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Abstract

Recently, Miller et al. [59] showed that a model’s in-distribution (ID) accuracy has
a strong linear correlation with its out-of-distribution (OOD) accuracy on several
OOD benchmarks — a phenomenon they dubbed “accuracy-on-the-line”. While
a useful tool for model selection (i.e., the models with better ID accuracy are
likely to have better OOD accuracy), this fact does not help estimate the actual
OOD performance of models without access to a labeled OOD validation set.
In this paper, we show a similar but surprising phenomenon also holds for the
agreement between pairs of neural network classifiers: whenever accuracy-on-
the-line holds, we observe that the OOD agreement between the predictions of
any two pairs of neural networks (with potentially different architectures) also
observes a strong linear correlation with their ID agreement. Furthermore, we
observe that the slope and bias of OOD vs. ID agreement closely matches that of
OOD vs. ID accuracy. This phenomenon, which we call agreement-on-the-line,
has important practical applications: without any labeled data, we can predict the
OOD accuracy of classifiers, since OOD agreement can be estimated with just
unlabeled data. Our prediction algorithm outperforms previous methods both in
shifts where agreement-on-the-line holds and, surprisingly, when accuracy is not
on the line. This phenomenon also provides new insights into deep neural networks:
unlike accuracy-on-the-line, agreement-on-the-line appears to only hold for neural
network classifiers.

1 Introduction

Machine learning operates well when models observe and make decisions on data coming from the
same distribution as the training data. Yet in the real world, this assumption rarely holds. Environ-
ments are never fully controlled. Robots interact with their surroundings, effectively changing what
they see in the future. Self-driving cars face constant distribution shift when driving to new cities
under changing weather conditions. Models trained on clinical data from one hospital face challenges
when deployed for a different hospital with different subpopulations. Under these premises, practi-
tioners constantly face the problem of estimating a model’s performance on new data distributions
(out-of-distribution, or OOD) that are related to but different from the data distribution that the model
was trained on (in-distribution, or ID). Depending on the distribution shift, models may sometimes
break catastrophically under new conditions, or may only suffer a small degradation in performance.
Differentiating between such cases is crucial in practice.

Assessing OOD performance is difficult because in reality, labeled OOD data is often very costly
to obtain. On the other hand, unlabeled OOD data is much easier to obtain. A natural question is
whether we can leverage unlabeled OOD data for estimating the OOD performance. This paradigm
of using unlabeled data to predict the OOD generalization performance has received much attention
recently [29, 9, 87, 22, 23, 10, 31]. Although many different metrics have been proposed, their
success varies widely depending on the shift and the ID performance of the model. While it is
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Figure 1: When ID vs. OOD accuracy is linearly correlated, the ID vs. OOD agreement is also linearly
correlated. Additionally, when ID vs. OOD accuracy is not linearly correlated, agreement is also not linearly
correlated. Each blue point in the scatter plot represents the accuracy of a single model. Each pink point
represents the agreement between a pair of models. To avoid cluttering the figure, given n models of interest, we
only plot n random pairs. The axes are probit scaled as described in Section 3.2.

impossible for a method to always work with no assumptions [29], a major obstacle to using these
methods is that there is currently no understanding of when they work or a recipe to detect when their
predictions might be unreliable.

In a separate but related line of work, Miller et al. [59] demonstrated that in a wide variety of
common OOD prediction benchmarks such as CIFAR-10.1 [67], ImageNetV2 [67], CIFAR-10C [34],
fMoW-WILDS [13], there exists an almost perfect positive linear correlation between the ID test vs.
OOD accuracy of models. When this phenomenon, called accuracy-on-the-line, occurs, improving
performance on the ID test data directly leads to improvements on OOD performance. Furthermore,
if we have access to the slope and bias of this correlation, predicting OOD accuracy becomes
straightforward. Unfortunately, accuracy-on-the-line is not a universal phenomenon. In some datasets,
such as Camelyon17-WILDS [1], models with the same ID test performance have OOD performance
that varied largely. Thus, while the accuracy-on-the-line phenomenon is interesting, its practical use
is somewhat limited since determining whether accuracy-on-the-line holds requires labeled OOD
data in the first place.

In this work, we begin by observing an analogous phenomenon based upon agreement rather than
accuracy. Specifically, if we consider pairs of neural network of classifiers, and look at the agreement
of their predictions (the proportion of cases where they make the same prediction, which requires
no labeled data to compute), we find that there also often exists a strong linear correlation between
ID vs. OOD agreement. We call this phenomenon agreement-on-the-line. Importantly, however,
this phenomenon appears to be tightly coupled with accuracy-on-the-line: when agreement-on-the-
line holds, accuracy-on-the-line also holds; and when agreement-on-the-line does not hold, neither
does accuracy-on-the-line. Furthermore, when these properties hold, the linear correlations of both
accuracy-on-the-line and agreement-on-the-line appear to have roughly the same slope and bias.
Interestingly, unlike accuracy-on-the-line, which appears to be a general phenomenon, agreement-on-
the-line, especially the fact that the slope and bias of the linear correlation agree across accuracy and
agreement, appears to occur only for neural networks. Indeed, the phenomenon is quite unintuitive,
given that there is no a-priori reason to believe that agreement and accuracy would be connected in
such a manner; nonetheless, we find this phenomenon occurs repeatedly across multiple datasets and
vastly different neural network architectures.

This phenomenon is of immediate practical interest. Since agreement-on-the-line can be validated
without any labeled OOD data, we can use it as a proxy to assess whether accuracy-on-the-line
holds, and thus whether ID accuracy is a reasonable OOD model selection criteria. Furthermore,
since the slope and bias of the agreement-on-the-line fit can also be estimated without labeled OOD
data, (for the cases where agreement-on-the-line holds) we can use this approach to derive a simple
algorithm for estimating the OOD generalization of classifiers, without any access to labeled OOD
data. The approach outperforms competing methods and predicts OOD test error with a mean
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absolute estimation error of ≤ 2% on datasets where agreement-on-the-line holds. On datasets
where agreement-on-the-line does not hold, the method as expected does not perform as well, but
surprisingly still outperforms competing methods in terms of predicting OOD performance.

To summarize, our contributions are as follows:

1. We discover and empirically analyze the agreement-on-the-line phenomenon: that ID vs.
OOD agreement for pairs of neural network classifiers lies on a line precisely when the
corresponding ID vs. OOD accuracy also lies on a line. Furthermore, the slope and bias of
these two lines are approximately equal.

2. Leveraging this phenomenon, we develop a simple method for estimating the OOD perfor-
mance of classifiers without any access to labeled OOD data (and by observing whether
agreement-on-the-line holds, the method also provides a “sanity check” that these estimates
are reasonable). The proposed method outperforms all competing baselines for this task.

2 Related Works

Accuracy-on-the-line Before Miller et al. [59], several other works proposing new benchmarks
for performance evaluation [58, 67, 69, 85] have also observed a strong linear correlation between
ID and OOD performance of models. Theoretical analysis of this phenomenon is limited. Miller
et al. [59] constructs distribution shifts where accuracy-on-the-line can be observed assuming the
data is Gaussian, however they do not incorporate any assumptions about the classifier. Another work
by Mania and Sra [55] analyzes the phenomenon under the assumption that given two models, it is
unlikely that the lower accuracy model classifies a data point correctly while the higher accuracy
model classifies it incorrectly. Such model similarity has been observed by [56, 30]. Recent works
have also observed some nonlinear correlations [47] and negative correlations in performance [79, 41].
In this work, we focus on the results from Miller et al. [59] and leave these nuances for future study.

Estimating ID generalization via agreement. Departing from conventional approaches based
on uniform convergence [63, 26, 3, 60], several recent works [62, 89, 28, 39] propose different
approaches for estimating generalization error. In particular, this work is closely related to Jiang
et al. [39], which shows that the disagreement between two models trained with different random
seeds closely tracks the ID generalization error of the models, if the ensemble of the models are
well-calibrated. Predicting ID generalization via disagreement has also previously been proposed by
Madani et al. [54] and Nakkiran and Bansal [61]. Our method also uses disagreement for estimating
performance but, unlike these works, we focus on OOD generalization, and, more importantly, we do
not require calibration or models with the same architecture.

OOD generalization. The problem of characterizing generalization in the OOD setting is even more
challenging than the ID setting. Ben-David et al. [5] provides one of the first uniform-convergence-
based bounds for domain adaptation, a related but harder framework of improving the OOD perfor-
mance of models given unlabeled OOD data and labeled ID data. Several works [57, 18, 46] build on
this approach and extend it to other learning scenarios. Most of these works attempt to bound the
difference between ID and OOD performance via a certain notion of closeness between the original
distribution and shifted distribution (e.g., the total variation distance and the H∆H divergence which
is related to agreement), and build on the uniform-convergence framework [68]. As pointed out by
Miller et al. [59], these approaches provide upper bounds on the OOD performance that grows looser
as the distribution shift becomes larger, and the bounds do not capture the precise trends observed in
practice. Predicting the actual OOD performance using unlabeled data has gained interest in the past
decade. These methods can roughly be divided into three categories:

1. Placing assumptions on the distribution shift. Donmez et al. [24] assume knowledge of the
marginal of the shifted label distribution P (y) and show that OOD accuracy can be predicted if the
shifted distribution satisfies several properties. Steinhardt and Liang [74] work under the assumption
that the data x can be separated into “views” that are conditionally independent given label y. Chen
et al. [10] assume prior knowledge about the shift and use an importance weighting procedure.

2. Placing assumptions on the classifiers. Given multiple classifiers of interest, Platanios et al.
[64, 65] form logical constraints based on assumptions about the hypothesis distribution to identify
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Dataset Accuracy Agreement Confidence Interval
Slope Bias R2 Slope Bias R2

CIFAR-10.1v6 0.842 -0.216 0.999 0.857 -0.205 0.997 (-0.046, 0.017)
CIFAR-10.2 0.768 -0.287 0.999 0.839 -0.226 0.996 (-0.120, -0.030)
ImageNetv2 0.946 -0.309 0.997 0.972 -0.274 0.993 (-0.0720, 0.061)

CIFAR-10C-Fog 0.834 -0.228 0.995 0.870 -0.239 0.996 (-0.077, 0.053)
CIFAR-10C-Snow 0.762 -0.289 0.974 0.766 -0.266 0.974 (-0.067, 0.047)

fMoW-WILDS 0.952 -0.163 0.998 0.954 -0.121 0.995 (-0.042, 0.030)

Camelyon17-WILDS 0.373 0.046 0.263 0.381 0.075 0.226 -
iWildCam-WILDS 0.700 -0.037 0.738 0.411 -0.094 0.424 -

Table 1: Slope, bias, and coefficients of determination (R2) values of linear correlations between ID vs. OOD
accuracy and ID vs. OOD agreement. The slope/bias of these linear correlations match when the R2 value is
high (i.e. strong linear correlation). We also look at the 95% confidence interval of the differences in slope for
the datasets where we observe strong correlation and are interested in whether the slopes are similar. See Section
3.3 for experimental details.

individual classifier’s error. On the other hand, Jaffe et al. [38] relates accuracy to the classifiers’
covariance matrix under the assumption that classifiers make independent errors and do better than
random.

3. Empirically measuring the distribution shift. A group of works [27, 71, 22, 23] train a
regression model over metrics that measure the severity of the distribution shift. Inspired by the
observation that the maximum softmax probability (or confidence) for OOD points is typically lower
[35, 34], Guillory et al. [31] and more recently Garg et al. [29] utilize model confidence to predict
accuracy. Chuang et al. [14] uses agreement with a set of domain-invariant predictors as a proxy for
the unknown, true target labels. This method was extended upon by Chen et al. [9] which improves
the predictors by self-training. Yu et al. [87] observed that the distance between the model of interest
f and a reference model trained on the pseudolabels of f showed strong linear correlation with OOD
accuracy.

Though a large number of methods have been proposed, for the large majority, it is not well-
understood when they will work. Intuitively, no method will work on all shifts without additional
assumptions [29]. But is there some simple general structure to shifts in the real world that allows us
to reliably predict OOD accuracy? Even if such a structure is not universal, can we easily inspect
if this structure holds? What is a plausible assumption we can make about the OOD behaviour of
classifiers? The novelty and significance of our work comes from trying to better understand and
address these questions, specifically for neural networks. In this work, we observe a phenomenon
related to, but stronger than accuracy-on-the-line that allows us to reliably predict the OOD accuracy
of neural networks.

3 The agreement-on-the-line phenomenon

3.1 Notation and setup

Let H denote a set of neural networks trained on (Xtrain,ytrain) = {(xi, yi)}mtrain
i=1 sampled from DID.

Given any pair of models h, h′ ∈ H, for a distribution D, the expected accuracy and agreement are
defined as:

Acc(h) = Ex,y∼D[1{h(x) = y}], Agr(h, h′) = Ex∼D[1{h(x) = h′(x)}]. (1)

We assume access to a labeled validation set (Xval,yval) = {(xi, yi)}mVal
i=1 sampled from DID that

allows us to estimate the ID accuracy ÂccID(h) as the sample average of 1{h(x) = y} over the
validation set. We do not assume access to a labeled OOD validation set, as this is often impractical
to obtain, and thereby cannot directly estimate ÂccOOD(h) in a similar manner.

Agreement, on the other hand, only requires access to unlabeled data. We assume access to unlabeled
samples XOOD = {xi}mOOD

i=1 from the shifted distribution of interest DOOD. Hence, we can estimate
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both the ID and OOD agreement as follows:

ÂgrID(h, h
′) =

1

mval

∑
x∈Xval

1{h(x) = h′(x)}, ÂgrOOD(h, h
′) =

1

mOOD

∑
x∈XOOD

1{h(x) = h′(x)} (2)

3.2 Experimental setup

We study the ID vs. OOD accuracy and agreement between pairs of models across more than 20
common OOD benchmarks and hundreds of independently trained neural networks.

Datasets. We present results on 8 dataset shifts in the main paper, and include results for other
distribution shifts in the Appendix C. These 8 datasets span:

1. Dataset reproductions: CIFAR-10.1 [67], CIFAR-10.2 [52] reproductions of CIFAR-10 [43]
and ImageNetV2 [67] reproduction of ImageNet [21]

2. Synthetic corruptions: CIFAR-10C Fog and CIFAR-10C Snow [34]

3. Real-world shifts from [42]: satellite images (fMoW-WILDS), images from camera traps in
the wildlife (iWildCam-WILDS [4]), and images of cancer tissue (Camelyon17-WILDS [1])

Appendix C includes results on CINIC-10 [19], STL-10 [16], and other WILDS and CIFAR-10C
benchmarks. We also investigate an analogous phenomenon for the F1-score used to assess the
reading comprehension performance of language models on the Amazon-SQuAD benchmark [58].

Models. For ImageNetV2, we evaluate 50 ImageNet pretrained models from the timm [82] package.
On the remaining 7 shifts, we evaluate on all independently trained models in the testbed created and
utilized by [59] consisting of ≥ 150 models for each shift. The evaluated models span a variety of
convolutional neural networks (e.g. ResNet [33], DenseNet [36], EfficientNet [78], VGG [49]) as
well as various Vision Transformers [25]. All architectures and models are listed in the Appendix D.

Probit scaling. Miller et al. [59] report their results after probit scaling Φ−1(·) 1 the ID vs. OOD
accuracies due to a better linear fit. We apply the same probit transform to both accuracy and
agreement in our experiments.

3.3 Observations

We empirically observe a peculiar phenomenon in deep neural networks, which we call agreement-
on-the-line characterized by the following three properties:

Prop(i) When ID vs. OOD accuracy observes a strong linear correlation (≥ 0.95 R2 values), we see
that ID vs. OOD agreement is also strongly linearly correlated.

Prop(ii) When both accuracy and agreement observe strong linear correlation, we see that these
linear correlations have almost the same slope and bias.

Prop(iii) When the linear correlation of ID vs. OOD accuracy is weak (≤ 0.75 R2 values), the
linear correlation between ID and OOD agreement is similarly weak. 2

We show the agreement-on-the-line phenomenon on 8 datasets in Figure 1 and Table 1. On CIFAR-
10.1, CIFAR-10.2, ImageNetV2, CIFAR-10C Fog/Snow, and fMoW-WILDS, we find that both ID
vs. OOD accuracy and agreement observe strong linear correlations, and the linear fits have the
same slope and bias (Prop(i), Prop(ii)). On the other hand, on the datasets Camelyon17-WILDS and
iWildCam-WILDS where accuracy is not linearly correlated, agreement is also not linearly correlated
(Prop(iii)).

To ensure that the differences in the slopes is not statistically significant, we construct the following
hypothesis test. For each dataset, we randomly sample 1000 subsets of 10 models from the model

1The probit transform is the inverse of the cumulative density function of the standard Gaussian distribution.
2The R2 thresholds were only chosen to discretize the strength of the linear correlations as strong or weak

for the 8 shifts. As shown in Appendix C, the phenomenon actually follows a gradient i.e. when the R2 value is
higher, the slope/bias of ID vs. OOD accuracy and ID vs. OOD agreement become closer to each other.
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Figure 2: We observe whether
the agreement-on-the-line phe-
nomenon happens across various
model classes on the CIFAR-10
Fog dataset. As shown on the
left, the ID vs. OOD accuracy
of all model classes lie on the
same line. We plot ID vs. OOD
agreement between pairs of mod-
els from the same model class and
observe that only the linear corre-
lation between ID vs. OOD agree-
ment of neural networks match
that of ID vs. OOD accuracy (in
red).

testbed and compute the corresponding difference in the slope of the linear fits: SlopeAcc − SlopeAgr.
In Table 1, we look at the 95% confidence interval of the distribution of these slope differences for the
6 datasets where we observe a strong correlation. For all datasets with the exception of CIFAR10.2,
the null hypothesis (i.e. difference in slope is 0) lies within the 95% confidence interval thus cannot
be rejected.

3.4 What makes agreement-on-the-line interesting?

First, agreement can be estimated with just unlabeled data. Hence, the agreement-on-the-line
phenomenon has important practical implications for both checking whether the distribution shift
observes accuracy-on-the-line and predicting the actual value of OOD accuracy without any OOD
labels. We present a method to estimate OOD error using this phenomenon in Section 4.

Second, agreement-on-the-line does not directly follow from accuracy-on-the-line. Prior work has
observed that expected ID accuracy often equals ID agreement over pairs of models with the same
architecture, trained on the same dataset but with different random seeds [39]. Agreement-on-the-line
goes beyond these results in two ways: (i) agreement between models with different architectures
(Fig. 2) and (ii) agreement between different checkpoints on the same training run (Fig. 4) is
also on the ID vs. OOD agreement line. These ID/OOD agreements do not equal the expected
ID/OOD accuracy. Indeed, understanding why agreement-on-the-line holds requires going beyond
the theoretical conditions presented in the prior work [39] which do not hold for this expanded set of
models. Furthermore, the phenomenon of matching slopes is not due to the models performing well
ID and OOD (Accuracy can be thought of as the agreement with the perfect classifier). Even pairs of
bad models display this phenomenon. See Appendix F for further discussion.

Finally, we emphasize that there is something special about neural networks that makes the ID vs.
OOD agreement trend identical to the ID vs. OOD accuracy trend. This is unlike accuracy-on-the-
line that holds across a wide range of models including neural networks and classical approaches.
Figure 2 shows CIFAR-10 Test vs. CIFAR-10C Fog accuracy and agreement of linear models (e.g.
logistic and ridge regression) and various non-linear models (e.g. Kernel SVM [17], k-Nearest
Neighbors, Random Forests [6], Random Features [15], AdaBoost [90]). See plots for other datasets
in Appendix C. We look at agreement between pairs of models from the same model family. While
Prop(i) seems to hold for several other model families on several shifts, Prop(ii) only holds for neural
networks, i.e. the slope and bias of the agreement line do not match the slope and bias of the accuracy
line for other model families.

4 A method for estimating OOD accuracy

In this section, we describe how the phenomenon of agreement-on-the-line (described in Section 3)
offers a simple practical method to perform model selection and estimate accuracy under distribution
shifts. Recall from Section 3.1 that we have labeled ID validation data (Xval,yval) and unlabeled
OOD data XOOD.
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Model selection. Without OOD labeled data, can we determine which model is likely to achieve
the best OOD performance? When accuracy-on-the-line holds and ID vs. OOD accuracy is lin-
early correlated, we can simply pick the model with highest ID accuracy. In practice, how does
one determine if accuracy-on-the-line holds without labeled OOD data? By Prop(i) and Prop(iii),
agreement-on-the-line implies accuracy-on-the-line. Hence, we simply need to check if ID and OOD
agreement (which can be estimated as in (2)) are linearly correlated, in order to know if our model
selection criterion based on ID accuracy is valid.

OOD error prediction. Agreement-on-the-line allows us to go beyond model selection and actually
predict OOD accuracy. Intuitively, we can estimate the slope and bias of the agreement line with just
unlabeled data. By Prop(ii), they match the slope and bias of the accuracy line and hence, we can
estimate the OOD accuracy by linearly transforming the ID accuracy (with the appropriate probit
scaling). We formalize this intuition below and provide an algorithm for OOD accuracy estimation
in Algorithm 1. Implementation of our method is available at https://github.com/kebaek/
agreement-on-the-line.

Recall (Section 3.1) that given n distinct models of interest H = {hi}ni=1, we can estimate AccID(h),
AgrID(h, h

′) and AgrOOD(h, h
′) as sample averages over ID labeled validation data and OOD unla-

beled data for all h, h′ ∈ H. We now describe an estimator ÂccOOD(h) for the OOD accuracy of a
model h ∈ H.

From agreement-on-the-line, we know that when ID vs. OOD agreement lies on a line for all
h, h′ ∈ H ×H, ID vs. OOD accuracy for all h ∈ H would approximately also lie on the same line:

Φ−1(AccOOD(h)) = a · Φ−1(AccID(h)) + b ⇔ Φ−1(AgrOOD(h, h
′)) = a · Φ−1(AgrID(h, h

′)) + b
(3)

We estimate the slope and bias of the linear fit by performing linear regression after applying a probit
transform on the agreements as follows.

â, b̂ = arg min
a,b∈R

∑
i ̸=j

(Φ−1(ÂgrOOD(hi, hj))− a · Φ−1(ÂgrID(hi, hj))− b)2 (4)

For each model h ∈ H, given its ID validation accuracy, one could simply plug the estimated slope â
and bias b̂ from (4), and ÂccID(h) (sample average over validation set) into (3) to get an estimate of
the model’s OOD accuracy. We call this simple algorithm ALine-S.

Notice that ALine-S does not directly use the OOD agreement estimates concerning the model of
interest—we only use agreements indirectly via the estimates â and b̂. We find that a better estimator
can be obtained by directly using the model’s OOD agreement estimates via simple algebra as follows.

First, note that for any pair of models h, h′ ∈ H, it directly follows from (3) that

Φ−1(AccOOD(h)) + Φ−1(AccOOD(h
′))

2
= a · Φ

−1(AccID(h)) + Φ−1(AccID(h
′))

2
+ b (5)

By substituting b = Φ−1(AgrOOD(h, h
′))− a · Φ−1(AgrID(h, h

′)) into (5), we can get that average
OOD accuracy of any pair of models h, h′ ∈ H is

1

2
Φ−1(AccOOD(h))︸ ︷︷ ︸

unknown

+
1

2
Φ−1(AccOOD(h

′))︸ ︷︷ ︸
unknown

= Φ−1(AgrOOD(h, h
′)) + a ·

(
Φ−1(AccID(h)) + Φ−1(AccID(h

′))

2
− Φ−1(AgrID(h, h

′))

)
︸ ︷︷ ︸

known (can estimate via sample average over XOOD and (Xval, yval))

.
(6)

We can plug in estimates of the terms on the right hand side (â from linear regression (4)) and the
rest from sample averages. In this way, we can construct a system of linear equations of the form (6)
involving “unknown” estimates of the probit transformed OOD accuracy of models and other “known”
quantities. We solve the system via linear regression to obtain the unknown estimates. We call this
procedure ALine-D, and it is described more explicitly in Algorithm 1. Note that there must be
at least 3 models in the set of interest H for the system of linear equations in (6) to have a unique
solution.
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Algorithm 1 ALine-D: Predicting OOD Accuracy

1: Input: mID validation samples (XID−val, yID−val), mOOD unlabeled samples XOOD, a set
containing n models of interest H

2: Get ÂccID(hi) ∀i ∈ [n]

3: Get ÂgrID(hi, hj) and ÂgrOOD(hi, hj) for all pairs of models i ̸= j

4: Get â, b̂ = argmina,b∈R
∑

i ̸=j(Φ
−1(ÂgrOOD(hi, hj))− a · Φ−1(ÂgrID(hi, hj))− b)2

5: Initialize A ∈ R
n(n−1)

2 ×n, b ∈ R
n(n−1)

2

6: i = 0
7: for hj , hk ∈ H do
8: Aij =

1
2 , Aik = 1

2 , Aiℓ = 0 ∀l /∈ {j, k}
9: bi = Φ−1(ÂgrOOD(hj , hk)) + â ·

(
Φ−1(ÂccID(hj)+Φ−1(ÂccID(hk)))

2 − Φ−1(ÂgrID(hj , hk))
)

10: i = i+ 1
11: end for
12: Get w∗ = argminw∈Rn ∥Aw − b∥22
13: return Φ(w∗

i ) ∀i ∈ [n]

5 Experiments

Datasets and models. We evaluate our methods, the simple plug in of slope/bias estimate ALine-S
and the more involved ALine-D, on the same models and datasets from Section 3 and two additional
datasets CIFAR-10C-Saturate and RxRx1-WILDS (See Appendix C and D for details on these
datasets). Specifically, we look at CIFAR-10.1, CIFAR-10.2, ImageNetV2, CIFAR-10C, fMoW-
WILDS, and RxRx1-WILDS, where we observe a strong correlation. We also look at the performance
of models on datasets where we do not see a strong linear correlation, specifically Camelyon-WILDS
and iWildCam-WILDS.

Baseline methods. We choose 4 existing unlabeled estimation methods for comparison: Average
Threshold Confidence (ATC) by Garg et al. [29], DOC-Feat in Guillory et al. [31], Average Confidence
(AC) in [35], and naive Agreement [54, 61, 39]. All of these methods, like ALine, are based on the
softmax outputs of the model. See Appendix A for more details about previous methods.

We implement the version of ATC that performed best in the paper, i.e. with negative entropy as the
score function and temperature scaling to calibrate the models in-distribution. Although DOC was
deemed the best method in Guillory et al. [31], we use DOC-Feat since DOC requires information
from multiple OOD datasets. For ATC, DOC, and AC, consistent with the experimental design in
Garg et al. [28], we report the best number achieved between before versus after temperature scaling.
We also compare with the more recent, ProjNorm by Yu et al. [87] which showed stronger linear
correlation with OOD accuracy than Rotation [23] and ATC [29]. We compare with this method
separately in Section 5.1, as they do not provide a way to directly estimate the OOD accuracy.

Dataset ALine-D∗ ALine-S∗ ATC AC DOC Agreement

CIFAR-10.1 1.11 1.17 1.21 4.51 3.87 5.98
CIFAR-10.2 3.93 3.93 4.35 8.23 7.64 5.42
ImageNetV2 2.06 2.08 1.14 66.2 11.50 6.70

CIFAR-10C-Fog 1.45 1.75 1.78 4.47 3.93 3.47
CIFAR-10C-Snow 1.32 1.97 1.31 5.94 5.49 2.57

CIFAR-10C-Saturate 0.41 0.77 0.69 2.03 1.51 4.14
fMoW-WILDS 1.30 1.44 1.53 2.89 2.60 8.99
RxRx1-WILDS 0.27 0.52 2.97 2.46 0.75 8.69

Camelyon17-WILDS 5.47 8.31 11.93 13.30 13.57 6.79
iWildCam-WILDS 4.95 6.01 12.12 4.46 5.02 7.35

Table 2: Mean Absolute Error (MAE) of the OOD accuracy predictions with % as units. ALine-D outperforms
other methods on both shifts where we do and do not see accuracy-on-the-line. ∗ denotes our methods.
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Figure 3: Prediction vs. OOD accuracy. We observe the scatter plot of prediction vs. OOD accuracy of ALine-D
and ATC, the second best performing method from Table 2. We observe that our linear fit is closer to the
diagonal, as ATC underperforms on models that have low OOD accuracy.

5.1 Main results: comparison to other methods.

In Table 2, we observe that ALine-D generally outperforms other methods on datasets where
agreement-on-the-line holds. On ImageNet to ImageNetV2 and CIFAR-10 to CIFAR-10C-Snow,
ATC performs marginally better. As can be seen in Figure 3, ATC generally cannot accurately predict
the model’s OOD performance for models that do not perform very well. This is consistent with
experimental results in [29] and [87]. On the other hand, ALine perform equally well on “bad”
models land “good” models. In some sense, given a collection of models where we are interested
in the performance of each, ATC, AC, DOC-Feat, and Agreement only utilize information from
the model of interest, whereas ALine utilizes the collective information from all models for each
individual prediction.

As expected, on datasets where we do not observe a linear correlation between ID and OOD agreement
(and accuracy), ALine does not perform very well, with a mean absolute estimation error of around
5%. Interestingly, the other methods also do not perform very well on these datasets. No method
successfully predicts the OOD accuracy for every distribution shift. The advantage of ALine is
that there is a concrete way to verify when the method will successfully predict the OOD accuracy
(i.e. check whether agreement is on the line). Other prediction methods do not have any way
of characterizing when they will be successful. Finally, we note that ALine-D actually surpasses
previous methods even when accuracy-on-the-line does not hold, suggesting that the algorithm has
additional beneficial properties that require further study.

5.2 Correlation analysis

Dataset ALine-D ProjNorm
ρ R2 ρ R2

CIFAR-10C 0.995 0.974 0.98 0.973

Table 3: Correlation analysis. We compare the coeffi-
cients of determination (R2) and rank correlations (ρ)
between ALine-D and ProjNorm, a metric shown to have
stronger correlation than ATC and Rotation.

Rather than predicting OOD accuracy, it could
be useful to have a metric that just strongly cor-
relates with the OOD accuracy, if the application
simply requires an understanding of relative per-
formance such as model selection. Recently,
Yu et al. [87] proposed ProjNorm, a measure-
ment they show has a very strong linear corre-
lation with OOD accuracy, moreso than other
recent methods including Rotation [23] and ATC
[29]. To compare Aline-D with ProjNorm, we
replicate the CIFAR-10C study in Yu et al. [87],
where they train a ResNet18 model and predict its performance across all corruptions and severity
levels of CIFAR-10C (See their Table 1 in [87]). Since ALine-D is an algorithm that requires a set of
models for prediction, we use the 29 pretrained models from the CIFAR-10 testbed of Miller et al.
[59], as the other models in the set. We look at the linear correlation of the estimates of OOD accuracy
and the true accuracy across all corruptions and find that ALine-D achieves stronger correlation than
ProjNorm (Table 3). See Appendix E for more experimental details.
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Figure 4: ALine-D tracks OOD accuracy across training epochs with a MAE of 2.19% for CIFAR10.1 and
3.61% for ImageNetv2.

5.3 Estimating performance along a training trajectory

We assess whether ALine can be utilized even in situations where the practioner only cares about
the performance of a few models. In such situations, one could efficiently gather many models by
training a single model and saving checkpoints along the way. We analyze whether our phenomenon
is helpful for predicting such highly correlated hypotheses, instead of independently trained models.
In Figure 4, we collect the ID and OOD test predictions every 5 epochs across CIFAR-10 training of
a single ResNet18 model and every epoch across ImageNet training of a ResNet50 model. We see
that even the agreement between every pair of checkpoints of a model across training is enough to get
a good linear fit that matches the slope and bias of ID vs. OOD accuracy. By applying ALine-D to
these checkpoints, we get a very good estimate of the OOD performance of the model across training
epochs though slightly worse than for a collection of independently trained models. This suggests
that given a model of interest, ALine does not require practitioners to train a large number of models,
but just train one and save its predictions across training iterations. We do a more careful ablation
study in Appendix G, looking at the number of models required for close estimates of accuracy.

6 Conclusion

The contributions of this work are two-fold. First, we observe the agreement-on-the-line phenomenon,
and show that it correlates strongly with accuracy-on-the-line over a range of datasets and models. We
also highlight that certain aspects of this phenomenon, namely the fact that the slope and bias of the
linear fit is largely the same across agreement and accuracy, are specific to neural networks, and thus
fundamentally seem connected to these classes of models. Second, using this empirical phenomenon,
we propose a surprisingly simple but effective method for predicting OOD accuracy of classifiers,
while only having access to unlabeled data from the new domain (and one that can be “sanity checked”
via testing whether agreement-on-the line holds). Our method outperforms existing state-of-the-art
approaches to this problem. Importantly, we do not claim that this phenomenon is universal, but
we found it to be true across an extensive range of neural networks and OOD benchmarks that we
experimented on. In addition to its practical relevance, this observation itself reveals something very
interesting about the way neural networks learn, which we leave for future study.
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