FlashMoE: Fast Distributed MoE in a Single Kernel

Osayamen Jonathan Aimuyo Byungsoo Oh Rachee Singh
Cornell University Cornell University Cornell University
oja7@cornell.edu bo239@cornell.edu rs22930Qcornell.edu
Abstract

The computational sparsity of Mixture-of-Experts (MoE) models enables sub-
linear growth in compute cost as model size increases, thus offering a scalable
path to training massive neural networks. However, existing implementations
suffer from low GPU utilization, significant latency overhead, and a fundamen-
tal inability to leverage task locality, primarily due to CPU-managed scheduling,
host-initiated communication, and frequent kernel launches. To overcome these
limitations, we develop FlashMoE, a fully GPU-resident MoE operator that fuses
expert computation and inter-GPU communication into a single persistent GPU ker-
nel. FlashMoE enables fine-grained pipelining of dispatch, compute, and combine
phases, eliminating launch overheads and reducing idle gaps. Unlike existing work,
FlashMoE obviates bulk-synchronous collectives for one-sided, device-initiated,
inter-GPU (R)DMA transfers, thus unlocking payload efficiency, where we elim-
inate bloated or redundant network payloads in sparsely activated layers. When
evaluated on an 8-H100 GPU node with MoE models having up to 128 experts
and 16K token sequences, FlashMoE achieves up to 9x higher GPU utilization,
6 lower latency, 5.7 x higher throughput, and 4x better overlap efficiency com-
pared to state-of-the-art baselines—despite using FP32 while baselines use FP16.
FlashMoE shows that principled GPU kernel-hardware co-design is key to unlock-
ing the performance ceiling of large-scale distributed ML. We provide code at
https://github.com/osayamenja/FlashMoE.

Forward Latency | E=32 | k=28 H100s | | is better
753

EEE FlashMoE ~ EEE Megatron-CUTLASS
FasterMoE ~ EEEM Megatron-TE

Forward Pass | E=64 | k=2|2 A100s | 1 is better
93.17%

Runtime (ms)

Average SM Util (%)

8K
FlashMoE Comet FasterMoE Megatron DeepEP Number of Tokens

(a) GPU SM Utilization (b) Scaling Tokens

Forward Latency | T=8K | E=32 | k=2 is better Forward Latency | T=16K [k=2 |8 H100s | | is better

Bl FlashMoE BE== Megatron-CUTLASS

3
FasterMoE EEEN Megatron-TE 50
189 18.9

Bl FlashMoE B8 Megatron-CUTLASS
FasterMoE EEEE Megatron-TE

5
\
\
\
\
\
\
\
N

Runtime (ms)
Runtime (ms)
w
8

4 128

32
Number of Experts

a
of H100s

(c) Weak Scaling across GPUs (d) Across Experts
Figure 1: FlashMoE performance.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/osayamenja/FlashMoE

1 Introduction

State-of-the-art large language models
(LLMs) [1HS] have adopted the Mixture-of- T B T B “

Experts (MoE) architecture for its computational
efficiency and strong performance across a
range of tasks. The traditional Transformer
block consists of a self-attention module
followed by a dense feed-forward network
(FFN) [6l]. In contrast, MoE architectures [N]
replace this single FFN (Figure [J(a)) with

3 k2
[CAttention || [[Attention || |[Attention] || [Attention |

All-to-All (Combine)
many identically sized FFNs, known as experts
(Figure 2[b)). A trainable neural network,
known as a gate function, sparsely activates (a) Transformer (b) MoE (c) Distributed MoE

these experts by dynamically routing input

tokens to the experts selected at runtime. This pjgyre 2: Transformer blocks (a) without MoE, (b)
Increase 1in model parameters duej to more yith MoE, and (c) with distributed MoE and expert
FENs improves model quality without the parajlelism. T, E, and O represent input tokens,
corresponding increase in computational cost. experts, and output activations, respectively.

Communication overheads in MoE. As MoE

model sizes grow, GPU memory constraints prevent hosting all experts on a single device. The
standard practice is to distribute experts across multiple GPUs using expert parallelism (EP), which
requires token routing via many-to-many communication primitives like AlltoAll [1} 14} 3, 7] (Fig-
ure [2fc)). Another round of AllfoAll communication restores the permuted tokens processed by
experts to their original order in the sequence. AlltoAll communication is challenging to optimize on
GPU networks and is highly sensitive to straggler delays — a phenomenon where a single straggler
GPU delays all others from making progress [8]]. These communication operations can account for
68% of the total runtime [9} [10], causing GPUs to remain idle (Figure@ top left).

Kernel launch overheads in MoE. To mitigate these communication bottlenecks, recent work
pipelines computation with communication kernels (Figure[3] left middle). However, the effectiveness
of these solutions is limited by the overhead of launching many kernels from the CPU. Specifically,
existing implementations [1THI4] launch a large number of kernels per a single layer pass (see Table[T)).
Frequent kernel launches negatively affect performance by: (1) creating non-deterministic kernel
start times across GPUs, exacerbating straggler issues; (2) introducing unnecessary synchronization
points, causing GPUs to wait on peers or the CPU before proceeding; and (3) incurring repeated
global memory round trips at kernel boundaries. Although CUDA graphs [[L5] can partially mitigate
the first issue in static workloads, they are incompatible with MoE’s dynamic expert routing patterns.
Addressing the remaining issues requires novel solutions, which we provide in this work through
complete kernel fusion and asynchronous device-initiated communication.

i : & F?:‘\
] m m \
3 GPU x g
2| N A2A (Dispatch) A2A (Combine) -
8
L
2| cru a H 22
& | epu =
3
g \ \ Ewn Fused Kernel
S8 | NIC A2A (Dispatch) A2A (Combine) =
T Il i
£ CPU Ours: FlashMoE [Kernel launch Baseline e
Z | Ggru A ate H ———— | | [l GPU kernel execution S
2
]
E| NG —m— I I I I I I | | Il Remote communication

Figure 3: Comparing FlashMoE with state-of-the-art techniques that either do not overlap commu-
nication and computation (left, top) or do some overlap (left, middle). FlashMoE is a persistent
kernel that fuses all computation and communication of the MoE operator (left, bottom). FlashMoE
implements device-initiated computation (gate, expert FFN, scale) and communication tasks (right).

Our Contributions: distributed MoE in a single kernel. To overcome these fundamental
inefficiencies in state-of-the-art MoE models, we develop FlashMoE a megakernel that integrates

all MoE computation and communication tasks into a single persistent GPU kernel i.e., a kernel
that remains active for the entirety of the MoE operator (Figure [3]bottom left). Instead of multiple
kernel launches coordinated by the CPU, FlashMoE requires launching only one kernel, significantly
reducing the involvement of the CPU. Within the fused kernel, FlashMoE implements a reactive
programming model to achieve fine-grained parallelism and loosely coupled, non-blocking execution
among tens of thousands of GPU threads.

In-kernel Block scheduling and Tile paral-
lelism. FlashMoE implements tile-level paral-

. .. " . . MOoE Implementation GPU Ops
lelism, meaning it partitions input token matri- :
ces into smaller, independent units called tiles, Elgﬁ\}/l[l]\g/[;%(zﬂlﬂs work) 313
which are processed by blocks but managed Megatron-LM CUTLASS [13116] 85
(scheduled and constructed) by warps. We spe- Megatron-LM TE [131 [16] 261
cialize every thread block, except one, as pro- Megatron-LM + DeepEP [1]] 432
cessors to perform compute. In addition, we DeepSpeedMoE [[L1]] 550

designate a dedicated Operating System (OS)

block (4 warps) to perform administrative tasks Table 1: We report number of GPU operations
of (1) scheduling computational work to pro- launched by MoE implementations by profiling
cessors (scheduler), and (2) decoding computa- with Nsight Systems [17]. We count operations in
tional tasks from messages received from other a single MoE layer (Gate — Dispatch — Expert —
GPUs (subscriber). This design allows Flash- Combine) on 2 A100 GPUs, where each GPU has
MoE to dynamically assign tasks to GPU blocks 32 experts. FlashMOoE is the first to fully fuse the
based on readiness, ensuring that no GPU SM distributed MoE layer into a single GPU kernel.
remains idle throughout the lifetime of the MoE

operator. FlashMoE selects tile dimensions to maximize GPU arithmetic intensity while benefitting
from a high-degree of parallelism.

Asynchronous and payload-efficient communication. By redesigning the MoE operator from
the ground up, FlashMoE resolves fundamental inefficiencies inherent in the conventional MoE
execution pipeline. One notable inefficiency is token padding during communication. To simplify
programming complexity and due to symmetry constraints of collective communication APIs, existing
implementations have to zero-pad token payloads to match predefined buffer sizes. This occurs
when tokens are asymmetrically routed to experts, resulting in GPUs receiving much less than
the expected capacity. However, these null payloads waste communication bandwidth, bloat data
transfer latency and may lead to unnecessary computations on null matrices in some implementations.
FlashMoE introduces payload-efficient communication by sending non-padded tokens only to GPUs
with actively selected experts, conserving both communication and computational resources.

Technical challenges. Realizing the single-kernel design of FlashMoE required solving several
technical challenges to achieve high performance: (1) lightweight computational dependency man-
agement; (2) navigating optimal SM occupancy configurations; (3) implementing in-device BLAS
operations; (4) minimizing inter- and intra-device synchronization overheads; (5) implementing
transfer-awareness by leveraging DMA over Unified Virtual Addressing (UVA) when available.
In addressing these challenges, FlashMoE’s design presents a radical departure from traditional
synchronous AlltoAll collectives, where GPUs exhibit significant idle time during layer execution.
For device-initiated communication, FlashMoE uses NVSHMEM [[18]] to establish a global address
space across all GPUs for Direct Memory Access (DMA) communication. For in-device BLAS,
FlashMoE develops custom high-performance GEMM operations via CUTLASS [19]].

Results. Our evaluations show that FlashMoE achieves 6x latency speedup, 9x higher GPU
utilization, 4 x better weak scaling efficiency and 5.7 x increased throughput compared to state-of-
the-art implementations. We project these performance gains becoming even better in multi-node
scenarios, where inter-node communication occurs using lower bandwidth inter-node links (e.g.,
RDMA, Infiniband).

2 Motivation

Synchronous Communication. AlltoAll or AllGather communication as currently used in MoE
frameworks is a synchronous collective operation, whose completion requires the participation of
all involved GPUs. Here, disparities in processing speeds or kernel scheduling among GPUs induce

Forward Pass [E=641k=2|2A100s] 1 Is better | MoE fteration [6.557 ms] |

FlashMoE

R TTTRTRYITNTAT TN

Comet FasterMoE Megatron DeepEP DeepEP

Average SM Util (%)

(a) GPU SM Utilization across baselines (b) Kernel Launch overhead (CUDA API row)

Figure 4: @shows GPU utilization averaged across 100 MoE forward passes on 2 A100s with 300
GB/s unidirectional bandwidth, where we observe up to 90% idle time, due to kernel launch gaps and
non-overlapping communication.

a straggler effect detrimental (Figure[I3) to (1) the collective operation’s performance and (2) E2E
performance, as stalled GPUs cannot proceed to downstream dependent or independent tasks until
the collective terminates. We expound on this problem in §A]

Kernel Launch Overhead. We compare the kernel launch overheads between FlashMoE and
existing baselines. Table [T] shows the number of kernel launches during a single forward pass:
FlashMoE launches exactly one persistent kernel, while the baselines launch up to 550 short-lived
kernels to perform the same computation. Figure] provides a visual comparison using CUDA
API traces captured by NSight Systems, illustrating the difference between FlashMoE and DeepEP.
DeepEP exhibits many small CUDA API calls, with frequent stalls between individual operators,
leading to increased GPU idle time (Figure[a)). In contrast, FlashMoE maintains high GPU utilization
by avoiding launch overhead and synchronization gaps—achieving 93.17% GPU utilization compared
to 14% for DeepEP. See §]for experimental results and §B]|for a discussion of related work.

E5 1 f

________________ |
™~ Wapo warp 1 warp 2 warp 3| |

1.1

|
Decoded Tasks, |
|

3 Fused MoE Kernel Design

Modern distributed MoE systems suf-

fer from two limitations: (1) frequent Biock 0 Block 1
many-to-many (AlltoAll or AllGather)
collectives on the critical path, and HH HH
(2) significant overhead from repeated

kernel launches. We address these in
FlashMoE, a fully fused MoE oper-
ator implemented as a single persis-
tent GPU kernel. Unlike previous ap-
proaches
[23]], FlashMoE is the first solution
to implement a completely fused Dis- 0 1 n1
tributed MoE kernel, eliminating ker- Vi /

nel launch overhead entirely by requir- [sendTiete]\ ~ fsens e Send Tle
ing only a single kernel launch (see L/J L/J L/J
Table [T).

Actor-based model. The design of Sehedule Task tto Pracessor p
FlashMoE is based on the actor model Figure 5: FlashMoE Fused Kernel

of concurrent computation [26-28].

We implement this model by specializ-

ing GPU thread blocks and warps into three distinct actor roles: (1) Processor (@), (2) Subscriber
(§F3), and (3) Scheduler(§F2). The Processor performs compute (GEMMs and element-wise
operations) and tile communication. We use CUTLASS [19] as the underlying infrastructure for
high-performance BLAS routines and NVSHMEM for kernel-initiated communication [18]]. The
Subscriber and Scheduler perform administrative functions. Specifically, the Scheduler assigns
computational tasks to available thread blocks. Our key innovation is making the Scheduler both
multithreaded, enabling high scheduling throughput, and work-conserving, ensuring consistently high
GPU SM utilization. On the other hand, the Subscriber decodes file packets from peer GPUs to task

Packet Encode and Dispatch

Processor Processor | , , , | Processor | _

1

- 7 I N I S

_
- o

12
13

Algorithm 1: FlashMoE Distributed MoE Fused Kernel

Input: A, O € RS*H X e REXHXD N
begin

Ts,Gy < FusedGate(A)

if blockld +1 < N then
Dispatch(Ty, A)
processor::start()

else
if warpI D == 0 then
| scheduler::start()
else
| subscriber::start(Ty, Gy, O, X)
end if
end if

end

Dispatch Notify Schedule Notify Schedule Send Notify Schedule
. packets . Tasks . Task . Tasks . Task . Tile . Tasks . Task
S St P! S i J J

b h
GEM M, GEMM, Combine

Figure 6: DMoE Functional Dependencies Expressed as a Chain of Actor Interactions. We denote
Sp, Sh, and P as the Subscriber, Scheduler and Processor actors, respectively. For any actor
a € {Sp, Sn, P}, a’ identifies an actor on GPU i. We define Di as the operator, where GPU j
dispatches packets of tiles to GPU . This diagram expresses task dependencies at the granularity of a
tile, namely G EM My, GE M M, combine and communication produce an output tile. Notifications
occur as signals propagated through shared memory (subscriber <+ scheduler) or global memory
(scheduler > processor or inter-GPU communication). Note one-sided inter-GPU transfers (packet

or single tile) are coupled with a signal to notify S} on the receiving GPU j of the message’s delivery.

descriptors (§3.1). Of the N thread blocks on a GPU, we specialize N — 1 to adopt the Processor
role. We specialize the last block as the Operating System (OS). Within this block, we specialize three
warps for the Subscriber role and one warp for the Scheduler role. This split of thread blocks across
actors is intentional: our goal is to use few resources for administrative tasks while reserving bulk of
the resources for performing MoE computation tasks. Figure[5|summarizes the FlashMoE architecture
and its constituent actors, while Algorithm || gives a very close translation of the system in code.
Note that A € RS*H ig the input token matrix; O € RS*H the output matrix; and X € REXHXD jq
a 3-D tensor of expert weights, where I denotes the number of local experts for the executing GPU,
H is the embedding dimension, D is the FEN intermediate dimension and S is the sequence length.

T, € (N x R)F* is a routing table data structure, where Ty (e,c¢) = (i, w) indicates that token ¢ at
slot ¢ dispatches to expert e. w is the combine weight (Equation [2)) and C' is expert capacity. The
tuple structure of Ty is an implementation detail. G, € R>*E captures the affinity scores produced
by the gate (Equation [3). Inter-actor interactions in FlashMoE. FlashMoE decomposes MoE
computation and communication at the granularity of a tile, a statically sized partition of a tensor, to
achieve parallel execution and efficient overlap of tasks. Each tile maps to a discrete unit of work
encapsulated by a fask descriptor. The Subscriber decodes these task descriptors from the remote
tile packets it receives. Concurrently, the Scheduler receives notifications about available tasks and
dispatches them for execution to Processor actors that perform computations defined by these tasks,
namely the feed-forward network (FFN) and expert-combine operations. Figure[6|show the chain of
actor interactions, demonstrating how FlashMoE enforces DMoE functional dependencies.

Determining tile dimensions in FlashMoE. Selecting appropriate tile dimensions in FlashMoE
is crucial to ensure efficient GPU utilization. An undersized tile underutilizes the GPU, while
excessively large tiles create register pressure, causing performance-degrading register spills to local
memory. After careful parameter sweeps, we choose tile dimensions of (128, 64). Our key insights
are: increasing tile width significantly raises the register usage per thread, potentially triggering costly
spills; increasing tile height without adjusting thread count increases workload per thread, harming
performance. Raising the thread count per block beyond our fixed value of 128 threads reduces the

number of concurrent blocks, negatively affecting SM occupancy. Larger thread-block sizes also
increase overhead from intra-block synchronization (__syncthreads() barriers), further degrading
performance. Thus, our chosen tile dimensions balance register usage, shared-memory constraints,
and GPU occupancy to deliver optimal performance.

3.1 Task Abstraction for Computation

Computational operators. The FFN operator is a standard position-wise feed-forward network
widely used in Transformer architectures [6]], composed of two linear transformations separated by a
nonlinear activation ¢ (e.g., GELU or ReL.U):

FEN(z) = Wy - ¢(xW1 + b1) + b2 (D

Here, W7 and W, represent learnable weight matrices, and b, and by are biases. The expert-combine
operation, used in architectures like GShard [29]] and DeepSeek [1], merges outputs from multiple
experts by computing a weighted combination based on their affinity scores:

Ci=> gie)

hi = %< . hf 3)

In these equations, 7 € 0, 5 — 1 represents an input token index, e = FE; ;, identifies the k-th expert
selected for token 7, and g; . is the affinity score indicating how relevant expert e is for token <.

Unified task abstraction. We unify the FFN and combine operations under a common abstraction
called a rask. Tasks provide a uniform interface for communicating tile-level work among Subscribers,
Schedulers, and Processors. Formally, a task descriptor ¢t € T is defined as a tuple:

t=(M,*9¢)

where M is a set of metadata (e.g., device ID, tile index), x is a binary tensor operation (specifically,
matrix multiplication - or Hadamard product ®), and ¢ is an element-wise activation function (e.g.,
ReLU or identity).

We define a task ¢ operating on input tensors A, B, D, producing output tensor C, as follows:

Fi(A,B,C,D):=C + ¢ (Ax B+ D) “)

The operator *; (instantiated from x) may behave differently depending on the task metadata M, and
the result of A x; B is accumulated into D. We provide an example of task metadata in

In practice, we implement each task defined by Equation[d]as a single fused __device__ decorated
function which the Processor (Algorithm [2)) invokes at runtime. Fusion for ¢ entails applying ¢
and the succeeding addition operation to registers storing the results of the binary operator *;. To
illustrate its flexibility, we show how the FFN and expert-combine operations can be expressed using
this task framework. Note that we omit the matrix multiplication symbol (-) for simplicity. Also, ¢;
can be any activation function, while ¢ is the identity function. The FFN is expressed as:
tl :(M7'7¢1)7 t2:(M7'7¢2)5
Fi, (A, B1,C1,D1) :==Cy < ¢1 (AB1+ D1),
Fi,(C1, Bz, C2, Da) = Cq <= ¢2 (C1 By + D3).
Whereas, the expert-combine operation is formalized as:

t3 = (M7®7¢2)7
.Ft:;(A,S,C,C) ::C<_¢2 (A®S+C)

3.2 Symmetric Tensor Layout for Inter-GPU Communication

Within a single GPU device, the actors in FlashMoE communicate through the GPU’s memory
subsystem. Specifically, the Scheduler and Subscriber actors exchange data via fast shared memory,

4.)Po P1R{B1E2
receives
’ Expert Parallel Gro> 1.) Po intends
=TT T T T T to Dispatch

Eo./ ‘\\E s \E3 to Eg on Py 2.) Py receives
1
< . 3.) Py processes
P, View P, View P
Ro Rq Ro R, 6.) Po 5.
)Py stages
1.) Pg intends recelves
Bo B1 Bo B1 Bo B1 Bo B1 to Dispatch
Eo Eo | Eo | Eo Eo E, | E; | Eo toEzon Py P| RiBIE; po RiBoEs
Po Po
E; E; Eq E, Eq Es Es Eq processes
PI Ro BoE2 Po RoB/E;
E; | Eo | Eo | E2 E; | E2 | E2 | E2
2.) Po stages the outgoing 3.) P, receives
P1 P1 message to P, before
E3 E, Eq Es Es Es Ez E3 remote transfer
(b) State machine for DMA (top) and
(a) Layout across 2 Expert-parallel Processes. RDMA (bottom) communication.

Figure 7: Symmetric Tensor Layout

while other actor pairs communicate through global memory. For communication across multiple
devices, FlashMoE uses device-initiated communication, leveraging the one-sided PGAS (Partitioned
Global Address Space) programming model [30]. However, achieving scalable and correct one-sided
memory accesses in PGAS without costly synchronization is a known challenge [1[31]. We address
this challenge with a provably correct and scalable solution: a symmetric tensor layout L, supporting
fully non-blocking memory accesses. We define L as:

Le RPxRxBxExCxH

where: P is the expert parallel world size, R identifies communication rounds (i.e., two rounds,
one for token dispatch and one for combine), B is number of staging buffers, F is the number of
local experts, C' is the upscaled expert capacity (§3.2.1) and H is the token embedding dimension.
Our core insight to enable non-blocking communication is temporal buffering. Specifically, we
overprovision memory for the underlying token matrix by at least 2 - r times, where r is the number of
communication rounds in the dependency graph, and the factor of 2 accounts for separate buffers for
incoming and outgoing data within each communication round. For MoE models, we have 2 - r = 4.
This modest increase in memory usage eliminates the need for synchronization during one-sided data
transfers. Figure|/b|illustrates how cells within this symmetric tensor layout are indexed and used for
Direct Memory Access (DMA) and Remote DMA (RDMA) operations. As Theoremreinforces,
this indexing scheme over L is the underlying mechanism that allows for fully non-blocking accesses
eliding synchronization because all accesses are write conflict-free. See§ [C|for the proof.

Theorem 3.1. The symmetric tensor layout L is write-write conflict-free.

To construct L, we start from the original token buffer 7' € R¥*H where S is the sequence length
and H is the token embedding dimension. We first reorganize the sequence dimension S into three
sub-dimensions representing the expert capacity (C'), local expert slots (E), and the expert parallel
world size (W), st:
C-E-W=C-E' =5 where S >Sand E’' > Ey

In the typical case of uniform expert distribution (illustrated in Figure , we have S’ = S and
E’ = Eyy, where Eyy is the total number of experts in the model. Thus, the size of the token buffer is
Size(T) = S’ H. In Figure[7d| each cell labeled E; (with i € {0,...,3}) is a matrix of size (C, H).
Extending prior work [29, [12]], we introduce additional temporal dimensions R (communication
rounds) and B (staging buffers). Each communication round has two fixed staging slots: one for
outgoing tokens and another for incoming tokens. Each slot, indexed by dimension P, forms a tensor
of shape (S, H). Therefore, the tensor size Size(L) is generally at least four times the original token
buffer size, becoming exactly four times larger in the case of uniform expert distribution. Empirically,
we find Size(L) ~ 4 - Size(T), contributing memory overhead < 2% of memory capacity for
inference of popular models. We present a thorough breakdown in §D]

3.2.1 In-place Padding for Payload Efficiency

Due to the dynamic and uneven distribution of tokens in MoE dispatch [32], GPUs commonly receive
fewer tokens than their predefined expert capacity. Current MoE frameworks [[11]] typically pad
these buffers with null tokens before computation, unnecessarily increasing communication payloads
and degrading performance. In contrast, we propose in-place padding, performing padding directly
within the local symmetric tensor buffers and thus eliminating excess network communication.

As we show in Figure[7a)as a reference, each cell E; is sized according to the expert capacity C. We
further align this capacity to ensure divisibility by the tile block size bM = 128, guaranteeing safe
and aligned memory reads by Processor threads consuming remote tokens. This in-place padding
strategy slightly increases the memory footprint of L, as described below:

4 - Size(T), S >bM
Size(L) =
4. YLE . Size(T), otherwise

4 Evaluation

We implement (§G)) and evaluate FlashMoE across five metrics: Forward Latency (§ 4.1), GPU
Utilization (§ , Overlap Efficiency (§ [4.4), Throughput (§ [4.3), and Expert Scalability (§ {.3).
We run experiments on a server with 8 NVIDIA H100 80G GPUs interconnected via NVLink, 125
GB of RAM, and 20 vCPUs. We used PyTorch 2.6.0, CUDA 12.8, and Ubuntu 22.04. All experiments
use MoE transformer models configured with 16 attention heads, an embedding dimension of 2048,
and an FFN intermediate size of 2048. We apply Distributed Data Parallelism (DDP) and Expert
Parallelism for all experiments. We execute only the forward pass over a single MoE layer and
measure the average runtime of 32 passes after 32 warmup passes. We use top-2 routing with a
capacity factor of 1.0. We compare FlashMoE against several state-of-the-art MoE systems: (1)
Comet [[12], (2) FasterMoE [14], (3) Megatron-CUTLASS [13]], and (4) Megatron-TE: Megatron-
LM with Transformer Engine [33]. Comet relies on cudaMemcpyPeerAsync [34], while FasterMoE
and Megatron-LM use NCCL exclusively for communication.

Desiderata. We observe Comet exhibiting anomalously bad performance values at 8 GPUs, so
we exclude their results from evaluations at 8 GPUs and only include for results at < 4 GPUs. We
evaluate FlashMoE using FP32 precision whereas all baselines use FP16. We do so because (1) of
incomplete fp16 tuning (§H) and (2) no baseline supports FP32. Note, this precision discrepancy
disadvantages FlashMoE by doubling its communication volume and computational workload.

4.1 Forward Latency

25

Forward Latency | E=32 | k=2 |4 H100s | { is better Forward Latency | E=32 | k=2 | 8 H100s | { is better
753

B FlashMoE EE® Megatron-CUTLASS X B FlashMoE E== Megatron-CUTLASS
FasterMoE BN Megatron-TE

Comet EHEH Megatron-TE
E==3 FasterMoE

N

1=}
IS
=3

=

o
w
=3

N
=3

._.
1)
Runtime (ms)

Runtime (ms)

o]
o
=)

o
o

8K
Number of Tokens Number of Tokens

(a) 4 H100s (b) 8 H100s

Figure 8: Forward Latency as the Number of Tokens per GPU increases.

We first measure the forward latency of FlashMoE across different sequence lengths on both 4
and 8 GPU setups (Figure [8). FlashMoE consistently outperforms all baselines, with especially
notable improvements at longer sequence lengths. On 4 GPUs, it achieves up to 4.6x speedup over
Megatron-TE at 16K tokens, and 2.6x over FasterMoE. The gains are even more pronounced at 8
GPUs where FlashMoE maintains low latency, exhibiting up to 6.4x speedup over baselines that
degrade steeply due to increasing communication costs as token buffers increase proportionally.

4.2 GPU Utilization

To quantify GPU efficiency, we measure Stream-)

ing Multiprocessor (SM) utilization during the oo Pass | Eoo [Ko 2|2 A0 | 1 s bene
forward pass (Figure [9). FlashMoE achieves
93.17% average SM utilization, over 9x higher
than FasterMoE (9.67%), 6.8x higher than
DeepEP+Megatron-LM (13.55%) 4x higher
than Megatron-TE (59.11%), and 2.2x higher
than Comet (42.31%). This improvement stems
from our fully fused kernel architecture and fine-
grained pipelining of compute and communica- Figure 9: SM utilization, defined as the ratio of
tion tasks. By eliminating idle gaps due to kernel cycles in which SMs have at least one warp in flight
launches and enabling in-kernel task scheduling, to the total number of cycles [17]. Values represent
FlashMoE ensures SMs remain busy with pro- the average SM utilization over 100 iterations.
ductive work throughout execution.

Average SM Util (%)

13.55%

FlashMoE Comet FasterMoE Megatron DeepEP

4.3 Throughput

As shown in Figure m FlashMoE Forward Pass | T = 8K | E=32 | k=2 1 is better
scales linearly with GPU count, reach- EEA FlashMoE 17.70

ing 17.7 MTokens/s at 8 GPUs. This is 2 15.0] B Moaatron CUTLASS

over 5.7x higher than FasterMoE and S | mmm MegatronTE

4.9x higher than Megatron-TE and 5

Megatron-CUTLASS. Notably, these <
results are achieved despite Flash- E
MoE operating entirely in FP32, while -
baselines use FP16. This indicates

that FlashMoE ’s design eliminates 2
throughput bottlenecks not by exploit-
ing lower precision, but by maximiz-

3.60 3.60

3.10

4
of H100s

Figure 10: Throughput when scaling the number of GPUs,

ing hardware utilization and eliminat- TxNg
. . . L computed as .
ing host-driven inefficiencies. atency
4.4 Overlap Efficiency
25 Forward Latency | T=8K|E=32|k=2]| { is better Forward | T=8K|E=32|k=2| 1 is better
B FlashMoE E== Megatron-CUTLASS 213 100 100 100 100 100 B Flash
BN FasterMoE BB Megatron-TE —_
20 S
z z 8
Eis H
£ £
510 g a0
g
5 © 20
0 0
2 4 8 4
of H100s # of H100s
(a) Latency as Number of GPUs increases. (b) Weak scaling efficiency

Figure 11: Weak scaling efficiency. We define Overlap Efficiency O. to be O, = T'(2)/T(Ng),
where T'(N¢) is the latency at N GPUs and T'(2) is the latency at 2 GPUs.

We evaluate the extent to which FlashMoE overlaps communication and computation by measuring
weak scaling efficiency as the number of GPUs increases (Figure[TTb). We note that most baselines
fail to execute at a single GPU, hence why we use 2 GPUs as the reference point. We observe that
Megatron-CUTLASS and Megatron-TE degrade significantly, with overlap efficiency dropping below
50% at > 4 GPUs. FlashMoE gives up to 3.88x and 4x higher efficiency at 4 and 8 GPUs, respectively.
Figure [TTa| further illuminates this efficiency, as FlashMoE shows stable forward latency growth.
These results corroborate that FlashMoE’s actor-based design and asynchronous data movement
achieve near-ideal overlap.

4.5 Expert Scalability

Forward Latency | T=16K | k=2 | 4 H100s | { is better Forward Latency | T=16K | k=2 | 8 H100s | { is better

B FlashMoE B Megatron-CUTLASS B FlashMoE E== Megatron-CUTLASS \\
30 Comet EEE Megatron-TE 50 FasterMoE EEEE Megatron-TE . §
E==3 FasterMoE N § §
W 40 - § \ \
: W E m
€30 S N \ § N\
3N B B B B
= B B B B
\ \ \ \ \

10 % § \ \

LN \

32
Number of Experts Number of Experts

(a) 4 H100s (b) 8 H100s

Figure 12: Forward Latency as the Number of experts increases.

We analyze how FlashMoE scales with increasing number of experts at fixed sequence length (T =
16K). Note that for the discussed plots, the number of experts on the x-axis is the total number across
all GPUs. Each GPU gets 1/8th of this value. As seen in Figure[I2] FlashMoE maintains low, uniform
latency, as desired, even as the number of experts grows from 8 to 128. In contrast, baselines exhibit
superlinear latency increases due to increased kernel launch overheads. FlashMoE outperforms
these baselines by up to 4X at 4 H100s and 6.6X at 8 H100s, both at 128 experts. FlashMoE ’s
payload-efficient communication and scheduler-driven in-kernel dispatching allow it to sustain expert
parallelism without incurring the communication and orchestration penalties seen in other systems.
These results reinforce FlashMoE ’s scalability for ultra-sparse MoE configurations.

5 Limitations and Future Work

Engineering complexity. Fully fused, persistent kernels demand deep GPU + distributed-systems
expertise; future work may investigate compiler/DSL abstractions to lower this barrier.

FP16 inefficiency. Our FP16 path is suboptimal (§H) due to insufficient tuning. We anticipate
addressing this gap with autotuned GEMM operators like cuBLASDx [35] or CUTLASS builders.

Training support. This work targets inference; enabling training will require fusing backward
computation and gradient communication with new bookkeeping and task descriptors.

6 Conclusion

We introduce FlashMoE, the first work to fuse the entire Distributed MoE operator into a single
persistent GPU kernel that unifies computation, communication, and scheduling via actor-style
concurrency, warp specialization, and async (R)DMA. We address two dominant bottlenecks in
prior systems—CPU-managed synchronous communication and fragmented multi-kernel execution.
Empirically, FlashMoE achieves up to 6x speedup, 9x higher GPU utilization, and 5.7x throughput
for distributed MoE. Looking ahead, we see a shift from CPU orchestration to fully autonomous,
GPU-native pipelines—extending this fusion approach to training and beyond.

7 Acknowledgements

This research is supported by NSF Award #2444537 and ACE, one of the seven centers in JUMP 2.0,
a Semiconductor Research Corporation (SRC) program sponsored by DARPA. This work also used
resources of the National Energy Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231 using NERSC award ASCR-ERCAP0030076. We acknowledge and
thank Dr. Giulia Guidi for providing access to these NERSC supercomputing resources.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

DeepSeek-Al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412|
19437.

Meta Al The llama 4 herd: The beginning of a new era of natively multimodal ai innovation,
2025. URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Mosaic Research. Introducing dbrx: A new state-of-the-art open llm, 2024. URL https:
//www.databricks.com/blog/introducing-dbrx-new-state-art-open-11lm,

Snowflake AI Research. Snowflake arctic: The best llm for enterprise ai — effi-
ciently intelligent, truly open, 2024. URL https://www.snowflake.com/en/blog/
arctic-open-efficient-foundation-language-models-snowflake/.

OpenAl. GPT-OSS: Open-weight language models for reasoning and agentic tasks. https:
//github.com/openai/gpt-oss, August 2025. Models: gpt-oss-120b and gpt-o0ss-20b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L. ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper. pdf.

Siddharth Singh, Olatunji Ruwase, Ammar Ahmad Awan, Samyam Rajbhandari, Yuxiong He,
and Abhinav Bhatele. A hybrid tensor-expert-data parallelism approach to optimize mixture-of-
experts training. In Proceedings of the 37th ACM International Conference on Supercomputing,
ICS °23, page 203-214, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400700569. doi: 10.1145/3577193.3593704. URL https://doi.org/10.1145/
3577193.3593704.

Arjun Devraj, Eric Ding, Abhishek Vijaya Kumar, Robert Kleinberg, and Rachee Singh. Effi-
cient allreduce with stragglers, 2025. URL https://arxiv.org/abs/2505.23523.

Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus: A unified distributed training framework
for sparse mixture-of-experts models. In Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM °23, page 486-498, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702365. doi: 10.1145/3603269.3604869. URL https://doi.org/
10.1145/3603269.3604869.

Chenyu Jiang, Ye Tian, Zhen Jia, Shuai Zheng, Chuan Wu, and Yida Wang. Lancet: Accelerating
mixture-of-experts training via whole graph computation-communication overlapping. In P. Gib-
bons, G. Pekhimenko, and C. De Sa, editors, Proceedings of Machine Learning and Systems,
volume 6, pages 74-86, 2024. URL https://proceedings.mlsys.org/paper_files/
paper/2024/file/339caf4babfa281cae8adc6465343464-Paper-Conference.pdf.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-
of-experts inference and training to power next-generation Al scale. In Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 18332-18346. PMLR, 17-23 Jul 2022. URL https:
//proceedings.mlr.press/v162/rajbhandari22a.html,

Shulai Zhang, Ningxin Zheng, Haibin Lin, Ziheng Jiang, Wenlei Bao, Chengquan Jiang,
Qi Hou, Weihao Cui, Size Zheng, Li-Wen Chang, Quan Chen, and Xin Liu. Comet: Fine-
grained computation-communication overlapping for mixture-of-experts. In MLSys '25. URL
https://arxiv.org/abs/2502.19811|

NVIDIA. Megatron-lm, 2025. URL https://github.com/NVIDIA/Megatron-LM7tab=
readme-ov-file, v0.11.0.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li.
Fastermoe: modeling and optimizing training of large-scale dynamic pre-trained models. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 22), pages 120-134, 2022.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.snowflake.com/en/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/en/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://github.com/openai/gpt-oss
https://github.com/openai/gpt-oss
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3577193.3593704
https://doi.org/10.1145/3577193.3593704
https://arxiv.org/abs/2505.23523
https://doi.org/10.1145/3603269.3604869
https://doi.org/10.1145/3603269.3604869
https://proceedings.mlsys.org/paper_files/paper/2024/file/339caf45a6fa281cae8adc6465343464-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/339caf45a6fa281cae8adc6465343464-Paper-Conference.pdf
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://arxiv.org/abs/2502.19811
https://github.com/NVIDIA/Megatron-LM?tab=readme-ov-file
https://github.com/NVIDIA/Megatron-LM?tab=readme-ov-file

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Michael Wendt and Joshua Wyatt. Getting started with CUDA graphs. https://developer!
nvidia.com/blog/cuda-graphs/, 2019. Accessed: 2024-05-15.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
Amar Phanishayee, and Matei Zaharia. Efficient large-scale language model training on
gpu clusters using megatron-lm. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384421. doi: 10.1145/3458817.3476209.
URL https://doi.org/10.1145/3458817.3476209.

NVIDIA. NVIDIA Nsight Systems Metrics, . URL https://docs.nvidia,
com/nsight-systems/UserGuide/index.html?highlight=SM),2520active#
available-metrics|

NVIDIA. Nvidia openshmem library (nvshmem), 2025. URL https://docs.nvidia.com/
nvshmem/api/index.htmll v3.2.5.

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack
Kosaian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn
Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish
Gupta. CUTLASS, 2025. URL https://github.com/NVIDIA/cutlass.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael
Salas, Jithin Jose, Prabhat Ram, HoYuen Chau, Peng Cheng, Fan Yang, Mao Yang, and
Yongqgiang Xiong. Tutel: Adaptive mixture-of-experts at scale. In D. Song, M. Carbin,
and T. Chen, editors, Proceedings of Machine Learning and Systems, volume 5, pages 269—
287. Curan, 2023. URL https://proceedings.mlsys.org/paper_files/paper/2023/
file/5616d34cf8f£73942cfd5aa922842556-Paper-mlsys2023. pdf.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin
Li. Fastermoe: modeling and optimizing training of large-scale dynamic pre-trained mod-
els. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP *22, page 120-134, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392044. doi: 10.1145/3503221.3508418. URL
https://doi.org/10.1145/3503221.3508418.

Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao Ma, Gang Cao,
and Bin Cui. Flexmoe: Scaling large-scale sparse pre-trained model training via dynamic
device placement. Proc. ACM Manag. Data, 1(1), May 2023. doi: 10.1145/3588964. URL
https://doi.org/10.1145/3588964,

Shaohuai Shi, Xinglin Pan, Qiang Wang, Chengjian Liu, Xiaozhe Ren, Zhongzhe Hu, Yu Yang,
Bo Li, and Xiaowen Chu. Schemoe: An extensible mixture-of-experts distributed training
system with tasks scheduling. In Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys ’24, page 236-249, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704376. doi: 10.1145/3627703.3650083. URL
https://doi.org/10.1145/3627703.3650083.

Hulin Wang, Yaqi Xia, Donglin Yang, Xiaobo Zhou, and Dazhao Cheng. Harnessing inter-gpu
shared memory for seamless moe communication-computation fusion. In Proceedings of the
30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,
PPoPP 25, page 170-182, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400714436. doi: 10.1145/3710848.3710868. URL https://doi.org/10.1145/
3710848.3710868.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Advances in Neu-
ral Information Processing Systems, volume 35, pages 16344—16359. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
67d57c32e20£d0a7a302cb81d36e40d5-Paper-Conference.pdfl

12

https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://doi.org/10.1145/3458817.3476209
https://docs.nvidia.com/nsight-systems/UserGuide/index.html?highlight=SM%2520active#available-metrics
https://docs.nvidia.com/nsight-systems/UserGuide/index.html?highlight=SM%2520active#available-metrics
https://docs.nvidia.com/nsight-systems/UserGuide/index.html?highlight=SM%2520active#available-metrics
https://docs.nvidia.com/nvshmem/api/index.html
https://docs.nvidia.com/nvshmem/api/index.html
https://github.com/NVIDIA/cutlass
https://proceedings.mlsys.org/paper_files/paper/2023/file/5616d34cf8ff73942cfd5aa922842556-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/5616d34cf8ff73942cfd5aa922842556-Paper-mlsys2023.pdf
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3588964
https://doi.org/10.1145/3627703.3650083
https://doi.org/10.1145/3710848.3710868
https://doi.org/10.1145/3710848.3710868
https://proceedings.neurips.cc/paper_files/paper/ 2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/ 2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf

[26] Gul A. Agha. Actors: A model of concurrent computation in distributed systems. Technical
report, 1985. MIT Artificial Intelligence Laboratory Technical Reports.

[27] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for
artificial intelligence. IJCAI’73, page 235-245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

[28] Irene Greif. SEMANTICS OF COMMUNICATING PARALLEL PROCESSES. PhD thesis,
Massachusetts Institute of Technology, 1975.

[29] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with con-
ditional computation and automatic sharding. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=qrwe7XHTmYb,

[30] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason Duell,
Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu, Amir Kamil,
Rajesh Nishtala, Jimmy Su, Michael Welcome, and Tong Wen. Productivity and performance
using partitioned global address space languages. In Proceedings of the 2007 International
Workshop on Parallel Symbolic Computation, PASCO ’07, page 24-32, New York, NY, USA,
2007. Association for Computing Machinery. ISBN 9781595937414. doi: 10.1145/1278177.
1278183. URL https://doi.org/10.1145/1278177.1278183.

[31] Size Zheng, Wenlei Bao, Qi Hou, Xuegui Zheng, Jin Fang, Chenhui Huang, Tianqi Li, Hao-
jie Duanmu, Renze Chen, Ruifan Xu, Yifan Guo, Ningxin Zheng, Ziheng Jiang, Xinyi Di,
Dongyang Wang, Jianxi Ye, Haibin Lin, Li-Wen Chang, Ligiang Lu, Yun Liang, Jidong Zhai,
and Xin Liu. Triton-distributed: Programming overlapping kernels on distributed ai systems
with the triton compiler, 2025. URL https://arxiv.org/abs/2504.19442,

[32] Quentin Anthony, Yury Tokpanov, Paolo Glorioso, and Beren Millidge. Blackmamba: Mixture
of experts for state-space models, 2024. URL https://arxiv.org/abs/2402.01771l

[33] NVIDIA. Transformer engine, . URL https://github.com/NVIDIA/TransformerEngine,

[34] Bytedance. Flux’s overlap performance is worse than non-overlap [4xrtx 4090], 2025. URL
https://github.com/bytedance/flux/issues/111#issuecomment-2822823236.

[35] NVIDIA. cublasdx, 2025. URL https://docs.nvidia.com/cuda/cublasdx/\

[36] NERSC. Network - NERSC Documentation. https://docs.nersc.gov/performance/
network/, 2025. [Accessed 23-05-2025].

[37] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth limited problems
using one-sided communication and overlap. In Proceedings 20th IEEE International Parallel
& Distributed Processing Symposium, pages 10 pp.—, 2006. doi: 10.1109/IPDPS.2006.1639320.

[38] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydin Buluc, Katherine Yelick, and John
Owens. Atos: A task-parallel gpu scheduler for graph analytics. In Proceedings of the
51st International Conference on Parallel Processing, ICPP *22, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9781450397339. doi: 10.1145/3545008.3545056.
URL https://doi.org/10.1145/3545008.3545056.

[39] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed Maleki, Youshan
Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Saarikivi. Breaking the computation and
communication abstraction barrier in distributed machine learning workloads. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 22), pages 402416, 2022.

[40] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman, Dehao
Chen, Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang, et al. Overlap communication
with dependent computation via decomposition in large deep learning models. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 22), pages 93-106, 2022.

13

https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.1145/1278177.1278183
https://arxiv.org/abs/2504.19442
https://arxiv.org/abs/2402.01771
https://github.com/NVIDIA/TransformerEngine
https://github.com/bytedance/flux/issues/111#issuecomment-2822823236
https://docs.nvidia.com/cuda/cublasdx/
https://docs.nersc.gov/performance/network/
https://docs.nersc.gov/performance/network/
https://doi.org/10.1145/3545008.3545056

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan, Peng Sun, Xingcheng Zhang, and
Chao Yang. Centauri: Enabling efficient scheduling for communication-computation overlap
in large model training via communication partitioning. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 24), pages 178—191, 2024.

Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D Sinclair. T3:
Transparent tracking & triggering for fine-grained overlap of compute & collectives. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 24), pages 1146-1164, 2024.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang, Yanghua Peng,
Xiang Li, Cong Xie, Shibiao Nong, et al. {MegaScale}: Scaling large language model training
to more than 10,000 {GPUs}. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), pages 745-760, 2024.

Weigao Sun, Zhen Qin, Weixuan Sun, Shidi Li, Dong Li, Xuyang Shen, Yu Qiao, and Yiran
Zhong. CO2: Efficient distributed training with full communication-computation overlap. In
The Twelfth International Conference on Learning Representations (ICLR 24), 2024.

Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya Akella. Better together:
Jointly optimizing {ML} collective scheduling and execution planning using {SYNDICATE}.
In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23),
pages 809-824, 2023.

Hulin Wang, Yaqi Xia, Donglin Yang, Xiaobo Zhou, and Dazhao Cheng. Harnessing inter-gpu
shared memory for seamless moe communication-computation fusion. In Proceedings of the
30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,
pages 170-182, 2025.

Kishore Punniyamurthy, Khaled Hamidouche, and Bradford M Beckmann. Optimizing dis-
tributed ml communication with fused computation-collective operations. In SC24: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, pages
1-17, 2024.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael
Salas, Jithin Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts at scale. Proceedings
of Machine Learning and Systems (MLSys 23), 5:269-287, 2023.

Chenyu Jiang, Ye Tian, Zhen Jia, Shuai Zheng, Chuan Wu, and Yida Wang. Lancet: Accelerating
mixture-of-experts training via whole graph computation-communication overlapping. In
Proceedings of Machine Learning and Systems (MLSys 24), pages 74-86, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

XAI Grok-1. https://huggingface.co/xai-org/grok-1, 2024.

Snowflake. Snowflake arctic. https://huggingface.co/Snowflake/
snowflake-arctic-instruct} 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

14

https://huggingface.co/xai-org/grok-1
https://huggingface.co/Snowflake/snowflake-arctic-instruct
https://huggingface.co/Snowflake/snowflake-arctic-instruct

NeurlIPS Paper Checklist

1.

10.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported results in the evaluation section were obtained as the average of
32 executions preceded by 32 warmup runs.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

15

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

14.

15.

16.

Justification: We do not foresee immediate social or ethical impacts, but we acknowledge
that increased compute efficiency could amplify access to large-scale models, which raises
general considerations around prevalent issues such as environmental cost of training, and
responsible downstream use. We recommend that users of our system consider these factors
when integrating it into broader ML applications.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

16

A Supplementary Motivation

GPU 1 a
o : ;
E Lﬁ[Gate (Communication J[Expert(4, ¢)]Commw\]cation Combine(4, B)

Idle
<>

o 3¢ u ot ét 10t
(e[>)
5 - Skew.
£®@ 3 Gate }[CDmmuvﬁcation](ExFer‘t(B, b)] (Commuvﬁcc\tien] Combine(C, D)

; .
]2

@

o

; E. el mbis = 15 bi
6] 3 u iy

1

AN N\
T T

T T t
t 2t 3

- J

e

5
1€ s,

Figure 13: Overlapped Schedule (bottom) showing how idle time from the sequential schedule (top)
is repurposed for computation. FlashMoE implements the overlapped schedule.

In Figure[T4] we present empirical cumulative and raw distributions of AllroAll kernel runtime from
distributed training of a 1.3B GPT-3 MoE model across 32 A100 and 8 V100 GPUs. We use this
result to motivate the severity and prevalence of straggler effects. In Figure [I4b] we observe P95
communication performance degradation of 1.32X when compared to the mean actual kernel time.
This performance reduction is rather tame as the underlying hardware is a supercomputer well-tuned
against “software jitter” [36l]. However, we observe a more severe p95 performance loss of 11X in a
single-node Virtual Machine (VM). In line with prior HPC works [37, 38]], we argue that obviating
the inherent barrier in this synchronous collective communication would allow GPUs to repurpose
this observed idle time for downstream computation as depicted in Figure[T3]

Table 2: Straggler Delay within Synchronous All-to-All communication. We capture the distribution
of delay induced by stragglers across many steps. Let Actual Time ¢, denote the fastest kernel
execution time across all GPUs, and Total Time ¢ be the maximum recorded step time. We define
Delay as the maximum difference between ¢ and ¢,. Note Delay is idle time. For the 1x8 V100, we
profile 1750 steps and 600 steps for the 8x4 A100. See Figure [14{for the raw distribution.

System # Nodes #GPUs Median p95
Commercial VM (V100) 1 8 3.1x 11.4x
Supercomputer (A100) 8 32 1.09x 1.32x

B Related Work

Computation-Communication Overlap and Kernel Fusion. To reduce the communication over-
heads of synchronization in distributed DNN training, many research efforts have been focused on
increasing the overlap of computation and communication. For generic Transformer-based models
without MoE layers, many works [39-47] have provided insights and techniques to partition and
schedule computation and communication operations, aimed at finer-grained overlapping. To address
the challenges posed by AlltoAll communication and expert parallelism in MoE training, Tutel [48]

17

GPT-3 MoE 32x1.3B All-to-All Straggler Effect: 8x4 A100 GPT-3 MoE 32x1.3B All-to-All Straggler Effect: 8x4 A100

ECDF Raw Distribution
] 5.0
1.0 —— Total Time max delay = 3.22/ms
4.54 — Actual Time avg actual = 1.99ms
0.8+
4.0
M =0.28ms —
0.6 median = 0.19ms £€35
P95 = 0.64ms b :
£
0.4+ £ 3.0
2.5
0.24
2.0
0.04 15
0.0 0.5 1.0 15 2.0 2.5 3.0 0 100 200 300 400 500 600
Delay (ms) All-to-All Steps
(a) ECDF (b) Raw Distribution
GPT-3 MoE 8x350M All-to-All Straggler Effect: 1x8 V100 GPT-3 MoE 8x350M All-to-All Straggler Effect: 1x8 V100
ECDF Raw Distribution
1.04 —— Total Time
25 —— Actual Time
0.8+
20] |
u=1.17ms - RN , |
0.6 median = 0.57ms g max delay = 27.90 ms
P95 = 2.82ms b 15 avg actual = 0.27ms
£
0.4+ £
=10
0.24 5
0.04 0
0 5 10 15 20 25 0 250 500 750 1000 1250 1500 1750
Delay (ms) All-to-All Steps
(c) ECDF (d) Raw Distribution

Figure 14: Straggler effect of synchronous AlltoAll. M x N A100 or V100 denotes N GPUs within a
node across M nodes. Every GPU communicates with every other GPU per AllfoAll step. We capture
the distribution of delay induced by stragglers across many steps. Actual Time ¢, denotes the fastest
kernel execution time across all GPUs, conversely Total Time ¢ is the maximum recorded step time,
while Delay is the maximum difference between ¢ and ¢,. Note Delay is idle time.

and FasterMoE overlap AlltoAll with expert computation. Lancet [49] additionally enables both
non-MoE computation in forward pass and weight gradient computation in backward pass to be
overlapped with AlltoAll. Despite overlapping, the performance of these approaches is limited in
practice due to blocking synchronous collective communication with barriers. In contrast, Flash-
MoE fundamentally eliminates these inefficiencies with asynchronous, device-initiated data transfers
overlapped with tiled computation all within a single kernel. FlashMoE further differentiates itself
from SOTA works like COMET [[12] and DeepEP [1]], which also use this form of kernel-initiated
communication but at a coarse-grained granularity and without complete kernel fusion.

C Proof of Theorem 3.1]

We begin with two necessary definitions vital to the proof.

Definition C.1. Define a write as w(ps, pt, 1), where ps is the source process and i is an ordered
tuple indicating the index coordinates for L residing on the target process p;. A write-write conflict
occurs when there exist at least two distinct, un-synchronized, concurrent writes w1 (ps, , pt,, 41) and
wo(Psy, Pty i2), such that py, = py, and index coordinates iy = is but ps, # ps,

Definition C.2. For any source process ps, a valid index coordinate i = (p*,7,b, e, ¢) satisfies the
following:

1. For inter-device writes, it must hold that px = ps and b = 1. Note this also applies to
self-looping writes w(py, pt,).

18

2. For any write w(ps, pt, i), if b = 0, then ps = py. This rule describes intra-device staging
writes.

We restate Theorem [3.1] and outline its proof below.

Theorem C.1. The symmetric tensor layout L is write-write conflict-free.

Proof. As is the case for typical physical implementations, assume that each index coordinate ¢ maps
to a distinct memory segment in L. Next, we show by contradiction that no write-write conflicts can
exist when accessing L using valid . For simplicity, we only include the index coordinates when
describing a write. Assume that there exist at least two writes w1 (Ds, , Dt; 5 91), Wa(Ds,, Pty, t2) With
D+, = D+, and valid destination coordinates 71, ¢2, where 7; = iy lexicographically and both are
unpacked below.

i1 = (p1,71,b1,€1,¢1), G2 = (2,72, b2, €2, C2)

Note that intra-process writes always have distinct ¢; coordinates, where j € {0,C — 1}. For
inter-process transfers, we have two cases.

Case 1: ps, = ps,
Here, w; and wy are identical operations. This contradicts the definition of a conflict, which requires
that ps, # ps,. In practice, such repeat writes never even occur.

Case 2: ps, # Ds,
To ensure validity for 7; and 42, it is the case that p; = ps, and py = ps,. However, this implies that
i1 # 19 yielding a contradiction as desired. O

D Memory Overhead

We measure the GPU memory required for the symmetric tensor L and runtime bookkeeping state of
FlashMoE. The memory overhead primarily depends on the tile size, expert capacity (EC'), and the
number of experts (E). Table 3] summarizes the memory overhead across recent MoE models [50H53]]
during inference, showing that FlashMoE maintains a modest and predictable memory footprint. In
particular, the symmetric tensor (S7") accounts for at most 2.15% additional memory relative to the
total inference memory requirements.

Table 3: Memory overhead of FlashMOoE (tile size bM = 128, Size(T') = Tokens x 4KB).

Model Params S E H I ST (GB) Model (GB) Overhead (%)
Moonlight-16B-A3B 16B 8K 64 2K 1.38K 0.25 59 0.49
Grok-1 314B 8K 8 6K 32K 0.75 1169 0.15
Snowflake-Arctic 479B 4K 128 7K 4.75K 1.75 1784 0.12
Qwen3-235B-A22B 235B 40K 128 4K 15K 3.00 875 0.38
Mixtral 8x7B 47B 32K 8 4K 14K 2.00 175 2.15
DeepSeek-V3 685B 160K 256 7K 2K 1.50 2551 0.11

19

E Task Implementation

1 #define GEMMs 2

2 struct __align__(16) Task {

3 const byte* aData;

4 array<const byte*, GEMMs> bData;
5 array<byte*, GEMMs> cData;

6 array<const byte*, GEMMs> dData;
7 byte* rcData;

8 uinté4_t* flags;

9

uint M;
10 uint syncIdx;
11 uint tileIdx;
12 uint batchIdx;
13 uint peerIdx;
14 uint expertIdx;
15 uint isPeerRemote;
16 TaskType taskType;
17 uintl16_t tileSize;
18 // Pad till 128-byte cache line
19 uint padding[6] = {};

20 }

Figure 15: Task Struct. TaskType € {GEM My, GEM M,, Combine}

20

F Actors

F.1 Processor

Algorithm 2: Processor Actor: executed by a block

1 begin
tQ + GetTQ()
signal <+ 0
// shared memory variables
task «+ {}
interrupt <— False
complete < False
while interrupt == False do
if warpld == 0 then
if threadld == 0 then
awaitTaskFromScheduler (interrupt, signal)
FencedNotifyRQ(ready)
end if
syncwarp()
warpReadTQ(tQ, signal, task)
end if
syncthreads()
if interrupt == False then
switch rask.Type do
case GEM M, do
// fused GEMM, epilogue and async tile staging
fGET(GEM My, task)
if threadId == 0 then
| complete < NotifyTileCompletion()
end if
syncthreads()
if complete == True then
| NotifySchedulerNextGEMM/({Q)
end if
end case
case GEM M, do
// fused GEMM, epilogue and async tile transfer
fGET(GEM M, task)
end case
case Combine do
| combine(task)
end case
end switch
end if
40 end while
41 end

o LN NN R W N

W oW W N NN NN R e e e e e e =
B REREBRBRYUBRRUR[VREGxIas nmwpr S

W W W W
[LY TR A

W W
® 9

W
o

21

F.2 Scheduler

Algorithm 3: Scheduler Actor: executed by one warp

1 begin

2 scheduled < 0

3 tT'B «+ 0

4 tqState «+ {}

5 pT DB + GetProcessorDoorbell()
6 | sTDB «+ GetSubscriberDoorbell()
7 taskBound + GetTaskBound|()

8 tT B + AtomicLoad(taskBound)

9 // circular buffer ready queue
1w | rQ <+ {}

11 // Populate ready queue with Processor ids
12 PopulateRQ(rQ)

13 while scheduled < tT'B do

14 lt«<0

—
W

do in parallel
Sweep doorbells and populate observed task counts into tqState
Aggregate locally observed task counts into It
end
qS, taskTally < 0
// gS is the inclusive output
WarplnclusiveSum(l¢, ¢S, tasktally)
while tasktally > 0 do
Repopulate r() with ready processor ids
do in parallel
| Starting at 7Q[qS], signal processors about task indices from tqState
end
end while
if threadId == 0 then
| tTB « AtomicLoad(taskBound)
end if
tT B + WarpBroadcast(tT B)
end while
InterruptSubscribers()
34 InterruptProcessors()
35 end

w W NN NN N e e e
ucgwﬂgﬁﬁgn—ocw\na

w W
w N

22

F.3 Subscriber

Algorithm 4: Subscriber Actor: executed by three warps

Input: T, € (R?)7*C, G, € RS*E 0 e RSH | X g REXHXD
1 begin

2 interrupt < GetSharedInterrupt()
3 flags <+ GetSymmetricFlags()
4 tQ <+ GetTQ()
5 // Predefined upper bound on the number of tasks.
6 // We modulate this value to the actual task count computed
7 // dispatch signals received from peer GPUs
8 taskBound + GetTaskBound|()
9 while AtomicLoad (interrupt) == False do
10 // dispatch flags
11 do in parallel
12 Visit dispatch flags
13 Atomically retrieve signal
14 if Signal is set and flag is not visited then
15 Mark visited
16 SelfCorrectTaskBound(taskBound, Signal)
17 Enforce memory consistency before consuming packet
18 Decode packet into a set of GE M M, task descriptors using X
19 Write task descriptors to tQ
20 Notify Scheduler of decoded tasks
21 end if
22 end
23 Advance flags by number of dispatch flags length
24 Atomically retrieve signal
25 // combine signals
26 do in parallel
27 Visit combine flags: one per tile
28 if Signal is set and flag is not visited then
29 Mark visited
30 Enforce memory consistency before consuming packet
31 Decode packet into a set of combine task descriptors using T, Gg, O
32 Write task descriptors to tQ
33 Notify Scheduler of decoded tasks
34 end if
35 end
36 end while
37 end

23

G Implementation

Table 4: Implementation metrics of FlashMoE.

Metric Value
Total lines of code (CUDA/C++) 6820
Kernel stack frame size 0B
Spill stores (per thread) 0
Spill loads (per thread) 0
Shared memory usage (per block) 46 KB
Registers per thread 255
Max active blocks per SM 2
Compilation time 53 seconds
Binary size 29 MB

H FP16 Memory Throughput

24668

16059 M8

51.47Minst
0068

S1MReq

Shared
Memory

1.15MReq

(b) Memory subsystem throughput for FP32

Figure 16: Here, we report the total A100 memory throughput for both FP16 (top) and FP32 (bottom)
variants of FlashMoE. Notably, the FP16 implementation issues approximately 2x more shared
memory instructions compared to its FP32 counterpart under identical workloads. We attribute this
inefficiency to suboptimal shared memory layouts in FlashMoE when operating on half-precision
data. While this bottleneck is addressable through improved layout strategies, we leave its resolution
to future work.

24

	Introduction
	Motivation
	Fused MoE Kernel Design
	Task Abstraction for Computation
	Symmetric Tensor Layout for Inter-GPU Communication
	In-place Padding for Payload Efficiency

	Evaluation
	Forward Latency
	GPU Utilization
	Throughput
	Overlap Efficiency
	Expert Scalability

	Limitations and Future Work
	Conclusion
	Acknowledgements
	Supplementary Motivation
	Related Work
	Proof of Theorem 3.1
	Memory Overhead
	Task Implementation
	Actors
	Processor
	Scheduler
	Subscriber

	Implementation
	FP16 Memory Throughput

