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Abstract
We consider the problem of sequential change
detection under minimal assumptions on the dis-
tribution generating the stream of observations.
Formally, our goal is to design a scheme for de-
tecting any changes in a parameter or functional
θ of the data stream distribution that has small
detection delay, but guarantees control on the fre-
quency of false alarms in the absence of changes.
We describe a simple reduction from sequential
change detection to sequential estimation using
confidence sequences (CSs): begin a new level-
(1 − α) CS at each time step, and proclaim a
change as soon as the intersection of all active CSs
becomes empty. We prove that the average run
length of our scheme is at least 1/α, resulting in a
change detection scheme with minimal structural
assumptions (thus allowing for possibly depen-
dent observations, and nonparametric distribution
classes), but strong guarantees. We also describe
an interesting parallel with Lorden’s reduction
from change detection to sequential testing and
connections to the recent “e-detector” framework.

1. Introduction
We consider the following problem of sequential change
detection (SCD): for a general space X , given a stream of
X -valued observations X1, X2, . . ., our goal is to design a
method to detect any changes in a prespecified parameter or
functional θ (possibly infinite dimensional) associated with
the source generating this stream. Let P denote a class
of probability distributions on the infinite product space
Ω = X∞, and let θ : P → Θ, denote a mapping from
probability distributions to some (possibly infinite dimen-
sional) parameter space Θ. The data distribution satisfies
the following for some T ∈ N ∪ {∞}:
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• For n ≤ T , the observations are the first T elements of
a trajectory of P0 ∈ P , with θ(P0) = θ0.

• For n > T , the observations are drawn from another
distribution P1 ∈ P , such that θ(P1) = θ1 ̸= θ0.

In particular, P0, P1 are distributions over an infinite se-
quence of observations, and the data is not assumed to be
i.i.d. (independent and identically distributed), meaning that
we do not assume that P0, P1 take the form p∞ for some
distribution p over X . Further, P1 (and hence θ1) is allowed
to depend on X1, . . . , XT . We refer to the term T as the
changepoint, and to P0 and P1 as the pre- and post-change
distributions respectively.

Under the above model, our goal is to design a data-driven
method for detecting any change in the value of θ, with-
out any knowledge of T, P0, P1. In technical terms, our
objective is to define a stopping time τ , at which we stop
collecting more data, and declare a changepoint has previ-
ously occurred.

There are two problem settings to consider: non-partitioned
and partitioned. By default, define the filtration F ≡
(Fn)n≥0, where Fn is by default the sigma algebra
σ(X1, . . . , Xn) and F0 = {∅,Ω}.
Problem 1.1 (Non-partitioned SCD). For some unknown
triple (T, P0, P1), suppose X1, X2, . . . denote a data
stream, such that (Xn)n≤T are drawn from P0, and
(Xn)n>T are drawn from P1, such that θ(P1) = θ1 ̸= θ0 =
θ(P0). The goal is to define a stopping time τ , adapted to
the filtration F satisfying:

• If T = ∞, and there is no changepoint, we require
that E∞[τ ] ≥ 1/α, for a prespecified α ∈ (0, 1). The
term E∞[τ ] is called the average run length (ARL),
and represents the frequency of false alarms.

• If T < ∞, and there is a changepoint at which the
distribution changes from P0 to P1, we desire the de-
tection delay, ET [(τ −T )+], to be as small as possible.

The non-partitioned SCD problem stated above, does not
require any pre-specified partitioning of P into pre- and
post change distribution classes. That is, it assumes that
the data generating distribution changes from one unknown
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distribution P0 in P to another unknown distribution P1 in
P . This is in contrast to another formulation of the SCD
problem, where it is assumed that we know some partition
of P into “pre-change” and “post-change” classes P0,P1

such that P0, P1 are known to respectively lie in P0,P1.
In this setting, we are not interested in changes within P0,
only changes from P0 to P1. Sometimes, P0 is even as-
sumed to be a singleton, meaning the pre-change distribu-
tion is assumed to be known exactly; we will not make any
such assumption. The additional knowledge about the two
partitioned distribution classes, that is not available in the
first formulation, is often critical in designing optimal SCD
schemes, especially in parametric problems. The strategy
we develop in this paper is also applicable to an interme-
diate variant of the SCD problem, that only assumes the
knowledge of the pre-change parameter class, Θ0.

Problem 1.2 (Partitioned SCD). For some unknown triple
(T, P0, P1), suppose X1, X2, . . . denote a stream of X -
valued observations, satisfying the following assumptions:
The observations (Xn)n≤T are drawn according to a pro-
cess P0 ∈ P with parameter θ0 ∈ Θ0 ⊂ Θ, where Θ0 is
known. The observations (Xn)n>T are drawn from P1 with
parameter θ1, such that θ1 ̸∈ Θ0, and θ1 is unknown, and
lies in a set Θ1 ⊂ Θ\Θ0. The goal is to design a stopping
time τ , satisfying the bulleted criteria stated in Problem 1.1.

Sequential changepoint detection is a very well-studied
problem in the sequential analysis literature, going back
to the early works by Shewhart (1925; 1930); Page (1954);
Shiryaev (1963). These initial papers developed computa-
tionally efficient likelihood-based schemes for known pre-
and post-change distributions, which have since then been
extended to more general cases of composite, but paramet-
ric, pre- and post-change distribution classes. We refer the
reader to the book by Tartakovsky et al. (2014) for a de-
tailed discussion of the parametric SCD problem. Unlike
the parametric case, there exist very few general princi-
ples (analogous to the likelihood and generalized likelihood
based schemes) for designing SCD methods with nonpara-
metric distribution classes. Two recent exceptions to this
trend include the paper on e-detectors by Shin et al. (2024)
for Problem 1.2 (partitioned), and the BCS-Detector
scheme proposed by Shekhar & Ramdas (2023) for Prob-
lem 1.1 (non-partitioned). This paper focuses on the non-
partitioned setting, and provides a simpler and theoretically
stronger alternative to Shekhar & Ramdas (2023), while
also being applicable to the partitioned setting, where it
generalizes an old reduction by Lorden (1971).

Remark 1.3. Before proceeding, we clarify our use of the
term “reduction” in this paper. Specifically, we use “reduc-
tion” from change detection to estimation to mean that if we
have a scheme to construct confidence sequences (see Def-
inition 1.4) for a parameter θ, then we can immediately
employ it as a subroutine, along with some logically simple

operations (such as checking for intersections), to develop a
scheme for detecting changes in that parameter.

The BCS-Detector scheme. of Shekhar & Ramdas
(2023), recalled in Definition A.5 in Appendix A, is also
a reduction from changepoint detection to estimation, but
in this paper we propose a different, and even simpler re-
duction. To elaborate, BCS-Detector uses a single confi-
dence sequence (CS) in the forward direction, but with every
new observation, it constructs a new CS in the backward
direction (the so-called “backward CS” or BCS, constructed
using observations with their time indices reversed). The
scheme stops and declares a detection, as soon as the inter-
section of the single forward CS and the all active BCSs
becomes empty. Since it is critical to our simplified scheme
as well, we recall the definition of a CS below.
Definition 1.4 (Confidence Sequence (CS)). Given obser-
vations X1, X2, . . . drawn from a distribution P with asso-
ciated parameter/functional θ ≡ θ(P ), a level-(1− α) CS
for θ, is a sequence of sets (Cn)n≥1, satisfying:

• For every n ≥ 1, the set Cn ⊂ Θ is Fn-measurable.
In words, the set Cn is constructed using only the
information contained in the first n observations.

• The sets satisfy a uniform coverage guarantee:
P (∀n ∈ N : θ(P ) ∈ Cn) ≥ 1 − α. Equivalently, a
CS is a sequence of confidence intervals that is valid at
any F-stopping time τ : P (θ(P ) ∈ Cτ ) ≥ 1− α.

Remark 1.5. Due to the uniform coverage guarantee, if
(Cn) is a CS, then so is (∩m≤nCm). Thus, we can assume
without loss of generality that the sets involved in a CS are
nested; that is Cn ⊆ Cn′ for all n′ < n.
Remark 1.6. Confidence sequences (CSs) are a fundamen-
tal tool in sequential and anytime-valid inference, and were
first developed by Robbins and co-authors in the 1960s.
Some early influential papers on this topic include the
works of Darling & Robbins (1967), Lai (1976), Jenni-
son & Turnbull (1984). More recently, there has been a
renewed interest in confidence sequences, driven by their
applications in multi-armed bandits (Jamieson et al., 2014)
and A/B testing (Johari et al., 2015). Some important mod-
ern contributions in this area include the works of Howard
et al. (2021); Howard & Ramdas (2022), Orabona & Jun
(2023), Waudby-Smith & Ramdas (2023), Wang & Ramdas
(2023), Chowdhury & Gopalan (2017); Chowdhury et al.
(2023), and Kaufmann & Koolen (2021). Our primary ob-
jective in this paper is to develop a scheme to harness the
significant recent progress on the topic of confidence se-
quences, in order to develop a general recipe for designing
powerful change-detection schemes.

The BCS-Detector scheme of Shekhar & Ramdas (2023)
satisfies several favorable properties: it can be instantiated
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for a large class of parametric and nonparametric problems,
it provides non-asymptotic control over the ARL, and has
strong guarantees over the detection delay. However, a
closer look at their scheme reveals that it implicitly makes
a “bidirectional” assumption about the data generating pro-
cess: at any n ≥ 1, the BCS-Detector assumes the
ability to construct a CS in the forward direction (based on
X1, . . . , Xn), as well as in the backward direction (using
Y1 = Xn, Y2 = Xn−1, . . . , Yn = X1). Most methods for
constructing CSs proceed by designing martingales or su-
permartingales adapted to the natural (forward) filtration of
the observations. Hence, the BCS-Detector implicitly
involves constructing martingales (or supermartingales) in
both, the forward and reverse directions; this in turn is typi-
cally only possible if the observations are independent. This
restriction limits the applicability of the BCS-Detector
scheme, a weakness that we eliminate.

Contributions. Our main contributions are as follows:

• In Section 2, we propose a new SCD scheme, that we
refer to as the RCS-Detector. This scheme pro-
ceeds by constructing a new forward CS with each
observation, and stops as soon the intersection of all
the active CSs (see Remark 2.2) becomes empty.

• Unlike the BCS-Detector of Shekhar & Ramdas
(2023), our new scheme relies only on forward CSs,
thus eliminating their independence requirement on the
observations, and allowing for martingale dependence.

• Our scheme also achieves a tighter bound (by a factor
2) on the ARL, as compared to the BCS-Detector,
while matching its detection delay guarantees.

• Finally, our reduction from change detection to sequen-
tial estimation for Problem 1.1 provides a satisfactory
analog to the famous reduction by (Lorden, 1971) from
Problem 1.2 to sequential testing (Section 3), and also
significantly generalizes the latter for Problem 1.2.

2. Our proposed reduction
We now describe our scheme that proceeds by starting a new
CS in the forward direction with each new observation.

Definition 2.1 (RCS-Detector). Suppose we are given
a stream of observations X1, X2, . . ., and a functional θ as-
sociated with the source. For Problem 1.1 (non-partitioned),
define the C

(0)
n = Θ for all n ≥ 1, while for Prob-

lem 1.2 (partitioned) set C(0)
n = Θ0, for all n ≥ 1. Proceed

as follows for n = 1, 2, . . . :

1. Observe the next data-point Xn.

2. Using Xn, update all the previous CSs (that is, {C(m) :
0 ≤ m < n}) and also initialize a new level-(1 − α)
CS, denoted by C(n).

3. If the intersection of all initialized CSs becomes empty,
meaning ∩nm=0C

(m)
n = ∅, then set τ ← n, and declare

a detection.

In the last step, we have implicitly used the nestedness
discussed Remark 1.5, but if the CSs are not nested, we can
use the stopping criterion ∩nm=0 ∩ni=m C

(m)
i = ∅.

Remark 2.2. Note that at the end of round n, the
RCS-Detector scheme has n + 1 “active CSs”:
C(0), C(1), . . . , C(n). At this time, each CS C(m) consists
of the sets {C(m)

m , . . . , C
(m)
n } constructed using the obser-

vations Xm, . . . , Xn. Specifically, the most recent CS, de-
noted by C(n), consists of a single set {C(n)

n }, constructed
using only the observation Xn.

Remark 2.3. In general, the computation cost of our re-
duction (and the BCS-Detector) increases quadratically
with n since at time n we need to update all CSs ini-
tialized so far using Xn, meaning that we form the sets
{C(m)

n : 1 ≤ m ≤ n}. One possible way of reducing this
computational cost is by considering only the w most recent
CSs, for some window-size w > 0. Selecting the appropri-
ate value of w, either based on some prior information about
the change magnitude, or by learning it in a data-driven
manner is an interesting direction for future work.

Compared to the BCS-Detector of Shekhar & Ramdas
(2023), the main change in the above scheme is that it creates
a new forward CS with each new observation, instead of a
new “backward CS” (a new concept defined by their paper,
but this complexity is unnecessary with ours).

2.1. Analyzing the average run length

We now show that our RCS-Detector scheme admits
a nonasymptotic lower bound on the average run length
(ARL) when there is no change.

Theorem 2.4 (ARL control). The changepoint detection
scheme described in Definition 2.1 controls the average
run length (ARL) at level 1/α. That is, when T =∞, our
proposed stopping time τ satisfies E∞[τ ] ≥ 1/α.

The proof of this result is in Section 4.1. Note that for the
BCS-Detector obtained a lower bound of 1/2α−3/2 on
the ARL. Thus, our RCS-Detector achieves an improved
(approximately by a factor of 2) lower bound under weaker
model assumptions on the data stream, while matching the
detection delay guarantees of BCS-Detector, as we show
in the next section. This improved performance guarantee is
a consequence of more refined analysis (that we are unable
to extend to BCS-Detector), and in practice, we observe
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that the empirical performance of RCS-Detector and
BCS-Detector are comparable to each other on indepen-
dent data streams.

Remark 2.5. An alternative performance measure to ARL
is the probability of false alarms (PFA), which is equal to
the probability that the stopping time τ is finite; that is
P∞(τ <∞). If we modify our RCS-Detector to use a
level-(1− 6α/(n2π2)) CS in each round, then the resulting
scheme ensures

P∞(τ <∞) ≤
∑
n≥1

P∞

({
(C

(n)
t )t≥n miscovers θ0

})
≤ α

∑
n≥1

6

π2n2
= α.

This implies that the ARL of the above modified
RCS-Detector scheme is infinity, since E∞[τ ] ≥ (1 −
α)×∞ =∞. This significantly stronger control over false
alarms comes at the cost of an increase in detection delay.
In particular, we can show that for most CSs, the detection
delay of this modified scheme will have a logarithmic de-
pendence on T . This means that the worst case (over all
T values) detection delay of the PFA-controlling scheme is
usually unbounded.

2.2. Analyzing the detection delay

We now state an assumption under which we will analyze
the detection delay of our SCD scheme.

Assumption 2.6. Letting d denote a metric on Θ, Xn

be shorthand for (X1, . . . , Xn), and (Cn)n≥0 be a given
confidence sequence, we assume that the width of the set
Cn ≡ Cn(X

n, α) has a deterministic bound

sup
θ′,θ′′∈Cn

d(θ′, θ′′)
a.s.
≤ w(n, P, α),

with limn→∞ w(n, P, α) = 0, for all P ∈ P , α ∈ (0, 1].

The above assumption requires the existence of a determin-
istic envelope function for the diameter of the confidence se-
quence, which converges to zero pointwise for every (P, α),
as n increases. This is a very weak assumption, and essen-
tially all known CSs satisfy it.

We now analyze the detection delay of our SCD scheme
for Problem 1.1 under Assumption 2.6.

Theorem 2.7. Consider the SCD problem with observations
X1, X2, . . . such that (Xn)n≤T are drawn from a distribu-
tion P0 (with parameter θ0), while (Xn)n>T are drawn
from a product distribution P1 (with parameter θ1 ̸= θ0),
and are independent of the pre-change observations. Sup-
pose the RCS-Detector from Definition 2.1 is applied
to this problem, with the CSs satisfying Assumption 2.6.
Let ET := {θ0 ∈ ∩Tn=1C

(1)
n } denote the “good event”

(having at least (1 − α) probability) that the first CS cov-
ers the true parameter up to the changepoint. For Prob-
lem 1.1 (non-partitioned), if T is large enough to ensure
that w(T, P0, α) < d(θ0, θ1), then the detection delay of
our proposed scheme satisfies

ET [(τ − T )+|ET ] ≤
3

1− α
u(θ0, θ1, T ),

where u(θ0, θ1, T ) := min{n ≥ 1 : w(T, P0, α) +
w(n, P1, α) < d(θ0, θ1)}. For Problem 1.2 (partitioned),
the RCS-Detector satisfies

ET [(τ − T )+|FT ] ≤
3

1− α
u(Θ0, θ1), (1)

where u(Θ0, θ1) := min{n ≥ 1 : w(n, P1, α) <
infθ′∈Θ0

d(θ′, θ1)} for all values of T <∞.

The proof of this result adapts the arguments devel-
oped by Shekhar & Ramdas (2023) for analyzing the
BCS-Detector, and we present the details in Section 4.2.
Remark 2.8. The above detection delay bound exactly
matches that obtained by the BCS-Detector of Shekhar
& Ramdas (2023), which (as mentioned earlier) had a worse
ARL guarantee of ARL ≥ 1/(2α)− 3/2. Recalling Theo-
rem 2.4, our new scheme achieves an improved bound on
the ARL, while matching its detection delay.

The previous result provides an explicit detection delay
bound applicable to a large class of problems in terms of the
CS width w(n, P, α). We now state a less explicit bound
on the detection delay that is valid under much weaker
conditions.
Proposition 2.9. Consider an SCD problem in which the
post change observations are (i) stationary, and (ii) indepen-
dent of FT = σ(X1, . . . , XT ). Then, the detection delay of
the RCS-Detector on Problem 1.2 (partitioned) satisfies
the following bound:

ET [(τ − T )+|FT ] ≤ E0[N1], where

Nm := inf{n−m : C(m)
n ∩ θ0 = ∅}, for m ≥ 1.

An exactly analogous bound holds for ET [(τ − T )+|ET ]
for Problem 1.1 (non-partitioned), with the modification
that Θ0 is replaced with {θ : d(θ0, θ) ≤ d(θ0, θ1)/2} in the
definition of Nm.

This result can be used as an intermediate step in obtaining
sharp detection delay bounds for the RCS-Detector on
problems with some additional structure. We demonstrate
this next in Section 2.3, for the problem of detecting changes
in mean of bounded data.

2.3. A nonparametric example: change in mean for
bounded random variables

We now analyze the performance of our changepoint de-
tection scheme the problem of detecting changes in the
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mean of bounded real-valued random variables supported
on X = [0, 1]. Note that despite the simple observation
space, the class of distributions on this X is highly compos-
ite and nonparametric. In particular, there does not exist
a common dominating measure for all distributions in this
class, which renders likelihood based techniques inapplica-
ble to this problem.

Formally, we consider the instances of Problem 1.1
and Problem 1.2 with X = [0, 1], and the parameter space
Θ = [0, 1] with metric d(θ, θ′) = |θ − θ′|. For Prob-
lem 1.2, we assume that the pre-change mean θ0 lies in
a known set Θ0 ⊂ Θ. For an unknown value T ∈ N∪{∞},
the distribution generating the observations changes from
P0, with mean θ0, to another distribution P1, with mean
θ1 ̸= θ0. The (unknown) change magnitude is denoted by
d(θ0, θ1) = ∆ = |θ1 − θ0|.

For this problem, we employ our RCS-Detector strategy
using an instance of the betting-based construction of CSs
for the means of bounded random variables (details in Ap-
pendix B) proposed by Waudby-Smith & Ramdas (2023).
Our next result analyzes its performance.

Proposition 2.10. Consider the problem of detecting
changes in mean with bounded observations, under these
additional conditions: (i) the post-change observations are
independent of the pre-change observations, and (ii) both,
the pre- and post-change observations are i.i.d. (that is
P0, P1 are infinite products of some distributions p0, p1
on X ). For Problem 1.1 (non-partitioned), if T ≥
64 log(64/∆2α)/∆2, the RCS-Detector instantiated
with the betting CS (details in Appendix B) satisfies:

E∞[τ ] ≥ 1

α
, and ET [(τ − T )+|E ] = O

(
log(1/αK1)

K1

)
,

(2)

where K1 = K1(P1, θ0) := infPθ:|θ−θ0|≤∆/2 dKL(p1 ∥ pθ).
In the display above, E is the “good event” in Theorem 2.7,
having probability at least 1− α.

For Problem 1.2 (partitioned), the RCS-Detector satis-
fies the following:

E∞[τ ] ≥ 1

α
, and ET [(τ − T )+] = O

(
log(1/αK2)

K2

)
,

(3)

where K2 ≡ K2(P1,Θ0) = infPθ:θ∈Θ0
dKL(p1 ∥ pθ). In

the statements above, Pθ = p∞θ denotes any product distri-
bution on X∞ with mean θ.

The proof of this result is in Appendix B, and relies on a
careful analysis of the behavior of betting CSs. If the pre-
change distribution P0 is also i.i.d. (say P0 = p∞0 ), and
is known, then K2 in (3) reduces to dKL(p1 ∥ p0). The

resulting detection delay is order optimal, according to Lor-
den (1971)[Theorem 3], and furthermore, this optimality
is achieved for an unknown P1 lying in a nonparametric
distribution class.
Remark 2.11. By an application of Pinsker’s inequal-
ity (Fact A.3 in Appendix A), we know that both K1 and
K2 are Ω(∆2), which gives us the weaker upper bound on
the detection delay, O

(
log(1/α∆)/∆2

)
. This is the upper

bound on the detection delay derived by Shekhar & Ramdas
(2023) for the change of mean detection problem, using
the empirical-Bernstein CS of Waudby-Smith & Ramdas
(2023), and a direct application of the general delay bound
of Theorem 2.7.

2.4. Numerical experiments

10−5 10−4 10−3 10−2 10−1

0

20,000

40,000

α

A
R

L

ARL versus α

RCS
BCS

Figure 1: The figure plots the estimates of (lower bounds
on) the ARL of the two schemes constructed based on 50
independent trials.

In this section, we empirically compare the performance
of the our RCS-Detector with the BCS-Detector
scheme of Shekhar & Ramdas (2023) on the problem of
detecting changes in mean of bounded observations. For
simplicity, we instantiate both these schemes using Hoeffd-
ing CS (details below) proposed by Waudby-Smith & Ram-
das (2023), since it admits a closed form representation.
Our main objective in this section is to illustrate how the
RCS-Detector (and BCS-Detector) can be used to
address non-partitioned change detection problems with
minimal knowledge and assumptions on the distributions.
We leave a more thorough empirical evaluation of our gen-
eral scheme and its instantiations in different scenarios, as
an interesting direction for future work.

Experiment setup. We consider the problem of detecting
changes in the mean of bounded observations, where

• X1, X2, . . . , are independent observations, supported
on X = [0, 1].

• For t ≤ T , each Xt is drawn according to a Beta
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distribution with parameters (2, 2(1− µ0)/µ0), where
µ0 denotes the pre-change mean.

• For t > T , each Xt is drawn from a Beta distribution
with parameters (2, 2(1− µ1)/µ1), where µ1 ̸= µ0 is
the post-change mean value.

• We denote the change magnitude by ∆ = |µ1 − µ0|.

We instantiate both the schemes using the follow-
ing Hoeffding-type confidence sequence constructed by
Waudby-Smith & Ramdas (2023):

Ct =

[∑t
i=1 λiXi∑t
i=1 λi

±
log(2/α) +

∑t
i=1 λ

2
i /8∑t

i=1 λi

]
,

where λi =

√
8 log(2/α)

i× log(i+ 1)
∧ 1, for all i ≥ 1.

ARL comparison. In the first experiment, we compare the
average run length (ARL) of the two schemes. For this,
we set ∆ = 0, and consider five values of α in the set
{10−i : 1 ≤ i ≤ 5}, and estimate the ARL as the average
of the stopping times over 50 trials (capped at 50000). The
results of this experiment, plotted in Figure 1, indicate that
the both schemes provide the required control over ARL,
but the RCS-Detector has a slightly higher variability,
especially at smaller α values. See Appendix C for some
additional details of this experiment.

Detection delay comparison. We now compare the de-
tection delay of the two schemes. To do this, we
set α = 0.001, and consider six value of ∆ ∈
{0.05, 0.075, 0.10, 0.125, 0.15, 0.175}. For every ∆ value,
we ran 50 independent trials with the two schemes to esti-
mate their average detection delay (clipped at a maximum
of 24000). As shown in Figure 2, the detection delay of the
two schemes are roughly comparable for independent data.
However, the RCS-Detector has the additional benefit
of being applicable to a more general class of problems
with dependent data streams; we present one such example
in Appendix C.

3. Connection to Lorden’s reduction from
SCD to testing

Using the duality between confidence sequences and
sequential hypothesis tests, we now show that our
RCS-Detector strategy is a generalization of a well-
known result of Lorden (1971), that reduces the problem of
SCD (with separated distribution classes) to that of repeated
sequential tests.

Lorden’s work built upon the interpretation of CuSum algo-
rithm as repeated sequential probability ratio tests (SPRT)
for known pre- and post-change distributions by Page

(1954). In particular, Lorden (1971) considered a para-
metric SCD problem with a known pre-change distribution
P0, and a parametric composite class of post-change dis-
tributions {Pθ1 : θ1 ∈ Θ1}. Then, given a sequential test,
or equivalently, extended stopping time, {N(α, θ0) : α ∈
(0, 1)}, satisfying PP0

(N(α, θ0) <∞) ≤ α, Lorden (1971)
proposed the following SCD strategy:

• For every m ≥ 1, define N (m)(α, θ0) as the
stopping rule N(α, θ0) applied to the observations
Xm, Xm+1, . . ..

• Using these, declare the changepoint at the time τL ≡
τL(α), defined as

τL = inf
m≥1

{N (m)(α, θ0) +m}.

In words, this scheme can be summarized as: initiate a new
sequential level-α test with every new observation, and stop
and declare a detection as soon as one of the active tests
rejects the null. For this scheme, Lorden (1971) established
the ARL control; that is, EP0

[τL] ≥ 1/α, for the specified
α ∈ (0, 1). Furthermore, under certain assumptions on
the expected stopping time of the test N(α, θ0) under the
alternative, Lorden (1971) also established the minimax
optimality of the scheme in the regime of α→ 0.

Our main result of this section establishes a connection
between Lorden’s reduction and RCS-Detector.

Proposition 3.1. Consider an SCD problem with pre-
change parameter set Θ0 = {θ0}, and a post-change pa-
rameter set Θ1. Then, we have the following:

• For every Lorden-type scheme τL, there exists an
RCS-Detector τR, such that τL = τR.

• For every RCS-Detector τR, there exists a Lorden-
type scheme τL, such that τR = τL.

Thus, there is a one-to-one correspondence between Lor-
den’s reduction and RCS-Detector for such problems.

The proof of this statement is in Section 4.4, and it relies
on the duality between CSs and power-one sequential tests.
We end our discussion with two remarks.

Remark 3.2. While we focused on the case of a singleton
null, {P0}, a similar result holds for the case of a composite
null {Pθ0 : θ0 ∈ Θ0}, with Θ0 ∩ Θ1 = ∅. The only
modification needed is to update the stopping time N(α,Θ0)
to be equal to inf{n ≥ 1 : Θ0 ∩Cn = ∅}. By Theorem 2.4,
the resulting SCD scheme still controls the ARL at the
required level 1/α.

Remark 3.3. Note that the e-detector framework, devel-
oped by Shin et al. (2024), also generalizes and strictly
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Figure 2: The first plot shows the variation of the detection delay (averaged over 50 trials) for the two schemes (both
constructed using Hoeffding CS) with the change magnitude (∆). As suggested by Theorem 2.7, the detection delay of
the two schemes are comparable. In some problem instances (smaller ∆ values), the performance of RCS-Detector is
slightly better (middle plot), while in some others (larger ∆ values), the BCS-Detector does better (right plot). The
maximum detection delay in the experiments was capped at 24000, which is why the delay of the two schemes agree at
∆ = 0.05 (indicating that the true detection delay of both schemes is some quantity strictly larger than 24000).

improves upon Lorden’s scheme to work for composite, and
nonparametric pre- and post-change distribution classes (P0

and P1 respectively). However, the e-detectors were devel-
oped explicitly for Problem 1.2 (partitioned); that is for a
known class of pre-change distributions P0 (although the
general idea could be suitably adapted for the non-separated
formulation in some cases). This is unlike our scheme that
is applicable to both the partitioned and non-partitioned
formulations of the SCD problem.

4. Deferred proofs
We now present the proofs of the two main technical results
characterizing the performance of our RCS-Detector
scheme, stated in Section 2 and Section 3.

4.1. Proof of Theorem 2.4

We prove this statement in three steps. First, we define an
e-process (recalled in Definition 4.1) corresponding to every
confidence sequence (C

(m)
n )n≥m involved in our scheme.

Then, using these e-processes we introduce an e-detector
(Mn)n≥1, that is, a process adapted to the natural filtration
F that satisfies E∞[Mτ ′ ] ≤ E∞[τ ′] for all stopping times τ ′.
Finally, we show that our stopping time τ , introduced in Def-
inition 2.1, is larger than τ ′ = inf{n ≥ 1 : Mn ≥ 1/α},
defined using the e-detector. This allows us to lever-
age Shin et al. (2024, Proposition 2.4) to conclude that
E∞[τ ′] ≥ 1/α, which implies required statement about the
ARL of τ .

Since we prove this result by attaching an e-process to every
CS, we recall their definition below.

Definition 4.1 (e-processes). Given a class of probability
measures P , and a filtration F ≡ (Fn)n≥1 defined on some
measurable space, an e-process for P is a collection of
nonnegative random variables (En)n≥1 adapted to F , sat-
isfying EP [Eτ ′ ] ≤ 1 for all P ∈ P , and for all stopping
times τ ′ (adapted to the same filtration).

Step 1. Construct an e-process for every CS. For
every CS starting with the mth observation, denoted by
(C

(m)
n )n≥m, we associate a process defined as

E(m)
n =

{
0, if n < m, OR if n ≥ m, and θ0 ∈ C

(m)
n ,

1
α , if n ≥ m, and θ0 ̸∈ C

(m)
n .

It is easy to verify that for every m ≥ 1, the process {E(m)
n :

n ≥ 1} is an e-process:

• For every n ≥ 1, the value of E
(m)
n is Fn =

σ(X1, . . . , Xn) measurable.

• For any stopping time τ ′, adapted to the filtration F ,
we have

E∞[E
(m)
τ ′ ] = E∞

[
0× 1τ ′<m +

1

α
× 1τ ′≥m1

θ0 ̸∈C
(m)

τ′

]
=

1

α
× E∞

[
1τ ′≥m1

θ0 ̸∈C
(m)

τ′

]
≤ 1

α
× E∞

[
1
θ0 ̸∈C

(m)

τ′

]
=

1

α
× P∞

(
θ0 ̸∈ C

(m)
τ ′

)
≤ 1

α
× α = 1.
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The last inequality uses the fact that (C(m)
n )m≥n is a level-

(1 − α) CS for θ0. Thus, for every m ≥ 1, the process
(E

(m)
n )n≥1 is a valid e-process.

Step 2. Construct an e-detector. For every n ≥ 1, we
define Mn to be equal to

∑n
m=1 E

(m)
n , and observe that the

process (Mn)n≥1 is an e-detector, as defined by Shin et al.
(2024, Definition 2.2) because it satisfies the following two
properties:

• (Mn)n≥1 is adapted to (Fn)n≥1: since for any n ≥ 1,
all the E

(m)
n are Fn-measurable by construction.

• For any stopping time τ ′, we have E∞[Mτ ′ ] ≤ E∞[τ ′],
as noted by Shin et al. (2024, Definition 2.6).

Step 3. Bound the ARL using the e-detector. Finally,
we translate the stopping criterion of our proposed scheme
(stated as the non-intersection of the confidence sequences)
in terms of the e-detector (Mn)n≥1. In particular, we have

{τ ≤ n} = {∩nm=0C
(m)
n = ∅} ⊂ {∃m ∈ [n] : θ0 ̸∈ C(m)

n }
= {∃m ∈ [n] : E(m)

n = 1/α}
= {Mn ≥ 1/α}. (4)

In words, when T = ∞, if the intersection of the CSs is
empty prior to some time n, it means that at least of of
the CSs constructed prior to n must miscover. This in turn
implies that the value of at least one of the e-processes at
n is equal to 1/α; or the value of the e-detector Mn is at
least 1/α. Recall, that in the first equality above, we have
assumed that the sets in the confidence sequences are nested;
that is, C(m)

n ⊂ C
(m)
n′ for every m ≤ n′ < n. This allows

us to look only at the intersection of the most recent sets
to define the stopping condition. We now define a new
stopping time τ ′ = inf{n ≥ 1 : Mn ≥ 1/α}, and observe
that it is stochastically dominated by τ ; that is, (4) implies

{τ ′ > n} = {Mn < 1/α} ⊂ {τ > n},

which allows us to conclude that E∞[τ ′] ≤ E∞[τ ].
From Shin et al. (2024, Proposition 2.4), we know that
E∞[τ ′] ≥ 1/α, and we conclude the result by noting that
E∞[τ ] ≥ E∞[τ ′] since τ stochastically dominates τ ′.

4.2. Proof of Theorem 2.7

The proof of this result follows the general argument de-
veloped by Shekhar & Ramdas (2023) for analyzing their
BCS-Detector strategy, with some modifications due to
the use of forward CSs (instead of backward CSs used in
the BCS-Detector).

In particular, we consider blocks of the post-change observa-
tions, each of length u ≡ u(θ0, θ1, T ), starting at time Tj =

T + ju for j ≥ 0. Note that all these blocks are independent
of each other (since P1 is a product distribution), and also
independent of the event E = {θ0 ∈ C

(1)
T }. Now, observe

that for k ≥ 1, we have {τ > Tk} = ∩kj=1{τ > Tj}, which
furthermore implies

{τ > Tk} ∩ E ⊂ ∩kj=1{C
(Tj−1)
Tj

∩ C
(1)
T ̸= ∅} ∩ E

⊂ ∩kj=1{C
(Tj−1)
Tj

miscovers θ1} ∩ E . (5)

The last inclusion follows from the definition of u ≡
u(θ0, θ1, T ), and the event E . Introducing Dk =∑Tk+1

t=Tk+1 PT (τ ≥ t|E), and using (5), we obtain:

Dk ≤
Tk+1∑

t=Tk+1

PT (τ ≥ Tk|E) = uPT (τ > Tk|E)

≤ u× PT

(
∩kj=1{C

(Tj−1)
Tj

miscovers θ1} ∩ E|E
)

(i)

≤ u

PT (E)
×

k∏
j=1

PT

(
{C(Tj−1)

Tj
miscovers θ1} ∩ E

)
≤ uαk

1− α
.

The inequality (i) uses the fact that E only depends on the
pre-change observations, and hence is independent of the
post-change CSs. For any k0 > 1, observe that

ET [(τ − T )+] ≤ k0u+

∞∑
k=k0

Dk = u

(
k0 +

αk0

(1− α)2

)
.

By setting k0 = ⌈2 log(1/1 − α)/ log(1/α)⌉, we get the
required statement for Problem 1.1.

To prove the second part of Theorem 2.7, we proceed as
above, considering blocks of post-change observations of
length u ≡ u(Θ0, θ1) as defined in (1). We then define
Tj = T + ju for j ≥ 0, and note that

{τ > Tk} ⊂ ∩kj=1{C
(Tj−1)
Tj

∩Θ0 ̸= ∅}

⊂ ∩kj=1{C
(Tj−1)
Tj

miscovers θ1}.

The rest of the argument, then proceeds exactly as before.

4.3. Proof of Proposition 2.9

The first step is to show that when T <∞, we have

(τ − T )+ ≤ NT+1, almost surely.

This inequality is true trivially on the event {τ ≤ T}, since
each Nm is non-negative. Now, observe that

(τ − T )1τ>T = inf{n− T : ∩m≤nC
(m)
n = ∅, n > T}

≤ inf{n− T : C(0)
n ∩ C(T+1)

n = ∅, n > T}
= inf{n− T : Θ0 ∩ C(T+1)

n = ∅, n > T}
= NT+1
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The first inequality uses the fact that we are taking fewer
intersections (hence will take longer to stop), while the sec-
ond equality uses the fact that C(0)

n = Θ0 for Problem 1.2.
To conclude the proof, we observe that

ET [(τ − T )+|FT ] ≤ ET [NT+1|FT ]
(i)
= ET [NT+1]

(ii)
= E0[N1].

The equality (i) follows from the independence of post-
change data to FT , and (ii) follows from the stationarity of
the post-change data.

4.4. Proof of Proposition Proposition 3.1

We prove this statement in three steps: in the first two steps,
we show show how to construct a τR from τL, and a τL
from τR respectively; and then establish their equivalence
in the third step.

Step 1. Consider a Lorden-type stopping time τL =
inf{m + N (m)(α, θ0) : m ≥ 1}, and use its underlying
test N(α, ·) to construct CSs as follows:

C(m)
n = {θ ∈ Θ0 ∪Θ1 : N (m)(α, θ) > n}.

Note that {N (m)(α, θ) > n} = {N (m)(α, θ) ≤ n}c is
an Fn measurable event as required. These CSs can now
be used to define an RCS-Detector τR = inf{n ≥ 1 :

∩nm=0C
(m)
n = ∅}.

Step 2. Consider an RCS-Detector τR, and let C denote
the method for constructing confidence sequences used by
τL. Then, we can define a sequential test for {P0} as

N(α, θ0) = inf{n ≥ 1 : θ0 ̸∈ Cn},

where Cn = C(X1, . . . , Xn;α). By the uniform
coverage guarantee of confidence sequences, we have
PP0

(N(α, θ0) <∞) = PP0
(∃n ∈ N : θ0 ̸∈ Cn) ≤ α.

Thus, N(α, θ0) is a valid level-α sequential test for the sim-
ple null {P0}. Similarly, N (m) for m ≥ 1, can be defined as
the stopping time N(α, θ0) constructed using observations
(Xn)n≥m starting at time m. More specifically, we have

N (m)(α) = inf{n−m : θ0 ̸∈ C(m)
n , n ≥ m},

where C(m)
n = C (Xm, Xm+1 . . . , Xn;α) .

Using this, we can define a Lorden-type change detector
τL = infm≥1{N (m)(α, θ0) +m}.

Step 3. We conclude the proof by noting that in both the
cases above, we have τL = τR. In particular, observe the

following chain of equalities:

{τL ≤ n} = {∃n′ ≤ n, ∃m ≤ n′ : N (m)(α) = n′ −m}

= {∃n′ ≤ n, ∃m ≤ n′ : θ0 ̸∈ C
(m)
n′ }

= {∃n′ ≤ n :
(
∩n

′

m=1 C
(m)
n′

)
∩ {θ0} = ∅}

= {∩nn′=1 ∩n
′

m=0 C
(m)
n′ = ∅}

= {∩nm=0 ∩nn′=m C
(m)
n′ = ∅}

= {τR ≤ n}.

In the last two equalities, we have used the fact that C(0)
n

for all n ≥ 0 is equal to Θ0 = {θ0}.

5. Conclusion
In this paper, we proposed a new and simple reduction from
sequential changepoint detection to sequential estimation:
our scheme that constructs a new CS with every observa-
tion, and declares a detection as soon as the intersection of
the active CSs becomes empty. The design of our scheme
improves on the BCS-Detector of Shekhar & Ramdas
(2023), which proceeds by initializing new “backward CSs”
with each new observation. Indeed, we showed that our
new scheme matches the detection delay performance of
BCS-Detector, while improving the ARL lower bound
by a factor of 2. Furthermore, our scheme achieves this
improvement under weaker dependence assumptions (i.e.,
without needing the ability to construct CSs in both for-
ward and backward directions). Interestingly, our proposed
scheme can be seen as a nonparametric generalization of
Lorden’s reduction from SCD to repeated sequential testing,
due to the duality between sequential testing and CSs.

As a consequence of our proposed reduction, the large and
rapidly growing literature on CSs can now immediately be
brought to bear on change detection problems. While our
method does involve per-step computation that grows lin-
early with sample size, it at least provides an immediate
statistically optimal baseline method for new (even non-
parametric) problems, and we argue that this versatility will
result in its broad use, even if it is superseded by other
computationally efficient methods for specific problems.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Background
In this section, we recall some facts from probability theory that were used in proving our main results, and then present the
details of the BCS-Detector scheme of Shekhar & Ramdas (2023).

Facts from probability. We begin by recalling the following statement about the expectation of a random sum of random
variables (Durrett, 2019, Theorem 2.6.2).

Fact A.1 (Wald’s equation). Suppose X1, X2, . . . denote a sequence of i.i.d. random variables with E[Xi] < ∞, and
let Sn denote the sum

∑n
i=1 Xi for all i ≥ 1. Then, for any random stopping time N with E[N ] < ∞, we have

E[SN ] = E[N ]E[X1].

Next, we recall a standard concentration inequality for bounded random variables (Hoeffding, 1963, Theorem 1).

Fact A.2 (Hoeffding’s inequality). Suppose X1, X2, . . . denote independent random variables supported on the interval
[a, b]. Then, we have

P (|Sn − E[Sn]| > u) ≤ exp

(
− u2

2n(b− a)2

)
for any u > 0, where Sn =

∑n
i=1 Xi.

Finally, we state a result connecting the KL divergence and the total variation distance between two probability distribu-
tion (Tsybakov, 2009, Lemma 2.5).

Fact A.3 (Pinsker’s inequality). Suppose P and Q denote two probability distributions. Then, we have

dTV (P,Q) ≤
√

dKL(P ∥ Q)

2
,

where dTV and dKL denote the total variation distance and the KL divergence respectively.

Details of BCS-Detector. First, we recall the definition of backward CSs that are crucial to the design of
BCS-Detector.

Definition A.4 (Backward CS). Suppose X1, X2, . . . , Xn denote observations drawn from a distribution Pθ, parametrized
by θ ∈ Θ. Then, a level-(1−α) backward CS for θ with n observations is a collection of sets {B(n)

t : 1 ≤ t ≤ n} satisfying
the following:

• For any t ∈ [n], the set B(n)
t is σ(Xt, . . . , Xn) measurable.

• The sets satisfy the uniform coverage guarantee: P
(
∀t ∈ [n] : θ ∈ B

(n)
t

)
≥ 1− α.

Having introduced this notion of backward CSs, the BCS-Detector strategy of Shekhar & Ramdas (2023) proceeds as
follows:

Definition A.5 (BCS-Detector). Given a stream of observations X1, X2, . . ., proceed as follows:

• Construct one level-(1− α) forward CS, denoted by {Ct : t ≥ 1}

• With each new observation, construct a new backward CS {B(t)
s : 1 ≤ s ≤ t}.

• Stop as soon as ∩ts=1Cs ∩B
(t)
s becomes empty.

B. Proof of Proposition 2.10
Before presenting the proof of Proposition 2.10, we first recall some of details of the betting CS first proposed by Waudby-
Smith & Ramdas (2023).
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Background on betting CS. Given observations X1, X2, . . . drawn from an independent process with mean θ, the betting
CS is defined as

Cn = {s ∈ [0, 1] : Wn(s) < 1/α}, with

Wn(s) :=

n∏
i=1

(1 + λt(s)(Xt − s)), for all s ∈ [0, 1],

where {λt(s) : t ≥ 1, s ∈ [0, 1]} are predictable bets, taking values in [−1/(1 − s), 1/s]. For certain betting strategies,
such as the mixture method (Hazan, 2016, § 4.3), the regret is logarithmic for all s. In particular, this implies that
supλ∈[ −1

1−s ,
1
s ]
∑n

t=1 log (1 + λ(Xt − s)) −
∑n

t=1 log (1 + λt(s)(Xt − s)) ≤ 2 log n, for all n ≥ 13. Note that this idea
of using the mixture method with known regret guarantees, for the specific context of betting CS, was first considered
by Orabona & Jun (2023). We now present the details of the proof of Proposition 2.10. First we show that under the
condition that T ≥ 64 log(64/∆2α)/∆2, the analysis of the first setting (i.e., with unknown Θ0) can be reduced to the
second case (with known Θ0). Then, we present the details of the proof of the second setting.

Proof of (2). Using the fact that log(1 + x) ≥ x− x2/2 for x > −1, we can further lower bound logWn(s) with

logWn(s) ≥ sup
λ∈[ −1

1−s ,
1
s ]

( n∑
t=1

λ(Xt − s)− λ2

2
(Xt − s)2 − log(n2)

)
.

By setting the value of λ to 1
n

∑n
t=1 Xt−s, and on simplifying, we can show that the betting CS after n observation satisfies

|C(1)
n | ≤ 4

√
log(n/α)/n. This implies that for T ≥ 64 log(64/∆2α)/∆2, the width of the CS starting at time 1 must be

smaller than ∆/2 = |θ1 − θ0|/2. If the event E = {θ0 ∈ C
(1)
T } happens (recall that this is a probability 1− α event), then

we know that θ0 ∈ Θ̃0 := {θ : |θ − θ0| ≤ ∆/2}. This set Θ̃0 plays the role of the known pre-change parameter class in
the analysis. Hence the rest of the proof to obtain the upper bound stated in (2) proceeds exactly as in the case when the
pre-change distribution class is known, and we present the details for the latter case next.

Proof of (3). Since the proof of this result is long, we break it down into four simpler steps.

Step 1: Bound ET [(τ − T )+|FT ] with the maximum expectation of a class of stopping times (Nθ)θ∈Θ0 . Introduce the
stopping times Nm = inf{n−m : C

(m)
n ∩Θ0 = ∅}, and recall from Proposition 2.9 that

ET [(τ − T )+|FT ] ≤ ET [NT+1|FT ] = E0[N1].

The equality uses the fact that the post-change observations are independent of FT , and are drawn i.i.d. (hence stationary).

To simplify the ensuing argument, we will use Cn to denote C
(1)
n for n ≥ 1. Furthermore, we also assume that θ1 < θ for

all θ ∈ Θ0, and infθ∈Θ0 θ = θ1 +∆. The other case, can be handled in an exactly analogous manner.

By the definition of betting CS, the stopping time N1 can be written as the supremum of a collection of stopping times:

N1 = sup
θ∈Θ0

Nθ,

where Nθ = inf{n ≥ 1 : Wn(θ) ≥ 1/α}.

Step 2: Bound (Nθ)θ∈Θ0 with a monotonic class of stopping times. Next, we will upper bound each Nθ with another
stopping time γθ, which have the property that γθ′ < γθ for θ′ > θ. In particular, using the regret guarantee of the betting
strategy, observe the following:

log(Wn(θ)) ≥ sup
λ∈[ −1

1−θ ,
1
θ ]

n∑
t=1

log(1 + λ(Xt − θ))− 2 log n

≥ sup
λ∈[0, 1

1−θ ]

n∑
t=1

log(1 + λ(θ −Xt)− 2 log n

:= Zn(θ)− 2 log n.

12
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Define a new stopping time γθ = inf{n ≥ 1 : Zn(θ) − 2 log n ≥ log(1/α)}, and note that the above display implies
γθ ≥ Nθ, and thus we have NT+1 − T ≤ supθ∈Θ0

γθ. We now show the monotonicity of γθ.

For any θ′ > θ, we have λ(θ′ − Xt) ≥ λ(θ − Xt) for any λ > 0, which implies that
∑n

t=1 log(1 + λ(θ′ − Xt)) ≥∑n
t=1 log(1 + λ(θ −Xt)). Thus, we have the following relation (for θ′ > θ):

Zn(θ
′) = sup

λ∈
[
0, 1

1−θ′

]
n∑

t=1

log(1 + λ(θ′ −Xt))

≥ sup
λ∈[0, 1

1−θ ]

n∑
t=1

log(1 + λ(θ′ −Xt))

≥ sup
λ∈[0, 1

1−θ ]

n∑
t=1

log(1 + λ(θ −Xt)) = Zn(θ).

Thus, Zn(θ
′) ≥ Zn(θ), which implies that γθ′ ≤ γθ, and in particular, γθ ≤ γθ1+∆ for all θ ∈ Θ0. This leads to the

required conclusion

NT+1 − T ≤ sup
θ∈Θ0

Nθ ≤ sup
θ∈Θ0

γθ ≤ γθ1+∆.

This is a crucial step, as it reduces the task of analyzing the supremum of a large collection of stopping times, into that of
analyzing a single stopping time γθ1+∆.

Step 3: Bound γθ1+∆ with the ‘oracle’ stopping time ρ∗. Let λ∗ ≡ λ∗(θ1 + ∆) denote the log-optimal betting fraction,
defined as argmaxλ∈[0,1/(1−θ1−∆) E[log(1 + λ(θ1 +∆−X))], where X is drawn from the post-change distribution. By
definition then, we have

Zn(θ1 +∆) ≥
n∑

t=1

log(1 + λ∗(θ1 +∆−Xt))

:= Z∗
n(θ1 +∆),

which immediately implies

γθ1+∆ ≤ ρ∗ := inf{n ≥ 1 : Z∗
n(θ1 +∆) ≥ log(n2/α)}.

The stopping time ρ∗ is much easier to analyze as it is the first crossing of the boundary log(n2/α) by the random walk
Z∗
n(θ1 +∆) with i.i.d. increments.

Step 4: Evaluate the expectation of ρ∗. Observe that Z∗
n ≡ Z∗

n(θ1 +∆) =
∑n

t=1 Vt, with Vt = log(1 + λ∗(θ1 +∆−Xt)).
Without loss of generality, we can assume that λ∗ < 1/(1− θ1 −∆) (if not, we simply repeat the argument with λ∗ − ϵ for
an arbitrarily small ϵ > 0), and hence (Vt)t≥1 are i.i.d. and bounded increments, which means that E[Vt] <∞. In fact, by
the dual definition of the information projections (Honda & Takemura, 2010), we have E[Vt] = K2 ≡ K2(P1,Θ0). Next,
with n0 := inf{n ≥ 1 : log(n2/α)/n < K2/2}, we have for n ≥ n0 by an application of Hoeffding’s inequality (Fact A.2
in Appendix A):

P (ρ∗ > n) ≤ P

(
1

n

n∑
t=1

Vt −K2 ≤ −
K2

2

)
≤ exp (−c′′n) ,

for some c′′ > 0. Hence, the expectation of ρ∗ satisfies

E[ρ∗] =
∑
n≥0

P (ρ∗ > n) ≤ n0 +
∑
n≥n0

exp (−c′′n)

= n0 +
e−c′′n0

1− e−c′′
<∞.

13
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Thus, both ρ∗ and (Vt)t≥1 have bounded expectations, and we can appeal to Wald’s lemma (Fact A.1 in Appendix A) to
obtain E[Z∗

ρ∗ ] = E[ρ∗]K2. Furthermore, by the definition of ρ∗, and the boundedness of (Vt)t≥1, we can upper bound
E[Z∗

ρ∗ ] with log(1/α) + 2 log(ET [ρ
∗]) + c′, where c′ = max{log(1 + λ∗

θ1+∆), log(1− λ∗
θ1+∆)}. In other words, we have

E[ρ∗] ≤ log(1/α) + 2 log(E[ρ∗]) + c′

K2
,

which on further simplification, gives us E[ρ∗] = O
(

log(1/αK2)
K2

)
. This completes the proof.

C. Details of Experiments
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Figure 3: The plot on the left compares the distribution of the detection delay of CuSum (with exact knowledge of pre-
and post-change distributions) and RCS-Detector. As expected the performance of CuSum is significantly better
than RCS-Detector in problems where precise information of the distributions is available. The plot on the right
shows the detection delay performance of RCS-Detector on a problem with dependent data: a situation in which the
BCS-Detector becomes inapplicable.

Confidence Sequence. Recall that in our experiments with bounded observations, we employed the following Hoeffding
CS developed by Waudby-Smith & Ramdas (2023):

Ct = [µ̃t ± wt], where

µ̃t =

∑t
i=1 λiXi∑t
i=1 λi

, wt =
log(2/α) +

∑t
i=1 λ

2
i /8∑t

i=1 λi

, and λi =

√
8 log(2/α)

i(i+ 1)
∧ 1.

The main reason for using this CS is that it has a closed-form expression, which makes the RCS-Detector and
BCS-Detector implementations based on this CS computationally feasible.

Heuristics. In many cases, the Hoeffding CS can be wider than state-of-the-art methods, such as the betting CSs
of Waudby-Smith & Ramdas (2023), which are computationally more expensive. As a result, the RCS-Detector and
BCS-Detector instances based on Hoeffding CS can be very conservative when there is no change (i.e., their actual ARL
can be much larger than 1/α). To address this, in our ARL experiments, we shrunk the width of the CS by a multiplicative
factor less than one; we made the same changes in both RCS-Detector and BCS-Detector to allow for comparison.

To further reduce the computational cost of estimating their ARLs, we also checked the stopping conditions of
RCS-Detector and BCS-Detector at intervals (i.e., every 10 steps, or 20 steps, etc.), instead of checking it ev-
ery round. This allowed us to run the ARL experiments for longer horizons.

Cusum. Both the RCS-Detector and BCS-Detector schemes require minimal information about the pre- and
post-change data distributions. This generality, however, comes at the cost of weaker detection-delay performance in
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situations where additional information is known about the distributions. As an extreme case, if the pre- and post-change
distributions are known exactly, then a simpler change detection scheme, such as CuSum, is more appropriate. Recall that
CuSum strategy proceeds as follows:

τC = inf{n ≥ 1 : Wn ≥ cα}, where W0 = 0, Wn = max

{
0,Wn−1 + log

(
dP1

dP0
(Xn)

)}
,

and cα is an appropriately chosen threshold to control the ARL at 1/α if T = ∞. This scheme requires the precise
knowledge of the likelihood ratio of the post- and pre-change distributions, and hence its performance is significantly better
than RCS-Detector when such information is available, as illustrated in Figure 3.

Non-independent data. Since the RCS-Detector only uses forward CSs, it can work with certain types of dependent
data-streams, where BCS-Detector cannot be applied. As a simple example, let P0a, P0b denote two distributions on
[0, 1] with mean µ0, and (P1a, P1b) be two distributions with mean µ1 ̸= µ0. Let X1 ∼ P0a, and for n ≥ 2:

• If Xn−1 < 0.5 and n ≤ T , we have Xn ∼ P0a.

• If Xn−1 ≥ 0.5 and n ≤ T , we have Xn ∼ P0b.

• If Xn−1 < 0.5 and n > T , we have Xn ∼ P1a.

• If Xn−1 ≥ 0.5 and n > T , we have Xn ∼ P1b.

Because of this dependence structure, we cannot construct Backward Confidence Sequences for this data stream, and thus
BCS-Detector is not applicable to this problem. However, the RCS-Detector is still applicable, and its detection
performance is plotted in Figure 3.

• Fix Figure 3 + caption + color of RCS + title of the figure
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