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Abstract
Both text and video data are abundant on the
internet and support large-scale self-supervised
learning through next token or frame prediction.
However, they have not been equally leveraged:
language models have had significant real-world
impact, whereas video generation has remained
largely limited to media entertainment. Yet video
data captures important information about the
physical world that is difficult to express in lan-
guage. To address this gap, we discuss an under-
appreciated opportunity to extend video gener-
ation to solve tasks in the real world. We ob-
serve how, akin to language, video can serve as a
unified interface that can absorb internet knowl-
edge and represent diverse tasks. Moreover, we
demonstrate how, like language models, video
generation can serve as planners, agents, compute
engines, and environment simulators through tech-
niques such as in-context learning, planning and
reinforcement learning. We identify major impact
opportunities in domains such as robotics, self-
driving, and science, supported by recent work
that demonstrates how such advanced capabilities
in video generation are plausibly within reach.
Lastly, we identify key challenges in video gen-
eration that mitigate progress. Addressing these
challenges will enable video generation models
to demonstrate unique value alongside language
models in a wider array of AI applications.

1 Introduction
There has been tremendous progress in training large lan-
guage models (LLMs) from internet text datasets in the past
few years (Team et al., 2023; Achiam et al., 2023). The
impressive performance of LLMs on a wide variety of tasks
makes it tempting to reduce the artificial intelligence agenda
to scaling up these systems. However, this is not sufficient.
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Firstly, the quantity of publicly available text data is becom-
ing a bottleneck to further scaling (Villalobos et al., 2022).
Secondly, and perhaps more importantly, natural language
alone might not be enough to describe all intelligent behav-
ior (Searle, 1980; Dennett, 1993; Minsky, 1988) or capture
all information about the physical world we live in (e.g.,
imagine teaching someone how to tie a knot using words
only). While language is a powerful tool to describe higher-
level abstractions, it is not always sufficient to capture the
physical world in all its wealth of detail.
Thankfully, there are abundant video data on the internet
(e.g., over ten thousand years of consecutive video watching
from YouTube alone) encapsulating a wealth of informa-
tion imbued with knowledge of the world. Nevertheless,
today’s machine learning models trained on internet text or
video data have demonstrated remarkably different capabil-
ities. LLMs have advanced to tackling intricate tasks that
require sophisticated reasoning (Huang & Chang, 2022),
tool use (Mialon et al., 2023), and decision making (Yang
et al., 2023c). In contrast, video generation models have
been less explored, primarily focusing on creating enter-
tainment videos for human consumption (Ho et al., 2022a;
Singer et al., 2022; Bar-Tal et al., 2024). Given the paradigm
shift unfolding in language modeling, it is important to
ask whether we can elevate video generation models to the
level of autonomous agents, simulation environments, and
computational engines similar to language models so that
applications requiring visual modalities such as robotics,
self-driving, and science can more directly benefit from
internet visual knowledge and pretrained video models.
In this paper, we take the position that video generation
will be to the physical world as language modeling is to the
digital world. To arrive at this position, we first identify
key components that have enabled language models to solve
many real-world tasks: (1) a unified representation (i.e.,
text) that can absorb broad information from the internet,
(2) a unified interface (i.e., text generation) through which
diverse tasks can be expressed as generative modeling, and
(3) language models’ ability to interact with external envi-
ronments (e.g., humans, tools, and other models) by taking
actions and optimizing decisions based on external feedback
through techniques such as reinforcement learning from hu-
man feedback (Ouyang et al., 2022), planning (Huang et al.,
2022), search (Yao et al., 2023), and optimization (Rafailov
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et al., 2023).
Motivated by these three aspects of language models, we
observe that (1) video can serve as a unified representation
to absorb broad information about the physical world, (2)
diverse tasks in computer vision, embodied AI, and science
can be expressed or supported by a video generation model,
and (3) video generation as a pretraining objective intro-
duces internet-scale supervision for large vision models,
behavior models, and world models, which in tern enables
actions to be extracted, environment interactions to be simu-
lated, and decisions to be optimized.
To further illustrate how video generation can have a pro-
found impact on real-world applications, we provide an in
depth analysis on recent work that utilizes video genera-
tion as task solvers, answers to questions, policies/agents,
and environment simulators through techniques such as
instruction tuning, in-context learning, planning, and rein-
forcement learning (RL) in settings such as games, robotics,
self-driving, and science. Lastly, we identify major difficul-
ties around video generation, and suggest plausible solutions
to address these challenges to unleash the full potential of
video generation in the real world.

2 Preliminaries
We provide a brief overview of video generation models
and how they have been used in domain-specific settings
through conditional generation.

2.1 Conditional Video Generation
We denote a video clip as a sequence of image frames
x = (x0, ..., xt). An image on its own can be treated as
a special video with a single frame, x = (x0, ). Conditional
video generation models the conditional probability p(x|c)
where c is the conditioning variable. The conditional proba-
bility p(x|c) has commonly been factorized by an autoregres-
sive model (Razavi et al., 2019), a diffusion model (Ho et al.,
2022a), or a masked transformer model (Chang et al., 2022).
Depending on the factorization, sampling from p(x|c) cor-
responds to either predicting images (patches) sequentially
or predicting all frames (x0, ..., xt) together, iteratively.

2.2 Task-Specific Specialization
Depending on what is in the conditioning variable c, condi-
tional video generation can serve different purposes. Below,
we enumerate common examples of c and their use cases.

• p(x|c = text). This corresponds to text-to-video mod-
els commonly used for generative media (Kondratyuk
et al., 2023; Blattmann et al., 2023b), where the text
is often some creative description of the desired video
(e.g., “A teddy bear painting a portrait” in Singer et al.
(2022)). Text-to-video has mostly been applied to gener-
ating movies (Zhu et al., 2023) and animations (He et al.,
2023; Guo et al., 2023).

• p(x|c = {x0, text}). This corresponds to generating video
rollouts starting from a given image x0 while incorpo-
rating the text description. This type of conditioning
has been applied to generate scene-specific visual inter-
actions (Yang et al., 2023b) and visual plans for robot
executions (Du et al., 2023b). When x only contains a
future image xt, p(xt|c = {x0, text}) can predict visual
goals for robot manipulation (Black et al., 2023; Yu et al.,
2023). This approach to goal synthesis is largely inspired
by the vast literature on stylized image generation and
inpainting (Efros & Freeman, 2023; Wang et al., 2023a).

• p(x|c = {x, text}). When x and x have the same un-
derlying content, this corresponds to text-guided video
editing and stylization (Loeschcke et al., 2022; Yang et al.,
2023a), which has been applied to generate self-driving
videos in different weather conditions (Hu et al., 2023).
Note that x can also be completely different from x, in
which case x can serve as a visual prompt to elicit certain
patterns in the output videos (Bai et al., 2023).

• p(xi+1|c = {xi, action}). This corresponds to learning
a visual dynamics model where the action can be robot
controls (Yang et al., 2023b), keyboard inputs (Hafner
et al., 2020), or other motion information (Li et al., 2023)
that causes change in the visual space. If we replace
xi+1 with xi+t for some t > 1, we have a temporally-
abstract dynamics model (Sutton et al., 1999). In this
case we can also replace xi with any sub-sequence of
(xi, xi+1, ..., xi+t−1).

These specializations of conditional video generation sug-
gest that there may exist a general framework under which
broad video data can be absorbed and diverse tasks can be
expressed using video generation.

3 Unified Representation and Task Interface
In this section, we first describe how video is a unified repre-
sentation that can capture various types of information from
the internet to form broad knowledge. We then discuss how
diverse tasks from computer vision and embodied AI can
be formulated as a conditional video generation problem,
providing the foundation for real-world decision making
with video generation. Details of the models used to gener-
ate the examples can be found in Appendix A. Additional
generated videos can be found in Appendix B.

3.1 Video as a Unified Representation of Information
While internet text data has provided much value to the
digital/intellectual world with large language models, text
is more suitable for capturing high-level abstractions as
opposed to low-level details of the physical world. Below,
we list a few types of information that is hard to express as
text but can be easily captured by video.

• Visual and Spatial Information: This includes visual
details such as colors, shapes, textures, lighting effects,
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and spacial details such as how objects are arranged in
space, their relative positions, distances, orientations, and
3D information. Such information naturally exist in im-
age/video format as opposed to text format.

• Physics and Dynamics: This includes details about how
objects and environments interact with each other physi-
cally, such as collisions, manipulations, and other move-
ments influenced by physical laws. While text can de-
scribe movements at a high-level (e.g., “a car driving
down the street”), it is often insufficient to capture low-
level details such as the torque and friction applied to the
vehicle. Videos can implicitly capture this information.

• Behavior and Action Information: This includes in-
formation such as human behaviors and agent actions,
characterizing the low-level details of performing tasks
such as how to assemble a piece of furniture. Text again
can mostly capture high-level descriptions of how to per-
form a task as opposed to the detailed information such
as precise motions and movements.

Why Video? One may wonder that, even if text is not
sufficient to capture the above information, why video? To
answer this question, we observe that video, in addition
to existing at an internet scale, is interpretable to humans
(similar to text) so that debugging, interaction, and safety
speculation can be easily conducted. Moreover, video is
a flexible representation that can characterize information
at different spacial and temporal resolutions, e.g., atoms
moving at angstrom scale (10−10m) (Kashin et al., 2021)
and light traveling at a trillion frames per second (Faccio &
Velten, 2018).

3.2 Video Generation as a Unified Task Interface
In addition to a unified representation that can absorb broad
information, we have seen from language modeling that we
need a unified task interface through which diverse tasks
can be expressed using a single objective (e.g., next token
prediction); also, it is the alignment between representa-
tion of information (e.g., text) and task interface (e.g., text
generation) that enables transfer of broad knowledge to task-
specific decisions. In this section, we show how diverse
vision tasks, as well as a broader set of question answering,
reasoning, and problem solving, can all be expressed as a
video generation task.

Classical Computer Vision Tasks. In natural language
processing, many tasks (e.g., machine translation, text sum-
marization, question answering, sentiment analysis, named
entity recognition, part-of-speech tagging, text classifica-
tion, dialogue systems) have traditionally been considered
as different tasks but now have all been unified under the
umbrella of language modeling. This has allowed greater
generalization and knowledge sharing across tasks. Simi-
larly, computer vision also has a broad set of tasks spanning
across semantic segmentation, depth estimation, surface

Figure 1: Vision Tasks as Video Generation. Figure 8 from Bai
et al. (2023) (simplified to show partial prompts), where diverse
computer vision tasks such as joint/edge detection, depth estima-
tion, and segmentation can be converted into a single next-frame
prediction task.

normal estimation, pose estimation, edge detection, and ob-
ject tracking. Recent work has shown that it is possible to
convert diverse vision tasks into a video generation task as
shown in Figure 1 (Bai et al., 2023; Bar et al., 2022; Wang
et al., 2023b), and that this unified approach to solving vi-
sion tasks scale favorably with model size, data size, and
context length (Bai et al., 2023).
Converting vision tasks into a video generation task gen-
erally involves the following steps: (1) structure the input
and output of a task (e.g., segmentation maps, depth maps)
into a unified image/video space, (2) reorder image frames
so that an input image is followed by the expected output
image of a specific task (e.g., a regular input image followed
by a depth map), and (3) leverage in-context learning by pro-
viding example input-output pairs as input to the conditional
video generation model to specify the desired task.

Video as Answers. In traditional visual question answer-
ing (VQA) (Antol et al., 2015), the expected answers are
in text. With the development in video generation, a novel
task would be to treat video as answers, e.g., a video would
be generated in response to “how to make an origami air-
plane” (Souček et al., 2023; Yang et al., 2023b). Similar to
how language models can generate customized response to
human inquiries in text, video models can also generation
customized answers to how-to questions with great low-
level details. Such video response can be more preferable
to humans than textual response (Yadav et al., 2011). In
Figure 2, we illustrate videos generated by a text-to-video
model in response to a set of how-to inquiries. Addition-
ally, one may consider conditioning generation on an initial
frame to synthesize video answers in user-specific scenes.
Despite such a grand promise, videos synthesized by to-
day’s text-to-video models are generally too short/simple,
not containing enough information to fully answer users’
questions.
The problem of synthesizing video frames to answer users’
questions has similarities to planning with language mod-
els (Valmeekam et al., 2023), except that both the state and
low-level action spaces are now pixels as opposed to text.
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How to 
make 
sushi?

How to 
use a 

soldering 
iron?

How to 
fold an 
origami 

airplane?

How to 
tie a 

knot?

Figure 2: Generated How-to Videos. Video generation models
can synthesize key frames corresponding to human hands perform-
ing intricate tasks. However, the generated frames are too generic
and do not capture enough details to fully answer users’ questions.

One may utilize language models or vision language models
to break down high-level goals (e.g., “how to make sushi”)
into specific subgoals (e.g., “first, put rice on rolling mat”)
and synthesize plans for each subgoal while validating the
plausibility of synthesized plans (Du et al., 2023c).

Visual Reasoning and Chain-of-Thought. With a uni-
fied representation of information and a unified task inter-
face, reasoning has emerged in language modeling where a
model can elicit relevant information as intermediate steps
towards solving more complex problems (Wei et al., 2022).
Similarly, with video as a unified representation and task
interface, video generation has also exhibited early signs of
visual reasoning by predicting masked regions of an image,
as shown in Figure 3 (Bai et al., 2023). It would be interest-
ing to see if next frame prediction can be used to solve more
complex geometry problems similar to Trinh et al. (2024)
by generating videos with the right set of auxiliary lines.
Building on the idea of leveraging next-frame prediction
for visual reasoning and solving geometry problems, we
can further characterize the reasoning process (Himakun-
thala et al., 2023) and algorithms (Yang et al., 2022b) using
videos. Specifically, Yang et al. (2022b) characterized the
execution state of a Breadth First Search (BFS) algorithm
using videos. In this context, learning to generate a video
corresponds to learning to search, as illustrated in Figure 4
(see also Silver et al. (2017)). While the examples in Fig-
ure 3 and Figure 4 might seem contrived, they serve as early
indicators that video generation as a pretraining task may
elicit reasoning-like behaviors similar to language models,

Figure 3: Visual Reasoning as Next–Frame Generation. Figure
13 from Bai et al. (2023) shows next-frame prediction can solve
visual reasoning tasks such those in IQ tests.

Figure 4: BFS as Video Generation. Figure 14 from Yang et al.
(2022b) shows two sets of intermediate frames generated by a
video model emulating the BFS search procedure. The red and
green cells represent the start and goal locations. The white and
black cells represent empty spaces and obstacles. Blue cells rep-
resent the cells that would have been visited by running the BFS
algorithm.

revealing opportunities in leveraging video generation to
solve complex reasoning and algorithmic tasks.

3.3 Video as a Unified State-Action Space
We have seen that video generation can absorb broad knowl-
edge and characterize diverse vision tasks. In this section,
we further support this observation by providing concrete
examples in embodied AI of using video as a unified repre-
sentation and task interface.
One of the long-standing challenges in embodied AI has
been data fragmentation, where datasets collected by one
robot performing one set of tasks is hardly useful for
learning on a different robot or on a different set of
tasks (Padalkar et al., 2023). The major difficulty in knowl-
edge sharing across robots and tasks lies in that each type of
robot and task has distinct state-action spaces. To address
this difficulty, Du et al. (2023b) advocate the use of the pixel
space as a unified state-action space across tasks and envi-
ronments. Under this framework, embodied planning can be
cast as a conditional video generation problem, thereby ben-
efiting from internet pretrained video generation models. An
additional module such as an inverse dynamics model (Du
et al., 2023b), a goal-conditioned policy (Black et al., 2023;
Kang et al., 2023; Du et al., 2023c), an optical flow net-
work (Ko et al., 2023), or dense grid point (Wen et al., 2023)
can then be employed to recover the low-level robot con-
trols from high-level video plans. We illustrate video plans
generated by previous work in Figure 5 (top). Most existing
work trains one video generation model per robot, which
diminishes the potential benefit of using video as a uni-
fied state-action space for embodied learning. We provide
additional generated video plans from training a video gen-
eration model on the Open X-Embodiment dataset (Padalkar
et al., 2023) with a diverse set of robots and tasks in Fig-
ure 5 (bottom). Both the previous and newly generated
video plans look highly realistic and successfully complete
the specified tasks. Note that video as a unified interface
can also implicitly align multiple viewpoints (robot wrist
view in Figure 5) through action-conditioned video gener-
ation. Given the initial frame (wrist-view or third-person)
and a sequence of actions, the generated wrist view video is
encouraged to be consistent with the generated third-person
view conditioned on the same sequence of actions.
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Put an 
orange 

block left of 
a red block

rotate the 
blue 

block left

Put  yellow  
pepper in  
ceramic 

bowl

Make a line

Pick up can 
and put on 

top

Assembly

Poor coins 
into cup

Stack 
(wrist 
view)

Reach 
green 
bottle

Pick up 
bowl

Figure 5: Generated Video Plans for Robots. [Top] Video plans generated by existing work (Figure 3 in Du et al. (2023b), Figure 3
in Black et al. (2023), Figure 3 in Du et al. (2023c), Figure 5 in Ko et al. (2023), Figure 14 in Yang et al. (2023b), Figure 7 in Kang et al.
(2023)). [Bottom] Video plans generated by a single video generation model trained on the Open X-Embodiment (Padalkar et al., 2023).

4 Video Generation as Simulation
While video generation on its own can already solve many
tasks as described in the previous section, another important
opportunity in video generation is to simulate visual obser-
vations of various systems and processes, so that control
inputs to a system can be optimized according to simula-
tion results. This is especially useful for applications where
abundant video data can be collected but the underlying
dynamics are hard to be explicitly expressed (e.g., cloud
movement, interaction with soft objects). In this section, we
begin by studying such visual generative simulators in game
settings, where we may have ground truth game engines to
verify qualities of learned simulators and iterate on effective
generation of new experiences. We then provide examples
of simulating real-world processes such as robot interac-
tions, autonomous driving, and atomic-level interactions.
Details of the generative models used to generate the ex-
amples can be found in Appendix A. Additional generative
simulation results can be found in Appendix B.

4.1 Generative Game Environments
Games have been used as a testbed for AI algorithms for
decades (Yannakakis & Togelius, 2018). For instance, the
Arcade Learning Environment (Bellemare et al., 2013) en-
abled the development of deep Q-learning, the first AI agent
to reach human level in playing Atari games (Mnih et al.,
2015). In a similar vein, we can consider games as a means
to test the quality of generative simulators by comparing
against ground truth simulations from the game engine. In
the future, we may even be able to use generative models
to surpass what is possible with existing human-designed
simulated environments. In this section we discuss these
possibilities, ranging from simulating a single complex en-
vironment to generating entirely new ones.

Figure 6: Generated Game Trajectories in Minecraft. Both
actions and observations are generated using an autoregressive
model trained on Minecraft data. In the top row, the inventory
is opened. The middle row shows use of a pickaxe to break a
stone block. The bottom row predicts movement throughout the
environment.

Video Models for Planning. Action-conditioned video
generation can possibly simulate the dynamics of com-
plex environments. As a proof of concept, we trained
a transformer-based architecture, autoregressive in time,
that predicts future agent actions and observations in the
Minecraft video game. The predictions are conditioned on
the episode history, that is, the sequence of observations
and actions up to a point in time. We used the “contractor
data” from Baker et al. (2022), which consists of trajecto-
ries collected while humans interacted with the game. Both
observations and actions are quantized tokens, reducing
model-based rollout to next token prediction. Note that in
this case the model serves both as a world model and a pol-
icy: given a sequence of alternating observations and actions
ending in an action, the model can infer the next observation
(world model), and given an analogous sequence ending in
an observation, the model can infer the next action to take
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Figure 7: Generated Interactive Game Environments: Two syn-
thetic image prompts passed to the model from (Bruce et al., 2024),
which converts them into interactive environments. From there, it
is possible to generate diverse trajectories by taking different latent
actions, shown here as Player 1 and 2.

(policy). Figure 6 shows a few generated trajectories from
this model. The model is capable of generating actions and
transitions corresponding to sophisticated strategies (e.g.,
using a pickaxe to break a stone block).
With such a policy and dynamics backbone, model-based
reinforcement learning algorithms—such as Dyna (Sutton,
1991), Dreamer (Hafner et al., 2020), and MuZero (Schrit-
twieser et al., 2019; Antonoglou et al., 2022)—could be
employed to improve the policy. When used for planning in
reinforcement learning, a world model should only capture
the information from the video—or, more generally, from
the stream of observations—that influences the reward. If
details like the background, texture, and colors do not have
any impact on rewards, not modeling them can give rise to a
model that is computationally faster to use and statistically
easier to learn. However, if one lacks information about the
reward when learning the model, trying to capture as much
information as possible from the stream of observations can
be a good strategy.

Generating Novel Game Environments. Procedurally
generating novel game contents and levels is an active area
of research in the game AI community (Summerville et al.,
2018), which has been shown to be useful to both train-
ing and evaluation of RL agents (Risi & Togelius, 2020;
Justesen et al., 2018; Cobbe et al., 2020). There have been
attempts to leverage generative models for game design by
directly predicting frames (Bamford & Lucas, 2020) or mod-
ifying backgrounds to generate new game levels (Kim et al.,
2020). However, these works rely on privileged simulation
data, and have only been attempted at a small scale, limiting
the potential to generate entirely new game environments.

Real 
SE(3) 

dynamics

Generated 
SE(3) 

dynamics

Generated  
repeated 

action

Figure 8: Generative Simulation of SE(3) Robot Actions. Real
execution of a robot policy (top), simulated execution of the same
policy (middle), and simulated execution of repeating the same
action (bottom). The simulated rollout generally agrees with the
ground truth rollout, but hallucination can happen as the bottle
disappears (bottom row).

Recent work has shown it is possible to leverage unlabelled
internet-scale gameplay data to learn latent actions and then
train an action-controllable video model (Bruce et al., 2024).
This makes it possible to generate an endless possibility
of diverse interactive environments from a prompt image.
Figure 7 shows generated game trajectories controlled by
human players selecting latent actions given two novel start-
ing frames. While this work remains exploratory, one could
imagine a future where it is possible to also integrate learned
reward models (Chan et al., 2023; Du et al., 2023a; Escon-
trela et al., 2023) to train RL agents in fully generative game
environments.

4.2 Robotics and Self-Driving.
Simulating the SE(3) Action Space One of the long
standing challenges in robot learning is around sim-to-real
transfer (Rusu et al., 2017), where policies trained in a sim-
ulator fails to transfer to execution on a real robot.Yang et al.
(2023b) demonstrated that it is possible to learn an action-
conditioned next-frame prediction model on real-robot
video data from the Language Table environment (Lynch
et al., 2023) with a simple Cartesion action space. In Fig-
ure 8, we illustrate that next-frame prediction can predict
the visual effect of the more general end-effector actions in
the SE(3) space (Blanco-Claraco, 2021).
One immediate use case of a generative SE(3) simulator is
to evaluate robot policies, which is particularly useful given
the safety considerations associated with real-robot evalua-
tion. Aside from evaluation, Yang et al. (2023b) has trained
an RL policy using rollouts from a generative simulator in
the Language Table environment. An interesting next step
would be to learn a policy from both simulated rollouts and
a real environment using a Dyna-style algorithm (Sutton,
1991). Under this setting, real-world videos would be col-
lected as the policy were being executed, which would serve
as additional demonstration and feedback for the generative
simulator. Lastly, generative simulators can enable effec-
tive training of multi-task and multi-environment policies
through video rollouts in diverse environments. This was not
possible previously, as a policy generally only has access to
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Rainy on 
the Golden 
Gate Bridge

Dawn at 
Yosemite

Snowy 
on the 
way to 

Yosemite

Figure 9: Generative Simulation for Self-Driving. With internet
knowledge, we can simulate different driving conditions at particu-
lar locations, such as “rain on Golden Gate Bridge” (top), “dawn in
Yosemite” (middle), and “snow on the way to Yosemite” (bottom).

a single real-world environment at a time. Video generation
as environment simulation also enables usage of suboptimal
data for planning and RL. This would require an additional
reward function to evaluate the quality of video generation /
simulation. Previous work has shown that vision-language
models (VLMs) can serve effective reward functions (Du
et al., 2023c; Venuto et al., 2024).

Domain Randomization. Another benefit of generative
simulators that is broadly applicable to robotics, naviga-
tion, and self-driving is their ability to introduce natural
randomness to the training environment to improve real-
world transfer of policies trained in simulation. Without
generative models, this is achieved through domain random-
ization by hard-coding rendering rules (Tobin et al., 2017),
which is tedious and results in limited environment varia-
tions and unrealistic rendering effects. With a generative
simulator, recent work has shown that different driving con-
ditions (e.g., sunny, foggy, snowy, rainy, at night) can be
introduced into the simulator (Hu et al., 2023). Furthermore,
combined with internet-scale knowledge, we can simulate
driving conditions at specific locations such as simulating
driving in the rain on the Golden Gate Bridge, as shown in
Figure 9, which enables training self-driving policies with
diverse locations and weather conditions.

4.3 Science and Engineering
Video can serve as a unified representation across a wide
range of science and engineering domains, impacting re-
search fields such as medical imaging, computerized im-
age processing, and computational fluid dynamics (Stein-
man, 2002). Video generation has also been applied to
many scientific and engineering domains such as traffic
prediction (Kim & Lee, 2021) and cloud movement pre-
diction (Xiong et al., 2018). In situations where visual
information can be easily captured by cameras but the un-
derlying dynamical systems are difficult to identify (e.g.,
cloud movements, atom movements under electron micro-
scopes), video generation models conditioned on the control
input can be an effective visual simulator, which can then
in tern be used to derive better control inputs. In Figure 10,
we illustrate the transition dynamics of silicon atoms on a

GeneratedTrueCondition GeneratedTrueCondition

Figure 10: Atomic-Level Next-Frame Prediction. The condi-
tional frame, true next frame, and generated next frame reflecting
the visual dynamics of silicon atoms on graphene sheets stimulated
by electron beams of an electron microscope. Generative models
are capable of modeling the visual dynamics with high fidelity.

single layer of carbon atoms, when stimulated by the elec-
tron beam of a scanning transmission electron microscope
(STEM) using the STEM data collected from Schwarzer
et al. (2023). We can see that the generative simulator is
capable of characterizing the movement of the silicon atom
in the pixel space.
Employing a highly realistic visual simulator in response to
control inputs can mitigate the issue of limited hardware ac-
cess in scientific research endeavors that requires operating
specialized equipment, such as electron microscopes. How-
ever, leveraging a visual generative simulator for control
input optimization requires further investigation to ensure
its validity and effectiveness.
In addition to closing the sim-to-real gap in simulating sci-
entific processes, another benefit of generative simulators
is that they have a fixed computational overhead which can
be beneficial when traditional computational methods are
intractable. For instance, simulating calorimeter showers
requires computing pairwise interactions between electrons,
the complexity of which quickly becomes impractical when
the number of electrons are large (Mikuni & Nachman,
2022). Videos of electron showers, on the other hand, have
a fixed computational overhead in proportion to the resolu-
tion at which showers are being modeled.

5 Challenges
While video generation has great potential, some major
challenges for their application still remain. We outline
these challenges and potential solutions in this section.

5.1 Dataset Limitations
Limited Coverage. In language modeling, the distribution
of language data for solving specific downstream tasks is
generally within the distribution of internet text data. How-
ever, this is not the case for video. Videos posted on the
internet are geared towards human interest, which are not
necessarily the video data useful for downstream tasks. For
example, models for computational fluid dynamics would
likely require many long videos focusing on the movement
of fluids such as water; such videos lasting hours would not
be very interesting to humans and are thus scarce on the
internet. Similarly, it is unusual to find a particular type
of robot (e.g., a Franka Emika Panda robot) performing a
particular task (e.g., folding clothes) on the internet. This
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calls for better facilitation to collect and distribute domain
specific video data. The Open-X Embodiment dataset for
robotics is one such example (Padalkar et al., 2023).

Limited Labels. Another challenge in video modeling is
the lack of annotated videos. For example, the MineDojo
dataset (Fan et al., 2022) has over 300 thousand hours of
humans playing the game Minecraft, but the dataset only has
language transcriptions but no game action labels, making
it difficult to train policies or environment models using
this dataset. Similarly, in the largest open-source robotics
dataset (Padalkar et al., 2023), many robot trajectories do not
have language annotations on the tasks being performed, or
only have generic labels such as “interact with any object”.
In order to label more video data, prior work has utilized
image/video captioning models to provide additional text
labels which can be further used to train text-to-image/video
models (Betker et al., 2023; Blattmann et al., 2023a). This
is similar to video pretraining (VPT) (Baker et al., 2022)
except that VPT labels video with action data as opposed
to text data. Another possibility is to leverage latent ac-
tions/skills inferred from videos (Edwards et al., 2019; Ry-
bkin et al., 2018; Ye et al., 2022), with the largest scale
example being Bruce et al. (2024). In Figure 13 in Ap-
pendix B, we show examples of the latent actions. Despite
the consistency of learned latent actions, it remains an open
question as to whether this approach could scale to more
complex and diverse dynamics.

5.2 Model Heterogeneity
Unlike how language models have converged on an autore-
gressive architecture, video generation has yet to settle on
the best approach. Autoregressive models, diffusion models,
and masked models each have their own advantages and
drawbacks.

Diffusion Models. Diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2022a) (such as the model used in Sec-
tion 3.3) have two major advantages. First, they can easily
model continuous output spaces without requiring tokeniza-
tion, which can lead to better generation quality. Second,
multiple frames can be sampled in parallel. However, sam-
pling speed in diffusion models is still fairly slow, limiting
its applications in real-time simulation. In addition, it is un-
clear how to generate long video sequences with diffusion
models. Diffusion models are also known to be sensitive
to hyperparameters such as noise schedules (Croitoru et al.,
2023), making training and scaling difficult.

Autoregressive Models. Autoregressive models with a
tokenized output space (such as the model mentioned in Sec-
tion 4.1) are relatively easier to train than diffusion models.
Tokenization also allows video generation to be integrated
with text or discrete action generation, opening up more ap-
plications that require multi-modal generation (Team et al.,

2023). Additionally, autoregressive models scale well with
context length (Dai et al., 2019; Yan et al., 2023; Bai et al.,
2023), allowing them to potentially model very long se-
quences of frames. However, autoregressive decoding is
computationally expensive as each token has to be predicted
sequentially. Furthermore, autogregressively bootstraped
videos may suffer from the drifting effect (Weng et al.,
2023).

Masked Models. Models based on masked reconstruc-
tion (such as the model used for generating novel game
environments in Section 4.1) can leverage some of the ben-
efits of diffusion and mitigate some of the issues of token-
autoregressive modelling by sampling batches of image
tokens in parallel (Chang et al., 2022). This allows images
composed of thousands of tokens to be sampled with only
dozens of model invocations as in Bruce et al. (2024). How-
ever, this approach introduces challenges such as sampling
bias introduced by the independence assumptions within
individual sampling steps.

Better Future Models. Potential solutions to model het-
erogeneity may require combining the advantages of differ-
ent models , such as combing autoregressive and masked
models (Yan et al., 2023) or combining autoregressive and
diffusion models (Weng et al., 2023; Peebles & Xie, 2023;
Brooks et al., 2024). In addition, video data might contain
redundant information both spatially and temporally. Fu-
ture models could consider learning latent spaces to reduce
the redundency. Better video generation models should
also address the current challenges in generation speed and
long-term consistency across existing models.

5.3 Hallucination
Hallucination in video generation is common across differ-
ent types of models. For instance, objects can randomly
emerge or disappear (see Figure 8 bottom row and Ap-
pendix B.5). This could be due to the loss weight on objects
often being not as high as the loss weight on backgrounds
since objects are often small. Another type of common hal-
lucination involves implausible dynamics, e.g., a cup “jump”
into a robot hand as opposed to a robot grasping a cup. This
could be due to videos with coarse temporal frequency not
capturing the exact motion-critical frames. Furthermore,
generative models that simultaneously model behaviors and
dynamics may not distinguish visual changes caused by
actions or dynamics (Yang et al., 2022a). Another type of
hallucination occurs in the form of violation of causality.
Incorporating causal inference algorithms and temporal co-
herence mechanisms into the video generation models can
potentially mitigate such hallucination. By understanding
and modeling the causal relationships between objects and
actions within a scene, these models could better predict the
effects of interactions over time. Hallucination can also oc-
cur when a user input is unrealistic given a particular scene,
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Wash 

hands

Figure 11: Generation from an Unrealistic Instruction. The
input image to the video generation model is a table top with a
robot hand. The language instruction is “wash hand”. The video
model is able to generate egocentric motions to move away from
the table top to a kitchen sink in an attempt to fulfill the language
instruction realistically.

e.g., “wash hands” is given to a table-top robot. Neverthe-
less, we haven seen that a video generation model attempts
to generate realistic videos by utilizing egocentric motions
to fulfill unrealistic user input as shown in Figure 11. Meth-
ods such as reinforcement learning with external feedback
can be applied to further reduce hallucination in video gen-
eration models.

5.4 Limited Generalization
Generating videos from arbitrary image and text input has
been difficult. This is especially true for domains that are not
well represented by the training data, which, due to limited
data coverage challenge discussed in Section 5.1, is quite
common in practice. Take diffusion model as an example, it
is a common to train on lower resolution videos followed
by spatial super-resolution to prevent overfitting (Ho et al.,
2022a; Bar-Tal et al., 2024; Xing et al., 2023). We hy-
pothesize that high-resolution images/videos have too much
high-frequency information invisible to human eyes, and
the focus on which leads to a lack of generalization.

6 Discussion
Integration of Video and Language Generative Models.
Neither video or language generation alone is sufficient for
real-world decision making. In fact, video and language
data contain information along complementary dimensions
that need to come together for decision making. Specif-
ically, language contain higher-level abstract information
that allows reasoning, search, and planning to be conducted
at a conceptual level (and hence more efficiently), mean-
while video contains low-level details that allow abstract
plans to be converted into concrete low-level actions (e.g.,
robot controls). In real-world decision making, the goal is
often to derive a sequence of low-level actions from some
high-level task description. This derivation process often
requires both language and video generation (e.g., use lan-
guage models to breakdown a high-level task description
into step-by-step instructions, and use video generation to
turn language instructions into concrete execution plans (Du
et al., 2023c)).

Future Directions on Improving Video Generation for
Decision Making. We summarize a few concrete future di-
rections in improving video generation models for decision
making.

• Incorporating feedback and self improvement. One

way to improve video generation is to incorporate feed-
back. This includes human preferences for generated
videos similar to RLHF for language models. Perhaps
more importantly, generated videos can be converted to
robot actions, the execution of which grounds the gen-
erated video in the real world by providing real-world
feedback. One can also leverage a multimodal model to
provide feedback on whether and why generated video is
realistic, so that a video generation model can utilize such
feedback to self improve.

• Evaluation. One key step in improving generation is de-
veloping proper evaluation metrics. One approach to eval-
uating video generation is to convert generated video into
real-world actions, executing such actions, and observe
the difference between the imagined video and real-world
executions.

• Reducing hallucination during sampling. Aside from
scaling up model and data, one can also reduce halluci-
nation at sampling time by selecting samples that tend
to have a higher likelihood. For autoregressive video
generation models, this would be similar to beam search.
For video diffusion models, this involves using the score
function to select samples.

7 Conclusion
We have taken the position that video generation is to phys-
ical world as language modeling to the digital world. We
have supported this position by showing how, similar to
language models, video can represent broad information
and tasks. We have further described prior work and new
perspectives on applications of video generation combined
with reasoning, in-context learning, search, planning, and
reinforcement learning to solve real-world tasks. Challenges
like hallucination and generalization notwithstanding, video
generation models have the potential to become autonomous
agents, planners, environment simulators, and compute en-
gines, and to eventually serve as the artificial brain to think
and act in the physical world.

8 Impact Statement
This paper argues that video generation holds significant
promise for real-world tasks, akin to the accomplishments of
language models in digital and intellectual domains. While
video generation has profound societal consequences such
as impacting privacy and intellectual property, this paper
itself focuses on leveraging video generation as task solvers,
agents, and environments. Thus, we do not feel that specific
ethical aspects and future societal consequences must be
highlighted here.
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Appendix
A Details of Models Used to Generate Examples in the Main Text
A.1 Autoregressive Model
The model in Section 4.1 is autoregressive in time but uses a masked model (Chang et al., 2022) for each frame in a manner
similar to TECO (Yan et al., 2023). For a given trajectory of pixel observation xt with corresponding action at, we model
the interleaved sequence z0, a0, z1, a1, ... where we encode pixel observations xt into tokens zt via VQVAE (Van Den Oord
et al., 2017) in combination with a vision transformer (Dosovitskiy et al., 2021). We tokenize the actions according to
VPT (Baker et al., 2022). We utilize Transformer-XL (Dai et al., 2019) to encode the temporal trajectory z0, a0, z1, a1, ...
with temporally aligned outputs hz0 , ha0

, hz1 , ha1
, .... For steps where the last input was an observation, i.e. hzt , we utilize

the context hzt as conditioning input to an autoregressive transformer head to predict at. If the last input was an action, the
context ha0

is conditioning to a masked transformer head to model zt. Our MaskGIT implementation uses 8 steps with a
cosine masking schedule. To further enhance the performance of our interleaved transformer, we initialize the memory using
a past encoder, an identical transformer separately trained on the interleaved sequence ..., x−2, a−2, x−1, a−1 utilizing
inputs without any discretization.

A.2 Diffusion Model
The diffusion model used to generate examples in Figure 2, Figure 5, Figure 8, Figure 9, and Figure 10 uses the same 3D
U-Net architecture as Ho et al. (2022b;a) with interleaved 3D attention and convolution layers in the spatial downsampling
pass and spatial upsampling pass. Skip connections are applied to the downsampling pass activations. The model uses
pixel-space diffusion as opposed to latent-space diffusion. Following conventions in video diffusion as described in Section 5,
the lower resolution video generation model operates at resolution [24, 40], followed by two spacial super-resolution models
with target resolution [48, 80] and [192, 320]. Classifier-free guidance (Ho & Salimans, 2022) was applied for text or action
conditioning. For frame conditioning, we input the conditioning frame into both the conditional and unconditional model
used for classifier-free guidance. To simulate the SE(3) dynamics shown in Figure 8, we employ action discretization similar
to Yang et al. (2023b) and Padalkar et al. (2023).

A.3 Masked Model
The masked dynamics model in (Bruce et al., 2024) that generated the novel game environments in Section 4.1 is a
controllable video continuation model, producing outputs autoregressively at the frame level, conditioned on unsupervised
latent variables that represent the transitions. The latent variables are composed of a discrete set of VQ-VAE codes (Van
Den Oord et al., 2017) ã1:T−1 that are conditioned on frames x1:T and optimized to help predict x̂2:T with a causal
transformer. The dynamics model is a transformer with interleaved temporal and spatial attention (Gupta et al., 2022)
trained using a masked reconstruction objective, following (Chang et al., 2022). Video tokens are masked with independent
random Bernoulli masks at an average rate of 75%, and the dynamics model is trained to predict the missing tokens by
minimizing a cross-entropy objective.
At inference time, tokens are generated in parallel following MaskGIT (Chang et al., 2022). Beginning with unmasked
context tokens for frames x1:t−1 and a fully masked frame xt, a series of iterative steps are performed, where each step
computes the logits for all of the tokens conditioned on x1:t and ã1:t, a candidate token for each remaining masked position
is sampled, and the highest-probability samples are locked in for future steps. In (Bruce et al., 2024) each image is composed
of 920 tokens, and they are all eventually sampled over the course of 25 MaskGIT steps.
The model is trained entirely unsupervised on large video datasets; see 13 for example trajectories from a 10.7B parameter
model demonstrating that the unsupervised latent action objective results in consistent control variables across a variety of
visual prompts.
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B Additional Generated Videos
B.1 Additional Game Simulations

Figure 12: Additional Generated Game Trajectories in Minecraft.. Using the model in Section 4.1, we demonstrate additional rollouts
from the model. We find that the model is able to handle ego-centric motion quite well. However, temporal consistency can sometimes be
an issue as shown in the third row. The agent opens up an inventory mid-clip, and then the chest in front disappears.
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Proprietary + Confidential

Prompt 🎮:left 🎮:right 🎮:jump 🎮:no-op

Figure 13: Additional Simulated Game Dynamics. Generated frames from (Bruce et al., 2024). Each frame is generated from an initial
synthetic prompt image from a text-to-image model, and an unsupervised latent action. Despite the unsupervised nature of the latent
actions, their semantics are relatively consistent across initial frames. One limitation of the model is its tendency to generate relatively
plain continuations outside the boundaries of the initial image, demonstrated most clearly in the jump column of the bottom row.
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B.2 Additional Generation for How-to Videos

How to 
make a dog 
shadow with 

hand?

How to tie 
a tie?

How to test 
a 

multimeter?

How to use 
a pair of 

chopsticks?

Figure 14: Additional Generated How-to Videos. Some generated frames can synthesize key frames in response to human inquiries
(first and last row), but some other generated frames are too generic and do not capture enough details to fully answer users’ questions.
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B.3 Additional Self-Driving Simulations

Sunny

Rainy

Dawn

Snowy

Night

Figure 15: Additional Generative Simulation for Driving. Generative simulators can generate driving in different weather conditions
and time of the day, such as sunny, rainy, snowy, night, and dawn.
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B.4 Additional Robot SE(3) Simulations

Real SE(3) 
dynamics

Generated 
SE(3) 

dynamics

Real SE(3) 
dynamics

Generated 
SE(3) 

dynamics

Figure 16: Additional Generative Simulation of SE(3) Robot Actions. Real execution of a robot policy (red) and simulated execution
of the same policy (blue). The simulated rollout generally agrees with the ground truth rollout.

B.5 Examples of Hallucination

Auto 
regressive

Diffusion

 Masked

Figure 17: Examples of Hallucination from All Three Types of Models. The problem of hallucination persists across different types
of video generation models. On the first row, the video generated by the autoregressive model shows that the chest disappears after the
inventory is closed. On the second row, the video generated by the diffusion model shows the orange that the orange disappears after
being put in the draw. On the bottom row, the video generated by the masked model shows that the cloud suddenly stops at the boundary.
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