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ABSTRACT

Image aesthetics is a crucial metric in the field of image generation. However,
textual aesthetics has not been sufficiently explored. With the widespread appli-
cation of large language models (LLMs), previous work has primarily focused
on the correctness of content and the helpfulness of responses. Nonetheless, pro-
viding responses with textual aesthetics is also an important factor for LLMs,
which can offer a cleaner layout and ensure greater consistency and coherence
in content. In this work, we introduce a pipeline for aesthetics polishing and
help construct a textual aesthetics dataset named TEXAES. We propose a textual
aesthetics-powered fine-tuning method based on direct preference optimization,
termed TAPO, which leverages textual aesthetics without compromising content
correctness. Additionally, we develop two evaluation methods for textual aesthetics
based on text and image analysis, respectively. Our experiments demonstrate that
using textual aesthetics data and employing the TAPO fine-tuning method not only
improves aesthetic scores but also enhances performance on general evaluation
datasets such as AlpacalEval and Anera-hard.

1 INTRODUCTION

Image aesthetics (Huang et al., 2024a; Murray et al., 2012; Kong et al., 2016; Ke et al., 2021; Bosse
et al., 2017) has emerged as a prominent research area within computer vision, focusing on assessing
and improving the visual appeal of images. Aesthetics has recently been integrated into state-of-
the-art image generation models, such as diffusion models (Rombach et al., 2022), significantly
enhancing the visual quality of generated images (Wu et al., 2024a; 2023) and aligning them more
closely with human preferences (Huang et al., 2024a; Wu et al., 2024b; 2023).

Meanwhile, advancements in large language models (LLMs) like ChatGPT (OpenAI, 2023) and
LLaMA (Touvron et al., 2023b; Dubey et al., 2024) have demonstrated impressive generative
capabilities across various domains, including code, articles, and web content. Although LLMs
have made significant progress in generating textual content, enhancing the aesthetic quality of their
output remains a critical challenge. A more aesthetically appealing and organized output not only
improves user engagement by making the content more intuitive and comfortable to read but also
enhances consistency and coherence. Consequently, exploring the textual aesthetics of LLMs is a
highly desirable area of research.

In this work, we present the first investigation into improving the aesthetic quality of text generated
by LLMs. Unlike image aesthetics benefiting from numerous large-scale aesthetic datasets (e.g.,
AVA (Murray et al., 2012) and AesBench (Huang et al., 2024b)), advanced aesthetic learning
technology (Huang et al., 2024a; Zhang & Liu, 2023; Yang et al., 2022; Su et al., 2020) and reliable
aesthetic evaluation methods (Deng et al., 2017; Su et al., 2011), textual aesthetics in LLMs lacks
similar resources and established models.

To address this challenge, we first designed an aesthetic data generation pipeline leveraging GPT-4o
for aesthetic polishing. This scalable pipeline can generate large volumes of high-quality aesthetic
preference data. Based on this framework, we constructed the first aesthetic dataset in the LLM
domain, TEXAES, which contains a total of 50,390 prompts data.

Based on TEXAES, existing post-training techniques such as DPO (Rafailov et al., 2024b) can be
used to fine-tune current LLMs at the aesthetic level. However, we found that directly applying
these techniques not only failed to align effectively with the characteristics of our TEXAES, limiting
its impact on aesthetic fine-tuning, but also negatively impacted the overall performance of these
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LLMs. To address this issue, we propose Textual Aesthetics Preference Optimization (TAPO) which
employs the Plackett-Luce (Luce, 1959; Plackett, 1975) model with adjustable optimization weights
to better leverage our dataset and enhance aesthetic fine-tuning performance. Furthermore, to better
assess the aesthetic quality of LLM outputs, we have developed two evaluation pipelines: one based
on text and the other based on images, respectively.

To validate the effectiveness of our TEXAES and TAPO, we performed aesthetic fine-tuning on
the open-source LLaMA series models (Dubey et al., 2024) and compared the aesthetic scores of
the fine-tuned LLMs with state-of-the-art LLMs at different scales (from 8B to 70B). Additionally,
to ensure objective and reliable results, we employed human experts for professional evaluation.
Extensive experimental results ultimately demonstrated the effectiveness of our TEXAES and TAPO.

Our main contributions are listed as follow:
• To the best of our knowledge, we for the first time indciate the crucial issue of exploring and

improving the textual aesthetics in LLMs.
• We systematically identify the lack of related textual aesthetics datasets, and introduce a novel

pipeline for aesthetic text polishing and contribute to the construction of a textual aesthetics
dataset, named TEXAES.

• Based on TEXAES, we propose a DPO-based aesthetic fine-tuning algorithm, named TAPO, to
effectively enhances the LLMs’ aesthetic quality while preserving its general performance.

• Both qualitative and quantitative extensive experiments demonstrate that utilizing TEXAES and
TAPO not only improves aesthetic scores but also enhances the general capabilities of LLMs.

2 RELATED WORKS

2.1 IMAGE AESTHETICS

Image aesthetics (Huang et al., 2024a; Murray et al., 2012; Kong et al., 2016) is a subfield of computer
vision that focuses on assessing (Deng et al., 2017; Su et al., 2011) and improving the aesthetic quality
of images (Bhattacharya et al., 2010; Deng et al., 2018). Early work in the field of image aesthetics
focused on using handcrafted metrics to assess aesthetic scores (Nack et al., 2001; Neumann et al.,
2005). However, with the development of deep learning, there has been significant interest in applying
CNN (Bosse et al., 2017; Li et al., 2018; Su et al., 2020) or Transformer (Ke et al., 2021; Zhang &
Liu, 2023; Yang et al., 2022; Qin et al., 2023) based methods to solve image aesthetics problems,
which have demonstrated promising results. Recently, multi-modal large language models (MLLMs)
have shown superior aesthetic perception and robustness in the fields of image aesthetics, greatly
surpassing lightweight models due to their vast knowledge base and strong reasoning and memory
capabilities. (Huang et al., 2024a;b; Wu et al., 2024b).

2.2 LLM PREFERENCES DATA

Preference learning is an optimization method for LLMs designed to enhance their ability to generate
outputs that better align with human preferences (Fürnkranz & Hüllermeier, 2010; Schulman et al.,
2017; Rafailov et al., 2024b; Ouyang et al., 2022). Increasing attention has also been drawn to the
importance of data used during the preference learning phase. Some studies focus on constructing
domain-specific datasets for preference learning, e.g., summarization (Stiennon et al., 2020; Wu
et al., 2021) and question answering (Nakano et al., 2021). Cui et al. (2024) highlights the scarcity of
large-scale, general-purpose preference datasets and propose UltraFeedback to addresses this gap by
collecting over 1 million preference feedback samples using GPT-4 (OpenAI, 2023). Lee et al. (2023)
also pointed out that utilizing AI-generated preference feedback is an effective and cost-efficient
method for expanding preference datasets. While the aforementioned work provides preference
datasets for specific domains as well as general-purpose tasks, none of them have addressed the
critical area of text aesthetics in LLMs, which motivated us to design corresponding data construction
pipeline and related dataset like TEXAES to support future research in text aesthetics.
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3 TEXTUAL AESTHETICS

3.1 OVERVIEW

Textual aesthetics, which encompass the aesthetic attributes of a text at both the content and visual
levels, can be dissected into four fundamental aspects. Clarity (readability) pertains to the ease with
which a text can be read and comprehended, necessitating optimal sentence length and grammatical
complexity (DuBay, 2004). Layout (visual organization) involves the systematic arrangement of text
elements, such as headings and subheadings, to guide the reader effectively. Uniformity (consistency)
demands a consistent style and formatting throughout the text to enhance readability and facilitate
a smoother reading experience. Coherence (overall structure) ensures that paragraphs are well-
organized and logically connected, facilitating easier comprehension of the content (Van Silfhout
et al., 2014).

3.2 AESTHETICS POLISHING

Human preference data is critical for aligning large language models and improving their performance
across various dimensions, such as helpfulness (Askell et al., 2021; Kreutzer et al., 2018; Stiennon
et al., 2020), harmlessness (Bai et al., 2022; Glaese et al., 2022), and honesty (Ouyang et al., 2022).
Consequently, we believe that a textual aesthetic preference dataset will also be beneficial for research
on the alignment of LLMs. However, current literature reveals a conspicuous absence of research
specifically addressing the textual aesthetics of LLMs, as well as a lack of corresponding textual
aesthetic preference data. To address this gap, we have developed a method for textual aesthetic
polishing to construct a dataset that optimizes the aesthetic preferences of LLMs.

Figure 1: Comparison of responses between the UltraFeed-
back and TEXAES datasets.

Given that the goal of polishing is
to enhance textual aesthetics, we can
build our textual aesthetic preference
dataset based on an available pref-
erence dataset such as UltraFeed-
back (Cui et al., 2024). UltraFeedback
is a comprehensive dataset with re-
sponses evaluated by GPT-4 based on
criteria such as instruction-following,
honesty, and helpfulness. Since the
selected data exhibits higher scores
in these areas, thereby aligning more
closely with human preferences, we
can utilize these chosen responses as
our candidates to build our textual aes-
thetic preference dataset.

To effectively achieve our objectives,
we designed a chain of thought (Wei
et al., 2023) methodology by using
GPT-4o to polish our original re-
sponses, the following steps were taken:

1. Semantic Analysis: GPT-4o initially analyzed the textual semantics of the provided instructions
and selected responses.

2. Aesthetic Evaluation: Based on textual aesthetic factors such as paragraph structure, indentation,
headings, and subheadings, GPT-4o conducted a detailed textual aesthetic analysis.

3. Binary Classification: GPT-4o then performed a binary classification to determine whether the
response required modification to improve readability and comprehension.

4. Revision Process: For responses that required modification, GPT-4o generated a revised version
that preserved the original style and format while enhancing readability and comprehensibility.
The prompts requiring aesthetic modifications are documented in the Appendix E.1, which
includes the text before and after modification, demonstrating the enhanced readability and
comprehension of the revised text.
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Finally, we compiled the textual aesthetic preference dataset D =
{(

x(i), y
(i)
t , y

(i)
w , y

(i)
l

)}N

i=1
, where

y
(i)
t represents the revised textual aesthetic data, and y

(i)
w and y

(i)
l represent the originally chosen and

rejected data in UltraFeedback, respectively.

We observed that some polished responses became overly verbose and less natural or human-like. We
hypothesize that this is because the original responses in UltraFeedback are already of high quality,
making the task of polishing more challenging than expected. To address this issue, we implemented
a length constraint for the polishing process. Future work will focus on further improving the textual
aesthetic polishing method.

3.3 TEXTUAL AESTHETICS SCORING

To validate the aesthetic quality of texts generated by large language models and to assess the
effectiveness of our aesthetic preference dataset, a robust method for evaluating text aesthetics is
indispensable. Previous studies, such as AlpacaEval (Li et al., 2023; Dubois et al., 2024), MT-
Bench (Zheng et al., 2023), and Arena-Hard (Li et al., 2024), suggest that using LLMs as evaluators
can effectively approximate human preferences. Consequently, we employ the "LLM as a judge"
framework to approximate human preferences for text aesthetics. We evaluate the aesthetic quality of
texts generated by LLMs using two methods: text-based and image-based text aesthetic scoring.

Text-Based Text Aesthetic Scoring. We randomly selected 500 prompts from Arena-Hard (Li
et al., 2024) as our evaluation dataset. Following practices from Arena-Hard and MT-Bench (Zheng
et al., 2023), we implemented a pairwise comparison method, comparing the performance of model
πi on prompt p with a robust baseline model (GPT-4-0314) to derive aesthetic preference scores.
Judges assessed aesthetic preferences on a Likert scale (Likert, 1932) (1 = prefers πi(p) much less
than πbase(p), 5 = prefers πi(p) much more than πbase(p)). This methodology ensures that models
are penalized more heavily for substantial losses than for minor ones, effectively differentiating
between models. Using the chain-of-thought approach, judges evaluated text aesthetics based on
four dimensions: readability, visual organization, consistency, and overall structure. To mitigate
position bias, we employed a two-game setup by swapping model positions for each query. Following
the practices of Chatbot Arena, we adopted the Bradley-Terry (Bradley & Terry, 1952) model to
generate final scores. We aggregated all pairwise comparisons with the baseline model and employed
bootstrapping to derive a bootstrapped confidence interval for all models’ win rates against the
baseline, producing an ordered ranking of all models based on their win rates. The judge prompts are
provided in Appendix E.2.

Image-Based Text Aesthetic Scoring. Our conceptualization of text aesthetics encompasses not
only textual readability and comprehensibility but also visual appeal. Given GPT-4o’s exceptional
multimodal capabilities, we utilized GPT-4o to evaluate text aesthetics from a visual perspective as
well. In our experiments, we rendered the LLM-generated texts as HTML with consistent CSS styles,
converted them into images of identical size, and then had GPT-4o evaluate these images based on
the same criteria used for textual evaluation. Specific prompts are provided in Appendix E.3.

4 TEXTUAL AESTHETICS-POWERED TRAINING

4.1 DIRECT PREFERENCE OPTIMIZATION TRAINING

Reinforcement Learning with Human Feedback (RLHF)(Christiano et al., 2017) has emerged as a
pivotal technique in aligning LLMs (Bai et al., 2022; Ouyang et al., 2022; Stiennon et al., 2020).
Early implementations of RLHF primarily relied on reinforcement learning and alternative ap-
proaches (Snell et al., 2022; Touvron et al., 2023a; Gulcehre et al., 2023). Rafailov et al. (2024a)
proposed a RL-free closedform counterpart known as Direct Preference Optimization (DPO) which
has shown impressive performances (Ivison et al., 2023; Jiang et al., 2023; Tunstall et al., 2023).

The naive DPO uses a pair of preference data, which includes a chosen response and a rejected
response for each prompt, based on the Bradley-Terry (Bradley & Terry, 1952) model for optimization.
The loss function for DPO is defined as follows:

4
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LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (1)

where πθ denotes the policy being optimized, πref represents the reference policy, x is the input
prompt, yw is the chosen (winning) response, yl is the rejected (losing) response, D is the dataset of
prompts and responses, σ is the sigmoid function, and β is a scaling parameter. By directly integrating
preference data into the optimization process, DPO ensures that the generated text aligns closely with
human judgments.

4.2 TEXTUAL AESTHETICS PREFERENCE OPTIMIZATION TRAINING

For each prompt in our TEXAES dataset, there are three responses: yt, yw, and yl. The response
yt has the same semantic content as yw but is superior in terms of textual aesthetics. The response
yw, in turn, is more aligned with human preferences for chatbots in terms of instruction-following,
truthfulness, honesty, and helpfulness compared to yl. The response yl is the least preferred response
in terms of both textual aesthetics and human preferences. The goal of our training is to learn a
model that can generate responses that are both aesthetically pleasing and preferred by humans. To
achieve this, we designed a textual aesthetics preference optimization (TAPO) approach that jointly
optimizes for both textual aesthetics and human preferences.

To simultaneously utilize all three preference data types in the TEXAES dataset for optimization,
we adopt the Plackett-Luce (Luce, 1959; Plackett, 1975) model as the underlying preference model.
Rafailov et al. (2024a) showed that β log πθ(y|x)

πref(y|x) can be treated as “implicit reward” which is
assumed to represent the preference for the model generate y given the prompt x, the goal of DPO
is to align the “implicit reward” towards human preference data directly. We denote each reward
function β log πθ(yk|x)

πref(yk|x) as rθ(x, yk) (where k ∈ {t, w, l}), representing the preferences for the
model generating yt, yw yl given the input x. πθ and πref are the policy model and reference model
respectively and β is a hyper-parameter to control the KL divergence between πθ and πref. The
training objective of TAPO is

LTAPO(πθ;πref) =

− E(x,yt,yw,yl)∼D

[
log

(
exp(rθ(x, yt))∑

i∈{t,w,l} exp(rθ(x, yi))
· exp(rθ(x, yw))∑

i∈{w,l} exp(rθ(x, yi))

)]
(2)

where D is the dataset, and β is the temperature parameter.

Using the properties of logarithmic functions, the loss function can be decomposed into two parts:
LTA and LDPO:

LTA = − log

(
exp(rθ(x, yt))∑

i∈{t,w,l} exp(rθ(x, yi))

)
, LDPO = − log

(
exp(rθ(x, yw))∑

i∈{w,l} exp(rθ(x, yi))

)
. (3)

It can be observed that LDPO is identical to the loss used in Bradley-Terry model-based preference
optimization with yw and yl, as demonstrated in the proof provided in Appendix C. On the other
hand, LTA represents the log probability of rθ(x, yt) being ranked first among rθ(x, yt), rθ(x, yw),
and rθ(x, yl). LDPO primarily optimizes the model’s preference for honest, helpful, and truthful data,
whereas LTA optimizes both the correctness of the answers and textual aesthetics. To ensure the
generated answers are not only accurate but also aesthetically pleasing, we assign different weights
to the losses to adjust the preference optimization direction. The modified loss function is as follows:

LTAPO(πθ, πref) = −E(x,yt,yw,yl)∼D [wTA · LTA + wDPO · LDPO] . (4)

5 DATA AND EXPERIMENT SETTINGS

5.1 TEXTUAL AESTHETICS DATASET

5
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Dataset #Prompts Response
Length

ULTRAFEEDBACK 61,135 297
TEXAES 50,390 293

Table 1: Statistics of TEXAES datasets.

As introduced in Section 3.2, we constructed our textual
aesthetic dataset based on a filtered version of UltraFeed-
back1 (Cui et al., 2024; Ivison et al., 2023; Tunstall et al.,
2023) dataset, which comprises 61,135 completions eval-
uated by GPT-4, including both accepted and rejected
entries. In our experiment, we utilized GPT-4o to perform
aesthetic polishing on the UltraFeedback dataset. After the aesthetic polishing process, we found
that 5,858 entries were already aesthetically satisfactory and required no further modification. We
then analyzed the length of the filtered texts and discovered that a minor subset exhibited excessive
verbosity and lacked a natural, human-like quality. To address this, we excluded outliers in the
distribution of length differences before and after aesthetic polishing, retaining only data within the
90% confidence interval. We present the statistics of TEXAES in Table 1. We present the length
distribution in Appendix A and length constraint filter experiment in Appendix D.

5.2 EXPERIMENT SETTINGS

In this study, we evaluate the performance of models from two perspectives: textual aesthetics and
general response capabilities. For textual aesthetics, we compare the models using both text-based
and image-based text aesthetic scoring methods, as described in Section 3.3. We report the win
rate (WR) in text aesthetics at both the text and image levels relative to the baseline model (GPT-4-
0314). In addition to automatic evaluation, we conduct a human evaluation to further validate the
models’ performance. We randomly sample fifty entries from the Anera-Hard dataset and ask human
annotators to rate the aesthetics of these entries.

To evaluate the changes in the model’s general capabilities following the alignment of textual
aesthetics preferences, including its ability to follow instructions and respond to complex prompts
across diverse domains, we utilize three well-established auto-evaluation instruction-following
benchmarks based on GPT-4-as-a-Judge: AlpacaEval 2.0 (Dubois et al., 2024), Arena-Hard (Li et al.,
2024) and MT-Bench (Zheng et al., 2023). For both the supervised tine-tuning and TAPO stages,
we employ a low-rank adaptation (Hu et al., 2021) adapter instead of fine-tuning the entire model.
Detailed training parameters are provided in the Appendix B.

6 EXPERIMENT RESULTS

6.1 MAIN RESULTS

The comparative analysis of our models trained with TAPO on TEXAES against open-source models
is shown in Table 2. Our LLaMA-3.1-70B-TAPO model surpasses all open-source counterparts in
both text-based and image-based text aesthetic metrics, with an 18.88% improvement in text-based
scores and a 27.85% enhancement in image-based scores over the best-performing LLaMA-3.1-70B-
Instruct model.

For general response benchmarks, the LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B-Instruct models,
after TAPO training, show improvements on AlpacaEval 2.0 and MT-Bench, though with a slight
decline on Arena-Hard. AlpacaEval 2.0 focuses on chat scenarios, MT-Bench on multi-turn con-
versations, and Arena-Hard on more complex queries. The gains in AlpacaEval 2.0 and MT-Bench
suggest that enhanced text aesthetics contribute to better conversational abilities, aligning with our
goal of improving answer clarity, layout, uniformity, and coherence. This underscores the quality
of TEXAES and the effectiveness of TAPO in boosting both text aesthetics and overall model per-
formance. Furthermore, the results from experiments using TEXAES and TAPO on Qwen2 (qwe,
2024) and Mistral (Jiang et al., 2023) demonstrate similar performance improvements, showcasing
the generalizability of TAPO across diverse model architectures, as detailed in Appendix H.

The results of the human evaluation, shown in Figure 2, show that our LLaMA-3.1-70B-TAPO
model is rated significantly higher in text aesthetics than the best-performing open-source model.
These results confirm that our model is more visually appealing and coherent, consistent with our
quantitative analysis, further validating the efficacy of TAPO in enhancing text aesthetics and overall
performance.

1https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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Table 2: Performance comparison between TAPO models and open-source models across various
benchmarks.“TA Text” and “TA Image” denote text-based and image-based textual aesthetic metrics,
respectively. Metrics include: win rates (WR) against GPT-4-Turbo for TA Text and TA Image,
WR against GPT-4-0314 for Arena-Hard, length-controlled (LC) win rate against GPT-4-Turbo in
AlpacaEval 2.0, and average scores for MT-Bench. All evaluations are conducted using GPT-4 as the
judge.

Model Size TA Text
WR(%)

TA Image
WR(%)

AlpacaEval 2.0
LC WR(%)

Arena-Hard
WR(%)

MT-Bench
Avg. Score

Qwen2-7B-Instruct (qwe, 2024) 7B 24.63 39.40 33.43 27.69 7.48
Yi-1.5-9B-Chat (AI et al., 2024) 9B 35.52 55.03 34.74 38.89 7.38
LLaMA-3.1-8B-Instruct (Dubey et al., 2024) 8B 33.42 47.94 41.34 37.10 7.42
LLaMA-3.1-8B-TAPO 8B 50.85 71.91 49.84 33.89 7.72
Tulu-2-dpo-70B (Ivison et al., 2023) 70B 9.43 27.79 31.01 16.37 6.89
Qwen2-72B-Instruct (qwe, 2024) 72B 22.05 30.68 40.61 42.48 8.22
LLaMA-3.1-70B-Instruct (Dubey et al., 2024) 70B 53.18 57.34 45.03 67.22 8.16
LLaMA-3.1-70B-TAPO 70B 63.22 73.31 51.26 63.42 8.30

LLaMA-3.1-8B-TAPO v.s. Others LLaMA-3.1-70B-TAPO v.s. Others

Figure 2: Win rates of models fine-tuned by TAPO compared to other SOTA open-source models
by human judgements in textual aesthetics level. Human judgments are majority votes from three
annotators.

6.2 IMPACT OF LOSS WEIGHT

To determine the influence of the weight ratio between LTA and LDPO in TAPO on the aesthetics of
the text of the model and the overall performance, we performed a series of methodical experiments.
Specifically, we experimented with two settings: 1. First, we used the Tulu-v2 dataset (Ivison
et al., 2023) to fine-tune the LLaMA-3.1-8B-base model in a supervised manner, followed by further
optimization using TAPO; 2. Second, we directly applied TAPO to the LLaMA-3.1-8B-instruct
model. We set the weight ratios of LTA to LDPO at 2:1, 1:1, 1:2 and 1:5, respectively, to train the
models. We then evaluated the models’ text-based and image-based text aesthetic scores, as well as
their performance on Arena-Hard.

Figures 3a and 3b illustrate the performance variations of TAPO across different weight ratios.
For the LLaMA-3.1-8B-base model, increasing the proportion of LDPO consistently improves the
Arena-Hard score but decreases both text-based and image-based text aesthetic scores. This indicates
that a higher proportion of LDPO improves optimization toward human preference at the expense of
aesthetic preference. For the LLaMA-3.1-8B-instruct model, which is already aligned with human
preferences, further increasing LDPO yields limited improvements in instruct-following capability
and significantly decreases textual aesthetic preference.

6.3 TWO-STAGE TRAINING

To validate the efficacy of incorporating three types of preference data in TAPO, we conducted a
two-stage DPO training ablation experiment. Initially, human preferences were aligned using the
yw and yl data sets, denoted as DPO(yw, yl). Subsequently, text aesthetic preference alignment was
conducted using two methods: DPO(yt, yw) and DPO(yt, yl). These experiments were performed
on the LLaMA-3.1-Base and LLaMA3.1-Instruct models, with results presented in Table 3.

Comparing the final models from the two-stage training with our model trained in TAPO method, we
found that, except for the image-based text aesthetic metric, where our model was slightly inferior,
it significantly outperformed the two-stage models on text-based aesthetic metrics, AlpacaEval

7
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(a) LLaMA-3.1-8B-Base (b) LLaMA-3.1-8B-Instruct

Figure 3: Performance Across Various Weight Ratios
Table 3: Comparison of two-stage DPO training and TAPO training. DPO(yw, yl) + DPO(yt, yl)
denotes two-stage training where the first stage is DPO(yw, yl) and the second stage is DPO(yt, yl).
The LLaMA-3.1-8B-Base is fine-tuned using the Tulu-v2 dataset.

Training Settings TA Text
WR(%)

TA Image
WR(%)

AlpacaEval 2.0
LC WR(%)

Arena-Hard
WR(%)

MT-Bench
Avg. Score

MMLU
5-shot

LLaMA-3.1-8B-Base
DPO(yw, yl) + DPO(yt, yl) 25.45 60.53 23.77 7.72 5.98 63.52
DPO(yw, yl) + DPO(yt, yw) 14.03 48.31 14.66 5.35 5.50 62.80
TAPO(yt, yw, yl) 25.61 55.43 26.05 9.16 6.05 64.48

LLaMA-3.1-8B-Instruct
DPO(yw, yl) + DPO(yt, yl) 50.26 71.33 46.47 31.08 7.75 68.41
DPO(yw, yl) + DPO(yt, yw) 50.76 75.69 44.91 29.41 7.39 67.89
TAPO(yt, yw, yl) 50.85 71.91 49.84 33.89 7.72 68.80

2.0, Arena-Hard, MT-Bench, and MMLU(Hendrycks et al., 2020). This suggests that TAPO, by
leveraging three types of preference data, not only enhances text aesthetic scores but also improves
general capabilities.

6.4 TEXAES VS. ULTRAFEEDBACK

To validate the effectiveness of the TEXAES data set, we performed a comparative analysis of
models trained using TEXAES against those trained with UltraFeedback data. We applied the Direct
Preference Optimization (DPO) method to align human preferences with the yw and yl pairs from
UltraFeedback and the yt and yl pairs from TEXAES. The experiments were conducted on both the
LLaMA-3.1-Base and LLaMA3.1-Instruct models.

Table 4: Comparative analysis of TEXAES and UltraFeedback with DPO Training. The baseline
represents the performance of LLaMA-3.1-8B-Base which is fine-tuned using the Tulu-v2 dataset
and LLaMA-3.1-8B-Instruct.

Dataset TA Text
WR(%)

TA Image
WR(%)

AlpacaEval 2.0
LC WR(%)

Arena-Hard
WR(%)

MT-Bench
Avg. Score

MMLU
5-shot

LLaMA-3.1-8B-Base
Baseline 1.17 8.60 5.24 4.10 5.60 64.07
UltraFeedback 2.56 8.17 9.29 7.06 5.92 65.02
TEXAES 25.79 60.64 24.06 9.04 5.78 63.17

LLaMA-3.1-8B-Instruct
Baseline 33.42 47.94 41.34 37.10 7.42 68.80
UltraFeedback 30.92 48.57 44.19 34.74 7.76 68.90
TEXAES 49.07 68.63 45.82 29.87 7.55 68.52

The results, shown in Table 4, indicate that for the LLaMA-3.1-Base model, UltraFeedback improved
performance in AlpacaEval 2.0, Arena-Hard, MT-Bench and MMLU. For the LLaMA3.1-Instruct
model, there were performance improvements across most tasks, except for a slight decline in
Arena-Hard. However, UltraFeedback did not improve performance in aesthetic evaluation tasks.
Models trained with TEXAES showed significant performance improvements over those trained with
UltraFeedback in most tasks on the LLaMA-3.1-Base model, with a minor decrease in MMLU. For the
LLaMA3.1-Instruct model, the one trained with TEXAES exhibited general capabilities comparable
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to those of the UltraFeedback-trained model while surpassing it in aesthetic tasks. These experiments
demonstrate that TEXAES not only optimizes the textual aesthetic performance of large language
models but also aligns well with human preferences.
6.5 ANNOTATION CONSISTENCY

We generated responses for 50 questions sampled from Arena-Hard using six models: LLaMA-
3.1-8B-TAPO, LLaMA-3.1-70B-TAPO, LLaMA-3.1-8B-Instruct (Dubey et al., 2024), LLaMA-3.1-
70B-Instruct (Dubey et al., 2024), Qwen2-72B-Instruct (qwe, 2024), and Tulu-2-dpo-70B (Ivison
et al., 2023). Subsequently, we employed three types of evaluators: text-based GPT-4o judge (TA
Text), image-based GPT-4o judge (TA Image), and three human annotators (details can be found in
Appendix G). Each evaluator was tasked with comparing LLaMA-3.1-8B-TAPO and LLaMA-3.1-70B-
TAPO against other models in terms of the textual aesthetics of the generated answers (win/tie/lose),
resulting in 400 annotated comparison pairs.

Table 5: Agreement between judges and hu-
man annotators on 400 samples from Arena-
Hard. A-1, A-2, and A-3 are three human
annotators. TA Text is the text-based GPT-4o
judge, and TA Image is the image-based GPT-
4o judge.

Judge A-1 A-2 A-3 Average
A-1 - 78.25% 77.50% 77.88%
A-2 78.25% - 80.75% 79.50%
A-3 77.50% 80.75% - 79.13%
TA Image 60.75% 68.00% 65.75% 64.83%
TA Text 69.00% 70.00% 67.00% 68.67%

Table 5 presents the agreement ratios, as utilized in
MT-Bench (Zheng et al., 2023), among the TA Text
scores, TA Image scores, and annotators, as well
as annotators themselves. On average, the TA Text
scores demonstrated a 68.67% agreement rate with
the human annotators, while the TA Image scores
judges exhibited a 64.83% agreement rate, which is
lower than that of the human annotators. Notably,
the agreement rates of both our image-based and
text-based GPT-4o judges are comparable to those ob-
served in previous human evaluations, which reported
an average of 66% agreement in MT-Bench (Zheng
et al., 2023) and 59.7% in UltraFeedback (Cui et al.,
2024). These results suggest that our GPT-4o judges can serve as effective proxies for human
preferences in assessing text aesthetics.

6.6 CRITERIA FOR REJECT SAMPLE SELECTION

To effectively optimize textual aesthetics using preference optimization, it is essential to construct
preference pairs consisting of chosen and rejected responses. For our purposes, we select yt from
TEXAES as the chosen response. As the rejected response, we use either the original chosen
response yw or the original rejected response yl from the UltraFeedback dataset. We conducted
DPO experiments to compare the impact of yw and yl on the model’s performance. The results are
presented in Table 6.

Table 6: Evaluation of performance across different rejected samples.

Training Settings TA Text
WR(%)

TA Image
WR(%)

AlpacaEval 2.0
LC WR(%)

Arena-Hard
WR(%)

MT-Bench
Avg. Score

MMLU
5-shot

LLaMA-3.1-8B-Base
Baseline 1.17 8.60 5.24 4.10 5.60 64.07
DPO(yt, yw) 15.72 51.70 15.78 4.10 5.19 50.36
DPO(yt, yl) 25.79 60.64 24.06 9.04 5.78 63.17

LLaMA-3.1-8B-Instruct
Baseline 33.42 47.94 41.34 37.10 7.42 68.80
DPO(yt, yw) 46.89 71.19 38.93 26.04 7.36 68.31
DPO(yt, yl) 49.07 68.63 45.82 29.87 7.55 68.52

The model trained with DPO(yt, yl) outperforms the model trained with DPO(yt, yw) in most tasks.
This superior performance is attributed to DPO(yt, yl) optimizing both textual aesthetic preferences
and human preferences. When using yw as the rejected response, the model trained with DPO(yt, yw)
significantly outperforms the baseline model in text aesthetic scores but shows a decrease in perfor-
mance in other tasks. This indicates that yt is more aligned with aesthetic preferences, meeting our
expectations.

7 CASE STUDY

In this section, we compare LLaMA-3.1-8B-Instruct and LLaMA-3.1-8B-TAPO from three cases in
Arena-Hard, as shown in Figure 4.
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LLaMA-3.1-8B-TAPO:
1.  A bug got into the computer case:  
In this context, "bug" refers to an insect that entered the computer case.

2.  causing the software to bug out:  
Here, "bug" is a verb meaning to malfunction or behave erratically.

3.  which was really starting to bug me:  
In this instance, "bug" is a verb meaning to annoy or irritate.

4.  but at least we discovered that no one had bugged the room:  
In this case, "bugged" is a verb meaning to secretly install a listening device or surveillance 
equipment.

Question: A bug got into the computer case causing the software to bug out which was really starting to bug me but at least we discovered that no one had bugged the 
room. \nWhat does each instance of the word bug mean in the above sentence.

LLaMA-3.1-8B-Instruct:
In the given sentence, the word "bug" has three different meanings:

1. A small insect that can enter electronic devices: In this context, "a bug got into the computer 
case" refers to a physical insect that has entered the computer case, causing problems.

2.  A problem or error in software: When it says "causing the software to bug out," "bug" refers to 
a glitch or malfunction in the software. This is a common idiomatic expression in the context of 
computer programming.

3.  A hidden device or listening device: The phrase "no one had bugged the room" uses "bug"   to 
refer to a hidden device, typically used for surveillance or eavesdropping. This is a common 
usage of the word in the context of espionage or security.

So, in the sentence, the word "bug" has three distinct meanings, each used in a different context.

Question: I'm an English speaker trying to learn Japanese Kanji using mnemonics. Mnemonics for Kanji are created from the primitives that make them up. The Kanji for 
Tax has the primitives wheat and devil, so an example would be, "Taxes are like the devil taking away your hard earned wheat". Can you create a mnemonic for the Kanji 
meaning Wish that has the primitives clock and heart?

LLaMA-3.1-8B-Instruct:
To create a mnemonic for the Kanji meaning Wish with the primitives clock and heart, you could 
use the following example:

"Wishes are like a ticking clock that beats in your heart."

This mnemonic combines the idea of a clock (primitive) with the idea of a heart (primitive) to help 
you remember the Kanji meaning Wish.

LLaMA-3.1-8B-TAPO:
What a creative approach to learning Kanji!

For the Kanji meaning "Wish" with the primitives "clock" and "heart," here's a mnemonic:

"Wish upon a clock to have a heart that beats with hope."

Alternatively, you could also try:

"Wishes are like clockwork, beating in your heart."

Or, if you'd like a more whimsical approach:

"When the clock strikes, make a wish from the heart."

Feel free to modify or combine these suggestions to create a mnemonic that resonates with 
you!

LLaMA-3.1-8B-TAPO:
Here's a folk-style melody in ABC notation:

X:1 T: The Wanderer's Lament M: 4/4 L: 1/4=120 K: C

C4 E4 G4 C4 | E4 G4 A4 G4 | F4 E4 D4 C4 | E4 G4 A4 G4 |

C4 E4 G4 C4 | A4 G4 F4 E4 | D4 C4 D4 E4 | F4 E4 D4 C4 |

G4 A4 G4 F4 | E4 D4 C4 E4 | G4 F4 E4 D4 | C4 E4 G4 C4 |

This melody is written in the key of C major, with a moderate tempo and a simple, repetitive 
structure. The ABC notation uses the following symbols:

• X:1  indicates that this is the first tune in the file.
• T:     is the title of the tune.
• M:    specifies the meter (4/4 in this case).
• L:     specifies the tempo (120 quarter notes per minute).
• K:     specifies the key (C major).
• The lines of notes are written in a simple, letter-based notation, with  C4  indicating a C 

note an octave above middle C, and  E4  indicating an E note an octave above middle C, 
and so on.

I hope you enjoy this folk-style melody!

Question: Use ABC notation to write a melody in the style of a folk tune.

LLaMA-3.1-8B-Instruct:
Here's a simple folk-style melody in ABC notation:

X:1 T:Simple Folk Tune M:4/4 L:1/4 K:C

C4 E4 G4 C4 | E4 G4 A4 G4 | F4 E4 D4 C4 | E4 G4 A4 G4 | C4 E4 G4 C4 | E4 G4 A4 G4 | F4 E4 
D4 C4 | E4 G4 A4 G4 | G4 F4 E4 D4 | C4 E4 G4 C4 | E4 G4 A4 G4 | F4 E4 D4 C4 | C4 E4 G4 C4 | 
E4 G4 A4 G4 | F4 E4 D4 C4 | E4 G4 A4 G4 |

In this notation:

• X:1 indicates the first line of the tune.
• T:Simple Folk Tune is the title of the tune.
• M:4/4 indicates the time signature (4/4 means four beats per bar).
• L:1/4 indicates the note length (in this case, a quarter note).
• K:C indicates the key of the tune (C major).

The melody itself is written in the format of note pitches, with the following notation:

• C4: a C note an octave above middle C
• E4: an E note an octave above middle C
• G4: a G note an octave above middle C
• A4: an A note an octave above middle C
• F4: an F note an octave above middle C
• D4: a D note an octave above middle C

This is a simple melody, and you can feel free to modify it or add your own variations to 
make it more interesting.

Figure 4: Three cases in Arena-Hard.

The first case (top of Figure 4) demonstrates how LLaMA-3.1-8B-TAPO improves the mnemonic
for the Kanji character ‘Wish’ by providing multiple thoughtfully separated options, each clearly
formatted and logically structured. This enhances clarity and allows learners to identify and select a
mnemonic that resonates with them, compared to the single, less engaging option by LLaMA-3.1-
8B-Instruct. In the second case (center of Figure 4), LLaMA-3.1-8B-TAPO improves readability
and comprehension by using bold formatting to emphasize each occurrence of ‘bug’ and aligning
explanations with a numbered list. This ensures better organization and enables readers to quickly
grasp the context and meaning of each instance, whereas LLaMA-3.1-8B-Instruct’s less structured
formatting is harder to follow. In the third case (bottom of Figure 4), LLaMA-3.1-8B-TAPO organizes
a folk-style melody with logical grouping of notes and appropriate line breaks, enhancing readability
and usability. In contrast, the folk-style melody output by LLaMA-3.1-8B-Instruct suffers from
fragmented line breaks, splitting logical sequences of notes into disjointed segments, which disrupts
the logical flow and makes it challenging to interpret and perform the melody accurately.

8 CONCLUSION

In this paper, we conducted the first exploration of textual aesthetics in LLMs and introduced a series
of techniques to enhance the aesthetic quality of LLMs outputs. First, we developed the TEXAES
dataset, the first textual aesthetic dataset in the LLMs domain, using our specially-designed data
polishing pipeline. Based on this dataset, we proposed the TAPO, which fine-tunes LLMs to improve
the aesthetic quality of their outputs while preserving their core capabilities. Both qualitative and
quantitative experiments validated the effectiveness of our proposed techniques. We hope our work
serves as an early exploration for the textual aesthetics in LLMs and provides valuable support for
researchers in the open-source community. In future work, we will continue to explore ways to collect
diverse and high-quality textual aesthetics data, while designing more efficient and effective tuning
techniques for aesthetic fine-tuning.
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A DATASET STATISTICS

Figure 5 illustrates the difference in token length between the text that has undergone aesthetic
polishing and the original text. The mean length difference is 49 tokens, with the 25th and 75th
percentile values being -7 and 54, respectively. The maximum length difference is 2673 tokens, while
the minimum length difference is -1024 tokens.

In Figure 6, we plot the length distribution of our TEXAES. The mean length is 293 tokens, with
the 25th and 75th percentile values being 97 and 444 respectively, and the maximum length being
1408 tokens. Figure 6 shows the length distribution of UltraFeedback (Cui et al., 2024). The mean
length is 297 tokens, with the 25th and 75th percentile values being 77 and 464 respectively, and the
maximum length being 2700 tokens.

B TRAINING PARAMETERS

We present the details of the experimental settings in Table 7 and Table 8. For the sake of fairness in
comparison, we used the same training parameters as those employed by DPO during the preference
optimization stage. Our experiments are based on Llama-Factory (Zheng et al., 2024)

C MATHEMATICAL DERIVATIONS

In this section, we prove that LDPO from Eq. 3 is equivalent to Eq. 1. To begin, consider Eq.3:

LDPO = − log

(
exp(rθ(x, yw))∑

i∈{w,l} exp(rθ(x, yi))

)

= − log

(
exp(rθ(x, yw))

exp(rθ(x, yw)) + exp(rθ(x, yl))

)
= − log

(
1

1 + exp(rθ(x, yl)− rθ(x, yw))

)
= − log σ (rθ(x, yw)− rθ(x, yl))

(5)

Here, σ denotes the sigmoid function. In Section 4.2, we presented the specific expressions for
rθ(x, yw) and rθ(x, yl):

rθ(x, yw) = β log
πθ(yw | x)
πref(yw | x)

, rθ(x, yl) = β log
πθ(yl | x)
πref(yl | x)

(6)

By substituting Eq. 6 into the Eq. 5, we obtain:

LDPO = − log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)
(7)

This shows that LDPO as defined in Eq. 3 is indeed equivalent to Eq. 1, thus completing the proof.

D LENGTH CONSTRAINT IN TEXAES DATASET

To verify whether filtering out outliers in the distribution of length differences before and after
aesthetic polishing can improve the quality of TEXAES during its construction phase, we conducted
an ablation experiment on data without length filtering. Specifically, the model was trained based
on LLaMA-3.1-8B-Base using DPO(yt, yl), with the outcomes delineated in Table 9. The findings
demonstrate that the performance of the model, after removing data points with excessive length
deviations, significantly exceeds that of the model trained without such length filtering across all
evaluation tasks. Furthermore, a statistical analysis of the output lengths generated by the model
revealed that the outputs produced by the model trained with length-filtered data were not only shorter
but also more concise, thereby affirming the efficacy of length filtering in text aesthetic optimization.
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Figure 5: Distribution of length differences.
Figure 6: Comparison of token length distribu-
tions between TEXAES and UltraFeedback.

Table 7: Parameters for SFT training.

Parameter Value
Training Method LoRA (Hu et al., 2021)
Maximum Sequence Length 2048
Optimizer AdamW
Precision BFloat16
Global Batch Size 64
Maximum Learning Rate 0.0002
Learning Rate Scheduler Cosine with 10% Warmup
Number of Epochs 2

Table 8: Parameters for TAPO training.

Parameter Value
Training Method LoRA (Hu et al., 2021)
Maximum Sequence Length 2048
Optimizer AdamW
Precision BFloat16
Global Batch Size 64
Maximum Learning Rate 0.00002
Learning Rate Scheduler Cosine with 10% Warmup
Number of Epochs 2
Beta 0.1
Loss Weight wTA 1
Loss Weight wDPO 1

Table 9: Ablation study for length filter.

Length Filter TA Text TA Image AlpacaEval 2.0 Arena-Hard MT-Bench Avg Tokens

✘ 24.94 56.64 20.62 7.57 4.75 649
✓ 25.79 60.64 24.06 9.04 5.78 610
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E PROMPT

E.1 AESTHETICS POLISHING PROMPT

Prompt Template for Text Rewriting

System Instruction
You are tasked with acting as a text rewriter to enhance the readability and comprehension of
text generated by a Large Language Model (LLM). Your goal is to ensure the text is easy to
read, easy to understand, and visually organized in a logical manner. Modifications should be
reasonable and appropriate, rather than mandatory. Each element should be used judiciously
to enhance readability and comprehension.
User Instruction
<|User Prompt|>
{instruction}
<|The Start of Assistant’s Answer|>
{completion}
<|The End of Assistant’s Answer|>

Your task is to:
1. **Analyze the LLM-generated response**:

- Read and understand the text to grasp its context and purpose.
- Carefully review the text generated by the LLM.
- Evaluate its structure, formatting, and overall readability.

2. **Determine the Need for Modification**:
- Decide whether the text needs modification to improve its readability and comprehen-

sion.
- If the text is already satisfactory, no changes are necessary.

3. **Provide a Revised Version of the Text if Necessary**:
- Make appropriate modifications to enhance the text’s readability and comprehension.
- Ensure the revised text maintains a consistent style and format throughout.

**Textual Aesthetic Elements to Consider**:
1. **Paragraph Structure**: Ensure paragraphs are of appropriate length and logically
structured. Use appropriate spacing between paragraphs.
2. **Indentation**: Apply consistent indentation if necessary.
3. **Headings and Subheadings**: Use headings to organize content and improve readability,
but only if the content naturally lends itself to such structure.
4. **Lists and Bullet Points**: Utilize lists to break down complex information when
applicable.
5. **Formatting for Emphasis**: Use bold or italic text to emphasize important points
judiciously.
6. **Line Spacing**: Adjust line spacing to enhance readability.
7. **Consistency**: Maintain a consistent style throughout the document.
8. **Visual Breaks**: Use visual breaks to separate different sections if applicable.
9. **Blockquotes**: Use blockquotes for quotations or highlighted text.
10. **Links**: Format hyperlinks appropriately when applicable.
11. **Tables**: Use tables for any tabular data if required.
12. **Whitespace and Spacing**: Ensure appropriate use of whitespace and spacing to avoid
a cluttered appearance.

**Format**:
**Textual Aesthetic Analysis**:
- Your analysis
**Does it need modification**:
- If it needs modification: [[Y]]
- If it doesn’t need modification: [[N]]
**Revised Text**:
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- If it needs modification: <|Revised Content Start|>Your revised text<|Revised Content End|>
- If it doesn’t need modification: <|Revised Content Start|>""<|Revised Content End|>

**Example Output**:
**Textual Aesthetic Analysis**:
The text is clear, well-organized, and easy to read.
**Does it need modification**: [[N]]
**Revised Text**:
<|Revised Content Start|>""<|Revised Content End|>

E.2 TEXT-BASED TEXTUAL AESTHETICS SCORING PROMPT

Prompt Template for Text-Based TEXTUAL AESTHETICS Scoring

System Instruction
You are an impartial judge tasked with evaluating the textual aesthetics of responses provided
by two AI assistants to the user prompt displayed below. Your goal is to determine which
response is more aesthetically pleasing and easier to read and understand.

Begin your evaluation by considering the following aspects for each response:

1. **Readability**: Is the text easy to read and understand? Are the sentences of appropriate
length and complexity?
2. **Visual Organization**: Is the text visually organized in a logical manner? Are there
appropriate headings, subheadings, lists, and other formatting elements?
3. **Consistency**: Does the text maintain a consistent style and format throughout?
4. **Overall Structure**: Are the paragraphs well-structured and logically connected? Is
there appropriate spacing between paragraphs?

Follow these steps for your evaluation:
1. **Analyze each response**: Carefully read and analyze both responses based on the
criteria provided.
2. **Compare both responses**: Determine which response excels in textual aesthetics
considering all aspects.
3. **Make a final decision**: Choose the response that is better in terms of textual aesthetics
and justify your choice.

You must output only one of the following choices as your final verdict with a label:
1. Assistant A is significantly better: [[A>>B]]
2. Assistant A is slightly better: [[A>B]]
3. Tie, relatively the same: [[A=B]]
4. Assistant B is slightly better: [[B>A]]
5. Assistant B is significantly better: [[B>>A]]

Example output: "My final verdict is Assistant A is slightly better: [[A>B]]."
User Instruction
<|User Prompt|>
{question}
<|The Start of Assistant A’s Answer|>
{answer_1}
<|The End of Assistant A’s Answer|>

<|The Start of Assistant B’s Answer|>
{answer_2}
<|The End of Assistant B’s Answer|>"
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E.3 IMAGE-BASED TEXTUAL AESTHETICS SCORING PROMPT

Prompt Template for Image-Based TEXTUAL AESTHETICS Scoring

System Instruction
You are an impartial judge tasked with evaluating the textual and visual aesthetics of responses
provided by two AI assistants to the user prompt displayed below. You will be given both the
textual answers and images of the responses from each assistant. Your goal is to determine
which response is more aesthetically pleasing and easier to read and understand, considering
both textual and visual factors.

Evaluate each response based on the following criteria:

1. **Readability**: Is the text easy to read and understand? Are the sentences of appropriate
length and complexity?
2. **Visual Organization**: Is the text visually organized in a logical manner? Are there
appropriate headings, subheadings, lists, and other formatting elements?
3. **Consistency**: Does the text maintain a consistent style and format throughout?
4. **Overall Structure**: Are the paragraphs well-structured and logically connected? Is
there appropriate spacing between paragraphs?

Follow these steps for your evaluation:
1. **Analyze each response**: Carefully examine both images based on the criteria provided.
2. **Compare both responses**: Determine which response excels in textual and visual
aesthetics considering all aspects.
3. **Make a final decision**: Choose the response that is better in terms of textual and visual
aesthetics and justify your choice.

Output your final verdict with one of the following labels:
1. Assistant A is significantly better: [[A>>B]]
2. Assistant A is slightly better: [[A>B]]
3. Tie, relatively the same: [[A=B]]
4. Assistant B is slightly better: [[B>A]]
5. Assistant B is significantly better: [[B>>A]]

Example output:
1. Analysis of Assistant A’s response:

- Readability: ...
- Visual Organization: ...
- Consistency: ...
- Overall Structure: ...

2. Analysis of Assistant B’s response:
- Readability: ...
- Visual Organization: ...
- Consistency: ...
- Overall Structure: ...

3. Comparison:
- Both responses are similar in readability, but...
- Assistant A has better visual organization...
- Assistant B’s consistency is...
- Overall, Assistant A/B stands out in...

My final verdict is Assistant A is slightly better: [[A>B]].
User Instruction
<|User Prompt|>
{question}
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Below are two images: the first one is Assistant A’s response, and the second one is Assistant
B’s response. Please evaluate them based on the criteria provided and give the final verdict
answer.
<|The Image of Assistant A’s Answer|>
{base64_image1}
<|The Image of Assistant B’s Answer|>
{base64_image2}
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F ADDITIONAL EXAMPLES

F.1 TEXT AESTHETICS JUDGEMENT

Question: A bug got into the computer case causing the software to bug out which was really starting to bug me but at least we discovered that no one had bugged 

the room. \nWhat does each instance of the word bug mean in the above sentence.

Assistant B:

In the given sentence, the word "bug" has three different meanings:

1.  A small insect that can enter electronic devices: In this context, "a bug got 

into the computer case" refers to a physical insect that has entered the 

computer case, causing problems.

2.  A problem or error in software: When it says "causing the software to bug 

out," "bug" refers to a glitch or malfunction in the software. This is a common 

idiomatic expression in the context of computer programming.

3.  A hidden device or listening device: The phrase “no one had bugged the 

room” uses “bug  to refer to a hidden device, typically used for surveillance or 

eavesdropping. This is a common usage of the word in the context of espionage 

or security.

So, in the sentence, the word "bug" has three distinct meanings, each used in a 

different context.

Assistant A:

In the sentence you provided, the word "bug" is used in several different 

contexts, each with a different meaning:

1. "A bug got into the computer case" 

• In this context, "bug" refers to an insect or small creature that has physically 

entered the inside of the computer case.

2. "causing the software to bug out" 

• Here, "bug out" is a colloquial expression meaning that the software started 

to malfunction or behave erratically. The term "bug" in software refers to an 

error or flaw in the program that causes it to operate incorrectly.

3. "which was really starting to bug me" 

• In this instance, "bug" is used as a verb meaning to annoy or bother the 

speaker.

4. "no one had bugged the room" 

• Finally, in this context, "bugged" means to have secretly placed an electronic 

listening device (or "bug") in the room for the purpose of surveillance or 

eavesdropping.

Each use of "bug" demonstrates the versatility of the word in the English 

language, where it can be a noun or a verb with several different meanings 

depending on the context.

GPT-4o Judgement:

1. Analysis of Assistant A's response:

    - **Readability**: The text is clear and easy to read. Each instance of "bug" is explained in a straightforward manner.

    - **Visual Organization**: The response is well-organized with numbered points, making it easy to follow. The use of bullet points helps in 

distinguishing each meaning.

    - **Consistency**: The style and format are consistent throughout the response.

    - **Overall Structure**: The paragraphs are well-structured, and there is appropriate spacing between points. The concluding sentence ties the 

explanation together nicely.

2. Analysis of Assistant B's response:

    - **Readability**: The text is also clear and easy to read. The explanations are concise and to the point.

    - **Visual Organization**: The response is organized with numbered points, but it lacks the additional detail and separation seen in Assistant A's 

response.

    - **Consistency**: The style and format are consistent throughout the response.

    - **Overall Structure**: The paragraphs are well-structured, but the response is slightly less detailed compared to Assistant A's. The concluding 

sentence is effective but less comprehensive.

3. Comparison:

    - Both responses are similar in readability, but Assistant A provides more detailed explanations.

    - Assistant A has better visual organization with more spacing and separation between points.

    - Both responses maintain consistency in style and format.

    - Overall, Assistant A stands out due to its more detailed and visually organized response.

My final verdict is Assistant A is slightly better: [[A>B]].

Figure 7: An example of image-based GPT-4o judgement. The Assistant A is GPT-4 Turbo, and
Assistant B is LLaMA-3.1-8B-Instruct. The image demonstrates that GPT-4o can evaluate text
aesthetics, showing that Assistant A’s response is more visually organized and detailed compared to
Assistant B’s.

G HUMAN ANNOTATION DETAILS

In our study, we employed three annotators: two graduate students in computer science and one
professor with a background in applied linguistics. All three evaluators are non-native English
speakers but are proficient in English. Their diverse academic and linguistic backgrounds provide a
balanced perspective for assessing textual aesthetics across the four key dimensions—clarity, layout,
uniformity, and coherence.

The annotators underwent a comprehensive training and calibration process prior to the main eval-
uation. This training ensured that their understanding of the evaluation criteria was consistent and
aligned. Annotators were introduced to the four evaluation dimensions—clarity (ease of compre-
hension), layout (visual organization), uniformity (consistent formatting), and coherence (logical
structure)—with detailed explanations and examples. They practiced with a subset of the dataset, and
their evaluations were reviewed with feedback provided to refine their approach. A final readiness
test was conducted to confirm alignment and preparedness for the main evaluation phase.
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For the evaluation, 50 prompts were randomly selected from the Arena-Hard (Li et al., 2024), and
all models under evaluation were tasked with generating responses to these prompts using identical
parameters. This ensured consistency in the generation process and a fair basis for comparison
across models. The generated text samples were anonymized and presented in a standardized format,
removing all identifying information about the originating model or source.

The annotators independently evaluated these samples without communication or influence from
others, maintaining impartiality throughout the process. A pairwise comparison methodology was
employed, where annotators assigned scores in the form of win, tie, or loss for each sample comparison
across the four evaluation dimensions.

H GENERALIZABILITY OF TEXAES AND TAPO TO OTHER LLMS

To evaluate the generalizability of the proposed TEXAES dataset and the TAPO method beyond
the LLaMA series, we conducted additional experiments on two other widely used large language
models: Qwen2-7B-Instruct (qwe, 2024) and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).

In these experiments, TEXAES was used as the training dataset, and TAPO was applied as the
training method under the same experimental settings as those used for LLaMA-3.1-8B-Instruct. The
evaluation results, summarized in Table 10, show significant improvements in textual aesthetics for
both Qwen2-7B-Instruct and Mistral-7B-Instruct-v0.3 after the application of TAPO. Specifically,
both models demonstrated significant enhancements in textual aesthetics and general response
capabilities following training with TAPO.

These findings are consistent with the results observed in the LLaMA-3.1 series, providing compelling
evidence of the broad applicability and effectiveness of the TEXAES dataset and the TAPO method
across diverse LLM architectures.

Table 10: Performance comparison of Qwen2-7B-Instruct and Mistral-7B-Instruct-v0.3 models after
training with TEXAES and TAPO

Model TA Text
WR(%)

TA Image
WR(%)

AlpacaEval 2.0
LC WR(%)

Arena-Hard
WR(%)

MT-Bench
Avg. Score

MMLU
5-shot

Qwen2-7B-Instruct
Qwen2-7B-Instruct (qwe, 2024) 24.63 39.40 33.43 27.69 7.48 70.46
Qwen2-7B-Instruct + DPO (yt, yl) 33.84 61.23 40.16 25.30 7.19 70.34
Qwen2-7B-Instruct-TAPO 37.99 64.28 40.27 32.40 7.48 70.49

Mistral-7B-Instruct-v0.3
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) 8.26 28.90 29.87 17.13 6.59 61.52
Mistral-7B-Instruct-v0.3 + DPO (yt, yl) 25.59 54.64 36.78 20.83 6.56 61.36
Mistral-7B-Instruct-v0.3-TAPO 28.55 57.84 38.53 23.10 6.80 61.55
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