
Investigating Conceptual Blending of a Diffusion Model
for Improving Nonword-to-Image Generation

Anonymous Author(s)

ABSTRACT
Text-to-image diffusion models sometimes depict blended concepts
in generated images. One promising use case of this effect would be
the nonword-to-image generation task which attempts to generate
images intuitively imaginable from a non-existing word (nonword).
To realize nonword-to-image generation, an existing study focused
on associating nonwords with similar-sounding words. Since each
nonword can have multiple similar-sounding words, generating im-
ages containing their blended concepts would increase intuitiveness,
facilitating creative activities and promoting computational psy-
cholinguistics. Nevertheless, no existing study has quantitatively
evaluated this effect in either diffusion models or the nonword-to-
image generation paradigm. Therefore, this paper first analyzes
the conceptual blending in one of the pretrained diffusion models
called Stable Diffusion. The analysis reveals that a high percentage
of generated images depict blended concepts when inputting an
embedding interpolating between the text embeddings of two text
prompts referring to different concepts. Next, this paper explores
the best text embedding space conversion method of an existing
nonword-to-image generation framework to ensure both the oc-
currence of conceptual blending and image generation quality. We
compare the conventional direct prediction approach with the pro-
posed method that combines 𝑘-nearest neighbor search and linear
regression. Evaluation reveals that the enhanced accuracy of the
embedding space conversion by the proposed method improves
the image generation quality, while the emergence of conceptual
blending could be attributed mainly to the specific dimensions of
the high-dimensional text embedding space.
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Figure 1: Example of conceptual blending of a text-to-image
diffusion model [18, 25] when generating images from an
interpolated text embedding (midpoint) between the embed-
dings of two text prompts referring to different concepts [12].

1 INTRODUCTION
Text-to-image diffusion models [18, 23] output generated images
depicting blended concepts when an interpolated embedding be-
tween embeddings of multiple text prompts is input [12]. Figure 1
illustrates the conceptual blending exhibited by one of the diffusion
models, Stable Diffusion [18, 25]. As it uses Contrastive Language-
Image Pretraining (CLIP) [15] text encoder for computing condi-
tioning text embeddings, it sometimes generates blended concepts
(e.g., “calf in a cave”) when inputting the midpoint of the CLIP text
embeddings of two prompts referring to different concepts (“calf ”
and “cave”).

This conceptual blending suggests various promising use cases,
although the effect itself has not been well-studied. One such use
case is the nonword-to-image generation task [9–11] which aims
to generate images intuitively imageable from a given non-existing
word (nonword). Generating such images for a nonword can facili-
tate creative activities including brand naming and computational
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psycholinguistics. One approach for this task suggested by an exist-
ing study [9–11] is to generate images depicting concepts of similar-
sounding words, assuming that humans associate nonwords with
themeanings of such words. Here, conceptual blending can improve
intuitiveness when nonwords are associated with multiple words.
For instance, if a nonword “calve” (/"kæv/1) is associated with two
similar-sounding words “calf ” (/"kæf/) and “cave” (/"keIv/), it can
be more intuitive to generate images depicting the blended concept
of the two words than depicting only either concept.

Nonetheless, none of the existing literature provides a clear an-
swer as to under which conditions diffusion models exhibit concep-
tual blending, and how it emerges in nonword-to-image generation
results. Therefore, this paper conducts two evaluations to assess the
occurrence of conceptual blending in each situation. The first one
evaluates the capability of a pretrained Stable Diffusion to exhibit
conceptual blending by detecting the presence of blended concepts
in generated images. Using these detection metrics, the second
one evaluates the occurrence of the effect in nonword-to-image
generation results. Here, we explore the best text embedding space
conversion method in the nonword-to-image generation frame-
work adopting the same pretrained Stable Diffusion model. The
conventional framework [9–11] took a direct approach to train
a Multi-Layer Perceptron (MLP) to transfer embeddings between
spaces. However, this yields large information loss, which could
lead to inaccurate and poor-quality image generation and a reduced
chance of conceptual blending. Alternatively, we propose a more
accurate method by combining 𝑘-nearest neighbor search and lin-
ear regression. Our evaluation aims to investigate how the reduced
loss affects conceptual blending and image generation quality.

Accordingly, this paper makes the following two contributions:

• We quantitatively evaluate a pretrained Stable Diffusion to
discover under which conditions it exhibits conceptual blend-
ing given an interpolated embedding between two concepts.

• We explore the best text embedding space conversionmethod
in the existing nonword-to-image generation framework
to analyze factors that affect the emergence of conceptual
blending as well as the image generation quality.

2 RELATEDWORK
2.1 Text-to-Image Diffusion Models
A diffusion model [23] is one of the generative models used in
most recent text-to-image generation methods [1, 14, 16, 20, 25]. In
contrast to conventional generative models [4, 7], it is characterized
by its step-by-step image generation procedure which gradually
removes noise from a noisy image until a clear image is obtained.
It generates images conditioned on a text prompt by utilizing the
text embedding computed for the prompt in each denoising step.
A latent diffusion model [18] is a more computationally efficient
variant. It differs from diffusion models in that it performs the
denoising procedure on the latent space instead of the image pixel
space. Stable Diffusion [25] is one implementation of such a latent
diffusion model which adopts the CLIP [15] text encoder as the

1This paper describes word pronunciation using International Phonetic Alphabet (IPA)
symbols. These symbols are also used as input of the existing nonword-to-image
generation method to calculate pronunciation similarity.

conditioning text embedding calculator and is trained using a large-
scale dataset crawled from the Web called LAION-5B [22].

2.2 Conceptual Blending
Conceptual blending stems from cognitive linguistics, denoting a
cognitive task to blend different concepts in minds to form a new
concept inheriting their characteristics [3, 17]. In informatics, Melzi
et al. [12] was the first to focus on it in diffusion models. Through
a case study, they found that a pretrained Stable Diffusion exhibits
conceptual blending when generating images from interpolated
text embeddings between two concepts, even without additional
training. Yet, there has been no other work on conceptual blending
in diffusion models and it is still unclear under which conditions
these models blend concepts.

One reason would be its seemingly limited use cases. The general
text-to-image generation paradigm assumes that users can give
clear instructions as text prompts into the model. Hence, if users
demand images depicting blended concepts, they can instruct the
model by typing detailed texts (e.g., “an image blending both a
calf and a cave”). However, some applications cannot require
users to put such a detailed text prompt, making it hard to satisfy
users’ needs for blending concepts.

One such case is the nonword-to-image generation task [9–11]
which will be described in Section 2.3, where the input contains
primarily non-existing words (nonwords). Before improving the
nonword-to-image generation performance, Section 3 of this paper
quantitatively studies the emergence of the conceptual blending
targeting Stable Diffusion.

2.3 Nonword-to-Image Generation Task
The nonword-to-image generation task attempts to generate images
intuitively imageable from a given non-existing word (nonword) [9–
11]. The difference to the general text-to-image generation task is
that the nonword-to-image generation task has no explicit ground-
truth concepts that must be depicted in generated images since
nonwords have no general interpretation of their meanings. How-
ever, as psycholinguistic studies suggest [6, 8, 21], humans tend to
associate specific meanings even with nonwords in a somewhat pre-
dictable way. Hence, generating intuitive images for nonwords can
profit in various applications including brand naming and language
learning, and can foster computational psycholinguistics.

One existing study [9–11] tackled this by focusing on the human
nature of associating a nonword with its similar-sounding words
and generating images containing the concepts of such words. They
trained a nonword encoder called NonwordCLIP that computes
CLIP embeddings for the spelling or pronunciation of nonwords
considering their phonetically similar words and inserted it into
the Stable Diffusion architecture in place of the CLIP text encoder.

To correct the domain gap between the CLIP embedding space
output by their language encoder (pooled embedding space) and
that required by Stable Diffusion (last-hidden-state embedding
space), they trained an MLP to convert embeddings in the for-
mer space into the latter. However, such a direct approach yields
large information loss because the CLIP pooled embedding space
is a compressed space of the last-hidden-state embedding space
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and thus less informative. This loss can affect the occurrence of
conceptual blending and image generation quality.

Hence, Section 4 proposes a more accurate text embedding space
conversion method. To bypass the information loss, the proposed
method combines 𝑘-nearest neighbor search and linear regression.
Our evaluation in Section 4 compares the proposed method with
the conventional MLP-based approach in terms of both conceptual
blending and image generation quality.

3 INVESTIGATING CONCEPTUAL BLENDING
This section quantitatively evaluates under which conditions con-
ceptual blending emerges in Stable Diffusion. To assess this, we de-
tect whether an image generation result exhibits conceptual blend-
ing by identifying the concepts depicted in each generated image.

3.1 Experimental Setup
3.1.1 Task. Given an interpolated embedding between two text
prompts describing concepts A and B, respectively, wemeasure how
often a text-to-image diffusion model exhibits conceptual blending
of the two concepts. This paper selects Stable Diffusion2 [25] as a
diffusion model which uses the CLIP3 [15] text encoder to compute
the CLIP last-hidden-space text embeddings. For each interpolated
embedding, 𝑁 images are generated for analysis.

3.1.2 Evaluation Data. This paper uses a list of 1,000 existing
English nouns representing different concepts, referred to as Eval-
Nouns1000 in later sections. These nouns are randomly taken from
the MRC Psycholinguistic Database [2] with the restrictions of
word imageability and frequency. Low-imageable and low-frequent
words are filtered out to ensure that the concepts can be depicted
clearly in images and that the words are not rare in everyday use
(See supplementary materials for more details). Next, for two nouns
(denoting concepts A and B) selected from EvalNouns1000, an inter-
polated embedding in the CLIP last-hidden-state space, ehidden, is
calculated as a linear interpolation between the text embeddings
of the two nouns/concepts. In detail, for each pair of the embed-
dings ehiddenA and ehiddenB corresponding to concepts A and B, the
interpolated embedding is calculated as

ehidden = 𝑟ehiddenA + (1 − 𝑟 )ehiddenB , (1)

where 𝑟 denotes an interpolation ratio ranging between 0 and 1.
We use the prompt “a photo of a <WORD>” for calculating em-
beddings ehiddenA and ehiddenB where “<WORD>” denotes each concept.
We create 1,000 such pairs by randomly choosing two nouns from
EvalNouns1000. The interpolation ratio for each pair is randomly
assigned from 0.1 to 0.9 with the step size 0.1. For each pair, 𝑁
images are generated using the interpolated embedding.

3.2 Detecting a Single Visual Concept
Conceptual blending can be regarded as image generation depicting
multiple visual concepts. Hence, to detect this, we first need to
classify whether each image depicts a single visual concept.

2Stable Diffusion-v1-4 on the model card: https://github.com/CompVis/stable-
diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md (Accessed April 9, 2024)
3CLIP ViT-L/14 on the model card: https://github.com/openai/CLIP/blob/main/model-
card.md (Accessed April 9, 2024)
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Figure 2: Distribution of CLIP scores in matching and mis-
matching pairs and the classification boundary between the
two classes.

For this classification, we exploit CLIP score [15] whichmeasures
the cross-modal similarity between an image and a text. CLIP score
is a cosine similarity between the embeddings of an image and
a text encoded by a pretrained CLIP4 [15]. A higher CLIP score
between an image and a text indicates a higher likelihood of the
image matching the text. Measuring this score between a generated
image and a text that describes concept A enables detecting whether
the single concept A is depicted in the image.

We approach this by finding the boundary on the CLIP score
axis that best classifies the presence of a concept in a generated
image. This paper defines it as the naïve Bayes decision boundary
between the CLIP scores of matching and mismatching image-text
pairs. The matching pairs are pairs of a generated image and its text
prompt used for generating the image. The mismatching pairs are
pairs of a generated image and a text prompt unrelated to the image
generation. Here, 10,000 matching pairs are created by generating
10 images for each concept in EvalNouns1000 with a prompt “a
photo of a <WORD>”. The mismatching pairs are created by shuf-
fling the correspondence of the matching pairs. In calculating CLIP
scores, we perform prompt engineering to increase the number
of samples and thus the precision of the scores (See supplemental
materials for more details). Figure 2 shows the distribution of the
CLIP scores between each pair in the matching and mismatching
pairs. The decision boundary 0.15 indicated in the figure classifies
whether a given image-text pair matches or mismatches, detecting
the presence of the concept denoted by the text in the image.

3.3 Detecting Conceptual Blending
This section detects whether a set of 𝑁 generated images for each
interpolated embedding exhibits conceptual blending. We detect
conceptual blending by identifying the depicted concepts in each
image using the single-concept classifiers introduced in Section 3.2.

We first define two types of conceptual blending. Here, two image
generation cases are distinguished involving conceptual blending
between the two concepts A and B: Blended Concept Depiction (BCD)
4This paper uses CLIP ViT-L/14 for the calculation of CLIP score, too.

https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md
https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md
https://github.com/openai/CLIP/blob/main/model-card.md
https://github.com/openai/CLIP/blob/main/model-card.md
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Concept A: “Armour” Concept B: “Spider” Blended Concept

(a) Image generation results from interpolated embeddings between
“armour” and “spider” showing Blended Concept Depiction (BCD).

Concept A: “Candle” Concept B: “Pool”

(b) Image generation results from interpolated embeddings between
“candle” and “pool” showing Mixed Concept Depiction (MCD).

Figure 3: Examples of image generation results showing two types of conceptual blending targeted by this paper. Red, blue, and
purple squares indicate cases where our method detected Concept A, Concept B, and both concepts, respectively. The images
are generated from an interpolated embedding between Concepts A and B with an interpolation ratio of around 0.5.

Table 1: Ratios of respective cases when inputting interpo-
lated embeddings between concepts A and B with different
interpolation ratios. The number of pairs for each interpola-
tion ratio used in the evaluation is also listed as a support.

Interpolation Ratio of Concept A to Concept B

Case 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total

Concept A 0.152 0.311 0.411 0.709 0.948 0.981 1.000 1.000 1.000 0.732
Concept B 1.000 1.000 1.000 0.991 0.914 0.731 0.472 0.277 0.265 0.738
BCD 0.143 0.301 0.348 0.521 0.621 0.593 0.416 0.257 0.257 0.389
MCD 0.152 0.311 0.411 0.701 0.862 0.722 0.472 0.277 0.265 0.471

Support 105 103 112 117 116 108 125 101 113 1,000

andMixed Concept Depiction (MCD). BCD corresponds to the narrow
sense of conceptual blending, where at least 𝑛 of the 𝑁 generated
images show the blended concept of concepts A and B.MCDdenotes
a broader sense of conceptual blending, corresponding to the cases
where at least 𝑛 images show concept A while at least 𝑛 images
which do not necessarily show concept A, show concept B. We
measure MCD as well as BCD because, although less direct than
BCD, its emergence can still be a clue that both concepts A and B
have been considered in an image generation result.

To detect both cases, we first detect the respective presence
of concepts A and B in each of the 𝑁 images using the classifier
introduced in Section 3.2. Then, we count BCD cases in which both
concepts A and B are identified simultaneously in at least 𝑛 of the
𝑁 images. Meanwhile, we also count MCD cases where concepts
A and B are identified in at least 𝑛 of the 𝑁 images, respectively.
Figure 3 shows examples of BCD and MCD cases detected on image
generation results.

3.4 Results
Table 1 shows the ratios of cases where Concept A, Concept B,
BCD, and MCD are detected respectively in each image generation
result. These are measured under the settings 𝑛 = 2 and 𝑁 = 10
(See supplemental materials for results under different settings).

We first observed a BCD ratio of 0.621 and an MCD ratio of 0.862
when inputting the midpoint between the embeddings of concepts
A and B. This indicates that more than 60% and 85% of image gen-
eration results depicted blended and mixed concepts, respectively.

When aggregating all interpolation ratios, they dropped to 0.389
and 0.471, respectively. These ratios are still high because Stable
Diffusion is not explicitly trained to visualize conceptual blending.

The results also revealed that the BCD and MCD ratios achieved
the highest score at the interpolation ratio of 0.5. This aligns with
the previous finding [12], suggesting that inputting the midpoint
embedding maximizes the occurrence of conceptual blending.

Furthermore, we observed that the detected BCD cases contained
two further subcases. One is the case where two concepts were de-
picted parallelly in an image (e.g., “calf ” and “cave” shown in Fig. 1),
and the other is where the textures of two concepts were blended
(e.g., “armour” and “spider” shown in Fig. 3(a)). The former is more
likely to occur when concepts A and B are often co-photographed
in a real-world scene, whereas the latter is likely to occur when
either of the concepts can grammatically work as an adjective. Thus,
Stable Diffusion depicts “calf ” and “cave” in parallel since “calf ”
can be in a “cave” in the real world (See Fig. 1). Meanwhile, since
“armour” can work as the stem of an adjective as in “armoured”, it
can generate images depicting “an armoured spider”.

4 NONWORD-TO-IMAGE GENERATION
Based on the findings reported in Section 3.4, this section investi-
gates conceptual blending in nonword-to-image generation results.

4.1 Generalized Framework
Figure 4 shows a generalized framework proposed by an existing
study [9–11] which utilizes a CLIP text encoder and Stable Diffusion
to generate images for a nonword. First, a nonword encoder encodes
a target nonword into the CLIP pooled embedding space to be in a
location interpolating its similar-sounding words. To realize this,
the existing study trains a language encoder NonwordCLIP by
distilling the CLIP text encoder to project a nonword into the CLIP
pooled embedding space. This distillation is performed in the pooled
embedding space to ensure compatibility with the CLIP image
encoder which also encodes images into the pooled embedding
space. During this distillation, a phonetic prior is inserted into the
nonword encoder to approximate nonword embeddings to those of
the phonetically similar existing words.
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Text Prompt
“Cave”

Nonword Prompt
“Calve” (/ˈkæv/)

CLIP Last-Hidden-State Embedding Space

Stable Diffusion

CLIP Text Encoder

“Cave” “Calf”

Generated Images

CLIP Pooled Embedding Space

“Cave” “Calf”

Nonword Encoder

Embedding Space Conversion

Text Prompt
“Calf”

“Calve” 
(/ˈkæv/)

“Calve” 
(/ˈkæv/)

Figure 4: Generalized framework for nonword-to-image gen-
eration [9–11]. The embedding space conversion method is
improved to preserve the neighborhood relationships.

After this nonword projection, an embedding space conversion
method converts the pooled embedding into a corresponding last-
hidden-state embedding before generating images using Stable
Diffusion. This process is required by Stable Diffusion because it
generates images from the CLIP last-hidden-state embedding space,
not the pooled embedding space.

This paper adopts the same framework to first project nonwords
into the pooled embedding space rather than projecting directly
into the last-hidden-state embedding space, and then convert em-
beddings from the former space to the latter. We stick to this frame-
work because using the CLIP pooled embedding space is a more
common tradition than using other embedding spaces, and is also
more flexible for extension to other image generation paradigms
with different text-to-image generation models. For example, the
same framework can be used for audio-to-image generation using a
pretrained audio encoder distilled from the CLIP pooled embedding
space [26] even if a generative model requires the CLIP penultimate
layer’s hidden-state embeddings, only with a minor adjustment.

4.2 Proposed Embedding Space Conversion
To convert embeddings between the two CLIP embedding spaces,
the existing study [9–11] trained an MLP that reconstructs a last-
hidden-state embedding from a pooled embedding. However, since
the CLIP pooled embedding space is a compressed space of the
last-hidden-state embedding space, it is impossible to perfectly

reconstruct last-hidden-state embeddings directly from pooled em-
beddings. This can lead to poor-quality image generation and a
reduced chance of generating blended concepts.

To bypass this information loss, the proposed method takes a
different approach; We combine nearest-neighbor search and linear
regression to convert a pooled embedding into its last-hidden-state
embedding. In the proposed method, last-hidden-state embeddings
are calculated as interpolation in the last-hidden-state embedding
space using the neighborhood relationships in the pooled embed-
ding space. This approach improves the conversion accuracy be-
cause the last-hidden-state embedding is estimated not directly from
the pooled embedding but based on the interpolation of the neigh-
borhood embeddings in the last-hidden-state embedding space.

The proposed method first performs 𝑘-nearest neighbor search
for a target nonword embedding epooled in the pooled embed-
ding space, obtaining 𝑘 text embeddings epooled1 , epooled2 , ..., epooled

𝑘
.

Then, a linear regressor is trained to predict epooled from its 𝑘
nearest-neighbor embeddings, predicting 𝑘 optimized coefficients
𝛼1, 𝛼2, ..., 𝛼𝑘 , which minimizes the loss of

epooled =

𝑘∑︁
𝑖=1

𝛼𝑖e
pooled
𝑖

. (2)

Lastly, we estimate the last-hidden-state embedding by performing
a linear combination in the last-hidden-state embedding space using
the optimized coefficients, which is formulated as

ehidden =

𝑘∑︁
𝑖=1

𝛼𝑖ehidden𝑖 . (3)

Our regressor does not employ a constant variable as the resulting
intercept is valid only for regression in the pooled embedding space.

This estimation works only if the data distributions in two em-
bedding spaces are similar. Our case should meet this requirement
since the CLIP pooled embedding space is a space linearly com-
pressed from the CLIP last-hidden-state embedding space [15].

4.3 Evaluating Embedding Space Conversion
This section evaluates the proposed embedding space conversion
method in terms of information loss, neighborhood relationships,
and image generation quality.

4.3.1 Task. Given an interpolated embedding in the pooled embed-
ding space, the task is to estimate its last-hidden-state embedding
that preserves the positional relationships with its neighbors with
minimum loss. In this evaluation, we first prepare pairs of interpo-
lated embeddings in both pooled and last-hidden-state embedding
spaces. Equation (1) and its analogy to the pooled output space
are used for calculating the interpolated embeddings in each space.
For each pair, the last-hidden-state interpolated embedding is re-
garded as the ground truth for the pooled interpolated embedding.
This evaluation does not use actual outputs of the nonword en-
coder as shown in the generalized framework because there is no
straightforward way to prepare corresponding last-hidden-state
embeddings.

4.3.2 Implementation. The proposed method performs 𝑘-nearest
neighbor search on 26,143 data samples in the pooled embedding
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space and uses the corresponding 26,143 samples for the estimation
in the last-hidden-state embedding space. These samples, which we
refer to as TrainWords26143, are taken from the existing study [9–
11]. TrainWords26143 consists of 26,143 words listed on the Spell
Checker Oriented Word Lists (SCOWL)5. The previous work se-
lected those words based on word frequency and pronunciation
availability. In this paper, we create an embedding from each word
using a prompt “a photo of a <WORD>”. We also confirmed that
our EvalNouns1000 is a subset of TrainWords26143. This evaluation
tests the hyperparameter 𝑘 with different integers ranging from 1
to 1,000.

We compare the proposed method with the MLP-based method
identical to the one used in the existing study [9–11]. Their training
data for the MLP used a set of 26,455 words. This set is almost
the same as TrainWords26143, with the only difference being that
it contains an additional 312 words for which no pronunciation
was available. To increase samples, they created three prompts for
each word in the wordlist: “<WORD>”, “a photo of <WORD>”, and “a
photo of a <WORD>”, although this augmentation is not performed
in the proposed method.

4.3.3 Evaluation Data and Metrics. As evaluation data, we use the
1,000 matching pairs created in Section 3, which are pairs of two
words randomly selected from EvalNouns1000, to prepare 1,000
interpolated embeddings.

As a metric for the information loss, we compute the L2 distance
between a ground-truth embedding and an estimated embedding
in the last-hidden-state embedding space averaged over all samples,
which we call an L2 error. To see how well the neighborhood rela-
tionships are preserved, we also report Spearman’s rank correlation
between the rankings of neighborhood embeddings within Train-
Words26143 averaged over all samples. The rankings for ground-
truth and estimated embeddings are obtained by searching their ℓ
nearest-neighbor embeddings in the pooled and last-hidden-state
embedding spaces, respectively. All the nearest-neighbor searches
during this evaluation are performed on an L2 distance basis. The
metric is measured under two different ℓs: 2 and 5 (See supple-
mentary materials for results under more various settings). Before
calculating these metrics, we flatten each last-hidden-state embed-
ding shaped 77 × 768 into a 59, 136 dimensional vector.

Image generation quality is measured using Fréchet Inception
Distance (FID) [5]. This evaluation measures two FIDs: FIDOrig and
FIDInter. Calculating the former uses images generated from text
embeddings of real text prompts which should depict clear visual
concepts. In contrast, calculating the latter uses images generated
from ground-truth interpolated embeddings which can exhibit con-
ceptual blending as confirmed in Section 3. As a reference for cal-
culating these metrics, 10 images are generated from each of the
1,000 text embeddings of EvalNouns1000 and the 1,000 ground-truth
interpolated embeddings introduced above6 with a prompt.

4.3.4 Results. Results are shown in Table 2. We first observe that
the L2 error of the proposed method was always lower than that
of the comparative MLP-based method with a great margin. This
demonstrates the strong advantage of our interpolation approach
5http://wordlist.aspell.net/ (Accessed April 9, 2024)
6We calculate FID using a Python package pytorch-fid: https://pypi.org/project/
pytorch-fid/ (Accessed April 9, 2024)

Table 2: Evaluation results for embedding space conversion
methods. RCorr denotes Spearman’s rank correlation.

Method L2 Error (↓) RCorrℓ=2 (↑) RCorrℓ=5 (↑) FIDOrig (↓) FIDInter (↓)

MLP [9–11] 245.38 0.846 0.783 16.03 11.59

Ours (𝑘 = 1) 47.12 0.902 0.702 13.02 10.95
Ours (𝑘 = 2) 37.38 0.880 0.788 12.25 7.58
Ours (𝑘 = 5) 24.63 0.884 0.765 12.71 4.57
Ours (𝑘 = 10) 19.29 0.882 0.771 13.21 3.52
Ours (𝑘 = 100) 10.85 0.888 0.781 13.80 1.96
Ours (𝑘 = 200) 10.30 0.886 0.791 13.85 1.87
Ours (𝑘 = 300) 10.65 0.890 0.793 13.76 1.86
Ours (𝑘 = 400) 11.68 0.890 0.797 13.66 1.95
Ours (𝑘 = 500) 14.49 0.880 0.802 13.64 2.19
Ours (𝑘 =1,000) 39.14 0.882 0.799 13.73 4.11

over the direct prediction approach. The rank correlations of dis-
tances within a few neighborhood samples ℓ also showed a large
gain over MLP, while tended to decrease as ℓ increased (See more
results in supplementary materials). This can be explained as the
curse of dimensionality, where the L2 distances measured in high-
dimensional spaces become less diverse. Yet, the higher correlations
of the proposed method within small ℓs indicate that it preserved
neighborhood relationships better than the comparative method.

Furthermore, the proposed method showed better scores for both
FID metrics than the comparative method. This indicates that our
more precise and accurate last-hidden-state embedding estimation
has improved the image generation quality, too. Notably, FIDInter
showed 1.86 point at minimum when 𝑘 = 300. This small value
indicates that the generated images using the proposed method
were almost identical to those generated using the ground-truth
interpolated embeddings. Since we have confirmed in Section 3
that the ground-truth embeddings can yield BCD in up to 60%
image generation results, it suggests that the proposed method
with 𝑘 = 200 or 𝑘 = 300 can also yield conceptual blending in a
similar frequency, which will be assessed more deeply in the next
section.

4.4 Assessing Nonword-to-Image Generation
Lastly, we assess conceptual blending in image generation results
generated for actual nonwords.

4.4.1 Implementation. As an encoder to compute CLIP pooled
embeddings for nonwords, we retrain the NonwordCLIP-P [9–11]
pronunciation encoder with a customized dataset. Since the original
training dataset contained various sentences from image caption-
ing datasets, the trained model tended to be biased on the word
frequency in the dataset. For instance, in the case of the nonword
“calve” (/"kæv/) which is assumed to have the two most similar-
sounding words “calf ” (/"kæf/) and “cave” (/"keIv/), its nonword
embeddings were always encoded in a similar position to “calf ”
because the dataset contained “calf ” more frequently than “cave”.

To avoid this, we construct a dataset in which each word appears
almost an equal number of times. The dataset consists of 5,496
highly-imageable and -frequent nouns and noun phrases created by
combining the MRC Psycholinguistic Database [2], a Python pack-
age wordfreq [24], and an English lexical database WordNet [13]
(See supplementary materials for more details). We augment the

http://wordlist.aspell.net/
https://pypi.org/project/pytorch-fid/
https://pypi.org/project/pytorch-fid/
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Figure 5: Nonword-to-image generation results exhibiting conceptual blending generated using different methods.

dataset twice using the two prompts “<WORD>” and “a photo of a
<WORD>”, resulting in the training data of 10,992 samples.

When generating images, we follow the same settings as the ex-
iting study [9–11], adopting the pronunciation prompt /@ "foUtoU
"2v @ <NONWORD>/ (corresponding to “a photo of a <NONWORD>”).

4.4.2 Evaluation Data and Metrics. BCG and MCG ratios intro-
duced in Section 3 are measured to assess conceptual blending in
nonword-to-image generation results. To calculate these, this eval-
uation lacks ground-truth concepts A and B since the nonword
embeddings are not computed by interpolating the embeddings
of two concepts. Hence, to prepare pseudo-concepts A and B, we
search the top-2 nearest-neighbor words for each nonword embed-
ding in the CLIP pooled embedding space. For instance, if the top-2
nearest-neighbor embeddings of the nonword embedding “calve”
are “calf ” and “cave”, our metrics detect occurrences of conceptual
blending of “calf ” and “cave” in the image generation result for
“calve”.

To align the metric calculation condition to Section 3, the near-
est neighbors are searched from words in EvalNouns1000, and the
hyperparameters for the metrics are set as 𝑁 = 10 and 𝑛 = 2. When
searching the 2nd nearest-neighbor word, we exclude words that
are too close to the 1st nearest-neighbor word from the candidates.
This is to avoid concepts A and B being semantically too similar
(e.g., “bloom” and “blossom”) and mis-detecting the image genera-
tion of only concept A as the emergence of conceptual blending.
The threshold to judge closeness is set as the 1st percentile of the
distribution of the L2 distance between each of 1,000𝐶2 pairs of two
samples in EvalNouns1000.

For nonwords, we use Sabbatino et al.’s 270 randomly created
English nonwords [19]. This evaluation uses only 242 nonwords
whose embeddings are not located in a close position to existing
words. Specifically, we filter out nonwords to restrict them to be
located in positions where the ratio of the distances to the top-
1 and top-2 nearest-neighbor words, which corresponds to the
interpolation ratio in Section 3, is between 0.4 and 0.6. 28 nonwords

Table 3: Ratios of respective cases detected in generated im-
ages for 242 English nonwords.

Method 1st-NN Concept 2nd-NN Concept BCD MCD

MLP [9–11] 0.930 0.847 0.669 0.789

Ours (𝑘 = 1) 0.913 0.620 0.545 0.566
Ours (𝑘 = 2) 0.913 0.669 0.550 0.607
Ours (𝑘 = 5) 0.959 0.769 0.603 0.727
Ours (𝑘 = 10) 0.926 0.798 0.579 0.727
Ours (𝑘 = 100) 0.913 0.781 0.595 0.719
Ours (𝑘 = 200) 0.938 0.810 0.624 0.760
Ours (𝑘 = 300) 0.884 0.810 0.607 0.723
Ours (𝑘 = 400) 0.884 0.818 0.612 0.740
Ours (𝑘 = 500) 0.876 0.810 0.628 0.723
Ours (𝑘 =1,000) 0.913 0.868 0.707 0.789

are excluded because, as confirmed in Table 1, such embeddings
are less likely to yield conceptual blending and can disturb metrics.

4.4.3 Results. The results are shown in Table 3. First, we confirmed
that the proposed method yielded a maximum BCG ratio of 0.707
and an MCD ratio of 0.789 when 𝑘 was set to 1,000. This BCG ratio
is much larger than the maximum value observed in Table 1 when
the interpolation ratio was 0.5. The MCG and BCG ratios of the
proposed method had another local maximum at 𝑘 = 200, where
the previous evaluation suggested the most accurate embedding
conversion in the L2 error. These results indicate that the accurate
embedding space conversion method did increase the chance of
conceptual blending, but also suggest other factors that control the
emergence of the effect. This can also be deduced by seeing the
comparative method which yielded better BCD and MCD ratios
than the proposed method with 𝑘 = 200 while producing a larger
L2 error in Table 2.

To seek insights into those factors, we next look at actual nonword-
to-image generation results exhibiting conceptual blending. Figure 5
shows ten images for each of the three nonwords “calve” (/"kæv/),
“broin” (/"bôOIn/), and “blour” (/"blaU@ô/) generated using each
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method. According to the top-2 nearest-neighbor words, the non-
word “calve” has similar sounding words “calf ” and “cave”, “broin”
has “brain” and “bone”, and “blour” has “flower” and “flour”. The fig-
ure indicates that all the methods can depict the blended concepts
of the two similar-sounding words. Meanwhile, they mainly dif-
fered in image generation qualities and abstractness of the depicted
objects, as indicated in the FID metrics in the previous evaluation.
Most notably, the proposed method with 𝑘 = 1, 000 tended to ex-
aggerate the texture of visual concepts, making the images very
abstract. Also, as especially observable in Figs. 5(b) and 5(c), the
MLP-based method tended to lack details of objects compared to
the proposed method. Such abstractness can have overrated the
concept detection metrics, as our classifier used in the metrics is
prone to misdetection for images containing abstract objects that
are recognizable in various ways.

As for why the inaccuracy of the embedding conversion did
not affect conceptual blending, the dimensionality of the CLIP
last-hidden-state embedding space can be the key. Last-hidden-
state embeddings of the CLIP model used in this paper have the
shape 77 × 768, where 77 denotes the maximum token length of a
transformer model and each dimension corresponds to each token
of the input text prompt. In our experimental setup, the input
prompt used to create the evaluation data was always restricted to
“a photo of a <WORD>”. This prompt was generally tokenized into
less than 10 tokens, suggesting that the dimensions of only the first
less than 10 tokens were more essential than the other dimensions.

Considering this, we calculate the dimension-wise L2 error met-
ric in the same setting as Table 2, as shown in Fig. 6. As expected,
the MLP-based approach yielded more information loss than the
proposed method in most dimensions. However, the loss became
very comparable in the dimension of the first token corresponding
to the [CLS] token, which usually represents the global feature of
a last-hidden-state embedding. A similar trend can be seen in the
position of the 7th token, where [EOS] (End Of Sentence) token
typically falls. These results indicate that the embedding conversion
accuracy in the dimension of [CLS] and [EOS] tokens would be
the most responsible for the occurrence of conceptual blending in
text-to-image diffusion models. Stable Diffusion could be referring
dominantly to these two dimensions for determining concepts to
blend in our experimental setup.

5 CONCLUSION
This paper first quantitatively analyzed under which conditions
text-to-image diffusion models exhibit conceptual blending. We tar-
geted an existing pretrained model called Stable Diffusion [18, 25],
finding that it blends concepts in a high percentage of generated
images when inputting an embedding interpolating between the
text embeddings of two text prompts referring to different concepts.
Next, this paper explored the best embedding space conversion
method in the nonword-to-image generation framework [9–11]
to analyze factors that affect conceptual blending and image gen-
eration quality. We compared the conventional direct prediction
approach with the proposed method combining 𝑘-nearest neighbor
search and linear regression. The evaluation confirmed that the
embedding space conversion accuracy improved by the proposed
method contributed to better image generation quality. The result
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Figure 6: L2 error for each dimension of the last-hidden-state
embedding space corresponding to each token position up
to the first 11 tokens.

also suggested key dimensions in the high-dimensional text em-
bedding space that could trigger the text-to-diffusion models to
determine which concepts to blend.

As future work, investigating the correlation of the conceptual
blending in diffusion models and nonword-to-image generation
results with human cognition would be interesting. Furthermore,
evaluations with diverse prompts could yield additional insights
into conceptual blending in diffusion models.
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