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Abstract—Causal discovery from observational data is a fun-
damental problem. A large number of algorithms have been pro-
posed over the years for that purpose, but they usually handle the
data of a single type, either continuous or discrete variables only.
Recently, a few causal structure discovery algorithms have been
developed for mixed data types, and received many applications.
In this paper, we propose a structural equation model for mixed
data types, which allows the causal mechanisms to be nonlinear
and can consequently model many read-world situations. We
prove that the causal structure is identifiable from the data
distribution generated by the model under certain conditions.
Moreover, we propose a maximum likelihood estimator and
develop an efficient order search algorithm benefiting from a
novel method of order space cutting, which can handle several
hundred variables. We adopt automatic relevance determination
kernel-based variable selection after order learning to recover the
causal structure. Experiments on synthetic datasets demonstrate
the accuracy and scalability of our approach. Especially, we apply
our method to publicly available causal-effect pairs and show its
superiority in the causal direction identification of mixed causal
pairs. In addition, we show that our method can sensibly recover
causal relationships on a publicly available real dataset and a
private real-world dataset.

Index Terms—causal discovery, structural equation model,
observational data, mixed data, nonlinear

I. INTRODUCTION

Causal discovery is well recognized as a challenging yet
powerful data analysis tool [1], [2]. The intrinsic appeal of such
methods is that they allow us to uncover the causal structure
in complex systems, providing an explicit description of the
underlying generative mechanisms. Although interventions or
randomized experiments supply the golden standard for causal
discovery, such approaches are unfeasible or unethical in many
scenarios. Alternatively, one may recover causal relationships
from passively observational data under proper assumptions.

By assuming the Markov condition and faithfulness, the
constraint-based approaches like PC [1] can identify causal
skeleton from the joint distribution using conditional indepen-
dent tests and orient the edges up to the Markov equivalence
class via a series of rules (e.g. identifying v-structures, avoiding
cycles, etc.). The score-based approaches like GES [3] use
a score to evaluate the goodness of fit of candidate causal
structures to the data, and output one or multiple graphs with
the optimal score. Another line of research is based on structural
equation models (SEMs). Such methods [4]–[8] assume that
the data generating process belongs to a particular model class
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describing the causal mechanisms and data distributions, and
accept the causal graph fit to the data within the model class.

Most of these methods rely on restrictive assumptions
regarding a single data type: continuous [4], [7], [8] or
discrete [3], [9], [10]. However, it is always the case to learn
the causal structure from a combination of continuous and
discrete variables in practice. And several works has been
done to relax such assumption about data type [11]. Constraint-
based methods have the advantage that they are generally
applicable, and thus, in principle, they can be applied to mixed
data. The copula PC assumes a combination of continuous
and ordinal/binary data are drawn from a Gaussian copula
model, and proposes a two-step approach: first estimate a
correlation matrix, and then run a causal search algorithm (i.e.
PC-Stable) on the estimated correlation matrix [12]. Gibbs
sampling is used to estimate the correlation matrix in the
first step, and limits the scalability of this method. Mixed
graphical models (MGM), originally introduced for learning
undirected graphs [13], was adapted for finding directed graphs
by adding the post-processing using PC-Stable with likelihood
ratio test (LRT) as conditional independence test [14]. Linear
regression and logistic regression is used if the dependent
variable is continuous or categorical respectively, however
linear regression and logistic regression will give different test
results for these continuous-discrete edges. Adapting score-
based methods to mixed data is a challenging problem [14],
and attracts more and more attention. The conditional Gaussian
(CG) score partitions the instances of the data according to
the values of the discrete variables, and then assumes the
continuous variables follow a distinct multivariate Gaussian
distribution within each partition [15]. Repeatedly partitioning
the data leads to the high computation cost and probably
small sample size for some settings of the discrete variables,
especially when the number of discrete variables is large.
To overcome the drawbacks, the degenerate Gaussian (DG)
score was proposed by embedding the discrete variables into a
degenerate continuous space and assuming the latent variables
in such space to be jointly Gaussian [16]. The MIC score was
proposed for mixed data but only allows linear relations [17].
The generalized score functions characterize the (conditional)
independence relationships among variables in the general
case as a model selection problem in reproducing kernel
Hilbert space (RKHS) [18]. It repeatedly conducts kernel ridge
regressions and tends to be inefficient for large sample size.

In this paper, we propose a general functional model
for mixed-type observed variables, which allows the causal



mechanisms to be nonlinear and hopefully enable much broader
real-world applications. For example, the relationship between
the dosage and efficacy of a drug has a large chance to be
nonlinear and non-monotonic. The proposed model explicitly
describes the generating process of a discrete variable as
discretization of the combination of a nonlinear effect of
its direct causes and an additional distortion. We prove that
the causal structure is identifiable from the data distribution
following the model under rather mild conditions. We show
the identifiability between a mixed pair of continuous and
binary variables, and demonstrate how the orientation of a
mixed pair may benefit the orientation between a pair of binary
variables. Specifically, although the causal direction of two
binary variables is not identifiable, we show that introducing an
additional continuous variable which has an arrow into one of
two binary variables will facilitate the orientation between two
binary variables. These theoretical results have been shown
to be useful in practical scenarios. A maximum likelihood
estimator is developed to learn the causal order among variables
instead of the causal structure. If the order is known, the causal
structure learning boils down to variable selection [8]. We adopt
an automatic relevance determination kernel-based variable
selection method to recover the causal structure. To further
accelerate the order search, we first learn a sparse skeleton
among variables using the graph lasso [19] equipped with
kernel alignment, and then project the skeleton onto a series of
topological ordering constraints to cut down the search space.
Empirical results on synthetic and real data demonstrate the
accuracy and scalability of our proposed approach.

II. MIXED NONLINEAR CAUSAL MODELING

We start with the definition of a mixed nonlinear causal
model (MNCM), and then prove that, if the joint distribution
follows such model class, then the causal graph can be identified
from the distribution under certain conditions.

A. Model definition

We assume the observed data X = (X1, · · · , XD) to be a
mixture of continuous and binary variables, with no hidden
variables. Here we simplify the data types by standard practice
of translating a categorical variable with T classes into (T −1)
binary variables. We assume the distribution of X is Markov
with respect to an underlying causal DAG G = (V, E) consisting
of nodes V := {1, · · · , D} and edges E ⊆ V 2. Each random
variable Xi corresponds to the i-th node in G, and (i, j) ∈ E
if Xi is a direct cause of Xj . Throughout the paper, we denote
the parent set of the i-th node as PAi. We use the lower-case
letter xi to represent an observation of the random variable
Xi. We assume that the observed data was generated by the
following model:

Definition 1: (Mixed Nonlinear Causal Model [MNCM])
A mixed nonlinear causal model 1 is a tuple (S, p(ε)) over the

1The model looks like PNL [6] at the first glance. However, PNL assumes the
outer nonlinear transformation to be invertable which is very important for the
proof of identifiability. However, as (1) shown, MNCM needs a discretization
function to generate a binary variable, and this discretization function is
obviously not invertible.

observed data X, where S = (S1, · · · , SD) is a collection of
D equations,

Si : Xi =

 fi(XPAi) + εi, if Xi is continuous{
1, fi(XPAi) + εi > 0
0, otherwise , if Xi is binary

(1)

and p(ε) = p(ε1, · · · , εD) =
∏D
i=1 p(εi) is the joint distribu-

tion of noise variables, where p(εi) is Gaussian, specifically,
εi ∼ N (0, σ2

i ), σi > 0 (i = 1, · · · , D). fi(·) is a three times
differentiable nonlinear function (possibly different for each
i), and it is a constant if and only if the parent set is empty,
and it is not constant in any of its arguments, i.e., ∀i, and
j ∈ PAi, there are some xPAi\j and some xj 6= x′j such
that fi(xPAi\j , xj) 6= fi(xPAi\j , x

′
j). We assume that the

corresponding causal graph is acyclic.
Suppose there are N observations for random variables X.

Then based on the definition of MNCM, the joint distribution
p(X) is,

p(X) =

D∏
i=1

pb(Xi|XPAi)
zipc(Xi|XPAi)

(1−zi)

=

D∏
i=1

N∏
n=1

(
1− Φ

(
fi(xPAin)

σi

))(1−xin)zi

Φ

(
fi (xPAin)

σi

)xinzi ( 1

σi
ϕ

(
xin − fi(xPAin)

σi

))(1−zi)

,

(2)

where pb(·) and pc(·) denotes the probability distribution of
binary and continuous variables, respectively. zi ∈ {0, 1} is
an indicator variable that zi = 1 if the variable Xi is binary
and zi = 0 otherwise. xin is the n-th observation of Xi, and
xPAin is the n-th observation of XPAi . ϕ(·) is the density of
standard normal distribution, and Φ(·) is cumulative standard
normal distribution function.

B. Identifiability

We first illustrate the basic identifiability principle of the
MNCM described as (1) on two variables X and Y . For the case
that both two variables are continuous, the model degenerates
to the nonlinear additive noise model (ANM) of which the
identifiability has been well proved by existing work [5]. Here
we only consider the case that one is continuous and the other
is binary, and the case that both variables are binary.
X is continuous and Y is binary. We observe that the

marginal distribution of X in a forward X → Y model and that
in a backward Y → X model are different, and this difference
can be used to identify the causal direction in the mixed causal
pair, which is summarized formally in the following theorem.

Theorem 1: Let the joint distribution of a mixed causal pair
X(continuous) and Y (binary) be generated by an MNCM in
(1). Then the causal direction between X and Y is identifiable
from the joint distribution.
Proof: It is obvious that the marginal distribution p(X) in a
forward X → Y model is Gaussian. In a backward model,



p(X) = pε(X−g(Y = 1)p(Y = 1))+pε(X−g(Y = 0)p(Y =
0)), where g(·) is a non-constant nonlinear function and thus
g(Y = 0) 6= g(Y = 1), then p(X) follows a Gaussian mixture
distribution in the backward model.

The proof of Theorem 1 relies on the assumption of
a specific noise distribution, i.e., Gaussian. However, the
following theorem shows that the causal direction of a mixed
pair is identifiable for generic choices of noise distribution.
Additionally, we empirically demonstrate this finding on the
synthetic data with non-Gaussian noises and the publicly
available mixed causal pairs, and the results can be found
in Section IV.

Theorem 2: Suppose functions f(·) and g(·) are not constant
in any of their arguments, pX is the probability density function
of X , and Fε is the cumulative distribution function of ε. Let a
mixed causal pair X (continuous) and Y (binary) are generated
by

Y =

{
1, f(X) + ε > 0
0, otherwise , (3)

where X and ε are independent. If there is a backward model,
i.e., X = g(Y ) + ε′, where Y and ε′ are independent, then the
triple (f, pX , Fε) must satisfy the following equation for all x
with constant values c1 6= 0, c2 > 0:

pX(x)(1− Fε(−f(x))) = c2pX(x+ c1)Fε(−f(x+ c1)). (4)

Proof: Here we provide some intuition rather than a formal
proof, which can be found in the appendix. The conditional
distributions p(X|Y = 1) and p(X|Y = 0) in the backward
model have the same shape and are simply shifted by g(Y ).
To make this property also hold in the forward model, it can
be shown that (4) must hold.

Loosely speaking, the statement that the triple (f, pX , Fε)
has to satisfy (4) amounts to saying that in the generic case,
it is not possible to have a backward model with the same
joint distribution, which means that we can identify the causal
direction of a mixed pair even without the assumption of
Gaussian noises.

Both X and Y are binary. Although the causal direction
of two binary variables is not identifiable, we show that intro-
ducing an additional variable Z will facilitate the orientation
between two binary variables. Now we give the identifiability
condition of the causal direction between two binary variables,
which are stated in Theorem 3.

Theorem 3: Let p(X,Y, Z) be generated by an MNCM in
(1) where {X,Y } is a binary causal pair. If Z is a parent
to one and only one of the variables in {X,Y }, the causal
direction between X and Y is identifiable from p(X,Y, Z).
Proof: Suppose Z is the parent of X . Then there are two
possible scenarios to consider if the condition is satisfied:

S1. Z is not adjacent to Y , i.e., Y −X ← Z.
a. If p(Y |Z) = p(Y ), which means Y and Z are

independent, then the triple is a V-structure, and orient Y → X .
b. If p(Y |X,Z) = p(Y |X), which means Y and Z are

independent given X , then the triple is not a V-structure, and
orient Y ← X .

S2. Z is adjacent to Y , that means Y is the parent of Z,
i.e., Y −X ← Z and Y → Z. Then, according to the acyclic
assumption, orient Y → X .

Therefore, it is easy to see that the direction between X and
Y is identifiable if the condition is satisfied.

Since we can identify the causal direction of a mixed causal
pair by Theorem 1 and 2, it is possible to identify the causal
direction between two binary variables in certain scenarios
following orientation propagation rules in Theorem 3. Further
considering the identifiability between continuous variables and
mixed variables, we know that for the multivariate model, if the
condition in Theorem 3 holds for any pair of adjacent binary
variables, the whole causal structure is identifiable, which is
given in the following corollary.

Corollary 1: Let p(X) be generated by an MNCM in (1)
with the underlying true graph G0. If any pair of adjacent
binary variables Xi and Xj generated satisfying the following
condition: there exists a variable which is the parent to one and
only one of the variables in {Xi, Xj}, then G0 is identifiable
from p(X).
Proof: Assuming there are two MNCMs with different under-
lying DAGs G and G′ over X that satisfy p(X). According to
proposition 29 in [7], there are two variables in X that have
an inverse edge in G and G′. i) For the case that both variables
are continuous, the model degenerates to a kind of nonlinear
ANM model of which the identifiability has been well proved
by existing work [7]; ii) For the case of a mixture of binary
and continuous variables, the direction is identifiable based
on Theorem 1; iii) For the case that both variables are binary,
from Theorem 3, if the condition is satisfied, the direction is
identifiable. Thus, the whole causal structure is identifiable.

If the condition in Corollary 1 does not hold, we may not
be able to determine the causal direction between two adjacent
binary variables. Thus, in this case, we cannot derive a fully
identified causal graph but an equivalence class. Here, we give
a formal definition of equivalence class with MNCM, and
empirically show that even if the condition is not satisfied, a
compact equivalence class can be found later.

Definition 2: (MNCM Equivalent Class) Let G = (V,E)
and G′ = (V,E′) be two DAGs over the same set of variables
V. G and G′ are called MNCM equivalence, if and only if they
satisfy the following properties.

(1) G and G′ have the same causal skeleton.
(2) For any pair of adjacent variables Vi, Vj ∈ V, if any of

them is continuous, the causal direction between Vi and Vj is
the same in G and G′.

(3) For any pair of adjacent binary variables Vi, Vj ∈ V, if
it satisfies the condition given in Theorem 3, then the causal
direction between Vi and Vj is the same in G and G′.

III. CAUSAL INFERENCE

Although we have proved the true causal structure is
identifiable from the joint distribution following an MNCM
under the condition in Corollary 1, it is still time-consuming
work searching the entire DAG space to find the optimal causal
graph. Previous research [20] shows the structure learning



problem with DAG constraint can be cast as that of learning an
optimal order among variables, which intuitively looks easier
since the order space is much smaller than the DAG space.
Once the order was determined, the constraint of no cycle can
be enforced by constraining the parents of a variable to be a
subset of variables ordering precede it, and the causal structure
learning boils down to variable selection.

Here we propose an efficient causal discovery approach with
two stages: the causal order learning and the causal structure
recovery. A preliminary order-space cutting is recommended
to gain a higher efficiency.

A. Causal Order Learning

We begin with order identifiability, and then find the optimal
order using the maximum likelihood estimation.

1) Order identifiability: We denote all the permutations on
{1, · · · , D} as PD, and for each permutation ξ ∈ PD, we
define the fully connected DAG Gfullξ as the DAG containing
all edges i→ j for ξ(i) < ξ(j). The following corollary gives
the order identifiability formally.

Corollary 2: Let p(X) be generated by an MNCM in (1)
with the underlying true graph G0. Without the assumption that
f is not constant in any of its arguments, and if the condition
in Corollary 1 holds, the set of true orderings, Ξ0 := {ξ ∈
PD|Gfullξ ≥ G0} is identifiable from p(X), where Gfullξ is the
supergraph of G0.
Proof: The proof is similar to the proof of Lemma 32 in
[7], and thus we only provide an intuition here. Without the
assumption that f is not constant in any of its arguments, we
can set fj(XPAj\i, Xi) = fj(XPAj\i) if Xi has no effect on
Xj . Then for a fully connected DAG Gfullξ leading to p(X),
we can find the minimal graph Gfull,minξ that leads to p(X)
and satisfies the condition that f is not constant in any of
its arguments. If the condition in Corollary 1 holds, G0 is
identifiable from p(X), then Gfull,minξ = G0.

2) Order Estimation: The log-likelihood of MNCM on N
observations of X and an order ξ is,

LMNCM(X,Gfullξ ) =

D∑
i=1

N∑
n=1

zi

(
xin log

(
Φ

(
fi(xPAi,n)

σi

))

+ (1− xin) log

(
1− Φ

(
fi(xPAi,n)

σi

)))

−
D∑
i=1

(1− zi)N
2

(
log

∑N
n=1(xin − fi(xPAi,n))2

N

)
+ const,

(5)

where PAi is the parent set of i-th node in the fully connected
DAG Gfullξ based on order ξ.

We use a greedy search to learn the optimal order ξ̂ which
maximizes the unpenalized log-likelihood,

ξ̂ = arg max
ξ

LMNCM(X,Gfullξ ). (6)

The search procedure is similar to CAM [8]. Start with an empty
DAG and at each iteration add one edge i→ j corresponding

to the largest gain of LMNCM. Then check the acyclicity after
each iteration with the order information of i ≺ j, and after
the addition of an edge, we only need to recompute the score
related to j, and construct a super DAG after all the iterations.

B. Causal Structure Recovery
We apply the automatic relevance determination (ARD)

kernel-based Gaussian process regression [21] or classification
[22] for each variable to prune the super DAG. Specifically,
for a variable Xi with its parents PAi in the super DAG, the
ARD kernel used for Xi is

KARD =
∏
j∈PAi

Kj , (7)

where Kj is the centralized kernel matrix of Xj whose (n, n′)-
th element is Kj(n, n

′) = exp
(
− ||xjn−xjn′ ||2

2l2j

)
.

With an ARD kernel, each feature comes with an independent
length scale lj . When optimizing lj , some of them could be
concentrated at large value along with their corresponding
features eliminated, resulting that highly relevant features can
be effectively extracted.

C. Order Search Space Cutting
We utilize the ancestor and neighbour relations to further

cut down the order search space to accelerate the estimation
procedure. Obviously, the ancestor relations can greatly prune
the search space. Suppose we already know an ancestor relation,
i.e., i precedes j. Then we do not have to consider those orders
in which j precedes i. As for the neighbour relations, the
following theorem gives the efficacy of them in the search
space cutting.

Theorem 4: Suppose that starting from an initial potential
parents of i which are set to V \ {i}, i ∈ {1, · · · , D}, a
fully connected DAG with the true order ξ, i.e., Gfullξ , can be
recovered. If the initial potential parents of i were set to NBi,
the neighbours of i, then a DAG G1ξ can be recovered with
LMNCM(X,Gfullξ ) = LMNCM(X,G1ξ ).
Proof: Let PAi denote the true parent set of i. Then

PAi = PA
G1
ξ

i ⊆ PA
Gfullξ

i . Let S := PA
Gfullξ

i \ PA
G1
ξ

i .
Then we have Xi �XS |XPAi based on the Markov condition.
Therefore, log p(Xi|XPAi) = log p(Xi|XPAi , XS), and then
LMNCM(X,Gfullξ ) = LMNCM(X,G1ξ ).

There are many ways to learn the ancestor or neighbour
relations, currently we adopt a method based on kernel
alignment and graph lasso. The kernel alignment was orig-
inally applied to measure the similarity between two kernel
functions [23]. And recently it was used to produce the
pseudo-correlation matrix among random variables [24]. We
generate the pseudo-correlation matrix A over the observed
data X = (X1, · · · , XD) using (8) with each element A(i, j)
being the kernel alignment between Xi and Xj :

A(i, j) =
〈Ki,Kj〉√

〈Ki,Ki〉〈Kj ,Kj〉
, (8)

where 〈Ki,Kj〉 =
∑N
n,n′=1 Ki(n, n

′)Kj(n, n
′), and

Ki(n, n
′) is the (n, n′)-th element of the centralized kernel



matrix of Xi. Here we use the radial basis function (RBF)
kernel for continuous variables and delta kernel for binary
variables. Then introduce A into the graph lasso to learn the
precision matrix Θ as

Θ = arg min
Θ�0

tr(AΘ)− log det(Θ) + λ
∑
i,j

|Θij |. (9)

Θij = 0 means there is no direct edge between Xi and Xj .
The strongly connected components (SCCs) [25] are gener-

ated from Θ with no edge connecting different SCCs, and thus
the topological orders among SCCs can be arbitrarily assigned.
If SCCm ≺ SCCm′ , then Xi ≺ Xj for all Xi ∈ SCCm
and Xj ∈ SCCm′ . These order constraints can be used to cut
down the search space.

D. Algorithm and Implementation

The whole algorithm is summarized in Algorithm 1. First we
learn a sparse skeleton among variables using the graph lasso
equipped with the kernel alignment method, and then project
this skeleton onto a series of topological ordering constraints
to cut down the search space. Next, estimate ξ̂ in (6) using a
greedy search over the feasible space. We utilize the Gaussian
process regression (classification) to estimate log p(Xi|XPAi)
during the search. Finally, recover Gfull,min

ξ̂
from Gfull

ξ̂
by

pruning edges with the ARD kernel-based Gaussian process
regression (classification) for each variable, and the parents are
chosen as those variables whose length scale is smaller than
a predefined threshold. A standard gradient descent optimizer
is used to fit the hyperparameters of Gaussian processing
regression (classification) through maximizing the log marginal
likelihood. The time complexity of our order search algorithm
is O(M maxm |SCCm|N3), where M is the number of SCCs,
|SCCm| is the number of edges in SCCm according to Θ,
m ∈ {1, · · · ,M}, and N is the sample size.

IV. EXPERIMENTS

We conducted various experiments to have a clear under-
standing of the MNCM and our method. First, we used some
toy examples to empirically verify Corollary 1. Then, we
compared our method with several benchmarks on various
causal structures when the condition in Corollary 1 holds or
not. Thirdly, we evaluated the robustness of our method on
non-Gaussian distribution noises. We applied our method to
publicly available mixed causal pairs to empirically verify
Theorem 2, and also applied it to a publicly available real
dataset and a private real-world dataset.

A. Simulated Study

1) Synthetic data: Dataset 1 was used to empirically verify
Corollary 1 and to illustrate how a mixed pair benefits the
orientation between a binary pair. We generated three variables
X , Y , Z with two different structures, in which X and Y are
binary and Z is continuous.

Case A: Z → X → Y when the condition in Corollary 1
holds.

Algorithm 1 LMNCM-based causal structure discovery
Input: Data X , the number of variables D, threshold α
Output: Optimal structure Ĝ ∈ {0, 1}D×D, causal order ξ̂

1: PHASE 1: Order search space cutting
2: Construct the precision matrix Θ using (8) and (9).
3: Extract M SCCs using Tarjan’s algorithm from Θ.
4: Assign an arbitrary group order e.g. SCC1 ≺ · · · ≺ SCCM and

construct order constraints set C.
5: PHASE 2: Causal order learning
6: Initial t = 1, an empty DAG Ĝ = 0, a score matrix S =
{− inf}D×D , and a node score list NS= {− inf}1×D .

7: Compute NSt[j] = log p(Xj |∅).
8: Compute St[i, j] = log p(Xj |Xi)− NSt[j], if Θij 6= 0.
9: if i ≺ j violates C then St[i, j] = − inf .

10: for m = 1, · · · ,M do
11: while TRUE do
12: Find (̂i, ĵ) = argmaxi,j∈SCCm St[i, j].
13: if St [̂i, ĵ] = − inf then break.
14: Set G [̂i, ĵ] = 1, and add î ≺ ĵ to ξ̂.
15: Set St[i, j] = − inf , ∀i, j ∈ SCCm that violate acycle.
16: NSt[ĵ] = St [̂i, ĵ] +NSt[ĵ].
17: t = t+ 1.
18: Update St[i, ĵ] = log p(Xĵ |XPA

ĵ
, Xi)− NSt−1[ĵ] if

St−1[i, ĵ] 6= − inf ∀i ∈ SCCm.
19: end while
20: end for
21: PHASE 3: Causal structure recovery
22: for j = {1, · · · , D} do
23: PAj = {i | Ĝ[i, j] = 1}.
24: Learn l̂PAj from (7) based on Xj and XPAj .
25: Find the non-relevant features as NPAj = {l̂PAj ≥ α}.
26: Set Ĝ[NPAj , j] = 0.
27: end for

Case B: Z → X → Y and Z → Y when the condition in
Corollary 1 does not hold.
Z was generated following a Gaussian distribution with a

standard deviation uniformly sampled from [1,
√

2]. X and
Y were generated by an MNCM in (1), in which fi was a
Gaussian process with a bandwidth one RBF kernel, εi was a
Gaussian noise with a standard deviation uniformly sampled
from [ 15 ,

√
2
5 ], and we chose the cutting value based on p-th

percentile of the continuous value, where p was randomly
chosen from [10, 90]. We generated 50 datasets for each case
and the sample size of each dataset was 500.

Dataset 2 was generated when the condition in Corollary 1
held. First we randomly generated causal structures, i.e. DAGs
with D = 10, 30, 50, 100 and different graph densities, which
are measured by the expected number of edges. The sparse
graphs have D edges while the dense graphs own 2D edges
on average. Note that those causal structures violating the
condition were eliminated. After that, the data were generated
from an MNCM with N = 500, 1000 and different binary ratios
0.1, 0.5, which are measured by the ratio of binary variables
in total variables. We drawn the functions fi from a Gaussian
process with a bandwidth one RBF kernel, and added Gaussian
noise εi with a standard deviation uniformly sampled from
[1,
√

2] for the nodes without parents, and uniformly sampled
from [ 15 ,

√
2
5 ] for the other nodes, following [8]. As for the



binary variable, we chose the cutting value based on p-th
percentile of the continuous value, where p-th was randomly
chosen from [10, 90].

Dataset 3 was generated when the condition in Corollary
1 did not hold. The data generating process was the same as
Dataset 2 except that the condition was violated in each causal
structure. We only set D = 10, 30, N = 1000, and the binary
ratio was 0.5, due to the time limit.

Dataset 4 was generated in the same way as dataset 2, except
the noise distributions were non-Gaussian. Specifically, for any
pair of adjacent binary pair in the graph, there was a variable
which was the parent to one and only one of the binary pair.
Here, we considered two types of noise distributions.

(1) Uniform distribution: εi was uniformly sampled from
[−a, a], where a was uniformly sampled from [3, 4] for the
nodes without parents and from [0.5, 1] for the other nodes.

(2) Gaussian mixture distribution: εi = p1N (µ, σ2) + (1−
p1)N (−µ, σ2) with p1 = 0.5, µ was uniformly sampled from
[1, 2] and σ was uniformly sampled from [1,

√
2] for the nodes

without parents, while µ was uniformly sampled from [0.1, 0.5]

and σ was uniformly sampled from [ 15 ,
√
2
5 ] for the other nodes.

2) Benchmarks: On the dataset 2, 3, and 4, we compared our
method with 5 benchmarks, including the score-based ones: 1)
GES using conditional Gaussian BIC score (GES CGBIC) [15],
2) GES using degenerated Gaussian score (GES DGBIC) [16],
3) GES using the generalized score (GES GS) [18], and the
constraint-based ones: 4) copula PC [12], 5) causalMGM [14].
We used the implementations provided by authors and their de-
fault parameter settings for the benchmarks. For the constraint-
based methods, we used the PC-Stable with alpha levels of
0.05. For our method, on both synthetic data and real data, we
used the kernel width twice the median distance between points
in the first and second phases of Algorithm 1, and used the
BIC score to select the λ and the related precision matrix Θ.
As for the pruning phase, the hyperparameter α was selected
from {1, 2, 3} by cross validation.

3) Evaluation metrics: For dataset 1, we measured the
accuracy as how many times we recovered the true causal
structure or true MNCM equivalence class out of 50 random
datasets.

For dataset 2 and dataset 4, we measured the accuracy of
causal structure discovery with three metrics: 1) the F1 score,
which is a weighted average of the precision and recall, 2) the
normalized structural hamming distance (SHD) [26], which
counts how many edges whose types do not coincide between
two graphs, 3) the structure intervention distance (SID), which
is well suited for quantifying the correctness of an order among
variables [27]. The SID weights a reversed edge in the estimated
DAGs greater than an additional edge, while SHD weights both
errors equally. Considering our method outputs DAGs, while
the benchmarks output CPDAGs, we selected the best DAG
within the Markov equivalent class to represent the performance
of benchmarks.

For dataset 3, since our method ouputs the MNCM equiva-
lence class while the benchmarks output CPDAGs, we provided

the upper bound and lower bound of F1 score, SHD, and SID
within equivalence classes.
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Fig. 1. Comparisons of causal structure discovery on Dataset 2. The F1
score (left column), SHD (middle column) and SID (right column) of different
methods were illustrated on different settings varying the numbers of nodes
(different rows of figure), binary ratios, graph densities, and sample sizes
(x-axis of each subgraph).

4) Results: Results on dataset 1: In the case A, our method
recovered the true causal structure at most of the time (the
accuracy was 0.88), and reversed the edge between X and
Y , i.e. Z → X ← Y , at rest of the time. In the case B, our
method recovered the true causal structure with a probability
of 60%, and found the true MNCM equivalence class with
a probability of 100%. Our results verified the true causal
structure could be recovered under the condition in Corollary
1 with a high probability, and even if the condition didn’t hold,
at least an MNCM equivalence class could be found. Moreover,
the results in case A and case B both verified that our method
could identify the direction between mixed pairs.

Results on dataset 2: Our method was compared with
benchmarks on different settings when the condition in Corol-
lary 1 held, and the results were summarized in Figure 1.
Higher F1 scores and lower SHD scores mean higher accuracy
on the causal structure discovery, and lower SID values indicate
a better performance on the order recovery. As we used the best
DAG for the benchmarks, we could consider that we compared
the proposed method with the best performance of benchmarks.
Overall, the proposed method outperformed others in terms of
causal structure discovery. One explanation is that most of the
score-based methods have to make assumptions about causal
mechanisms and data distributions, which may not hold, and



TABLE I
SIDS OF THE FULLY-CONNECTED DAG. STANDARD DEVIATIONS ARE SHOWED IN PARENTHESES.

BINARY RATIO=0.1 BINARY RATIO=0.5
SETTINGS SPARSE DENSE SPARSE DENSE

N=500 N=1000 N=500 N=1000 N=500 N=1000 N=500 N=1000
D=10 0(0) 0(0) 0(0) 2.75(3.20) 0.8(1.10) 0.8(1.15) 3.67(3.50) 3.71(4.11)
D=30 11(8.37) 8.8(9.83) 20.8(13.3) 7(14.04) 17.8(19.00) 6.8(4.09) 18.5(7.72) 16.25(26.84)

the constraint-based methods may suffer from the statistical test
issues. Specifically, GES CGBIC and GES DGBIC assume
the linear relations, causalMGM uses the likelihood ratio test
based on linear/logistic regression, and copulaPC supposes
a monotonic relationship, and thus these methods performed
worse when the underlying causal mechanisms were nonlinear.
As GES GS has no explicit assumption about the relationship
and data distribution, it worked better than other benchmarks in
general. However, GES GS did not work on highly dimensional
data (e.g. D = 50 or 100) due to its high computational
complexity. Moreover, the proposed method achieved the lowest
SID in most cases, especially for dense graphs and high binary
ratio, implying that it can recover the true order. To further
demonstrate the superiority of our method in terms of order
recovery, we provided the SIDs of the fully-connected DAG
resulting from the second phase of Algorithm 1 in Table I. The
SID ranges from 0 (which means a correct order) to D(D− 1)
(which means a totally wrong order). As Table I shows, the
proposed method always obtains low SID values.

Results on dataset 3: We evaluated the performance of our
method when the condition in Corollary 1 did not hold, and
the results were summarized in Fig. 2. Overall, the proposed
method outperformed others with a tighter interval between the
lower bound and upper bound. Taking a deep look into the data,
we found that even though the condition in Corollary 1 didn’t
hold in every dataset, the proportion of the non-identifiable pairs
was not so large. On average, there were about 20 percentage
of the binary pairs not satisfying the condition.

Results on dataset 4: We compared our method with bench-
marks on different settings and the results were summarized
in Fig. 3 for uniform noises and Fig. 4 for Gaussian mixture
noises. As we used the best DAG for the benchmarks, we
could consider that we compared the proposed method with
the upper bound of benchmarks. Overall, the proposed method
outperformed others in terms of causal structure discovery even
with non-Gaussian noises. One explanation is that GES CGBIC,
GES DGBIC, and causalMGM assume the relations among
variables to be linear, and copulaPC supposes a monotonic
relationship, thus these methods performed worse when the
underlying causal mechanisms were nonlinear. As GES GS
has no explicit assumption about the relationship and the data
distribution, it worked better than other benchmarks in general.
However, GES GS could not work on highly dimensional data
(e.g. D = 50, 100) due to its high computational complexity.
It also implied that the direction of a mixed causal pair could
be identified robustly even when the noise distributions were
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Fig. 2. Comparisons of causal structure discovery on Dataset 3. The upper
bounds and lower bounds of F1 score (left column), SHD (middle column)
and SID (right column) between true DAG and the estimated graph of different
methods were illustrated on different settings varying the numbers of nodes
and graph densities (different rows of figure).

non-Gaussian, and the orientation of a mixed pair might benefit
the orientation between a pair of binary variables in certain
scenarios.

B. Results on Continuous-Binary Pair

We used the causal effect challenge dataset 2 to verify the
performance of our method in terms of identifying the direction
between continuous-binary pairs. Only the train data were used,
and totally there were 295 pairs including 154 pairs with causal
directions being from continuous to binary and 141 pairs with
causal directions reversing.

We compared our method with 3 other methods, 1) Infor-
mation Geometric Causal Inference (IGCI) [28], 2) bivariate
ANM with GP regression, using HSIC score (ANM-HSIC)

2https://www.kaggle.com/c/cause-effect-pairs/data
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Fig. 3. Comparisons of causal structure discovery on Dataset 4 with uniform
distribution noises. The F1 score (left column), SHD (middle column) and
SID (right column) of different methods were illustrated on different settings
varying the numbers of nodes (different rows of figure), binary ratios, graph
densities, and sample sizes (x-axis of each subgraph).

[29], 3) bivariate ANM with GP regression, using Gaussian
score (Bi-CAM) [8]. All the benchmarks assume both variables
to be continuous, and we failed to find a bivariate orientation
method for mixed causal pairs. We used the implementations
provided by authors and their default parameter settings for
the benchmarks.

We measured the accuracy as how many times we recovered
the true causal direction out of 295 pairs. Overall, the
proposed method outperformed the others in causal direction
identification of the continuous-binary pairs (accuracy: MNCM:
0.66, IGCI: 0.456, AMN-HSIC: 0.479 and Bi-CAM: 0.54). One
explanation is that all the benchmarks assume both variables
to be continuous, that is violated in the mixed pair dataset.

C. Real World Retail Data

We applied our method to a real retail dataset including the
store information, sales data ranging from 2017 to 2019, and
product attributes of toothpaste products under a brand. The
aim was to find the causes driving the success of new products.
We found 389 new products launched after 2017, along with
21 features including the product characteristics (i.e., tube or
not (binary), benefit (3, binary), has gift or not (binary), regular
or not (binary), gel or not (binary)), marketing strategies (i.e.
price of the new product (continuous), seasons that the new
product launched (3, binary), distributed strength (continuous),
store size in different areas when the new product launched (4,
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Fig. 4. Comparisons of causal structure discovery on Dataset 4 with Gaussian
mixture distribution noises. The F1 score (left column), SHD (middle column)
and SID (right column) of different methods were illustrated on different
settings varying the numbers of nodes (different rows of figure), binary ratios,
graph densities, and sample sizes (x-axis of each subgraph).

continuous), store coverage of new product in different areas (4,
continuous)), and whether the new product is success or not
(binary).
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Fig. 5. Recovered causal graph from real world retail data.

Fig. 5 shows the causal graph recovered by our algorithm.
It reveals some relations that are in accord with common
sense about the market, e.g. new products’ characteristics and
launch seasons have effects on the success of them, and launch
seasons are influenced by some characteristics of new products
(e.g. whitening function leads to the summer launch). More
interestingly, we find that the price has no effect on the success
of new products, but they are correlated due to common parents:
the characteristics of new product. Moreover, the store size
in the East has an effect on the the success of new product,



which gives us a new idea about distributing strategies when
new products launch.

D. Results on Boston Housing Data

We applied our method to Boston housing data3 which
contains 14 variables including 1 binary variable and 506
samples. This dataset has been used in previous studies to
evaluate the performance of causal structure discovery in the
real application [30], [31]. Fig. 6 shows the recovered causal
graph by our algorithm. It confirmed that the number of rooms
(RM), percentage of lower-status population (LST), proportion
of owner-occupied units built before 1940 (AGE), and crime
rate (CRI) are direct causes of the median value of housing
price (MED), which were also recovered by [31]. Besides that,
we found some other interesting relations which are consistent
with our common understandings, e.g. a link from the tax
rate (TAX) to the pupil-teacher rate (PTR), the distance to
employment centers (DIS) to the index of accessibility to
radial highways (RAD).

CRI

ZN

CHAS

NOX

PTR
B

RM AGE

DIS TAXLST

INDUSMED

RAD

CRI crime rate

ZN proportion of residential land zoned for lots

INDUS proportion of non-retail business

CHAS located on Charles River ?

NOX nitric oxides concentration

RM average number of rooms

AGE percent built before1940

DIS weighted distances to employment centres 

RAD index of accessibility to radial highways 

TAX full-value property-tax rate

PTR pupil-teacher ratio 

B proportion of blacks 

LST % lower status of the population 

MED median value of homes

Fig. 6. Recovered causal graph from Boston housing data.

V. CONCLUSION

In this paper, we proposed a mixed nonlinear causal model to
describe the nonlinear relationships among a mixture of discrete
and continuous variables, and proved its identifiability under
certain condition. We then proposed a maximum likelihood
estimator to learn the causal order and with such estimator, we
also developed an efficient order search algorithm benefiting
from a novel method of order space cutting. Finally, we adopt
an automatic relevance determination kernel-based variable
selection after order learnt to recovery the causal structure. Em-
pirical results on synthetic and real-world datasets demonstrate
the accuracy and scalability of our proposed approach.

APPENDIX

Proof of Theorem 2: The conditional distributions in a
forward X → Y model are,

P (X|Y = 1) =
pX(X)(1− Fε(−f(X)))

p(Y = 1)
,

P (X|Y = 0) =
pX(X)Fε(−f(X))

p(Y = 0)
,

(10)

3http://lib.stat.cmu.edu/datasets/boston

where pX is the probability density function of X , and Fε is
the cumulative distribution function of ε.

In contrast, the conditional distributions in a backward Y →
X model are,

P (X|Y = 1) = pε′(X − g(Y = 1)),

P (X|Y = 0) = pε′(X − g(Y = 0)),
(11)

where pε′ is the probability density function of ε′.
In the backward model, the conditional distributions of

p(X|Y = 1) and p(X|Y = 0) have the same distribution
and are simply shifted by the function g(Y ). If the forward
and backward model coexist sharing the same joint distribution,
then the forward model must satisfy the following:

for all x, there exists a constant c1 = g(Y = 0) − g(Y =
1) 6= 0, s.t. p(X = x|Y = 1) = p(X = x + c1|Y = 0). That
is,

pX(x)(1− Fε(−f(x)))
p(Y = 1)

=
pX(x+ c1)Fε(−f(x+ c1))

p(Y = 0)
, (12)

where c1 6= 0. Then,

pX(x)(1− Fε(−f(x)))

pX(x+ c1)Fε(−f(x+ c1))
=
p(Y = 1)

p(Y = 0)
= c2, (13)

where c2 := p(Y=1)
p(Y=0) > 0 is a constant.
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