exp(− d2

2σ2
)) (25)

Taking the ratio:
|∆Efar|
∆Eclose

≤
(4M + 2logC) · exp(− d2

2σ2 )

∆Lclose · (1− exp(− d2

2σ2 ))
(26)

As d
σ increases, the ratio approaches zero, hence we have the overall expected loss difference,

∆E = ∆Eclose + |∆Efar| ≥ ∆Eclose − |∆Efar| ≥ 0 (27)

making the overall loss difference positive, and our approach leads to lower loss in this case.

B INFERENCE TIME EXPERIMENT

We additionally provide an inference time comparison between our method and a strong baseline
ER-GNN. We report the inference time on the last inference epoch of the training data sequences,
and the numbers of samples for all methods are the same. For a fair comparison, we report DyMoE,
DyMoE with k = 3, ER-GNN, and ER-GNN (×3), where the size of the ER-GNN is enlarged
roughly three times to have a similar number of active parameters as the sparse DyMoE. The results
are in Table 5. We can see that while the inference time of DyMoE is slightly worse than ER-GNN,
we achieved much better performance, showing the necessity of the specialized experts. Comparing
the enlarged version of ER-GNN, we see that simply increasing the model size does not benefit the
performance despite higher computation time, which further illustrates the advantage of the proposed
framework to properly use the extra trainable parameters.
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Table 5: Inference time comparison (Seconds/Epoch for time).

CoraFull Arxiv-CIL Reddit

Time AA Time AA Time AA

ER-GNN 2.89 71.08 11.07 57.09 18.41 81.35
ER-GNN (×3) 3.48 70.54 14.61 59.44 19.89 80.69
DyMoE(k=3) 3.50 81.33 13.65 67.25 20.55 91.57
DyMoe 4.13 80.97 18.77 68.06 24.39 93.28

Table 6: Hyperparameters for class incremental learning.

Arxiv-CIL DBLP-CIL CoraFull Reddit

Learning Rate 0.0001
Weight Decay {0.01, 0.001, 0.0001}
Embedding Dimension 512 128 128 128
# Epochs 40
# Balancing Epochs 10
β {0.01, 0.1, 1, 2} {0.01, 0.1, 1, 2} {0.01, 0.1, 1, 2} {0.01, 0.1, 1, 2}
batch size 128

C EXPERIMENT DETAILS

C.1 IMPLEMENTATION DETAILS

The model is implemented in PyTorch and DGL, and all experiments are conducted on 1 Nvidia
Tesla T4 GPU. We repeat the experiment 5 times using different random seeds and report the mean
and standard deviation. We uniformly use a fan-out of 10 to extract subgraphs from each target node.
The hyperparameters used during training are shown in Table 6 and Table 7, where the curly bracket
represents the hyperparameters for searching, and the hyperparameters selected are marked in bold.
Memory size is the per data block memory size, and it is a special hyperparameter in the continual
learning setting because as it increases, all methods converge to the retrain method, which is usually
the upper bound of all continual learning methods. Hence, we set a fixed memory size at 100 for
our model, and for a fair comparison, if the baseline model requires a memory set, we use the same
number.

C.2 DATASET DETAILS

The dataset statistics are shown in Table 8. We collect data from academic graphs (Arxiv, DBLP,
Paper100M, CoraFull), social networks (Reddit), and BlockChain networks (Elliptic) to show that
our model handles a wide range of datasets. We describe the construction of each dataset as follows
and includes the number of new nodes and edges in Figure 7 and 8.

ArXiv: Arxiv academic citation network from Open Graph Benchmark (OGB) (Hu et al., 2021)
contains arxiv articles and the citation information between articles. For instance incremental learning
setting, we use the first 25 timestamps in the original arxiv dataset as the first data block, as they
contain significantly less data. We then split the rest of the data by year, and data in each forms a data
block. For class incremental learning setting, we split the data into 8 blocks each contains 5 classes.

DBLP: DBLP is an academic network from the DBLP website containing computer science academic
paper, with citation information (Tang et al., 2008). We follow Zhang et al. (2023a) to sample 20000
nodes with 9 classes and 75706 edges from DBLP full data, we split it into data blocks according
to the timestamps. For the class incremental setting, we split the 9 classes into 5 data block each
containing 2 classes, except for the last one with only 1 class.

Paper100M: Paper100M is a citation network extracted from Microsoft Academic Graph by
OGB (Hu et al., 2021). We follow Zhang et al. (2023a) to sample 12 classes from the year 2009 to
the year 2019 from Paper100M full data and we split it into tasks according to the timestamps.
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Table 7: Hyperparameters for instance incremental learning.

Arxiv-IIL DBLP-IIL Paper100M Elliptic

Learning Rate 0.0001
Weight Decay 0.001
Embedding Dimension 512 128 256 128
# Epochs 40
# Balancing Epochs 5
β {0.01, 0.1, 1, 2} {0.01, 0.1, 1, 2} {0.01, 0.1, 1, 2} {0.01, 0.1, 1, 2}
batch size 128

Table 8: Dataset statistics.

#. Nodes #. Edges #. Classes #. Data blocks #. Classes per block

CoraFull 19793 126842 70 14 5
Arxiv-CIL 169343 2332486 40 8 5
Reddit 232965 114615892 41 9 5
DBLP-small-CIL 20000 302862 9 5 2
Paper100M-small 49459 217420 12 11 NA
Arxiv-IIL 169343 2332486 40 11 NA
DBLP-small-IIL 20000 302826 9 24 NA
Elliptic 203769 468710 2 49 NA

CoraFull: CoraFull is a co-citation academic network, where nodes are papers, and the two nodes
are connected if they are co-cited by other papers (Bojchevski & Günnemann, 2018). We use the
provided CoraFull data from DGL, and split its 70 classes into 14 5-classes data blocks for class
incremental learning.

Reddit: The Reddit dataset contains Reddit posts as nodes, and two nodes are connected by edges if
they are posted by the same user (Hamilton et al., 2017). We use the provided Reddit data from DGL,
and split its 40 classes into 8 5-classes data blocks for class incremental learning.

Elliptic: The Elliptic dataset is a bitcoin transaction network, where each node represents a transaction,
and each edge denotes money flow (Weber et al., 2019). Its nodes have timestamps evenly spaced with
an interval about two weeks. We use the original timestamp from the dataset for instance-incremental
learning.
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Figure 7: Number of new nodes per data block.
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Figure 8: Number of new edges per data block.
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