
Discrete and Continuous Difference of Submodular Minimization

George Orfanides 1 Tim Hoheisel 1 Marwa El Halabi 2

Abstract
Submodular functions, defined on continuous or
discrete domains, arise in numerous applications.
We study the minimization of the difference of
two submodular (DS) functions, over both do-
mains, extending prior work restricted to set func-
tions. We show that all functions on discrete do-
mains and all smooth functions on continuous do-
mains are DS. For discrete domains, we observe
that DS minimization is equivalent to minimizing
the difference of two convex (DC) functions, as in
the set function case. We propose a novel variant
of the DC Algorithm (DCA) and apply it to the
resulting DC Program, obtaining comparable the-
oretical guarantees as in the set function case. The
algorithm can be applied to continuous domains
via discretization. Experiments demonstrate that
our method outperforms baselines in integer com-
pressive sensing and integer least squares.

1. Introduction
Many problems in machine learning require solving a non-
convex problem, with potentially mixed discrete and contin-
uous variables. In this paper, we investigate a broad class
of such problems that possess a special structure, namely
the minimization of the difference of two submodular (DS)
functions, over both continuous and discrete domains of the
form X =

∏n
i=1 Xi, where each Xi ⊆ R is compact:

min
x∈X

F (x) := G(x)−H(x), (1)

and where G and H are normalized submodular functions.

Submodularity is an important property which naturally
occurs in a variety of machine learning applications (Bilmes,
2022; Bach, 2013). Most of the submodular optimization

1Department of Mathematics and Statistics, McGill University,
Montreal 2Samsung AI Lab, Montreal. Correspondence to: George
Orfanides <george.orfanides@mail.mcgill.ca>, Marwa El Halabi
<m.elhalabi@samsung.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

literature focuses on set functions, which can be equivalently
viewed as functions on X = {0, 1}n. Throughout, we make
this identification and refer to them as such. Submodular set
functions can be minimized in polynomial time exactly or up
to arbitrary accuracy (Axelrod et al., 2020), and maximized
approximately in polynomial time (Buchbinder et al., 2015).

Beyond set functions, submodularity extends to general
lattices like X (Topkis, 1978). Bach (2019) extended re-
sults from submodular set function minimization to general
domains X . In particular, he provided two polynomial-
time algorithms for submodular minimization with arbitrary
accuracy on discrete domains, which are also applicable
to continuous domains via discretization. Axelrod et al.
(2020) later developed a faster algorithm for this problem.
Bian et al. (2017b); Niazadeh et al. (2020) extended results
from submodular set function maximization to continuous
domains, with Bian et al. (2017b) giving a deterministic
1/3-approximation, and Niazadeh et al. (2020) an optimal
randomized 1/2-approximation, both in polynomial-time.

In this paper, we extend this line of inquiry by generalizing
DS set function minimization results to general domains X .
However, unlike the special case where F is submodular,
Problem (1) in general cannot be solved efficiently, neither
exactly nor approximately. Indeed, even for set functions,
any constant-factor multiplicative approximation requires
exponential time, and any positive polynomial-time com-
putable multiplicative approximation is NP-Hard (Iyer &
Bilmes, 2012, Theorems 5.1, 5.2). Even obtaining a local
minimum (Definition 4.3) is PLS complete (Iyer & Bilmes,
2012, Section 5.3). Prior work (Narasimhan & Bilmes,
2005; Iyer & Bilmes, 2012; El Halabi et al., 2023) devel-
oped descent algorithms for Problem (1) in the special case
of set functions, which converge to a local minimum of F .

Minimizing DS set functions is equivalent to minimizing
the difference of two convex (DC) functions, obtained by
replacing each submodular function by its Lovász extension
(Lovász, 1983). DC programs capture most well-behaved
non-convex problems on continuous domains. The DC algo-
rithm (DCA) is a classical method to solve them (Le Thi &
Pham Dinh, 2018). El Halabi et al. (2023) leverage this con-
nection to minimize DS set functions by applying DCA vari-
ants to the equivalent DC program. They also show that the
submodular-supermodular (SubSup) method of Narasimhan
& Bilmes (2005) is a special case of one of their variants.

1

Discrete and Continuous Difference of Submodular Minimization

We adopt a similar approach here to solve Problem (1) for
general discrete domains. We use the convex continuous
extension introduced in Bach (2019) to reformulate the prob-
lem as a DC program, then apply a DCA variant, obtaining
theoretical guarantees comparable to the set function case.
As in Bach (2019), the algorithm is applicable to continuous
domains via discretization. Our key contributions are:

• We show that any function on a discrete domain and
any smooth function on a continuous domain can be
expressed as a DS function, though finding a good DS
decomposition can be challenging.

• We highlight applications with natural DS objectives,
such as quadratic programming and sparse learning.

• For discrete domains, we introduce an efficient DCA
variant for Problem (1), which is a descent method and
converges to a local minimum at rate O(1/T).

• We demonstrate that our method empirically outper-
forms baselines on two applications: integer com-
pressed sensing and integer least squares.

Additional Related Work Maehara & Murota (2015)
proposed a discrete analogue of DCA for minimizing the
difference of two discrete convex (discrete DC) functions
G,H : Zn → Z ∪ {+∞}. They also show that any func-
tion F : D → Z on a finite D ⊂ Zn is the restriction of a
discrete DC function to D, making discrete DC functions
essentially equivalent to integer valued DS functions on
discrete domains. However, obtaining a DS decomposition
is easier, since a discrete DC function is a special case of
DS functions. In Section 3.2, we provide examples of appli-
cations which naturally have the form of Problem (1), but
not of a discrete DC program, even if we ignore the integer
valued restriction. For further details, see Appendix B.2.

Several works studied optimizing DR-submodular func-
tions, a subclass of submodular functions which are
concave along non-negative directions. For set functions,
DR-submodularity is equivalent to submodularity, but not
for more general domains such as the integer lattice. Ene
& Nguyen (2016) reduced DR-submodular functions on
a bounded integer lattice X =

∏n
i=1{0, . . . , ki − 1}, to

submodular set functions on a ground set of size O(log(k)),
enabling the application of set-function results to this setting.
Approximation algorithms with provable guarantees for
maximizing continuous DR-submodular functions on contin-
uous domains have also been proposed (Bian et al., 2017a;b;
Hassani et al., 2017; Mokhtari et al., 2017; Fazel & Sadeghi,
2023; Mualem & Feldman, 2023). Yu & Küçükyavuz
(2024) also gave a polynomial-time algorithm for DR-
submodular minimization with mixed-integer variables over
box and monotonicity constraints, with no dependence on k.

2. Preliminaries
We introduce here our notation and relevant background.
Given n ∈ N, we let [n] = {1, . . . , n} and [0 : n] =
{0} ∪ [n]. We use R = R ∪ {+∞} and Z = Z ∪ {+∞}.
The standard basis vectors for Rn and Rn×m are denoted
by ei, i ∈ [n] and Eij , i ∈ [n], j ∈ [m], respectively. The
vectors of all ones and all zeros in Rn are denoted by 1 and
0 respectively. The support of a vector x ∈ Rn is defined as
supp(x) = {i | xi ̸= 0}. For q > 0, the ℓq-(quasi)-norm is
given by ∥x∥q = (

∑n
i=1 x

q
i)

1/q and the ℓ0-pseudo-norm by
∥x∥0 = |supp(x)|. We conflate ∥x∥qq with ∥x∥0 for q = 0.
Given x, y ∈ Rn, x ≤ y means that xi ≤ yi for all i ∈ [n].

We denote by ⟨·, ·⟩F and ∥ · ∥F the Frobenius inner prod-
uct and norm respectively. We call X ∈ Rn×m row non-
increasing if its rows are all non-increasing, i.e., Xi,j ≥
Xi,j+1 for all i ∈ [n], j ∈ [m − 1]. We denote by
{0, 1}n×m

↓ , [0, 1]n×m
↓ , and Rn×m

↓ the sets of row non-
increasing matrices in {0, 1}n×m, [0, 1]n×m, and Rn×m,
respectively. Given a vector x ∈ Rm, a non-increasing per-
mutation p = (p1, . . . , pm) of x satisfies xpi

≥ xpi+1
for all

i ∈ [m]. Similarly, a non-increasing permutation (p, q) =(
(p1, q1), . . . , (pnm, qnm)

)
of a matrix X ∈ Rn×m satis-

fies Xpi,qi ≥ Xpi+1,qi+1
for all i ∈ [nm]. A non-increasing

permutation (p, q) of X ∈ Rn×m is called row-stable if it
preserves the original order within rows when breaking ties,
i.e., for any i, j ∈ [nm] with i < j, if pi = pj , then qi < qj .

Throughout this paper, we consider a function F : X →
R defined on X =

∏n
i=1 Xi, the product of n compact

subsets Xi ⊂ R. The set Xi is typically a finite set such as
Xi = {0, . . . , ki − 1} (discrete domain) or a closed interval
(continuous domain).We assume access to an evaluation
oracle of F , which returns F (x) for any x ∈ X in time
EOF . Whenever we state that F is differentiable on X , we
mean that F is differentiable on an open set containing X .
We say that F is L-Lipschitz continuous on X with respect
to ∥ · ∥, if |F (x) − F (y)| ≤ L∥x − y∥ for all x, y ∈ X .
When not specified, ∥ · ∥ is the ℓ2-norm.

A function F is normalized if F (xmin) = 0 where xmin is
the smallest element in X , non-decreasing (non-increasing)
if F (x) ≤ F (y) (F (x) ≥ F (y)) for all x ≤ y, and mono-
tone if it is non-decreasing or non-increasing. We assume
without loss of generality that F is normalized.

Submodularity A function F is said to be submodular if

F (x) + F (y) ≥ F (min{x, y}) + F (max{x, y}), (2)

for all x, y ∈ X , where the min and max are applied
component-wise. We call F modular if Eq. (2) holds with
equality, strictly submodular if the inequality is strict when-
ever x and y are not comparable, and (strictly) supermodular
if −F is (strictly) submodular. A function F is modular iff
it is separable (Topkis, 1978, Theorem 3.3).

2

Discrete and Continuous Difference of Submodular Minimization

An equivalent diminishing-return characterization of sub-
modularity is that F is submodular iff for all x ∈ X , i, j ∈
[n], i ̸= j, ai, aj > 0 such that x+ aiei, x+ ajej ∈ X ,

F (x+aiei)−F (x)≥F (x+aiei+ajej)−F (x+ajej). (3)

Strict submodularity then corresponds to a strict inequality
in (3) (Topkis, 1978, Theorem 3.1-3.2). Other equivalent
characterizations of submodularity hold for differentiable
and twice-differentiable F (Topkis, 1978, Section 3).

Proposition 2.1. Given F : X → R, where each Xi is a
closed interval, we have:

a) If F is differentiable on X , then F is submodular iff for all
x ∈ X , i, j ∈ [n], i ̸= j, a > 0 such that x+ aej ∈ X :

∂F

∂xi
(x) ≥ ∂F

∂xi
(x+ aej). (4)

b) If F is twice-differentiable on X , then F is submodular
iff for all x ∈ X , i ̸= j:

∂2F

∂xi∂xj
(x) ≤ 0, i ̸= j. (5)

In both cases, F is also strictly submodular if the inequali-
ties are strict.

On continuous domains, submodular functions can be con-
vex, concave, or neither (Bach, 2019, Section 2.2). For
n = 1, any function is modular and strictly submodulars
since any x, y ∈ R are comparable. (Strict) submodularity
is preserved under addition, positive scalar multiplication,
and restriction (Bach, 2019, Section 2.1).

Submodular minimization Minimizing a submodular set
function F is equivalent to minimizing a convex continuous
extension of F , called the Lovász extension (Lovász, 1983),
on the hypercube [0, 1]n. Bach (2019) extended this result
to general submodular functions on X . To that end, he
introduced a continuous extension of functions defined on X
to the set of Radon probability measures on X . When X =∏n

i=1[0 : ki − 1], this extension has a simple, efficiently
computable form (Bach, 2019, Section 4.1), given below.
For simplicity, we assume all ki’s are equal to k.

Definition 2.2. Given a normalized function F : [0 : k −
1]n → R, its continuous extension f↓ : Rn×(k−1) → R
is defined as follows: Given X ∈ Rn×(k−1)

↓ and (p, q) a
non-increasing permutation of X , define yi ∈ [0 : k − 1]n

as y0 = 0 and yi = yi−1 + epi
for i ∈ [(k − 1)n]. Then,

f↓(X) =

(k−1)n∑
i=1

Xpi,qi

(
F (yi)− F (yi−1)

)
(6)

For X /∈ Rn×(k−1)
↓ , we set f↓(X) = +∞.

Evaluating f↓(x) takes O(r log r + r EOF) with r = nk.
The value of f↓(X) is invariant to the permutation choice.

We can define a bijection map Θ : {0, 1}n×(k−1)
↓ → [0 :

k − 1]n and its inverse as

Θ(X) = X1, (7a)

Θ−1(x) = X where Xi,j =

{
1, if j ≤ xi,

0, if j > xi

. (7b)

In the set function case, i.e., when k = 2, we have
{0, 1}n×(k−1)

↓ = {0, 1}n and [0, 1]
n×(k−1)
↓ = [0, 1]n, so

Θ becomes the identity map, and f↓ reduces to the Lovász
extension; see e.g. Bach (2013, Definition 3.1).

We list below some key properties of the extension. Items
a-e, Item g (general bound) are from Bach (2019), Item f
follows directly from the definition of f↓, and we prove the
bound for non-decreasing F in Item g in Appendix D.

Proposition 2.3. For a normalized function F : [0 : k −
1]n → R and its continuous extension f↓, we have:

a) For all X ∈ {0, 1}n×(k−1)
↓ , f↓(X) = F (Θ(X)).

b) If F is submodular, then minx∈[0:k−1]n F (x) =
min

x∈[0,1]
n×(k−1)
↓

f↓(X).

c) Given X ∈ [0, 1]
n×(k−1)
↓ and {yi}(k−1)n

i=0 as defined
in Definition 2.2, let i∗ ∈ argmin i∈[0:(k−1)n] F (yi)

and x = yi
∗
, then F (x) ≤ f↓(X). We refer to this as

rounding and denote it by x = RoundF (X).

d) f↓ is convex iff F is submodular.

e) Given X ∈ Rn×(k−1)
↓ , a non-increasing permutation

(p, q) of X , and {yi}(k−1)n
i=1 defined as in Definition 2.2,

define Y ∈ Rn×(k−1) as Ypi,qi = F (yi) − F (yi−1).
If F is submodular, then Y is a subgradient of f↓ at X .

f) If F = G−H , then f↓ = g↓ − h↓.

g) If F is submodular, then f↓ is Lf↓-Lipschitz continu-
ous with respect to the Frobenius norm, with Lf↓ ≤√
(k − 1)nmaxx,i |F (x + ei) − F (x)|. If F is also

non-decreasing, then Lf↓ ≤ F ((k − 1)1).

Bach (2019, Section 5) provided two polynomial-time al-
gorithms for minimizing submodular functions on discrete
domains up to arbitrary accuracy ϵ ≥ 0; one using projected
subgradient method and the other using Frank-Wolfe (FW)
method. When X = [0 : k−1]n, both obtain an ϵ-minimum
in Õ((nkLf↓/ϵ)

2 EOF) time. Though FW is empirically
faster; especially the pairwise FW variant of (Lacoste-Julien
& Jaggi, 2015a), which we use in our experiments (Sec-
tion 5). Axelrod et al. (2020, Theorem 9) gave a faster

3

Discrete and Continuous Difference of Submodular Minimization

randomized algorithm with runtime Õ(n(kLf↓/ϵ)
2 EOF),

based on projected stochastic subgradient method.

DC Programming Given a Euclidean space E, let
Γ0(E) be the set of proper lower semi-continuous con-
vex functions from E into R. For a set C ⊆ E, δC
is the indicator function of C taking value 0 on C
and +∞ outside it. Given a function f : E → R, its
domain is defined as dom f = {x ∈ E | f(x) < +∞}.
For f ∈ Γ0(E), ϵ ≥ 0, and x0 ∈ dom f , the ϵ-
subdifferential of f at x0 is defined by ∂ϵf(x

0) ={
y ∈ E

∣∣ f(x) ≥ f(x0) + ⟨y, x− x0⟩ − ϵ,∀x ∈ E
}
,

while ∂f(x0) stands for the exact subdifferential
(ϵ = 0). An element of the ϵ-subdifferential is called an
ϵ-subgradient, or simply a subgradient when ϵ = 0.

A standard DC program takes the form

min
x∈E

f(x) := g(x)− h(x) (8)

where g, h ∈ Γ0(E). We adopt the convention +∞ −
(+∞) = +∞. The function f is called a DC function.

DC-programs are generally non-convex and non-
differentiable. A point x∗ is a global minimum of Problem
(8) iff ∂ϵh(x) ⊆ ∂ϵg(x) for all ϵ ≥ 0 (Hiriart-Urruty,
1989, Theorem 4.4). However, checking this condition is
generally infeasible (Pham Dinh & Le Thi, 1997). Instead,
we are interested in notions of approximate stationarity.
In particular, we say that a point x is an ϵ-critical point
of g − h if ∂ϵg(x) ∩ ∂h(x) ̸= ∅. Criticality depends on
the choice of the DC decomposition g − h of f (Le Thi &
Pham Dinh, 2018, Section 1.1) and implies local minimality
over a restricted set (El Halabi et al., 2023, Proposition 2.7).

Proposition 2.4. Let ϵ ≥ 0 and f = g − h with g, h ∈
Γ0(E). If x, x′ ∈ E satisfy ∂ϵg(x) ∩ ∂h(x′) ̸= ∅, then
f(x) ≤ f(x′) + ϵ

DCA iteratively minimizes a convex majorant of (8), ob-
tained by replacing h at iteration t by its affine minorization
h(xt) + ⟨yt, x − xt⟩, with yt ∈ ∂h(xt). Starting from
x0 ∈ dom ∂g, DCA iterates are given by

yt ∈ ∂h(xt) (9a)

xt+1 ∈ argmin
x∈E

g(x)− ⟨yt, x⟩. (9b)

We list now some properties of DCA (Pham Dinh & Le Thi,
1997, Theorem 3), (El Halabi et al., 2023, Theorem 3.1).
Proposition 2.5. Given f = g − h with g, h ∈ Γ0(E)
and a finite minimum f∗, let ϵ, ϵx ≥ 0, and {xt}, {yt} be
generated by DCA (9), where subproblem (9b) is solved up
to accuracy ϵx. Then for all t, T ∈ N, we have:

a) f(xt+1) ≤ f(xt) + ϵx.

b) If f(xt) − f(xt+1) ≤ ϵ, then xt is an ϵ + ϵx-critical
point of g − h with yt ∈ ∂ϵ+ϵxg(x

t) ∩ ∂h(xt).

c) mint∈[T−1] f(x
t)− f(xt+1) ≤ f(x0)−f∗

T

DCA is thus a descent method (up to ϵx) which converges
(f(xt)− f(xt+1) ≤ ϵ) to a critical point with rate O(1/T).
We note that Item c is not specific to DCA, but instead
follows from f(xT) ≥ f∗.

3. Difference of Submodular functions
We start by identifying which functions are expressible as
DS functions, then highlight important applications where
they naturally occur.

3.1. Representability

The structure assumed in Problem (1) may seem arbitrary,
but it is in fact very general. In particular, we prove that any
function on a discrete domain and any smooth function on a
continuous domain can be expressed as a DS function.
Proposition 3.1. Given any normalized F : X → R where
each Xi ⊂ R is finite, there exists a decomposition F =
G − H , where G,H : X → R are normalized (strictly)
submodular functions.

Proof Sketch. We give a constructive proof, similar to the
one in (Iyer & Bilmes, 2012, Lemma 3.1) for set functions.
We choose a normalized strictly submodular function H̃ :

X → R, then define G = F + |α|
β H̃ and H = |α|

β H̃ ,
where α ≤ 0 and β > 0 are lower bounds on the difference
between the left and right hand sides of Ineq. (3) for F and
H̃ respectively. We verify that G and H are normalized and
submodular, using Ineq. (3). Choosing α < 0 as a strict
lower bound further guarantees strict submodularity. The
full proof is given in Appendix E.1.

Obtaining tight lower bounds α and β in the above proof
requires exponential time in general, even for set functions
(Iyer & Bilmes, 2012). We provide in Example 3.2 a valid
choice for H̃ , for which a tight β can be easily computed.
For any F , we can use α = −4maxx∈X |F (x)|, which is
often easy to lower bound. Though loose bounds α and β
result in slower optimization, as explained in Appendix A.
Example 3.2. Let H : Rn → R be the quadratic function
H(x) = − 1

2x
⊤Jx, where J is the matrix of all ones, and

define H̃ : X → R as H̃(x) = H(x)−H(xmin). Then, H̃
is a normalized strictly submodular function.

Proof Sketch. By Proposition 2.1-b, H is strictly submodu-
lar on any product of closed intervals. Since strict submodu-
larity is preserved by restriction, H̃ is also strictly submod-
ular on X . The full proof is given in Appendix E.1.

4

Discrete and Continuous Difference of Submodular Minimization

In the above example, we have H̃(x + aiei) − H̃(x) −
H̃(x + aiei + ajej) + H̃(x + ajej) = aiaj for any x ∈
X , ai, aj > 0. When X is discrete, we obtain a tight lower
bound β = didj where didj are the distances between the
closest two points in Xi,Xj respectively, for some j ̸= i.

The decomposition given in the proof of Proposition 3.1 can-
not be applied to continuous domains. Indeed, if H̃ is a con-
tinuous function, taking ai → 0 or aj → 0 in inequality (3)
yields β = 0. However, a similar decomposition can be ob-
tained in this case, if F satisfies some smoothness condition.

Proposition 3.3. Given any normalized F : X → R where
each Xi is a closed interval, if F is differentiable and there
exist LF ≥ 0 such that ∂F

∂xi
(x) − ∂F

∂xi
(x + aej) ≥ −LFa,

for all x ∈ X, i ̸= j, a > 0, xj + a ∈ Xj , then there exists
a decomposition F = G −H , where G,H : X → R are
normalized (strictly) submodular functions.

Proof Sketch. The proof is similar to that of Proposition 3.1.
We choose a normalized strictly submodular function H̃ :

X → R, which is differentiable and satisfies ∂H̃
∂xi

(x) −
∂H̃
∂xi

(x + aej) ≥ LH̃a, for some LH̃ > 0, then define
G = F + LF

LH̃
H̃ and H = LF

LH̃
H̃ . We verify that G and

H are normalized and submodular, using Proposition 2.1-a.
Choosing LF > 0 as a strict lower bound further guarantees
strict submodularity. The full proof is in Appendix E.

One sufficient condition for F to satisfy the assumption
in Proposition 3.3 is for its gradient to be LF -Lipschitz
continuous with respect to the ℓ1-norm, i.e., ∥∇F (x) −
∇F (y)∥∞ ≤ LF ∥x− y∥1 for all x, y ∈ X . It follows then
that any twice continuously differentiable function on X
is also a DS function, with LF = maxx∈X ∥∇2F (x)∥1,∞
(Beck, 2017, Theorem 5.12). In both cases, computing a
tight Lipschitz constant LF has exponential complexity in
general (Huang et al., 2023, Theorem 2.2). Though often
one can easily derive a bound on LF . The function in Exam-
ple 3.2 is again a valid choice for H̃ , where LH̃ = 1 is tight.

Like DC functions, DS functions admit infinitely many DS
decompositions. For the specific decompositions in Proposi-
tions 3.1 and 3.3, the “best” one is arguably the one with the
tightest α, β and LF , LH̃ , respectively. Finding the “best”
DS decomposition in general is even more challenging, as it
is unclear how to define “best”. This question is explored
for set functions in Brandenburg et al. (2024), who study
the complexity of decomposing a set function into a dif-
ference of submodular set functions such that their Lovász
extensions have as few pieces as possible.

In Appendix B, we discuss the connection between DS func-
tions and related non-convex function classes. In particular,
we note that DS functions on continuous domains are not
necessarily DC, and that the discrete DC functions consid-

ered in Maehara & Murota (2015) are essentially equivalent
to integer valued DS functions on discrete domains.

3.2. Applications

As discussed in Section 3.1, Problem (1) covers most well
behaved non-convex problems over discrete and continuous
domains. Though finding a good DS decomposition can be
expensive in general. We give here examples of applications
which naturally have the form of Problem (1).

Quadratic Programming Quadratic programs (QP) of
the form minx∈X

1
2x

⊤Qx+ c⊤x, arise in numerous appli-
cations. This form includes box constrained QP (BCQP),
where Xi’s are all closed intervals, as well as integer and
mixed-integer BCQP, where some or all Xi ⊆ Zn. Such
problems are NP-Hard if the objective is non-convex (De An-
gelis et al., 1997), or if some of the variables are discrete
(Dinur et al., 1998).

The objective in these QPs has a natural DS decompo-
sition F = G − H , with G(x) = x⊤Q−x + c⊤x and
H(x) = x⊤(−Q+)x, where Q− = min{Q, 0} and Q+ =
max{Q, 0}. By Proposition 2.1-b, G and H are submod-
ular, since c⊤x is modular. When X is continuous, these
QPs can also be written as DC programs, but this requires
computing the minimum eigenvalue of Q.

Sparse Learning Optimization problems of the form
minx∈X ℓ(x) + λ∥x∥qq, where q ∈ [0, 1), λ ≥ 0, and ℓ
is a smooth function, arise in sparse learning, where the
goal is to learn a sparse parameter vector from data. There,
the loss ℓ is often smooth and convex (e.g., square or lo-
gistic loss), and the non-convex regularizer ∥x∥qq promotes
sparsity. The domain is often unbounded so X can be set to
∥x∥∞ ≤ R for some R ≥ 0, or X ⊆ Zn as in the integer
compressed sensing problems we consider in Section 5.2.
Using q < 1 makes the problem NP-Hard, even for contin-
uous X , but can be preferable to the convex ℓ1-norm, as it
leads to fewer biasing artifacts (Fan & Li, 2001).

Note that the regularizer ∥x∥qq is modular since it is
separable. Hence, these problems are instances of Problem
(1), where a DS decomposition of ℓ can be obtained
as in Proposition 3.3. If ℓ(x) = ∥Ax − b∥22 , we can
use the same decomposition as in the QPs above, i.e.,
G(x) = x⊤Q−x+c⊤x+λ∥x∥qq and H(x) = x⊤(−Q+)x,
with Q = A⊤A and c = −2A⊤b. These problems cannot
be written as DC programs even when X is continuous,
since ∥x∥qq is not DC, as we prove in Proposition B.1.

We show in Appendix B.2 that the natural DS decomposition
in both applications is not a discrete DC decomposition as
defined in Maehara & Murota (2015) and cannot easily be
adapted into one for general discrete domains, even when
ignoring the integer-valued restriction.

5

Discrete and Continuous Difference of Submodular Minimization

4. Difference of Submodular Minimization
In this section, we show that most well behaved instances
of problem (1) can be reduced to DS minimization over a
bounded integer lattice

∏n
i=1[0 : ki − 1] for some ki ∈ N.

Then, we address solving this special case.

4.1. Reduction to Integer Lattice Domain

We first obverse that submodularity is preserved by any
separable monotone reparametrization. A special case of
the following proposition is stated in Bach (2019, Section
2.1) with X ′ = X and m strictly increasing.

Proposition 4.1. Given X =
∏n

i=1 Xi,X ′ =
∏

i X ′
i , with

compact sets Xi,X ′
i ⊂ R, let F : X → R and m : X ′ → X

be a monotone function such that [m(x)]i = mi(xi). If F
is submodular, then the function F ′ : X ′ → R given by
F ′(x) = F (m(x)) is submodular. Moreover, if m is strictly
monotone, then F is submodular iff F ′ is submodular.

Proof Sketch. We observe that min{m(x),m(y)} +
max{m(x),m(y)} = m(min{x, y}) + m(max{x, y}).
The claim then follows by verifying that Eq. (2) holds. The
full proof is given in Appendix F.1

Discrete case For discrete domains, the desired reduction
follows from Proposition 4.1, by noting that in this case ele-
ments in X can be uniquely mapped to elements in

∏n
i=1[0 :

ki − 1] with ki = |Xi| via a strictly increasing map.

Corollary 4.2. Minimizing any DS function F : X → R,
where each Xi ⊆ R is a finite set, is equivalent to minimiz-
ing a DS function on

∏n
i=1[0 : ki − 1] with ki = |Xi|.

Proof. For each i ∈ [n], let Xi = {xi
0, . . . , x

i
ki−1}

where elements are ordered in non-decreasing order, i.e.,
xi
j < xi

j+1 for all j ∈ [0 : ki − 2]. Define the map
mi : [0 : ki−1] → Xi as mi(j) = xi

j . Then mi is a strictly
increasing bijection. By Proposition 4.1, then the function
F ′ :

∏n
i=1[0 : ki − 1] → R defined as F ′(x) = F (m(x))

with [m(x)]i = mi is a DS function.

Continuous case We can convert continuous domains into
discrete ones using discretization. We consider X = [0, 1]n

wlog, since by Proposition 4.1 any DS function F defined on∏n
i=1[ai, bi] can be reduced to a DS function F ′ on [0, 1]n

by translating and scaling.

As done in Bach (2019, Section 5.1), given a function F :
[0, 1]n → R which is L-Lipschitz continuous with respect
to the ℓ∞-norm and ϵ > 0, we define k = ⌈L/ϵ⌉+1 and the
function F ′ : [0 : k − 1]n → R as F ′(x) = F (x/(k − 1)).
Then we have

min
x∈[0:k−1]n

F ′(x)−ϵ/2 ≤ min
x∈[0,1]n

F (x) ≤ min
x∈[0:k−1]n

F ′(x).

Again by Proposition 4.1, if F is DS then F ′ is also DS.
Moreover, given any minimizer x∗ of F ′, x∗/(k − 1) is
an ϵ

2 -minimizer of F . It is worth noting that Lipschitz
continuity is not necessary for bounding the discretization
error. We show in Appendix F.2 how to handle the function
F (x) = ∥x∥qq, with q ∈ [0, 1), on a domain where it is not
Lipschitz continuous.

4.2. Optimization over Integer Lattice

We now address solving Problem (1) for X =
∏n

i=1[0 :
ki − 1]. For simplicity, we assume ki = k for all i ∈ [n],
for some k ∈ N, i.e., X = [0 : k − 1]n. The re-
sults can be easily extended to unequal ki’s. Since Prob-
lem (1) is inapproximable, we will focus on obtaining ap-
proximate local minimizers. Given x ∈ X , we define
the set of neighboring points of x in X as NX (x) :=
{x′ ∈ X | ∃i ∈ [n], x′ = x± ei }.

Definition 4.3. Given ϵ ≥ 0 and x ∈ X , we call x an ϵ-local
minimum of F if F (x) ≤ F (x′) + ϵ for all x′ ∈ NX (x).

If X = {0, 1}n, we recover the definition of a local mini-
mum of a set function.

A natural approach to solve Problem (1) is to reduce it to
DS set function minimization, using the same reduction as
in submodular minimization (Bach, 2019, Section 4.4), and
then apply the algorithms of Narasimhan & Bilmes (2005);
Iyer & Bilmes (2012); El Halabi et al. (2023). However, this
strategy is more expensive than solving the problem directly,
even when F is submodular. We discuss this in Appendix C.

Continuous relaxation We adopt a more direct approach
to solve Problem (1), which generalizes the approach of
El Halabi et al. (2023) for set functions. In particular, we
relax the DS problem to an equivalent DC program, using
the continuous extension (Definition 2.2) introduced in Bach
(2019), then apply a variant of DCA to it.

Recall that minimizing a submodular function F is equiv-
alent to minimizing its continuous extension f↓ (Proposi-
tion 2.3-b). We now observe that this equivalence continues
to hold even when F is not submodular.

Proposition 4.4. For any normalized function F : [0 :
k − 1]n → R, we have

min
x∈[0:k−1]n

F (x) = min
X∈[0,1]

n×(k−1)
↓

f↓(X). (10)

Moreover, if x∗ is a minimizer of F then Θ−1(x∗) is a
minimizer of f↓, and if X∗ is a minimizer of f↓ then
RoundF (X

∗) is a minimizer of F .

Recall that Θ is the bijection between {0, 1}n×(k−1)
↓ and

[0 : k − 1]n defined in (7). The proof follows from the
two properties of f↓ in Proposition 2.3-a,c, and is given in

6

Discrete and Continuous Difference of Submodular Minimization

Appendix F.3. By Proposition 2.3-f, Problem (1) is then
equivalent to

min
X∈[0,1]

n×(k−1)
↓

f↓(X) = g↓(x)− h↓(x), (11)

where g↓, h↓ ∈ Γ0(Rn×(k−1)) by Proposition 2.3-d,g, since
G,H are submodular.

Algorithm 1 DCA with local search

1: ϵ ≥ 0, T ∈ N, x0 ∈ X , X0 = Θ−1(x0)
2: for t = 1, . . . , T do
3: x̄t ∈ argminx∈NX (xt) F (x)
4: Choose a common non-increasing permutation (p, q)

of Xt and Θ−1(x̄t) (preferably row-stable)
5: Choose Y t ∈ ∂h(Xt) corresponding to (p, q)

6: X̃t+1 ∈ argmin
X∈[0,1]

n×(k−1)
↓

g↓(X)− ⟨Y t, X⟩F

7: if X̃t+1 ∈ {0, 1}n×(k−1)
↓ then

8: xt+1 = Θ(X̃t+1), Xt+1 = X̃t+1

9: else
10: xt+1 = RoundF (X̃

t+1), Xt+1 = Θ−1(xt+1)
11: end if
12: if F (xt)− F (xt+1) ≤ ϵ then
13: Stop.
14: end if
15: end for

Algorithm Problem (11) is a DC program on E =
Rn×(k−1), with f = f↓ + δ

[0,1]
n×(k−1)
↓

= g − h, where

g = g↓ + δ
[0,1]

n×(k−1)
↓

and h = h↓. Applying the standard

DCA (9) to it gives a descent method (up to ϵx) which con-
verges to a critical point XT of g − h by Proposition 2.5. A
feasible solution xT to Problem (1) can then be obtained by
rounding, i.e., xT = RoundF (X

T) ∈ [0 : k − 1]n, which
satisfies F (xT) ≤ f↓(X

T), as shown in Proposition 2.3-c.

However, even in the set functions case, xT is not neces-
sarily an approximate local minimum of F , as shown by
El Halabi et al. (2023, Example F.1). To address this, the
authors proposed two variants of standard DCA that do
obtain an approximate local minimum of F . One variant,
which generalizes the SubSup method of Narasimhan &
Bilmes (2005), is too expensive, as it requires trying O(n)
subgradients per iteration. While the other variant checks
at convergence if the rounded solution is an approximate
local minimum, and if not restarts DCA from the best neigh-
boring point. Both can be generalized to our setting. We
provide an extension of the second, more efficient, variant
and its theoretical guarantees in Appendix I.

We introduce a new efficient variant of DCA, DCA with
local search (DCA-LS), in Algorithm 1, which selects a

single subgradient Y t using a local search step (lines 3-
5), ensuring direct convergence to an approximate local
minimum of F without restarts. The algorithm maintains
a feasible solution xt to Problem (1) by rounding X̃t+1

or applying the map Θ if X̃t+1 is integral. Rounding can
optionally be applied in the latter case as well. Finding a
common permutation on line 4 is always possible. Indeed,
the binary matrix Θ−1(x̄t) differs from Xt at only one
element: (i, xt

i + 1) if x̄t = xt + ei and (i, xt
i − 1) if x̄t =

xt− ei. Thus, we can choose any row-stable non-increasing
permutation (p, q) of Xt such that (pd+1, qd+1) = (i, xt

i +
1) if x̄t = xt + ei and (pd−1, qd−1) = (i, xt

i − 1) if x̄t =
xt − ei, where d = ∥Xt∥0.

Computational complexity The cost of finding the
best neighboring point x̄t is 2n EOF . Finding a valid
permutation (p, q) on line 4 as discussed above costs
O(nk). The corresponding subgradient Y t can then be
computed as described in Proposition 2.3-e in O(nk EOH).
The subproblem on line 6 is a convex problem which can be
solved using projected subgradient method or FW methods.
Furthermore, like in the set function case, this subproblem
is equivalent to a submodular minimization problem.
Indeed, we show in Proposition F.4 that the term ⟨Y t, X⟩F
corresponds to the continuous extension of the normalized
modular function Ht(x) =

∑n
i=1

∑xi

j=1 Y
t
ij . Hence,

by Proposition 2.3-b,f, the subproblem is equivalent to
minimizing the submodular function F t = G−Ht. We can
thus obtain an integral ϵx-solution X̃t+1 ∈ {0, 1}n×(k−1)

↓ ,
for any ϵx ≥ 0, in Õ(n(kLft

↓
/ϵ)2 EOF t) time using the

algorithm of Axelrod et al. (2020). Rounding can be
skipped in this case, and X̃t+1 can be directly mapped
to xt+1 via Θ in O(nk). So the total cost per iteration of
DCA-LS is Õ(n(kLft

↓
/ϵ)2 EOF t + nk EOH).

The choice of DS decomposition for F affects the runtime of
DCA-LS. For instance, looser bounds α and β in the generic
decomposition from Proposition 3.1 lead to a larger Lips-
chitz constant Lft

↓
and thus a longer runtime (Appendix A).

Theoretical guarantees Let F ∗ be the minimum of
Problem (1). Note that the minimum f∗ = F ∗ of the DC
program (11) is finite, and that {Y t}, {X̃t+1} are standard
DCA iterates. Proposition 2.5-a,b then apply to them. The
following theorem relates DCA properties on Problem (11)
to ones on Problem (1), showing that DCA-LS is a descent
method (up to ϵx) which converges to an (ϵ + ϵx)-local
minimum of F in O(1/ϵ) iterations.

Theorem 4.5. Let {xt} be generated by Algorithm 1, where
the subproblem on line 6 is solved up to accuracy ϵx ≥ 0.
For all t ∈ [T], ϵ ≥ 0, we have:

a) F (xt+1) ≤ F (xt) + ϵx.

7

Discrete and Continuous Difference of Submodular Minimization

b) Let {yi}(k−1)n
i=0 be the vectors corresponding to the per-

mutation (p, q) from line 4, defined as in Definition 2.2.
If (p, q) is row-stable and F (xt)− F (xt+1) ≤ ϵ, then

F (xt) ≤ F (yi) + ϵ+ ϵx for all i ∈ [0 : (k − 1)n].

c) Algorithm 1 converges to an (ϵ+ ϵx)-local minimum of
F after at most (F (x0)− F ∗)/ϵ iterations.

Proof Sketch. Item a follows from Proposition 2.5-a and
Proposition 2.3-a,c. Item b follows from Proposition 2.5-b
and Proposition 2.4, by observing that if (p, q) is row-stable,
then it is a common non-increasing permutation for Xt and
{Θ−1(yi)}(k−1)n

i=0 , and thus Y t is a common subgradient
of h at all these points. The choice of (p, q) on line 4 also
ensures the same holds for Θ−1(x̄t) even when (p, q) is not
row-stable. Item c is then obtained by telescoping sums.
The full proof is given in Appendix F.5.

Restricting (p, q) to be row-stable is necessary to ensure that
it is also a non-increasing permutation of {Θ−1(yi)}(k−1)n

i=0 ,
which is needed for Item b to hold, but not for Items a
and c, as discussed in the proof sketch. In the set function
case (k = 2), this restriction is unnecessary, since any
non-increasing permutation of X ∈ Rn×(k−1)

↓ is trivially
row-stable. DCA-LS can be modified to return a solution
with a stronger local minimality guarantee, where F (xT) ≤
F (x) + ϵ+ ϵx for all x ∈ X such that ∥x− xT ∥1 ≤ c, for
some c ∈ N, by setting x̄t ∈ argmin∥x−xt∥1≤c F (X). This
increases the cost of computing x̄t to O(nc EOF).

Theorem 4.5 generalizes the theoretical guarantees of El Ha-
labi et al. (2023) to general discrete domains; recovering the
same guarantees in the set function case. In Appendix I, we
compare DCA-LS to an extension of the more efficient DCA
variant from El Halabi et al. (2023), theoretically and empir-
ically. We show that both variants have similar theoretical
guarantees and computational complexity. In practice, how-
ever, DCA-LS performs better in some settings, sometimes
by a large margin, but is often slower than DCA-Restart.

Other variants (with regularization, acceleration, complete
DCA) explored in El Halabi et al. (2023) are also applica-
ble here. When regularization is used, rounding becomes
necessary, as explained in Section 3 therein.

Implications for non-integer domains When X is a gen-
eral discrete or continuous domain, we can apply DCA-LS
to the function F ′ obtained via the reductions discussed in
Section 4.1. Theorem 4.5 then hold for F ′.

In the discrete case, recall that F ′(x) = F (m(x)), where
m is the map defined in the proof of Corollary 4.2. The
guarantee that xt is an (ϵ+ϵx)-local minimum of F ′ implies
that m(xt) is an (ϵ+ ϵx)-local minimum of F , in the sense

that modifying any coordinate i ∈ [n] to its previous or
next value on the grid Xi does not reduce F by more than
ϵ+ ϵx. In the continuous case, assuming again X = [0, 1]n,
recall that F ′(x) = F (x/(k − 1)), where k = ⌈L/ϵ′⌉ + 1
for some ϵ′ > 0, and L is the Lipschitz constant of F with
respect to the ℓ∞-norm. Let x̃t = xt/(k − 1). Then the
local minimality guarantee on F ′ implies that:

F (x̃t) ≤ F (x̃t ± ei
k−1) + ϵ+ ϵx.

This is only meaningful if ϵ′ > ϵ+ ϵx, since the Lipschitz
continuity of F already ensures F (x̃t) − F (x̃t ± ei

k−1) ≤
L/(k − 1) ≤ ϵ′.

5. Experiments
We evaluate our proposed method, DCA-LS (Algorithm 1),
on two applications: integer least squares and integer
compressive sensing, where X ⊆ Zn. We compare it
with state-of-the-art baselines. We use Pairwise-FW
(Lacoste-Julien & Jaggi, 2015b) to solve the submodular
minimization subproblem at line 6. Results averaged over
100 runs are shown in Figure 1, with error bars for standard
deviations. Experimental setups for each application are de-
scribed below, with additional details given in Appendix G.
The code is available at https://github.com/
SamsungSAILMontreal/cont-diffsubmin.

5.1. Integer Least Squares

We consider the problem of recovering an integer-
valued vector x♮ ∈ X from noisy linear measurements
b = Ax♮ + ξ, where A ∈ Rm×n is a given measurement
matrix with m ≥ n, and ξ ∈ Rm is a Gaussian noise
vector ξ ∼ N (0, σ2Im). This problem includes many
applications from wireless communications and image
processing (Damen et al., 2003; Blasinski et al., 2012) to
neural network quantization (Frantar & Alistarh, 2022).
One approach for recovering x♮ is to solve an integer least
squares problem minx∈X F (x) = ∥Ax − b∥22. This is an
integer BCQP with Q = A⊤A and c = −2A⊤b. So we use
the DS decomposition given in Section 3.2.

We sample x♮ uniformly from X = {−1, 0, 2, 3}n with
n = 100, draw the entries of A i.i.d from N (0, 1), and vary
m from n to 2n. The noise variance σ2 is set to achieve a
target signal-to-noise ratio (SNRdB) of 20 dB. We include
as baselines ADMM (Takapoui et al., 2020), Optimal Brain
Quantizer (OBQ) (Frantar & Alistarh, 2022), and the relax-
and-round (RAR) heuristic which solves the relaxed prob-
lem on [−1, 3]n, then rounds the solution to the nearest point
in X . DCA-LS and ADMM are initialized with the RAR so-
lution, and OBQ with the relaxed solution. We obtain an op-
timal solution x∗ using Gurobi (Gurobi Optimization, LLC,
2024) by rewriting the problem as a binary QP. We report in
Figure 1 (top) three evaluation metrics; recovery probability

8

https://github.com/SamsungSAILMontreal/cont-diffsubmin
https://github.com/SamsungSAILMontreal/cont-diffsubmin

Discrete and Continuous Difference of Submodular Minimization

1 1.2 1.4 1.6 1.8 2
m / n

0

0.2

0.4

0.6

0.8

1
R

ec
ov

er
y

P
ro

b
ab

il
it
y

ADMM
RAR
OBQ
DCA-LS
Optimal

1 1.2 1.4 1.6 1.8 2

m / n

0

0.02

0.04

0.06

0.08

0.1

B
it

E
rr

or
R

at
e

1 1.2 1.4 1.6 1.8 2

m / n

0

0.2

0.4

0.6

0.8

1

(F
(x̂

)
!

F
(x
$
))

=F
(x
$
)

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
ab

il
it
y

DCA-LS
DCA-LS-LASSO
LASSO
OMP

0.2 0.4 0.6 0.8 1

m / n

0

5

10

15

20

25

30

S
u
p
p
o
rt

E
rr

or

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

io
n

E
rr

or

Figure 1: Performance results, averaged over 100 runs, for the integer least squares with SNRdB = 20 dB, n = 100 (top)
and for integer compressed sensing with SNRdB = 8 dB, n = 256 and s = 26 = ⌈0.1n⌉ (bottom).

(ratio of exactly recovered signals over number of runs), bit
error rate BER(x̂) = ∥x̂ − x♮∥0/n, and relative objective
gap with respect to x∗. We also compared with Babai’s
nearest plane algorithm (Babai, 1986, 2nd procedure), but
excluded it here as it had worse objective gap and BER than
all baselines, and similar recovery probability to ADMM.

We observe that DCA-LS outperforms baselines on all met-
rics, and performs on par with the optimal solution starting
from m/n = 1.2. OBQ matches the performance of DCA-
LS from m/n = 1.5, while ADMM and RAR are both
considerably worse across all metrics. In Appendix H.1,
we include results using larger n = 400, as well as another
setup where we fix m = n and vary the SNRdB. Gurobi
cannot be used for n = 400 as it is too slow. DCA-LS out-
performs other baselines on all metrics in these settings too.

5.2. Integer Compressed Sensing

We consider an integer compressed sensing problem, where
the goal is to recover an s-sparse integer vector x♮ from
noisy linear measurements with m ≤ n and s ≪ n. This
problem arises in applications like wireless communications,
collaborative filtering, and error correcting codes (Fukshan-
sky et al., 2019). The signal can be recovered by solving
minx∈X F (x) = ∥Ax− b∥22 + λ∥x∥0 with λ > 0. This is
a special case of the sparse learning problem in Section 3.2,
with q = 0. We use the same DS decomposition therein.

We set X = {−1, 0, 1}n, n = 256, s = 26 = ⌈0.1n⌉, and
draw A i.i.d from N (0, 1/m), with m varied from 26 to n.
We choose a random support for x♮, then sample its non-zero

entries i.i.d uniformly from {−1, 1}. The noise variance σ2

is set to achieve an SNRdB of 8 dB. We consider as baselines
orthogonal matching pursuit (OMP) (Pati et al., 1993) and
a variant of LASSO (Tibshirani, 1996) with the additional
box constraint x ∈ [−1, 1]n, solved using FISTA (Beck &
Teboulle, 2009). Since both methods return solutions out-
side of X , we round the solutions to the nearest vector in X .
As a non-convex method, the performance of DCA-LS is
highly dependent on its initialization. We thus consider two
different intialization, one with x0 = 0 (DCA-LS) and one
with the solution from the box LASSO variant (DCA-LS-
LASSO). We evaluate methods on three metrics; recovery
probability, support error |supp(x̂)∆supp(x♮)|, and estima-
tion error ∥x̂ − x♮∥2/∥x♮∥2, where ∆ is the symmetric
difference. Figure 1 (bottom) reports the best values, as λ
is varied from 1 to 10−5 in DCA-LS and FISTA, and the
sparsity of the OMP solution is varied from 1 to ⌈1.5s⌉.

DCA-LS and DCA-LS-LASSO significantly outperform
baselines in recovery probability. While DCA-LS outper-
forms OMP in all metrics, it performs worse than LASSO in
estimation and support errors for m/n < 0.6, but overtakes
it after. DCA-LS-LASSO outperforms baselines on all met-
rics, except for m/n ≈ (0.25, 0.4), where it slightly lags be-
hind LASSO in estimation and support errors. These corre-
spond to cases where x♮ ̸= x∗. Indeed, recall that DCA-LS
is a descent method (up to ϵ) so DCA-LS-LASSO is guaran-
teed to obtain an objective value at least as good as LASSO.
In Appendix H.3, we include results for s = 13 = ⌈0.05n⌉,
and for another setup where we fix m/n = 0.5 and vary the
SNRdB. We observe similar trends in these settings too.

9

Discrete and Continuous Difference of Submodular Minimization

Acknowledgements
We thank Xiao-Wen Chang for helpful discussions. George
Orfanides was partially supported by NSERC CREATE
INTER-MATH-AI and a Fonds de recherche du Québec
Doctoral Research Scholarship B2X-326710.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Axelrod, B., Liu, Y. P., and Sidford, A. Near-optimal ap-

proximate discrete and continuous submodular function
minimization. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 837–
853. SIAM, 2020.

Babai, L. On lovász’lattice reduction and the nearest lattice
point problem. Combinatorica, 6:1–13, 1986.

Bach, F. Learning with submodular functions: A convex
optimization perspective. Foundations and Trends® in
Machine Learning, 6(2-3):145–373, 2013.

Bach, F. Submodular functions: from discrete to continu-
ous domains. Mathematical Programming, 175:419–459,
2019.

Beck, A. First-order methods in optimization. SIAM, 2017.

Beck, A. and Guttmann-Beck, N. Fom–a matlab toolbox
of first-order methods for solving convex optimization
problems. Optimization Methods and Software, 34(1):
172–193, 2019.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Becker, S. Cosamp and omp for sparse re-
covery. URL https://www.mathworks.
com/matlabcentral/fileexchange/
32402-cosamp-and-omp-for-sparse-recovery.
Retrieved 2025-01-30.

Bian, A., Levy, K., Krause, A., and Buhmann, J. M. Con-
tinuous dr-submodular maximization: Structure and algo-
rithms. In Advances in Neural Information Processing
Systems, pp. 486–496, 2017a.

Bian, A. A., Mirzasoleiman, B., Buhmann, J., and Krause,
A. Guaranteed non-convex optimization: Submodular
maximization over continuous domains. In Artificial
Intelligence and Statistics, pp. 111–120. PMLR, 2017b.

Bilmes, J. Submodularity in machine learning and arti-
ficial intelligence. arXiv preprint arXiv: 2202.00132,
2022. URL https://arxiv.org/abs/2202.
00132v2.

Blasinski, H., Bulan, O., and Sharma, G. Per-colorant-
channel color barcodes for mobile applications: An inter-
ference cancellation framework. IEEE Transactions on
Image Processing, 22(4):1498–1511, 2012.

Brandenburg, M.-C., Grillo, M., and Hertrich, C. Decom-
position polyhedra of piecewise linear functions. arXiv
preprint arXiv:2410.04907, 2024.

Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R. A
tight linear time (1/2)-approximation for unconstrained
submodular maximization. SIAM Journal on Computing,
44(5):1384–1402, 2015.

Damen, M. O., El Gamal, H., and Caire, G. On maximum-
likelihood detection and the search for the closest lattice
point. IEEE Transactions on information theory, 49(10):
2389–2402, 2003.

De Angelis, P. L., Pardalos, P. M., and Toraldo, G. Quadratic
programming with box constraints. Developments in
global optimization, pp. 73–93, 1997.

de Oliveira, W. The abc of dc programming. Set-Valued
and Variational Analysis, 28:679–706, 2020.

Dinur, I., Kindler, G., and Safra, S. Approximating-cvp to
within almost-polynomial factors is np-hard. In Proceed-
ings 39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280), pp. 99–109. IEEE,
1998.

El Halabi, M., Orfanides, G., and Hoheisel, T. Dif-
ference of submodular minimization via DC program-
ming. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 9172–9201. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/el-halabi23b.html.

Ene, A. and Nguyen, H. L. A reduction for optimizing
lattice submodular functions with diminishing returns.
arXiv preprint arXiv:1606.08362, 2016.

Fan, J. and Li, R. Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal of
the American statistical Association, 96(456):1348–1360,
2001.

Fazel, M. and Sadeghi, O. Fast first-order methods for mono-
tone strongly dr-submodular maximization. In SIAM

10

https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
https://arxiv.org/abs/2202.00132v2
https://arxiv.org/abs/2202.00132v2
https://proceedings.mlr.press/v202/el-halabi23b.html
https://proceedings.mlr.press/v202/el-halabi23b.html

Discrete and Continuous Difference of Submodular Minimization

Conference on Applied and Computational Discrete Al-
gorithms (ACDA23), pp. 169–179. SIAM, 2023.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022.

Fukshansky, L., Needell, D., and Sudakov, B. An algebraic
perspective on integer sparse recovery. Applied Mathe-
matics and Computation, 340:31–42, 2019.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Hassani, H., Soltanolkotabi, M., and Karbasi, A. Gradient
methods for submodular maximization. In Advances in
Neural Information Processing Systems, pp. 5843–5853,
2017.

Hiriart-Urruty, J.-B. From convex optimization to noncon-
vex optimization. necessary and sufficient conditions for
global optimality. In Nonsmooth optimization and related
topics, pp. 219–239. Springer, 1989.

Huang, J. W., Roberts, S. J., and Calliess, J.-P. On the sam-
ple complexity of lipschitz constant estimation. Transac-
tions on Machine Learning Research, 2023.

Iyer, R. and Bilmes, J. Algorithms for approximate min-
imization of the difference between submodular func-
tions, with applications. In Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelli-
gence, UAI’12, pp. 407–417, Arlington, Virginia, United
States, 2012. AUAI Press. ISBN 978-0-9749039-8-
9. URL http://dl.acm.org/citation.cfm?
id=3020652.3020697.

Kim, J., Halabi, M. E., Park, W., Schaefer, C. J., Lee, D.,
Park, Y., Lee, J. W., and Song, H. O. Guidedquant:
Large language model quantization via exploiting end
loss guidance. In Proceedings of the 41th International
Conference on Machine Learning, 2025.

Lacoste-Julien, S. and Jaggi, M. On the global linear conver-
gence of frank-wolfe optimization variants. In Advances
in Neural Information Processing Systems, pp. 496–504,
2015a.

Lacoste-Julien, S. and Jaggi, M. On the global linear con-
vergence of frank-wolfe optimization variants. Advances
in neural information processing systems, 28, 2015b.

Le Thi, H. A. and Pham Dinh, T. Dc programming and dca:
thirty years of developments. Mathematical Program-
ming, 169(1):5–68, 2018.

Lovász, L. Submodular functions and convexity. In Mathe-
matical Programming The State of the Art, pp. 235–257.
Springer, 1983.

Maehara, T. and Murota, K. A framework of discrete dc
programming by discrete convex analysis. Mathematical
Programming, 152(1):435–466, 2015.

Mokhtari, A., Hassani, H., and Karbasi, A. Conditional
gradient method for stochastic submodular maximization:
Closing the gap. arXiv preprint arXiv:1711.01660, 2017.

Mordukhovich, B. and Nam, N. M. An easy path to convex
analysis and applications. Springer Nature, 2023.

Mualem, L. and Feldman, M. Resolving the approxima-
bility of offline and online non-monotone dr-submodular
maximization over general convex sets. In Ruiz, F., Dy,
J., and van de Meent, J.-W. (eds.), Proceedings of The
26th International Conference on Artificial Intelligence
and Statistics, volume 206 of Proceedings of Machine
Learning Research, pp. 2542–2564. PMLR, 25–27 Apr
2023. URL https://proceedings.mlr.press/
v206/mualem23a.html.

Murota, K. Discrete convex analysis. Mathematical Pro-
gramming, 83:313–371, 1998.

Murota, K. and Shioura, A. Relationship of m-/l-convex
functions with discrete convex functions by miller and
favati–tardella. Discrete Applied Mathematics, 115(1-3):
151–176, 2001.

Narasimhan, M. and Bilmes, J. A. A submodular-
supermodular procedure with applications to discrimina-
tive structure learning. In UAI ’05, Proceedings of the
21st Conference in Uncertainty in Artificial Intelligence,
Edinburgh, Scotland, July 26-29, 2005, pp. 404–412.
AUAI Press, 2005. URL https://dslpitt.org/
uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=1243&proceeding_id=
21.

Niazadeh, R., Roughgarden, T., and Wang, J. R. Optimal
algorithms for continuous non-monotone submodular and
dr-submodular maximization. The Journal of Machine
Learning Research, 21(1):4937–4967, 2020.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. Orthogo-
nal matching pursuit: Recursive function approximation
with applications to wavelet decomposition. In Proceed-
ings of 27th Asilomar conference on signals, systems and
computers, pp. 40–44. IEEE, 1993.

Pham Dinh, T. and Le Thi, H. A. Convex analysis approach
to dc programming: theory, algorithms and applications.
Acta mathematica vietnamica, 22(1):289–355, 1997.

11

https://www.gurobi.com
http://dl.acm.org/citation.cfm?id=3020652.3020697
http://dl.acm.org/citation.cfm?id=3020652.3020697
https://proceedings.mlr.press/v206/mualem23a.html
https://proceedings.mlr.press/v206/mualem23a.html
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1243&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1243&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1243&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1243&proceeding_id=21

Discrete and Continuous Difference of Submodular Minimization

Takapoui, R., Moehle, N., Boyd, S., and Bemporad, A. A
simple effective heuristic for embedded mixed-integer
quadratic programming. International journal of control,
93(1):2–12, 2020.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1):267–288, 1996.

Topkis, D. M. Minimizing a submodular function on a
lattice. Operations research, 26(2):305–321, 1978.

Yu, Q. and Küçükyavuz, S. On constrained mixed-integer
dr-submodular minimization. Mathematics of Operations
Research, 2024.

12

Discrete and Continuous Difference of Submodular Minimization

A. Effect of looser α and β bounds on performance
In this section, we discuss how the bounds α and β in the generic decomposition given in Proposition 3.1 affect the runtime
of Algorithm 1.

As discussed in Section 4.2, the runtime of Algorithm 1, particularly for solving the submodular minimization subproblem
at each iteration t, depends on the Lipschitz constant Lft

↓
of f t

↓. Recall that f t
↓ is the continuous extension of F t = G−Ht,

where Ht is the modular function whose continuous extension is ⟨Y t, X⟩F . The decomposition in Proposition 3.1 defines
G = F + α

β H̃ and H = α
β H̃ , for some normalized strictly submodular function H̃ . Let Ỹ t = β

αY
t, we can thus write

f t
↓(X) = f↓(X) + α

β (h̃↓(X)− ⟨Ỹ t, X⟩F).

Looser bounds α and β result in a larger Lipschitz constant Lft
↓
, and thus a longer runtime. To show that, we provide upper

and lower bounds on Lft
↓

which grow with |α|
β . For any X,X ′ ∈ Rn×(k−1)

↓ , we have

|f t
↓(X)− f t

↓(X
′)| ≤ |f↓(X)− f↓(X

′)|+ |α|
β |h̃↓(X)− h̃↓(X

′)|+ |α|
β |⟨Ỹ t, X −X ′⟩F |

≤ (Lf↓ + 2 |α|
β Lh̃t

↓
)∥X −X ′∥F

Hence, Lft
↓
≤ Lf↓ + 2 |α|

β Lh̃t
↓
. Note that Lf↓ and Lh̃t

↓
are independent of α and β. This upper bound indeed grows with |α|

β .

Since Y t ∈ ∂h↓(X
t), we know from Proposition 7-b Bach (2019) that h↓(X) ≥ ⟨Y t, X⟩ for any X ∈ Rn×(k−1)

↓ with
equality if and only if Y t ∈ ∂h↓(X). We can thus write h↓(X

t) = ⟨Y t, Xt⟩F , or equivalently h̃↓(X
t) = ⟨Ỹ t, Xt⟩F .

Taking X ′ = Xt, we get

|f t
↓(X)− f t

↓(X
t)| = |f↓(X)− f↓(X

t) + α
β (h̃↓(X)− ⟨Ỹ t, X⟩F)|

≥ |α|
β |h̃↓(X)− ⟨Ỹ t, X⟩F | − |f↓(X)− f↓(X

t)|.

Hence, for any X ∈ Rn×(k−1)
↓ , we have

Lft
↓
≥

|f t
↓(X)− f t

↓(X
t)|

∥X −Xt∥F

≥ |α|
β

|h̃↓(X)− ⟨Ỹ t, X⟩F |
∥X −Xt∥F

− |f↓(X)− f↓(X
t)|

∥X −Xt∥F
.

Choosing any X ̸= Xt such that Y t ̸∈ ∂h↓(X), we get |h̃↓(X)−⟨Ỹ t,X⟩F |
∥X−Xt∥F

> 0. Such X must exists, since otherwise

h↓(X) = ⟨Y t, X⟩F for all X ∈ Rn×(k−1)
↓ , and H̃(X) =

∑n
i=1

∑xi

j=1 Ỹ
t
ij by Proposition F.4. Since H̃ is strictly

submodular, it can’t be modular unless n = 1, otherwise Ineq (3) will not hold strictly. Then, this lower bound indeed also
grows with |α|

β . We can thus conclude that Lft
↓

itself grows with |α|
β .

B. Connection to Related Non-convex Classes
In this section, we discuss the relation of DS functions to other related classes of non-convex functions, namely DC and
discrete DC functions.

B.1. Relation to DC Functions

We remark that the class of DS functions is not a subclass of DC functions. Since DC functions have continuous domains, it
is evident that DS functions defined on discrete domains are not DC. For continuous domains, any univariate function which
is not DC can serve as a counter-example, since as mentioned earlier when n = 1 any function is modular. The function
F : [0, 1] → R given by F (x) = 1−

√
|x− 1/2| is one such example, given in de Oliveira (2020, Example 7). We provide

below another counter-example for any n.

13

Discrete and Continuous Difference of Submodular Minimization

Proposition B.1. The function F : X → R defined as F (x) = ∥x∥qq with q ∈ [0, 1) (F (x) = ∥x∥0 if q = 0) and where
each Xi is a closed interval, is a modular function but not a DC function, whenever 0 ∈ intX .

Proof. We first note that F is a separable function, hence it is modular. Next, we recall that convex functions are locally
Lipschitz on the interior of their domain (Mordukhovich & Nam, 2023, Corollary 2.27), i.e., for all x ∈ intX there exists a
neighborhood U of x such that F is Lipschitz continuous on U ∩ intX . Since the difference of locally Lipschitz functions
is also locally Lipschitz, DC functions are then also locally Lipschitz on the interior of their domain.

We show that F is not locally Lipschitz at 0 ∈ intX , and thus it cannot be DC. We show that there exists {xk} ⊂ X such
that {xk} → 0 and |F (xk)|

∥xk∥2
is unbounded. In particular, we take xk = 1

ke1. For any q ∈ [0, 1), we have

|F (xk)|
∥xk∥2

=
(1/k)q

1/k
= k1−q.

Taking the limit as k → ∞, we see |F (xk)−F (0)|
∥xk−0∥2

= |F (x)|
∥x∥2

→ ∞.

The function in Proposition B.1 is used as a sparsity regularizer in sparse learning problems, which we showed in Section 3.2
are instances of Problem (1).

B.2. Relation to Discrete DC Functions

Next, we discuss the relation between DS functions on discrete domains and discrete DC functions considered in Maehara
& Murota (2015). Therein, a function F : Zn → Z is called discrete DC if it can be written as F = G − H , where
G,H : Zn → Z are L♮-convex or M ♮-convex functions. We recall the definitions of both types of functions, see e.g.,
Murota (1998, Chap. 1, Eq. (1.33) and (1.45)).

Definition B.2 (L♮-convex). A function F : Zn → R is called L♮-convex if it satisfies the discrete midpoint convexity; that
is, for all x, y ∈ Zn, we have

F (x) + F (y) ≥ F

(⌊
x+ y

2

⌋)
+ F

(⌈
x+ y

2

⌉)
. (12)

Definition B.3 (M ♮-convex). A function F : Zn → R is called M ♮-convex if, for any x, y ∈ Zn and i ∈ [n] such that
xi > yi, we have

F (x) + F (y) ≥ min{F (x− ei) + F (y + ei), min
j∈[n],yi>xi

F (x− ei + ej) + F (y + ei − ej)} (13)

L♮-convex functions are a proper subclass of submodular functions on Zn (Maehara & Murota, 2015, Section 2.1), while
M ♮-convex functions are a proper subclass of supermodular functions on Zn (Murota & Shioura, 2001, Theorem 3.8,
Example 3.10). It follows then that any discrete DC function is a DS function on Zn. This is of course not surprising in
light of Proposition 3.1 (which still holds for functions defined on Zn). Corollary B.4 is the analogue of Proposition 3.1
for discrete DC functions, which was stated in Maehara & Murota (2015, Corollary 3.9-1) for functions defined on finite
subsets of Zn.

Corollary B.4. Given F : X → Z, where each Xi ⊆ R is a finite set, there exists an L♮ - L♮ discrete DC function
F ′ : Zn → Z such that F (x) = F ′(m−1(x)) for all x ∈ X , where m :

∏n
i=1[0 : ki − 1] → X is a bijection with ki = |Xi|.

Proof. Given F : X → R, where each Xi ⊆ R is a finite set, we define F̄ :
∏n

i=1[0 : ki − 1] → R as F̄ (x) = F (m(x))
where m :

∏n
i=1[0 : ki − 1] → X is the bijection defined in Corollary 4.2. Since F̄ is defined on a finite subset of Zn, by

Corollary 3.9-1 in Maehara & Murota (2015), there exists F ′ : Zn → Z such that F ′ = G′ −H ′, with L♮-convex functions
G′, H ′ : Zn → Z, and F ′(z) = F̄ (z) for all z ∈

∏n
i=1[0 : ki − 1] and F ′(z) = 0 otherwise. We thus have for all x ∈ X ,

F (x) = F̄ (m−1(x)) = F ′(m−1(x)).

Since L♮-convex functions are submodular on Zn and submodularity is preserved by restriction, then the restrictions
G′

|X , H ′
|X : X → Z of G′, H ′ to X are submodular, and the restriction F ′

|X : X → Z of F ′ to X is a DS function with
F = F ′

|X = G′
|X −H ′

|X . Note however that F itself is not necessarily an L♮ - L♮ discrete DC function, since L♮-convexity is

14

Discrete and Continuous Difference of Submodular Minimization

not preserved by restriction. Nevertheless, minimizing F on X is equivalent to minimizing F ′ on Zn if minx∈X F (x) ≤ 0,
which can be assumed wlog. The class of discrete DC functions, in particular L♮ - L♮ functions, is thus essentially equivalent
to the class of integer valued DS functions on discrete domains.

Applications which are DS but not discrete DC: In Section 3.2, we outlined two classes of applications which have
natural DS objectives. We now show that both types of applications do not have a natural discrete DC decomposition, for
general discrete domains, even if we ignore the assumption in Maehara & Murota (2015) that F is integer valued.

For QPs of the form minx∈X F (x) = 1
2x

⊤Qx + c⊤x, F admits a natural discrete DC decomposition, when Xi’s are
uniform finite sets. However, this is not the case if Xi is a non-uniform finite set for some i, as in the integer least squares
experiments we consider in Section 5.1. Such cases also arise for example in non-uniform quantization of neural networks
(Kim et al., 2025). To see this, note that any L♮-convex function F : Z → Z ∪ {+∞} should satisfy for all x, y ∈ domF ,
⌈x+y

2 ⌉, ⌊x+y
2 ⌋ ∈ domF . If we’re minimizing a quadratic over a uniform grid, we can map from the uniform grid to∏

i[0, ki − 1] and the resulting function will still be a quadratic. We can then easily decompose the objective into L♮ - L♮

DC function, as we show in Proposition B.5. However, if the domain is a non-uniform grid, the resulting function is no
longer a quadratic.

Proposition B.5. Any quadratic objective F : Zn → Z defined as F (x) = x⊤Qx can be written as the difference of two L♮

functions G(x) = x⊤(Q− +D)x and H(x) = −x⊤(−Q+ +D)x, where Q− = min{Q, 0}, Q+ = max{Q, 0}, and D is
a diagonal matrix with Dii = max{−

∑
j Q

−
ij ,−

∑
j Q

−
ji,
∑

j Q
+
ij ,
∑

j Q
+
ji}.

Proof. Let ∇2F be the L♮ Hessian of F (Maehara & Murota, 2015, Section 3.2), then ∇2F = Q+Q⊤. To see this note
that for any x ∈ Zn, i ∈ [n], we have:

F (x+ ei)− F (x) = e⊤i Qx+ x⊤Qei +Qii. (14)

Then for any j ̸= i, we get:

∇2
ijF (x) = F (x+ ej + ei)− F (x+ ej)− (F (x+ ei)− F (x)) (15)

= e⊤i Q(x+ ej) + (x+ ej)
⊤Qei +Qii − (e⊤i Qx+ x⊤Qei +Qii) (16)

= Qij +Qji (17)

and thus

∇2
iiF (x) = F (x+ 1+ ei)− F (x+ 1)− (F (x+ ei)− F (x))−

∑
j ̸=i

∇2
ijF (x) (18)

= e⊤i Q(x+ 1) + (x+ 1)⊤Qei +Qii − (e⊤i Qx+ x⊤Qei +Qii)−
∑
j ̸=i

∇2
ijF (x) (19)

= e⊤i Q1+ 1⊤Qei −
∑
j ̸=i

(Qij +Qji) (20)

= 2Qii. (21)

Hence, ∇2F = Q+Q⊤.

Similarly the L♮ Hessian of G is ∇2G(x) = Q− + (Q−)⊤ +2D and of H os ∇2H(x) = −Q+ − (Q+)⊤ +2D. Note that
for any j ̸= i we have ∇2

ijG(x) ≤ 0 and ∇2
ijH(x) ≤ 0. We also have

n∑
j=1

∇2
ijG(x) =

n∑
j=1

(Q−
ij +Q−

ji) + 2Dii ≥ 0.

Similarly,
n∑

j=1

∇2
ijH(x) = −

n∑
j=1

(Q+
ij +Q+

ji) + 2Dii ≥ 0.

Hence, by the Hessian characterization of L♮-convexity (Maehara & Murota, 2015, Theorem 3.7), G and H are L♮-
convex.

15

Discrete and Continuous Difference of Submodular Minimization

For sparse learning problems minx∈X ℓ(x) + λ∥x∥qq, where q ∈ [0, 1), λ ≥ 0, and ℓ is a smooth function, we show below
that ∥x∥qq is not a discrete convex function.

Proposition B.6. The function f(x) = ∥x∥qq, q ∈ [0, 1) (when q = 0, we let f = ∥ · ∥0), is not L♮-convex nor M ♮-convex
over Zn

Proof. As a simple counterexample for the case q ∈ (0, 1), take n = 1 so that f : Z → R+ is given as f(x) = |x|q . Taking
x = 0 and y = 2, we have

f(x) + f(y) ≥ f

(⌊
x+ y

2

⌋)
+ f

(⌈
x+ y

2

⌉)
(22)

⇐⇒ 2q + 0 ≥ 2 (23)

which, for any q ∈ [0, 1), is a contradiction.

For n = 1, M ♮-convexity definition simplifies to (the minimum over empty set is +∞)

f(x) + f(y) ≥ f(x− 1) + f(x+ 1),

for all x > y. We again consider the counterexample x = 2, y = 0. When q = 0, we have f(x) + f(y) = 1 + 0 < 2 =
f(x− 1) + f(x+ 1) which contradicts the M ♮-convexity definition.

Similarly, for q ∈ (0, 1), we have: f(x) + f(y) = 2q + 0 < 1 + 3q = f(x− 1) + f(x+ 1), where the inequality follows
from the fact that |x+ y|q < |x|q + |y|q , which implies that 2q = |3− 1|q < 3q + 1q .

Of course, in both cases, we can still use the generic decomposition given in Maehara & Murota (2015, Corollary 3.9-1),
this would yield G and H with large Lipschitz constants, which would lead to slow optimization.

C. Reduction to set function case
In this section, we discuss the reduction of a submodular minimization problem minx∈X F (x) over the integer lattice
X = [0 : k − 1]n to the minimization of a submodular set function over {0, 1}n×(k−1), given in Bach (2019, Section 4.4).
As mentioned in Section 4.2, the same reduction can be used to reduce Problem (1) to DS set function minimization.

We define the map π : {0, 1}n×(k−1) → {0, 1}n×(k−1)
↓ as

π(X)i,j =

{
1 if there exists j′ ≥ j, Xi,j′ = 1,

0 otherwise,
(24)

for all i ∈ [n], j ∈ [k − 1], i.e., π(X) is the smallest row non-increasing matrix such that X ≤ π(X). Given Bi ≥ 0 for all
i ∈ [n], define the set-function F̃ : {0, 1}n×(k−1) → R as

F̃ (X) = F (Θ(π(X))) +

n∑
i=1

Bi∥π(X)i −Xi∥1 (25)

where π(X)i, Xi are the ith rows of π(X), X , respectively. Then minimizing F̃ is equivalent to minimizing F ;
minX∈{0,1}n×(k−1) F̃ (X) = minx∈[0:k−1]n F (x). To ensure F̃ is submodular, we choose Bi > 0 such that

|F (y)− F (x)| ≤
n∑

i=1

Bi|xi − yi|, (26)

for all x ≤ y ∈ X (Bach, 2019, Section 4.4). We thus reduced minimizing F to minimizing a submodular set function.
Similarly, we can reduce Problem (1) with X = [0 : k − 1]n to the following DS set function minimization:

min
X∈{0,1}n×(k−1)

G̃(X)− H̃(X),

16

Discrete and Continuous Difference of Submodular Minimization

where G̃, H̃ are submodular set functions defined as in (25).

However, as discussed in Bach (2019, Section 4.4), this strategy adds extra parameters Bi which are often unkown, and leads
to slower optimization due to the larger Lipschitz constant Lf̃↓

of the continuous extension f̃↓ of F̃ (which reduces to Lovász

extension in this case). In particular, while we can bound Lf↓ ≤
√
(k − 1)nmaxi Bi (Proposition 2.3-g), the bound for f̃↓

is (k − 1) times larger, i.e., Lf̃↓
≤ (k − 1)

√
(k − 1)nmaxi Bi. The time complexity of both submodular minimization

algorithms in Bach (2019, Section 5) and the one in Axelrod et al. (2020) (the fastest known inexact submodular set function
minimization algorithm) scales quadratically with the Lipschitz constant of the continuous extension: Õ((

nkLf↓
ϵ)2EOF)

and Õ(n(kLf↓/ϵ)
2 EOF), respectively. Using the reduction F̃ increases their complexity by at least a factor of O(k2).

Moreover, the cost EOF̃ of evaluating F̃ can also be larger; if computed via Eq. (25) it incurs an additional O(nk) time,
i.e., EOF̃ = EOF +O(nk). This also applies in our setting, where F is a DS function, since DCA-LS requires solving a
submodular minimization at each iteration, which will be similarly slower using the reduction.

To validate this empirically, we compare the minimization of a submodular quadratic function F with that of its reduction F̃ :

min
x∈[−1,1]n

F (x) =
1

2
x⊤Qx, (27)

We set n = 50 and construct a symmetric matrix Q ∈ Rn×n as follows: for i < j, draw Qi,j ∼ U[−1/n,0] where U denotes
the uniform distribution; and draw diagonal elements as Qi,i ∼ U[0,1]. The resulting Q has non-positive off-diagonal entries,
making F submodular by Proposition 2.1-a. This construction also helps ensure the minimizer is randomly located within
the lattice D.

As discussed in Section 4.1, we can convert Problem (27) to a submodular minimization problem over X = [0 : k − 1]n by
discretization. In particular, we define F ′ : X → R as F ′(x) = F (m(x)) with m : X → [−1, 1]n, mi(x) =

2
k−1 · xi − 1.

Then F ′ is submodular by Proposition 4.1.

To apply the reduction, we must find positive Bi’s which satisfy (26) for the function F ′. One valid choice is to set Bi = B
for all i ∈ [n], where B is the Lipschitz constant of F ′ with respect to the ℓ1-norm. We start by bounding the Lipschitz
constant of F over [−1, 1]n with respect to the ℓ1-norm. For all x ∈ [−1, 1]n, we have

∥∇F (x)∥∞ = ∥Qx∥∞ ≤ ∥Q∥∞→∞∥x∥∞ ≤ ∥Q∥∞→∞, (28)

Hence, F is L-Lipschitz continuous with respect to the ℓ1-norm with L = ∥Q∥∞→∞, which is equal to the maximum
ℓ1-norm of the rows of Q. For any x, y ∈ X , we have

|F ′(x)− F ′(y)| = |F (m(x))− F (m(y))| (29)
≤ L∥m(x)−m(y)∥1 (30)

=
2L

k − 1
· ∥x− y∥1. (31)

Hence, F ′ is Lipschitz continuous in the ℓ1-norm over [−1, 1]n with constant B = 2L
k−1 . We can now define the reduction F̃

of F ′ as in (25). Then Problem (27) reduces to a submodular set-function minimization problem:

min
X∈{0,1}n×(k−1)

F̃ (X). (32)

A minimizer X∗ of (32) yields a minimizer x∗ ∈ X of F ′ by setting x∗ = Θ(X∗).

We numerically compare minimizing F ′ and F̃ over their respective domains to get a minimizer of Problem (27). We
minimize F ′ and F̃ using pairwise FW, which we run for 200 iterations. Let x̂, x̃ ∈ X denote the resulting solutions, where x̃
is obtained by applying Θ to the output of pairwise FW with F̃ . We test different discretization levels k = 100, 200, . . . , 500
and initialize both methods at zero (i.e. 0 ∈ Rn for F ′ and 0 ∈ Rn×(k−1) for F̃). For each value of k, we run 50 random
trials. We evaluate the two approaches on three metrics: the relative objective gap between x̂ and x̃, the duality gap given
in Bach (2019, Section 5.2), and the running time. Average results are shown in Figure 2. We observe that x̃ has a worse
duality gap and objective value than x̂ and a longer running time, after the same number of iterations. This confirms that
minimizing F̃ is significantly slower than minimizing F ′, both in terms of convergence speed (due to the larger Lipschitz
constant Lf̃↓

) and per iteration runtime (due to the higher evaluation cost of F̃).

17

Discrete and Continuous Difference of Submodular Minimization

100 200 300 400 500
k

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(F
(~x

)
!

F
(x̂

))
=
F

(x̂
)

100 200 300 400 500
k

10-2

10-1

100

101

D
u
al

it
y

G
ap

100 200 300 400 500
k

100

101

102

103

T
im

e
(s

)

Lattice
Reduction

Figure 2: Results averaged over 50 runs comparing the direct minimization of F on the lattice X (Lattice) and the
minimization of its reduction F̃ on {0, 1}n×(k−1) (Reduction) on Problem (27).

D. Proofs of Section 2
D.1. Proof of Proposition 2.3-g

We prove here the bounds on the Lipschitz constant of the continuous extension of a submodular function given in
Proposition 2.3-g. The general bound was stated in Bach (2019, Section 5.1), and follows directly from the definition of the
subgradients (see Proposition 2.3-e).

Lemma D.1. Given a normalized submodular function F : [0 : k − 1]n → R, its continuous extension f↓ is Lf↓ -Lipschitz
continuous with respect to the Frobenius norm, with Lf↓ ≤

√
(k − 1)nB where B = maxx,x+ei∈[0:k−1]n |F (x+ei)−F (x)|.

If F is also non-decreasing, then Lf↓ ≤ F ((k − 1)1).

Proof. For any X ∈ Rn×(k−1)
↓ , let (p, q) be a non-increasing permutation of X and Y the corresponding subgradient of f↓

at X , defined as in Proposition 2.3-e. The bound for the general case follows directly by bounding the Frobenius norm of Y .

∥Y ∥2F =

n(k−1)∑
i=1

Y 2
pi,qi

=

n(k−1)∑
i=1

(F (yi)− F (yi−1))2

≤ n(k − 1)B2

Moreover, if F is non-decreasing, then Yi,j ≥ 0 for all i, j. By telescoping sums, we get:

∥Y ∥F ≤ ∥Y ∥1,1 =

n(k−1)∑
i=1

Ypi,qi

=

n(k−1)∑
i=1

F (yi)− F (yi−1)

= F (yn(k−1))− F (y0) = F ((k − 1)1)− F (0).

Since F is normalized, then we have ∥Y ∥F ≤ F ((k − 1)1).

E. Proofs of Section 3
E.1. Proofs of Proposition 3.1 and Example 3.2

Proposition 3.1. Given any normalized F : X → R where each Xi ⊂ R is finite, there exists a decomposition F = G−H ,
where G,H : X → R are normalized (strictly) submodular functions.

18

Discrete and Continuous Difference of Submodular Minimization

Proof. We give a constructive proof, similar to the one provided in Iyer & Bilmes (2012, Lemma 3.1) for set functions.

Let α ≤ 0 be any lower bound on how much F violates Eq. (3), i.e. for any x ∈ X , i ̸= j ∈ [n], and ai, aj > 0 such that
x+ aiei, x+ ajej ∈ X , we have

F (x+ aiei)− F (x)− F (x+ aiei + ajej) + F (x+ ajej) ≥ α. (33)

Since F is finitely valued and defined on finitely many points, such a lower bound must exist. For example, we can use
α = −4maxx∈X |F (x)|. Note that α < 0 unless F is already submodular, in which case we can take G = F and H = 0.

We now choose any normalized strictly submodular function H̃ : X → R. We provide an example in Example 3.2. H̃
satisfies Eq. (3) with strict inequality. As each Xi is finite, there exists β > 0 such that

H̃(x+ aiei)− H̃(x)− H̃(x+ aiei + ajej) + H̃(x+ ajej) ≥ β. (34)

whenever x ∈ X , i ̸= j ∈ [n], and ai, aj > 0 are such that x+ aiei, x+ ajej ∈ X .

We next construct G and H based on H̃ . In particular, we define G = F + |α|
β H̃ and H = |α|

β H̃ . Since F and H̃
are normalized, G and H are also normalized. Also, H is strictly submodular, since multiplying by a positive scalar
preserves strict submodularity. We check that G is also submodular. For any x ∈ X , i ̸= j ∈ [n], and ai, aj > 0 such that
x+ aiei, x+ ajej ∈ X , we have

G(x+ aiei)−G(x)−G(x+ aiei + ajej) +G(x+ ajej) = F (x+ aiei)− F (x)− F (x+ aiei + ajej)

+ F (x+ ajej) +
|α|
β

(
H̃(x+ aiei)− H̃(x)

− H̃(x+ aiei + ajej) + H̃(x+ ajej)
)

≥ α+
|α|
β

· β = 0. (35)

Hence, G is submodular by Equation (3). This yields the desired decomposition F = G−H , with G and H normalized
submodular functions. Choosing α < 0 which strictly satisfies the inequality (33) (which is again always possible), we can
further guarantee that G is strictly submodular, since the inequality (35) will become strict too.

Example 3.2. Let H : Rn → R be the quadratic function H(x) = − 1
2x

⊤Jx, where J is the matrix of all ones, and define
H̃ : X → R as H̃(x) = H(x)−H(xmin). Then, H̃ is a normalized strictly submodular function.

Proof. Since each Xi is a compact subset of R, there exists an interval [ai, bi] such that Xi ⊆ [ai, bi]. The function
H is twice-differentiable on

∏n
i=1[ai, bi], and the Hessian of H has negative entries. Hence, it is strictly submodular

on
∏n

i=1[ai, bi] by Proposition 2.1-b. Since strict submodularity is preserved by restricting H to X , H̃ is also strictly
submodular. It is also normalized by definition.

E.2. Proof of Proposition 3.3

Proposition 3.3. Given any normalized F : X → R where each Xi is a closed interval, if F is differentiable and there
exist LF ≥ 0 such that ∂F

∂xi
(x) − ∂F

∂xi
(x + aej) ≥ −LFa, for all x ∈ X, i ̸= j, a > 0, xj + a ∈ Xj , then there exists a

decomposition F = G−H , where G,H : X → R are normalized (strictly) submodular functions.

Proof. The proof is again constructive. Note that LF > 0 unless F is already submodular, in which case we can take
G = F and H = 0.

We now choose any normalized strictly submodular function H̃ : X → R, which is differentiable and there exists LH̃ > 0
such that

∂H̃

∂xi
(x)− ∂H̃

∂xi
(x+ aej) ≥ LH̃a,

for all x ∈ X , i ̸= j, a > 0 such that xj + a ∈ Xj . We provide an example in Example 3.2.

We next construct G and H based on H̃ . In particular, we define G = F + LF

LH̃
H̃ and H = LF

LH̃
H̃ . Since F and H̃ are

normalized, G and H are also normalized. Also, H is strictly submodular, since multiplying by a positive scalar preserves

19

Discrete and Continuous Difference of Submodular Minimization

strict submodularity. We check that G is also submodular. For any x ∈ X , j ∈ [n], a > 0 such that i ̸= j and xj + a ∈ Xj ,
we have

∂G

∂xi
(x)− ∂G

∂xi
(x+ aej) =

∂F

∂xi
(x)− ∂F

∂xi
(x+ aej) +

LF

LH̃

(∂H̃
∂xi

(x)− ∂H̃

∂xi
(x+ aej)

)
≥ −LFa+

LF

LH̃

LH̃a = 0. (36)

Hence, G is submodular by Proposition 2.1-a. This yields the desired decomposition F = G−H , with G and H normalized
submodular functions. Choosing LF > 0 which satisfies the strict inequality ∂F

∂xi
(x) − ∂F

∂xi
(x + aej) > −LFa, we can

further guarantee that G is strictly submodular, since the inequality (36) will become strict too.

F. Proofs of Section 4
F.1. Proof of Proposition 4.1

Proposition 4.1. Given X =
∏n

i=1 Xi,X ′ =
∏

i X ′
i , with compact sets Xi,X ′

i ⊂ R, let F : X → R and m : X ′ → X
be a monotone function such that [m(x)]i = mi(xi). If F is submodular, then the function F ′ : X ′ → R given by
F ′(x) = F (m(x)) is submodular. Moreover, if m is strictly monotone, then F is submodular iff F ′ is submodular.

Proof. For any monotone m, if F is submodular, then for any x, y ∈ X we have

F ′(min{x, y}) + F ′(max{x, y}) = F
(
m(min{x, y})

)
+ F

(
m(min{x, y})

)
= F

(
min{m(x),m(y)}

)
+ F

(
max{m(x),m(y)}

)
≤ F

(
m(x)

)
+ F

(
m(y)

)
(F is submodular)

= F ′(x) + F ′(y).

Hence, F ′ is submodular. If F is modular, the above inequality becomes an equality, implying that F ′ is modular too.

Moreover if m is strictly monotone, m is invertible, and we may write F (y) = F ′(m−1(y)). We show that the converse
claim is also true in this case. Indeed, since the inverse of a strictly monotone function is again strictly monotone, we have
by the first claim that if F ′ is (sub)modular then F is also (sub)modular.

F.2. Discretization of a non-Lipschitz function example

In Section 4.1, we assumed that the function F : [0, 1]n → R is Lipschitz continuous to bound its discretization error.
However, Lipschitz continuity is not always necessary. We show below how to handle an example of a non-Lipschitz
continuous function. In particular, we consider a function F : [−B,B]n → R given by F (x) = ℓ(x)+∥x∥qq , with q ∈ [0, 1),
where ℓ′ : [0, 1]n → R is a DS function L-Lipschitz continuous w.r.t the ℓ∞-norm. The modular function ∥x∥qq is not
Lipschitz continuous on the domain [−B,B]n.

We first observe that the function |x|q satisfies a notion of Lipschitz continuity, for x ̸= 0.

Lemma F.1. The function F : R → R defined as F (x) = |x|q with q ∈ (0, 1) satisfies

||y|q − |x|q| ≤ 2max{|y|, |x|}q−1|y − x|,

for every two scalars x, y ̸= 0 of same sign.

Proof. We assume without loss of generality that |y| ≥ |x| > 0. Let t > 0 be the smallest integer such that 2tq ≥ 1. Note
that

|y|q − |x|q =
|y|2q − |x|2q

|y|q + |x|q
<

|y|2q − |x|2q

|y|q

Applying this relation recursively yields

|y|q − |x|q =
|y|2tq − |x|2tq

|y|q
∑t−1

i=0 2i
≤ 2tq|z|2tq−1|y − x|

|y|q(2t−1)
≤ 2|y|q−1|y − x|, (37)

20

Discrete and Continuous Difference of Submodular Minimization

where the first inequality follows by the mean value theorem with z a scalar between x and y, and the 2nd inequality holds
since by definition of t, we have 2t−1q < 1 ≤ 2tq and thus |z|2tq−1 ≤ |y|2tq−1.

We shift and scale the function F to obtain a function F ′ : [0, 1]n → R defined as F ′(x) = F (B(2x− 1)), which remains
DS by Proposition 4.1.

Proposition F.2. Given q ∈ (0, 1), B > 0 and F : [0, 1]n → R defined as F (x) = ℓ′(x) + ∥B(2x − 1)∥qq, where
ℓ′ : [0, 1]n → R is a DS function L-Lipschitz continuous w.r.t the ℓ∞-norm, let k = 2max{⌈2L/ϵ⌉, ⌈B(8n/ϵ)1/q⌉} + 1
and define the function F ′ : [0 : k − 1]n → R as F ′(x) = F (x/(k − 1)). Then F ′ is DS and we have

min
x′∈[0:k−1]n

F ′(x′)− ϵ/2 ≤ min
x∈[0,1]n

F (x) ≤ min
x∈[0:k−1]n

F ′(x). (38)

The same also holds if q = 0, with k = 2⌈L/ϵ⌉+ 1.

Proof. Let ϕ : [0 : k − 1]n → [0, 1]n denote the map ϕ(x) = x/(k − 1), so F ′(x) = F (ϕ(x)). Since F is DS and ϕ is
monotone, then F ′ is also DS by Proposition 4.1.

Let π : [0, 1]n → [0 : k − 1]n be defined for all x ∈ [0, 1]n such that for each i ∈ [n], [π(x)]i = k−1
2 if xi = 1/2, and

[π(x)]i = t where ϕ(t) is the nearest point to xi for t in [0 : k − 1] \ k−1
2 , if xi ̸= 1/2. Note that k − 1 is an even number

hence k−1
2 ∈ [0 : k − 1].

For any x ∈ [0, 1]n, let x′ = π(x) be the vector obtained from the above map. Note that for any i, if xi =
1
2 then ϕ(x′

i) =
1
2 ,

otherwise we have |xi − ϕ(x′
i)| ≤ 1

k−1 and |ϕ(x′
i)− 1

2 | ≥
1

k−1 . Let Gi(xi) = |B(2xi − 1)|q , we show that for all i where
xi ̸= 1/2, we have

|Gi(xi)−Gi(ϕ(x
′
i))| ≤ 4B(2B

k−1)
q−1|xi − ϕ(x′

i)|.

Note that the nearest points ϕ(t) to xi = 1/2, for t in [0 : k−1]\ k−1
2 , are ϕ(t) = 1/2±1/(k−1) which are equidistant from

1/2. Hence B(2xi − 1) and B(2ϕ(x′
i)− 1) will always have the same sign, and max{B(2xi − 1), B(2ϕ(x′

i)− 1)} ≥ 2B
k−1 .

By Lemma F.1, we thus have

|Gi(xi)−Gi(ϕ(x
′
i))| ≤ 2(2B

k−1)
q−1|B(2xi − 1)−B(2ϕ(x′

i)− 1)| ≤ 4B(2B
k−1)

q−1|xi − ϕ(x′
i)|.

Putting everything together we get:

|F (x)− F ′(x′)| = |F (x)− F (ϕ(x′))|

= |ℓ′(x)− ℓ′(ϕ(x′))|+
∑

xi ̸=1/2

|Gi(xi)−Gi(ϕ(x
′
i))|

≤ L∥x− ϕ(x′)∥∞ + 4B(2B
k−1)

q−1
∑

xi ̸=1/2

|xi − ϕ(x′
i)|

≤ L

k − 1
+

4B(2B
k−1)

q−1n

k − 1

≤ L

k − 1
+ 2n(

2B

k − 1
)q

≤ ϵ

4
+

ϵ

4
=

ϵ

2
.

The same bound holds for q = 0 by noting that B(2xi−1) and B(2ϕ(x′
i)−1) have the same support, hence ∥B(2xi−1)∥0 =

∥B(2ϕ(x′
i)− 1)∥0 (no discretization error).

F.3. Proof of Proposition 4.4

Proposition 4.4. For any normalized function F : [0 : k − 1]n → R, we have

min
x∈[0:k−1]n

F (x) = min
X∈[0,1]

n×(k−1)
↓

f↓(X). (10)

21

Discrete and Continuous Difference of Submodular Minimization

Moreover, if x∗ is a minimizer of F then Θ−1(x∗) is a minimizer of f↓, and if X∗ is a minimizer of f↓ then RoundF (X
∗) is

a minimizer of F .

Proof. Let x∗ be a minimizer of F . By Proposition 2.3-a, we have F (x∗) = f↓(Θ
−1(x∗)). Since Θ−1(x∗) ∈ [0, 1]

n×(k−1)
↓ ,

then
min

x∈[0:k−1]n
F (x) ≥ min

X∈[0,1]
n×(k−1)
↓

f↓(X).

Let X∗ is a minimizer of f↓. By Proposition 2.3-c, we have F (RoundF (X
∗)) ≤ f↓(X

∗). Since RoundF (X
∗) ∈ [0 :

k − 1]n, we have
min

x∈[0:k−1]n
F (x) ≤ min

X∈[0,1]
n×(k−1)
↓

f↓(X).

F.4. Continuous extension of a normalized modular function

In this section, we derive the form of a normalized modular function and its continuous extension.
Lemma F.3. A function F : [0 : k − 1]n → R is modular and normalized iff there exists W ∈ Rn×(k−1) such that

F (x) =

n∑
i=1

xi∑
j=1

Wi,j for all x ∈ [0 : k − 1]n. (39)

Proof. We first recall that a function F is modular iff it is separable under addition (Topkis, 1978, Theorem 3.3).

(=⇒) If F is modular, then it is separable under addition, i.e. there exist Fi : [0 : k − 1] → R, i ∈ [n], such that
F (x) =

∑n
i=1 Fi(xi) for any x ∈ [0 : k − 1]n. As F is normalized, we also have that F (0) =

∑n
i=1 Fi(0) = 0.

Now, define W ∈ Rn×(k−1) such that Wi,j = Fi(j)− Fi(j − 1), for i ∈ [n], j ∈ [k − 1]. We thus obtain

F (x) =

n∑
i=1

Fi(xi)− F (0)

=

n∑
i=1

Fi(xi)− Fi(0)

=

n∑
i=1

xi∑
j=1

Fi(j)− Fi(j − 1) (by telescoping sums)

=

n∑
i=1

xi∑
j=1

Wi,j .

(⇐=) If there exists a matrix W ∈ Rn×(k−1) such that F (x) =
∑n

i=1

∑xi

j=1 Wij , then F is separable under addition,
and hence modular. Indeed, we can define the functions Fi : [0 : k − 1] → R, i ∈ [n], by Fi(x) =

∑xi

j=1 Wi,j . Then
F (x) =

∑n
i=1 Fi(xi) for any x ∈ [0 : k − 1]n. F is also normalized, since F (0) = 0.

Proposition F.4. A function F : [0 : k − 1]n → R is modular and normalized, with F (x) =
∑n

i=1

∑xi

j=1 Wij for all

x ∈ [0 : k − 1]n iff its continuous extension f↓ is linear on its domain, with f↓(X) = ⟨W,X⟩F for all X ∈ Rn×(k−1)
↓ .

Proof. Recall from Lemma F.3, that F is modular and normalized iff it can be written as F (x) =
∑n

i=1

∑xi

j=1 Wij for
some W ∈ Rn×(k−1).

(⇐=) If F has a linear continuous extension such that f↓(X) = ⟨W,X⟩F for all X ∈ Rn×(k−1)
↓ for some W ∈ Rn×(k−1).

Then, for any x ∈ [0 : k − 1]n, let X = Θ−1(x). By Proposition 2.3-a and the definition of the Θ−1 (7b), we have that

F (x) = f↓(X) = ⟨W,X⟩F =

n∑
i=1

k−1∑
j=1

Wi,jXi,j =

n∑
i=1

xi∑
j=1

Wij . (40)

22

Discrete and Continuous Difference of Submodular Minimization

(=⇒) Suppose F is modular and normalized. By Definition 2.2, the continuous extension of −F is equal to −f↓ on its
domain. Since F and −F are submodular, then both f↓ and −f↓ are convex by Proposition 2.3-d, which implies that f↓
is affine on its domain. Since F is normalized, we have f↓(0) = F (0) = 0 by Proposition 2.3-a, hence f↓ is linear on its
domain, i.e,. f↓(X) = ⟨W ′, X⟩F for all X ∈ Rn×(k−1)

↓ for some W ′ ∈ Rn×(k−1). By the above argument for the reverse
direction, we must also have that W ′ = W .

F.5. Proof of Theorem 4.5

Before proving Theorem 4.5, we recall some properties of DCA that apply to iterates of Algorithm 1.

Proposition F.5. Let ϵ, ϵx ≥ 0, and {Xt}, {X̃t}, {Y t} be generated by Algorithm 1, where the subproblem at line 6 is
solved up to accuracy ϵx. Then for all t ∈ N, we have:

a) f(X̃t+1) ≤ f(Xt) + ϵx.

b) If f(Xt)− f(X̃t+1) ≤ ϵ, then Xt is an ϵ+ ϵx-critical point of g − h with Y t ∈ ∂ϵ+ϵxg(X
t) ∩ ∂h(Xt).

Proof. Note that the iterates X̃t+1, Y t are generated by a DCA step from Xt, with subproblem (9b) solved up to accuracy
ϵx. The proposition follows then directly from Proposition 2.5-a,b.

Theorem 4.5. Let {xt} be generated by Algorithm 1, where the subproblem on line 6 is solved up to accuracy ϵx ≥ 0. For
all t ∈ [T], ϵ ≥ 0, we have:

a) F (xt+1) ≤ F (xt) + ϵx.

b) Let {yi}(k−1)n
i=0 be the vectors corresponding to the permutation (p, q) from line 4, defined as in Definition 2.2. If (p, q) is

row-stable and F (xt)− F (xt+1) ≤ ϵ, then

F (xt) ≤ F (yi) + ϵ+ ϵx for all i ∈ [0 : (k − 1)n].

c) Algorithm 1 converges to an (ϵ+ ϵx)-local minimum of F after at most (F (x0)− F ∗)/ϵ iterations.

Proof. We first observe that for all t ∈ [T], we have:

F (xt)− F (xt+1) = f(Xt)− f(Xt+1) ≥ f(Xt)− f(X̃t+1). (41)

Since by the extension property (Proposition 2.3-a), we have f(Xt+1) = F (xt+1) and f(Xt) = F (xt). And by rounding
(Proposition 2.3-c), we have f(Xt+1) ≤ f(X̃t+1). If X̃t+1 is integral and rounding is skipped, this still holds trivially
since Xt+1 = X̃t+1.

(a) This follows from Proposition F.5-a and Eq. (41)

(b) If F (xt) − F (xt+1) ≤ ϵ, then f(Xt) − f(X̃t+1) ≤ ϵ too, by Eq. (41). By Proposition F.5-b, we thus have
Y t ∈ ∂ϵ+ϵxg(X

t) ∩ ∂h(Xt). We observe that by definition of yi, if (p, q) is a row-stable non-increasing permutation
of Xt, then it is also a non-increasing permutation of Θ−1(yi), for all i ∈ [0 : (k − 1)n]. Hence, Y t ∈ ∂h(Θ−1(yi))
by Proposition 2.3-e, and Y t ∈ ∂ϵ+ϵxg(X

t) ∩ ∂h(Θ−1(yi)). Therefore, by Proposition 2.4 and Proposition 2.3-a,

F (xt) = f(Xt) ≤ f(Θ−1(yi)) + ϵ+ ϵx = F (yi) + ϵ+ ϵx, (42)

for any i ∈ [(k − 1)n].

(c) We first argue that Algorithm 1 converges (F (xt) − F (xt+1) ≤ ϵ) after at most (F (x0) − F ∗)/ϵ iterations. By
telescoping sums, we have

∑T−1
t=0 F (xt)− F (xt+1) = F (x0)− F (xT) ≤ F (x0)− F ∗. Hence,

min
t∈[T−1]

F (xt)− F (xt+1) ≤ F (x0)− F ∗

T
. (43)

23

Discrete and Continuous Difference of Submodular Minimization

Taking T = (F (x0)− F ∗)/ϵ, we get that there exists some t ∈ [T − 1] such that

F (xt)− F (xt+1) ≤ (F (x0)− F ∗)/T = ϵ.

Since (p, q) is chosen on line 4 to be a common permutation of Xt and Θ−1(x̄t), then by the same argument as in
Item b, we have at convergence F (xt) ≤ F (x̄t) + ϵ+ ϵx. Since x̄t is the best neighboring point of xt, this implies that
xt is an (ϵ+ ϵx)-local minimum of F .

G. Experimental Setup Additional Details
We provide here additional details on the experimental setups used in Section 5. All methods were implemented in MATLAB.
To solve the submodular minimization subproblem in DCA-LS (Algorithm 1-line 6), we use the pairwise FW algorithm
from Bach (2019), available at http://www.di.ens.fr/˜fbach/submodular_multi_online.zip. In both
experiments, during each DCA iteration, we run pairwise FW for a maximum of 400 iterations, stopping earlier if the duality
gap reaches 10−4. We warm start pairwise FW with the subproblem’s solution from the previous DCA iteration.

To achieve a desired target (SNRdB) of α ≥ 0, we choose the noise variance σ2 using the following formula,

σ =

√
10−

α
10

∥b∥22
∥ξ′∥22

, (44)

where ξ′ ∼ N (0, Im), then set the noise vector to ξ = σξ′.

G.1. Additional Details for Section 5.1

The RAR solution is obtained by first solving the relaxed least squares problem

xLS ∈ argmin
x∈[−1,3]n

F (x) = ∥Ax− b∥22 (45)

then rounding xLS to the nearest point in X . We implement OBQ according to the pseudocode provided in Frantar &
Alistarh (2022, Algorithm 3). But since in our setting we assume no access to x♮, we initialize OBQ with xLS . For the
ADMM approach of Takapoui et al. (2020), we use the code from https://github.com/cvxgrp/miqp_admm?
tab=readme-ov-file. In DCA-LS, we use a maximum of T = 50 outer iterations and set ϵ = 10−5.

For n = 100, recall that we obtain an optimal solution using Gurobi 10.0.1 (Gurobi Optimization, LLC, 2024). But since
the domain X = {−1, 0, 2, 3}n has unevenly spaced integers, Gurobi cannot solve it directly. Instead, we reformulate the
problem into an equivalent unconstrained binary quadratic program (UBQP)

min
x∈{0,1}2n

x⊤Ux+ d⊤x (46)

where U = M⊤A⊤AM , d⊤ = −2(1⊤A⊤AM +b⊤AM) and M ∈ Rn×2n is defined as M = In⊗ [3, 1], with ⊗ denoting
the Kronecker product. To see that the two problems are equivalent, the map Mx− 1 defines a bijection between {0, 1}2n
and X , and that the objective in (46) is equal to F (Mx− 1), without the constant terms.

G.2. Additional Details for Section 5.2

We solve the box constrained variant of Lasso

min
x∈[−1,1]n

∥Ax− b∥22 + λ∥x∥1, (47)

using the FISTA algorithm from Beck & Guttmann-Beck (2019) with default parameter settings, i.e., 1000 maximum
iterations and ∥xk+1−xk∥ ≤ 10−5 stopping criterion (for other parameters see https://www.tau.ac.il/˜becka/
solvers/fista). In DCA-LS, we use a maximum of T = 25 outer iterations, and set ϵ = 10−5. In DCA-LS, DCA-LS-
LASSO, and FISTA, we use λ = 10−i for i ∈ [0 : 5], and warm start with the solution of the previous λ value (in decreasing
order). Our implementation of OMP is adapted from the one provided in Becker. We run OMP for a maximum of ⌈1.5s⌉
iterations, stopping earlier if the residual reaches ∥Ax− b∥2 ≤ ∥ξ∥2

24

http://www.di.ens.fr/~fbach/submodular_multi_online.zip
https://github.com/cvxgrp/miqp_admm?tab=readme-ov-file
https://github.com/cvxgrp/miqp_admm?tab=readme-ov-file
https://www.tau.ac.il/~becka/solvers/fista
https://www.tau.ac.il/~becka/solvers/fista

Discrete and Continuous Difference of Submodular Minimization

H. Additional Experiments
We present here additional experimental results for the applications presented in Section 5.

H.1. Additional Integer Least Squares Experiments

1 1.2 1.4 1.6 1.8 2
m / n

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
ab

il
it
y

ADMM
RAR
OBQ
DCA-LS

1 1.2 1.4 1.6 1.8 2

m / n

0

0.02

0.04

0.06

0.08

0.1

B
it

E
rr

or
R

at
e

1 1.2 1.4 1.6 1.8 2

m / n

0

0.2

0.4

0.6

0.8

1

(F
(x̂

)
!

F
(x

\)
)=

F
(x

\)

15 20 25 30
SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

ADMM
RAR
OBQ
DCA-LS
Optimal

15 20 25 30

SNRdB

0

0.05

0.1

0.15

0.2

0.25

0.3

B
it

E
rr

o
r
R

a
te

15 20 25 30

SNRdB

0

0.5

1

1.5

2

(F
(x̂

)
!

F
(x
$
))

=F
(x
$
)

15 20 25 30
SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

ADMM
RAR
OBQ
DCA-LS

15 20 25 30

SNRdB

0

0.05

0.1

0.15

0.2

0.25

B
it

E
rr

o
r
R

a
te

15 20 25 30

SNRdB

-0.5

0

0.5

1

1.5

(F
(x̂

)
!

F
(x

\)
)=

F
(x

\)

Figure 3: Performance results, averaged over 100 runs, for integer least squares experiments: Varying m with n = 400 and
SNRdB = 20 (top), varying SNRdB with m = n = 100 (middle), and varying SNRdB with m = n = 400 (bottom).

We repeat the integer least squares experiment from Section 5.1 with n = 400. We also consider another setup where we fix
m = n and vary the SNRdB. Performance results for both are reported in Figure 3. When using a signal of length n = 400,
we compute the relative objective gap with respect to x♮, as it is very time consuming to obtain x∗ using Gurobi. We again
observe that DCA-LS outperforms baselines on all metrics. For n = 100, DCA-LS performs on par with the optimal
solution x∗ starting from SNRdB = 24 dB. OBQ matches the performance of DCA-LS from SNRdB = 26 dB onward. For
n = 400 OBQ matches the performance of DCA-LS from SNRdB = 24 dB. Note that the relative objective gap in this case
can be negative, since the true signal x♮ is not necessarily the optimal solution for the integer least squares problem. Indeed,
we see that this is the case when the noise is high; DCA-LS and OBQ obtain a better solution for SNRdB ≤ 18 dB and 15
dB, respectively.

H.2. Times for Integer Least Squares Experiments

We report the average running time of the compared methods on the integer least squares experiments from Section 5.1 and
Appendix H.1 in Figure 4. The reported times for DCA-LS and ADMM do not include the time for the RAR initialization,
and for OBQ do not include the time for the relaxed solution initialization (which has similar time as RAR). We observe that

25

Discrete and Continuous Difference of Submodular Minimization

DCA-LS is significantly faster that the optimal Gurobi solver, even for the small problem instance (n = 100). For the larger
instance (n = 400), Gurobi is already too slow to be practical. While our algorithm is slower than heuristic baselines, it
remains efficient, with a maximum runtime of 100 seconds for m = n = 400.

1 1.2 1.4 1.6 1.8 2

m / n

10!6

10!4

10!2

100

102

T
im

e
(s

)

ADMM
RAR
OBQ
DCA-LS
Optimal

(a)

1 1.2 1.4 1.6 1.8 2

m / n

10!6

10!4

10!2

100

102

T
im

e
(s

)

(b)

15 20 25 30

SNRdB

10!6

10!4

10!2

100

102

104

T
im

e
(s

)

(c)

15 20 25 30

SNRdB

10!6

10!4

10!2

100

102

T
im

e
(s

)

(d)

Figure 4: Running times (log-scale), averaged over 100 runs, for integer least squares experiments: (a) Varying m with
n = 100 and SNRdB = 20, (b) varying m with n = 400 and SNRdB = 20, (c) varying SNRdB and m = n = 100, and (d)
varying SNRdB and m = n = 400. Optimal solution is computed using Gurobi.

H.3. Additional Integer Compressed Sensing experiments

We repeat the integer compressed sensing experiment from Section 5.2, with another sparsity level s = 13 = ⌈0.05n⌉.
We also consider another setup where we fix m/n = 0.5 and vary the SNRdB. Performance results for both are reported
in Figure 5. When varying the number of measurements for s = 13, we again see that DCA-LS-LASSO outperforms all
baselines and DCA-LS across all metrics. DCA-LS also outperforms the baselines in terms of recovery probability, but
lags slightly behind in estimation error and support error when m/n ≈ 0.4. Similar trends emerge in the experiments
where s = 13 and the amount of additive noise is varied. Again, we see that DCA-LS-LASSO and DCA-LS outperform in
terms of recovery probability, and when SNRdB ≥ 3, outperform in estimation error and support error. Interestingly, when
we decrease the sparsity to s = 26, we see that DCA-LS recovers signals earlier than the baselines, but does not reach a
100% recovery rate once SNRdB = 20. Similar to the experiment in Section 5.2, we see that DCA-LS-LASSO significantly
outperforms all other methods, especially in terms of recovery probability.

H.4. Times for Integer Compressed Sensing Experiments

We report the average running time of the compared methods on the integer compressed sensing experiments from Section 5.2
and Appendix H.3 in Figure 6. For LASSO and DCA-LS, the reported times correspond to the sum of running times
for the 6 λ values tried, λ = 1, 0.1, . . . , 10−5. The reported time for DCA-LS-LASSO include the time for the LASSO
initialization. We also report the running time of LASSO and DCA-LS for each λ separately at m/n ≈ 0.2 and 0.5 (m = 50
and m = 123, respectively) with SNRdB = 8 in Figure 7.

We observe that DCA-LS and DCA-LS-LASSO are slower than baselines, but they remain efficient, with a maximum
total runtime of ∼ 37 seconds for DCA-LS and ∼ 71 seconds for DCA-LS-LASSO, for solving the problem for all 6 λ

26

Discrete and Continuous Difference of Submodular Minimization

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
ab

il
it
y

DCA-LS-LASSO
DCA-LS
LASSO
OMP

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

io
n

E
rr

or

0.2 0.4 0.6 0.8 1

m / n

0

2

4

6

8

10

12

14

S
u
p
p
or

t
E
rr

or

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
ab

il
it
y

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

io
n

E
rr

or

0 5 10 15 20

SNRdB

0

2

4

6

8

10

12

14

S
u
p
p
or

t
E
rr

or

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

E
st

im
at

io
n

E
rr

o
r

0 5 10 15 20

SNRdB

0

5

10

15

20

25

30

S
u
p
p
o
rt

E
rr

or

Figure 5: Performance results, averaged over 100 runs, for integer compressed sensing experiments with n = 256: Varying
m with s = 13 = ⌈0.05n⌉ and SNRdB = 8 dB (top), varying SNRdB with s = 13 = ⌈0.05n⌉ and m/n = 0.5 (middle), and
varying SNRdB with s = 26 = ⌈0.1n⌉ and m/n = 0.5 (bottom).

values. In terms of total runtime (Figure 6), DCA-LS-LASSO is faster than DCA-LS in some regimes: at high SNRdB with
m/n = 0.5(for SNRdB ≥ 6 with s = 13, and SNRdB ≥ 9 with s = 26), and for m/n ∈ (0.35, 0.75) with SNRdB = 8, but
slower in others. In terms of individual runtime per λ (Figure 7), DCA-LS-LASSO is faster than DCA-LS for λ ≥ 0.01.

We also note that DCA-LS-LASSO’s total runtime increases significantly when m/n ≳ 0.75. This is likely because
for small λ values, the influence of the ℓ1-norm regularizer in LASSO is minimal, so DCA-LS-LASSO is effectively
initialized with a least-squares solution, which can be worse than the x0 = 0 initialization used in DCA-LS. Inspecting
the λ values that yielded the best performance for both DCA-LS-LASSO and DCA-LS, we found that they were always
λ ≥ 0.01. So restricting λ to this range would not impact performance. In Figure 8, we plot the sum of running times
for only λ = 1, 0.1, 0.01 with SNRdB = 8. With this restriction, DCA-LS-LASSO’s total runtime no longer increases at
m/n ≳ 0.75, and is actually lower than DCA-LS for all m/n.

27

Discrete and Continuous Difference of Submodular Minimization

0.2 0.4 0.6 0.8 1

m / n

10!6

10!4

10!2

100

102

T
im

e
(s

)
OMP
LASSO
DCA-LS
DCA-LS-LASSO

(a)

0.2 0.4 0.6 0.8 1

m / n

10!6

10!4

10!2

100

102

T
im

e
(s

)

(b)

0 5 10 15 20

SNRdB

10!6

10!4

10!2

100

102

T
im

e
(s

)

(c)

0 5 10 15 20

SNRdB

10!6

10!4

10!2

100

102

T
im

e
(s

)

(d)

Figure 6: Running times (log-scale), summed over all λ values and averaged over 100 runs, for integer compressed sensing
experiments with n = 256: (a) Varying m with s = 13 and SNRdB = 8, (b) varying m with s = 26 and SNRdB = 8, (c)
varying SNRdB with s = 13 and m/n = 0.5, and (d) varying SNRdB with s = 26 and m/n = 0.5.

10!5 100

6

10!6

10!4

10!2

100

102

Ti
m

e
(s

)

LASSO
DCA-LS
DCA-LS-LASSO

(a)

10!5 100

6

10!6

10!4

10!2

100

102

Ti
m

e
(s

)

(b)

10!5 100

6

10!6

10!4

10!2

100

102

Ti
m

e
(s

)

(c)

10!5 100

6

10!6

10!4

10!2

100

102

Ti
m

e
(s

)

(d)

Figure 7: Running times (log-scale) for each λ, averaged over 100 runs, for integer compressed sensing experiments with
n = 256 and SNRdB = 8: (a) m/n ≈ 0.2 and s = 13, (b) m/n ≈ 0.5 and s = 13, (c) m/n ≈ 0.2 and s = 26, and (d)
m/n ≈ 0.5 and s = 26.

28

Discrete and Continuous Difference of Submodular Minimization

0.2 0.4 0.6 0.8 1

m / n

10!6

10!4

10!2

100

102

T
im

e
(s

)

OMP
LASSO
DCA-LS-LASSO
DCA-LS

(a)

0.2 0.4 0.6 0.8 1

m / n

10!6

10!4

10!2

100

102
T
im

e
(s

)

(b)

Figure 8: Running times (log-scale), summed over λ = 1, 0.1, 0.01 and averaged over 100 runs, for integer compressed
sensing experiments with n = 256: (a) Varying m with s = 13 and SNRdB = 8, and (b) varying m with s = 26 and
SNRdB = 8.

29

Discrete and Continuous Difference of Submodular Minimization

I. DCA Variants Comparison
As discussed in Section 4.2, El Halabi et al. (2023) proposed two variants of standard DCA (9) for the special case of
Problem (1), where F is a set function (X = {0, 1}n). Both monotonically decrease the objective F (up to ϵx) and converge
to a local minimum. In this section, we extend the more efficient of the two variants (Algorithm 2 therein) to general discrete
domains and compare it with our proposed DCA variant (DCA-LS; Algorithm 1). We refer to this extension as DCA-Restart,
and present it in Algorithm 2.

Algorithm 2 DCA with restart

1: ϵ ≥ 0, ϵ′ ≥ ϵ, T ∈ N, X0 ∈ [0, 1]
n×(k−1)
↓

2: for t = 1, . . . , T do
3: Choose Y t ∈ ∂h(Xt) (preferably corresponding to a row-stable permutation)

4: Xt+1 ∈ argmin
X∈[0,1]

n×(k−1)
↓

g↓(X)− ⟨Y t, X⟩F

5: if f(Xt)− f(Xt+1) ≤ ϵ then
6: if Xt ∈ {0, 1}n×(k−1)

↓ then
7: xt = Θ(Xt)
8: else
9: xt = RoundF (X

t)
10: end if
11: x̄t ∈ argminx∈NX (xt) F (x)

12: if F (xt) ≤ F (x̄t) + ϵ′ then
13: Stop.
14: else
15: Xt+1 = Θ−1(x̄t)
16: end if
17: end if
18: end for

Theoretical comparison Similar to the set function variant, DCA-Restart runs standard DCA (9) and, at convergence,
checks if rounding the current iterate yields an approximate local minimum of F . If not, it restarts from the best neighboring
point. We show in Theorem I.1 that DCA-Restart satisfies the same theoretical guarantees as DCA-LS (see Theorem 4.5). In
particular, it also recovers the guarantees of El Halabi et al. (2023) in the special case of set functions.

Theorem I.1. Let {Xt}, {xt} be generated by Algorithm 2, where the subproblem on line 4 is solved up to accuracy ϵx ≥ 0.
For all t ∈ [T], ϵ ≥ 0, ϵ′ ≥ ϵ, we have:

a) f(Xt+1) ≤ f(Xt) + ϵx.

b) Let (p, q) be the permutation used to compute Y t in Proposition 2.3-e, and {yi}(k−1)n
i=0 the vectors corresponding to

(p, q), defined as in Definition 2.2. If (p, q) is row-stable and f(Xt)− f(Xt+1) ≤ ϵ, then

F (xt) ≤ F (yi) + ϵ+ ϵx for all i ∈ [0 : (k − 1)n].

c) Algorithm 2 converges to an ϵ′-local minimum of F after at most (f(X0)− f∗)/ϵ iterations.

Proof. Note that between each restart (line 15), Algorithm 2 is simply running standard DCA (9), so Proposition 2.5 applies.

a) This holds between each restart by Proposition 2.5-a. Whenever the algorithm restarts, we have F (x̄t) < F (xt)− ϵ′, i.e.,
xt is not an ϵ′-local minimum. In this case, we have

f(Xt+1) = F (x̄t) (by Proposition 2.3-a)

< F (xt)− ϵ′

≤ f(Xt)− ϵ′ (by Proposition 2.3-a,c) (48)

30

Discrete and Continuous Difference of Submodular Minimization

b) If f(Xt)− f(Xt+1) ≤ ϵ, then by Proposition 2.5-b, we have Y t ∈ ∂ϵ+ϵxg(X
t) ∩ ∂h(Xt). If (p, q) is row-stable, then

by definition of yi, (p, q) is a common non-increasing permutation for Xt and Θ−1(yi), for all i ∈ [0 : (k − 1)n]. Hence,
Y t ∈ ∂h(Θ−1(yi)) by Proposition 2.3-e, and thus Y t ∈ ∂ϵ+ϵxg(X

t) ∩ ∂h(Θ−1(yi)). Therefore,

F (xt) ≤ f(Xt) (by Proposition 2.3-a,c)

≤ f(Θ−1(yi)) + ϵ+ ϵx (by Proposition 2.4)

= F (yi) + ϵ+ ϵx, (by Proposition 2.3-a)

for any i ∈ [(k − 1)n].

c) For any iteration t ∈ [T], if the algorithm did not terminate, then either f(Xt)− f(Xt+1) > ϵ or F (x̄t) < F (xt)− ϵ′.
In the second case, the algorithm restarts, then by Equation (48) we have f(Xt) − f(Xt+1) ≥ ϵ, since ϵ′ ≥ ϵ. We
therefore have F (x0) − F (xt) ≥ tϵ, hence t < (f(X0) − f∗)/ϵ. If the algorithm did terminate, then xt must be an
ϵ′-local minimum of F .

DCA-Restart has a similar computational cost per iteration as DCA-LS. The only difference is that DCA-LS has an additional
cost per iteration of O(nEOF) for the local search step (line 3) and O(nk) to map X̃t+1 to xt+1 (line 8). In DCA-Restart,
these operations are only done at convergence (f(Xt)− f(Xt+1) ≤ ϵ), which in the worst case can occur at every iteration.
However, these differences have little impact on the overall per-iteration cost, which is dominated by the cost of solving
the subproblem. Indeed, the total cost per iteration in DCA-Restart is Õ(n(kLft

↓
/ϵ)2 EOF t + nk EOH); the same as in

DCA-LS. Moreover, the number of iterations for both variants is at most (f(X0)− f∗)/ϵ. So, theoretically, both variants
have very similar theoretical guarantees and runtime.

Empirical comparison We empirically compare DCA-LS to DCA-Restart on all experiments included in the paper. We
use the same parameters T and ϵ, and the same subproblem solver (pairwise-FW) in DCA-Restart as in DCA-LS; see
Appendix G for how these are set in each experiment. We choose ϵ′ = 0, i.e., xt should be an exact local minimum if
DCA-Restart stops before reaching the maximum number of iterations. We also choose a row-stable permutation (p, q)
when computing Y t.

We report their performance on integer least squares (ILS) in Figure 9 and corresponding running times in Figure 10.
Similarly, Figure 13 and Figure 14 show their performance and running times on integer compressed sensing (ICS). We
also plot the number of DCA outer and inner iterations for ILS in Figures 11 and 12 and for ICS in Figures 16 and 17. The
reported numbers of DCA inner iterations are the total number of inner iterations, i.e., iterations of pairwise-FW, summed
over all outer iterations t. For ICS, the reported numbers of iterations and running times correspond to the sum over the
6 values of λ tried, λ = 1, 0.1, . . . , 10−5. We also report the running time for each λ separately at m/n ≈ 0.2 and 0.5
(m = 50 and m = 123, respectively) with SNRdB = 8 in Figure 15. All results are again averaged over 100 runs, with error
bars for standard deviations.

We observe that DCA-LS matches or outperforms DCA-Restart on all experiments. The two variants perform similarly
when initialized with a good solution (LASSO in ICS, RAR in ILS); otherwise, DCA-LS performs better, sometimes by a
large margin (see 4th row in Figure 13). In terms of runtime, DCA-Restart is generally faster on both ILS and ICS. For
both applications, DCA-Restart takes slightly more outer iterations to converge, but has a lower per-iteration runtime, as
evidenced by its smaller number of inner iterations. Intuitively, we expected each step of DCA-LS to decrease the objective
more than in DCA-Restart, because of its more careful permutation choice, and thus to converge faster. In practice, this
choice seems to lead to better solutions in some cases, but not significantly faster convergence, and comes at the cost of
increased subproblem complexity. The slower convergence of pairwise-FW in DCA-LS may be due to the subgradients Y t

changing more between consecutive iterations, causing the subproblem’s solution to vary more, and thus take longer to
solve, given that we warm-start pairwise-FW with the previous iteration’s solution. Overall, the choice between the two
variants is problem dependent; for example, on whether a good initialization is available.

31

Discrete and Continuous Difference of Submodular Minimization

1 1.2 1.4 1.6 1.8 2
m / n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

ov
er

y
P
ro

b
ab

il
it
y

DCA-LS
DCA-Restart

1 1.2 1.4 1.6 1.8 2

m / n

0

0.01

0.02

0.03

0.04

0.05

0.06

B
it

E
rr

or
R

at
e

1 1.2 1.4 1.6 1.8 2

m / n

0

0.2

0.4

0.6

0.8

1

(F
(x̂

)
!

F
(x
$
))

=
F

(x
$
)

1 1.2 1.4 1.6 1.8 2
m / n

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

DCA-LS
DCA-Restart

1 1.2 1.4 1.6 1.8 2

m / n

0

0.01

0.02

0.03

0.04

B
it

E
rr

o
r
R

a
te

1 1.2 1.4 1.6 1.8 2

m / n

0

0.2

0.4

0.6

0.8

1

(F
(x̂

)
!

F
(x

\)
)=

F
(x

\)

15 20 25 30
SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

DCA-LS
DCA-Restart

15 20 25 30

SNRdB

0

0.05

0.1

0.15

0.2

0.25

0.3

B
it

E
rr

o
r
R

a
te

15 20 25 30

SNRdB

0

0.1

0.2

0.3

0.4

(F
(x̂

)
!

F
(x
$
))

=F
(x
$
)

15 20 25 30
SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

DCA-LS
DCA-Restart

15 20 25 30

SNRdB

0

0.05

0.1

0.15

0.2

0.25

B
it

E
rr

or
R

at
e

15 20 25 30

SNRdB

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(F
(x̂

)
!

F
(x

\)
)=

F
(x

\)

Figure 9: Performance results, averaged over 100 runs, for integer least squares experiments comparing two DCA variants:
Varying m with n = 100 and SNRdB = 8 (first row), varying m with n = 400 and SNRdB = 8 (second row), varying
SNRdB with m = n = 100 (third row), and varying SNRdB with m = n = 400 (fourth row).

32

Discrete and Continuous Difference of Submodular Minimization

1 1.2 1.4 1.6 1.8 2

m / n

0

0.5

1

1.5

2

2.5

T
im

e
(s

)

DCA-LS
DCA-Restart

(a)

1 1.2 1.4 1.6 1.8 2

m / n

0

20

40

60

80

100

120

T
im

e
(s

)

(b)

15 20 25 30

SNRdB

0

1

2

3

4

T
im

e
(s

)

(c)

15 20 25 30

SNRdB

0

50

100

150

T
im

e
(s

)

(d)

Figure 10: Running times, averaged over 100 runs, for integer least squares experiments comparing two DCA variants:
(a) Varying m with n = 100 and SNRdB = 8, (b) varying m with n = 400 and SNRdB = 8, (c) varying SNRdB with
m = n = 100, and (d) varying SNRdB with m = n = 400.

1 1.2 1.4 1.6 1.8 2

m / n

0

2

4

6

8

10

12

It
er

a
ti
o
n
s

DCA-LS
DCA-Restart

(a)

1 1.2 1.4 1.6 1.8 2

m / n

0

5

10

15

20

25

30

35

It
er

a
ti
o
n
s

(b)

15 20 25 30

SNRdB

0

5

10

15

It
er

at
io

n
s

(c)

15 20 25 30

SNRdB

0

10

20

30

40

50

It
er

at
io

n
s

(d)

Figure 11: Number of DCA iterations, averaged over 100 runs, for integer least squares experiments: (a) Varying m with
n = 100 and SNRdB = 8, (b) varying m with n = 400 and SNRdB = 8, (c) varying SNRdB with m = n = 100, and (d)
varying SNRdB with m = n = 400.

33

Discrete and Continuous Difference of Submodular Minimization

1 1.2 1.4 1.6 1.8 2

m / n

0

200

400

600

800

In
n
er

It
er

at
io

n
s

DCA-LS
DCA-Restart

(a)

1 1.2 1.4 1.6 1.8 2

m / n

0

2000

4000

6000

8000

10000

In
n
er

It
er

at
io

n
s

(b)

15 20 25 30

SNRdB

0

200

400

600

800

1000

1200

1400

In
n
er

It
er

at
io

n
s

(c)

15 20 25 30

SNRdB

0

2000

4000

6000

8000

10000

12000

In
n
er

It
er

at
io

n
s

(d)

Figure 12: Number of DCA inner iterations, summed over all outer iterations t, averaged over 100 runs, for integer least
squares experiments: (a) Varying m with n = 100 and SNRdB = 8, (b) varying m with n = 400 and SNRdB = 8, (c)
varying SNRdB with m = n = 100, and (d) varying SNRdB with m = n = 400.

34

Discrete and Continuous Difference of Submodular Minimization

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
ab

il
it
y

DCA-LS-LASSO
DCA-LS
DCA-Restart-LASSO
DCA-Restart

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

io
n

E
rr

or
0.2 0.4 0.6 0.8 1

m / n

0

2

4

6

8

10

12

14

S
u
p
p
or

t
E
rr

or

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

0.2 0.4 0.6 0.8 1

m / n

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

io
n

E
rr

or

0.2 0.4 0.6 0.8 1

m / n

0

5

10

15

20

25

30

S
u
p
p
o
rt

E
rr

o
r

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

io
n

E
rr

o
r

0 5 10 15 20

SNRdB

0

2

4

6

8

10

12

14

S
u
p
p
o
rt

E
rr

or

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y
P
ro

b
a
b
il
it
y

0 5 10 15 20

SNRdB

0

0.2

0.4

0.6

0.8

1

E
st

im
a
ti
on

E
rr

or

0 5 10 15 20

SNRdB

0

5

10

15

20

25

30

S
u
p
p
o
rt

E
rr

o
r

Figure 13: Performance results, averaged over 100 runs, for integer compressed sensing experiments comparing two DCA
variants with n = 256: Varying m with s = 13 and SNRdB = 8 (first row), varying m with s = 26 and SNRdB = 8 (second
row), varying SNRdB with m/n = 0.5 and s = 13 (third row), and varying SNRdB with m/n = 0.5 and s = 26 (fourth
row).

35

Discrete and Continuous Difference of Submodular Minimization

0.2 0.4 0.6 0.8 1

m / n

0

20

40

60

80

T
im

e
(s

)

DCA-Restart
DCA-LS
DCA-Restart-LASSO
DCA-LS-LASSO

(a)

0.2 0.4 0.6 0.8 1

m / n

0

20

40

60

80

100

T
im

e
(s

)

(b)

0 5 10 15 20

SNRdB

0

10

20

30

40

50

60

70

T
im

e
(s

)

(c)

0 5 10 15 20

SNRdB

0

20

40

60

80

T
im

e
(s

)

(d)

Figure 14: Running times, summed over all λ values and averaged over 100 runs, for integer compressed sensing experiments
comparing two DCA variants with n = 256: (a) Varying m with s = 13 and SNRdB = 8, (b) varying m with s = 26 and
SNRdB = 8, (c) varying SNRdB with s = 13 and m/n = 0.5, and (d) varying SNRdB with s = 26 and m/n = 0.5.

10!5 100

6

0

5

10

15

20

25

T
im

e
(s

)

DCA-Restart
DCA-LS
DCA-Restart-LASSO
DCA-LS-LASSO

(a)

10!5 100

6

0

5

10

15

T
im

e
(s

)

(b)

10!5 100

6

0

5

10

15

20

25

30

T
im

e
(s

)

(c)

10!5 100

6

0

5

10

15

20

25

T
im

e
(s

)

(d)

Figure 15: Running times for each λ, averaged over 100 runs, for integer compressed sensing experiments comparing two
DCA variants with n = 256 and SNRdB = 8: (a) m/n ≈ 0.2 and s = 13, (b) m/n ≈ 0.5 and s = 13, (c) m/n ≈ 0.2 and
s = 26, and (d) m/n ≈ 0.5 and s = 26.

36

Discrete and Continuous Difference of Submodular Minimization

0.2 0.4 0.6 0.8 1

m / n

0

20

40

60

80

It
er

a
ti
on

s

DCA-Restart
DCA-LS
DCA-Restart-LASSO
DCA-LS-LASSO

(a)

0.2 0.4 0.6 0.8 1

m / n

20

30

40

50

60

70

80

90

It
er

a
ti
on

s

(b)

0 5 10 15 20

SNRdB

0

10

20

30

40

50

60

70

It
er

a
ti
on

s

(c)

0 5 10 15 20

SNRdB

0

20

40

60

80

It
er

a
ti
on

s

(d)

Figure 16: Number of DCA iterations, summed over all λ values and averaged over 100 runs, for integer compressed sensing
experiments with n = 256: (a) Varying m with s = 13 and SNRdB = 8, and (b) varying m with s = 26 and SNRdB = 8,
(c) varying SNRdB with s = 13 and m/n = 0.5, and (d) varying SNRdB with s = 26 and m/n = 0.5

0.2 0.4 0.6 0.8 1

m / n

102

103

104

In
n
er

It
er

at
io

n
s

DCA-Restart
DCA-LS
DCA-Restart-LASSO
DCA-LS-LASSO

(a)

0.2 0.4 0.6 0.8 1

m / n

103

104

In
n
er

It
er

at
io

n
s

(b)

0 5 10 15 20

SNRdB

102

103

104

In
n
er

It
er

a
ti
on

s

(c)

0 5 10 15 20

SNRdB

102

103

104

In
n
er

It
er

a
ti
on

s

(d)

Figure 17: Number of DCA inner iterations (log-scale), summed over all outer iterations t and all λ values, averaged over
100 runs, for integer compressed sensing experiments with n = 256: (a) Varying m with s = 13 and SNRdB = 8, and (b)
varying m with s = 26 and SNRdB = 8, (c) varying SNRdB with s = 13 and m/n = 0.5, and (d) varying SNRdB with
s = 26 and m/n = 0.5.

37

