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Abstract001

Vague quantifiers such as a few and many are002
influenced by many contextual factors, includ-003
ing how many objects are present in a given004
context. In this work, we evaluate the extent005
to which vision-and-language models (VLMs)006
are compatible with humans when producing007
or judging the appropriateness of vague quan-008
tifiers in visual contexts. We release a novel009
dataset, VAQUUM, containing 20300 human010
ratings on quantified statements across a total011
of 1089 images. Using this dataset, we compare012
human judgments and VLM predictions using013
three different evaluation methods. Our find-014
ings show that VLMs, like humans, are influ-015
enced by object counts in vague quantifier use.016
However, we find significant inconsistencies017
across models in different evaluation settings,018
suggesting that judging and producing vague019
quantifiers rely on two different processes.020

1 Introduction021

Everyday conversations are replete with statements022

containing vague quantifiers, such as “There are023

many horses” (Figure 1). Despite the fact that they024

are vague, they cause surprisingly little misunder-025

standing among interlocutors (Jucker et al., 2003).026

Vague quantifiers, unlike crisp quantifiers, allow027

for borderline cases in which it is unclear whether028

the quantifier applies or not, and where we can also029

expect some variation in the extent to which speak-030

ers would use it. For example, all does not allow for031

borderline cases, but it is unclear when a quantity032

ceases to be a few or how many many is. Despite033

the fact that vague quantifiers have long been a034

subject of investigation among formal semanticists035

(see e.g. Nouwen, 2010) and (psycho)linguists (e.g.036

Moxey and Sanford, 1993a; van Deemter, 2010),037

they have received relatively little attention in the038

field of natural language processing (NLP).039

In visually grounded settings, the use of vague040

quantifiers can be influenced by factors related to041

How accurate is 
[Statement 1]?
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Statement 1 
There are a lot of horses in the image
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the amount of horses?

P([Statement 1]) = 0.4 
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[Statement 1]?

A: 70

Which is most accurate?
(A) [Statement 1]       
(B) [Statement 2]
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There are a few horses in the image

80
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Figure 1: Experiments in this work. We (1) ask human
participants to rate, using a slider, the appropriateness
of statements containing vague quantifiers in relation to
images. We (2) extract VLM generation probabilities
for those same statements, (3) prompt the models to
generate an accuracy score for them and (4) evaluate
probabilities assigned to these statements in a multiple-
choice setup. The image above is originally from the
FSC-147 dataset (Ranjan et al., 2021).

the scene itself, such as the number of entities ob- 042

served (e.g. Coventry et al., 2005) as well as their 043

sizes (Hörmann, 1983; Coventry et al., 2010), but 044

also by information like the speaker’s and hearer’s 045

personal beliefs and attitudes (Moxey and Sanford, 046

2000; Jucker et al., 2003). This broad range of 047

factors, coupled with their vagueness, raises the 048

question of how well computational models of lan- 049

guage are able to capture human patterns in the 050

comprehension and use of such expressions. In 051

this paper, we explore this question with vision 052

and language models (VLMs) in multimodal set- 053

tings involving quantified statements about images. 054

The inclusion of a vision modality allows us to 055

provide context in the form of both visual and tex- 056

tual information (Zhang et al., 2024; Ghosh et al., 057

2024). Our work follows the spirit of recent re- 058

search exploring the grounding abilities of VLMs 059
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(e.g. Zellers et al., 2019; Thrush et al., 2022; Zhang060

et al., 2022a; Parcalabescu et al., 2022; Chen et al.,061

2023; Kamath et al., 2024; Wang et al., 2024). We062

present VAQUUM, a new dataset which pairs im-063

ages with human judgments on the acceptability064

of quantified statements. We also examine to what065

extent visual cues influence state-of-the-art VLMs’066

understanding and production of expressions con-067

taining vague quantifiers, and how this compares068

to human linguistic intuitions (Figure 1).069

The contributions of this paper are as follows.1070

• We release VAQUUM (Vague Quantifiers071

with Human Judgments), a new dataset pair-072

ing images of different types of objects with073

their counts, as well as human judgments of074

different quantified statements corresponding075

to the image.076

• We analyze the features of the visual con-077

text that influence both human and model078

judgments on the appropriateness of differ-079

ent vague quantifiers, including counts, the080

segmentation area occupied by the target ob-081

jects, and aspects of world knowledge such as082

their normative size.083

• We show that VLMs do, to some extent, fol-084

low human patterns in judging the appropri-085

ateness of vague quantifiers, but instruction-086

tuned models generally align better. However,087

the behavior of models and their degree of088

alignment with human judgments depends on089

the evaluation paradigm used.090

2 Related Work091

The use and judgment of vague quantifiers has been092

studied extensively in the psycholinguistics liter-093

ature. Recent years have also seen a growing but094

relatively limited interest in studying (V)LM be-095

havior with linguistic quantifiers.096

Vague quantifiers in human language Numbers097

have been shown to play a significant role in the098

understanding and use of vague quantifiers in hu-099

mans (see e.g. Solt, 2011). It has been suggested100

that humans make use of an approximate number101

system (Feigenson et al., 2004; Dehaene, 2011;102

Coventry et al., 2005), where vague terms might103

not refer to exact numbers but rather approxima-104

tions thereof. However, it has also been shown105

that quantifier comprehension and use go beyond106

1Code and data will be publicly available.

(approximations of) cardinality of the targeted ob- 107

ject. Factors include object size (Hörmann, 1983; 108

Newstead and Coventry, 2000); the number and 109

proportions of other objects in the scene (Coven- 110

try et al., 2005, 2010; Pezzelle et al., 2018); set 111

size (e.g. the answer to a question such as: “Sev- 112

eral marbles from a set of 12 marbles would be 113

marbles”; Newstead et al., 1987); the functionality 114

of objects in the scene (Newstead and Coventry, 115

2000); and object grouping and spacing (Coventry 116

et al., 2005). 117

In conversations and texts, the choice of quanti- 118

fier influences the (expected) rhetorical impact of 119

a statement, and vice versa. Moxey and Sanford 120

(1993b) show that the choice of quantifier can re- 121

veal a speaker’s prior expectations regarding the 122

frequency of the object in the scene. Moreover, 123

several works have outlined the different perspec- 124

tives that a few and few convey: while “a few peo- 125

ple were at the party” focuses on those who were 126

present, “few people were at the party” puts the 127

emphasis on those who did not attend (Moxey and 128

Sanford, 2000; Paterson et al., 2009). 129

(Vague) Quantification with (V)LMs Most 130

work on evaluating VLMs on quantifiers has fo- 131

cused on crisp quantifiers (e.g. none, all and more 132

than half ) rather than vague ones. Sorodoc et al. 133

(2016) show that neural networks can be trained to 134

learn the quantifiers no, some and all without the 135

need for an explicit counting system. Sorodoc et al. 136

(2018) extend this to a visual question-answering 137

(VQA) task with natural images. They include 138

vague expressions with few and some, but define 139

these terms using specific proportions (e.g. few ap- 140

plies for predications involving less than 17% of ob- 141

jects in the domain). A similar definition is adapted 142

by Pezzelle et al. (2017), who show that models 143

require different mechanisms for learning cardi- 144

nals and quantifiers. Note that once the range of a 145

quantifier is defined, it can no longer be considered 146

vague as borderline cases are excluded. 147

Moving beyond the gold label approach, Testoni 148

et al. (2019) demonstrate that models using both au- 149

dio and visual input to select appropriate quantifiers 150

can achieve results that align with human distribu- 151

tions reported by Pezzelle et al. (2018). Enyan et al. 152

(2024) compare human and large language model 153

(LLM) responses on questions such as “There are 154

500 balls. 234 of them are yellow. Are many balls 155

yellow?” They find that responses generated by 156

LLMs align more closely with human judgments 157
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on crisp quantifiers than on vague ones. Belém158

et al. (2024) find that LLMs are able to map uncer-159

tainty expressions such as probably and unlikely160

to probabilistic (numerical) responses in a human-161

like fashion. More akin to our experiments, Testoni162

et al. (2024) evaluate three VLMs on their abilities163

to assign appropriate quantifiers to visual scenes,164

prompting models to select one out of nine quanti-165

fiers in response to questions such as “How many166

animals are there in the image?”, with synthetic167

images generated by Pezzelle et al. (2018). None168

of the models show any correlation with the distri-169

bution of responses provided by human annotators,170

which the authors suggest might be due to the mod-171

els’ poor counting abilities. Our approach diverges172

from theirs on several points. First, we use natural173

images rather than artificial ones, offering a more174

realistic setting for evaluating VLMs. Additionally,175

we use a wider range of methods to provide a more176

comprehensive assessment of model behavior.177

3 The VAQUUM Dataset178

We construct the VAQUUM dataset: Vague179

Quantifiers with Human Judgments.180

Images We utilize annotated datasets used for181

object counting in computer vision. FSC-147 (Ran-182

jan et al., 2021) contains 6146 images across 147183

object types, with annotated object counts ranging184

from 7 to 3731. Hobley and Prisacariu (2023) re-185

fine and deduplicate this dataset to release FSC-133186

(containing 133 object types). We sample images187

from FSC-133 and exclude a total of 22 object cate-188

gories for several reasons, such as their uncountable189

nature (e.g. fresh cut), obscurity (e.g. carrom board190

pieces) or simply because the images do not depict191

the object from the label. We also remap 37 cate-192

gories to either their plural form where necessary193

or to their basic-level category (e.g. mapping crows194

to birds; cf. Rosch et al., 1976). Since the lowest195

count in FSC-133 is 7, we complement this dataset196

with samples from the test set of TallyQA (Acharya197

et al., 2019), which includes images and annotated198

counts sourced from Visual Genome (Krishna et al.,199

2017) and VQA2 (Antol et al., 2015; Goyal et al.,200

2017). Here, we use images classified as “simple”201

in TallyQA, which have counts between 1 and 15.202

From this set, we exclude images for which the la-203

belled object is not in the set of remapped FSC-133204

labels. We discard all counts below 2 (from Tal-205

lyQA) and above 100 (from FSC-133). We include206

three types of object features in our dataset:207

1. Count bin To address the imbalance in object 208

counts within the merged dataset, we group the 99 209

distinct counts (ranging from 2 to 100) into bins 210

of three (counts from 2 to 4, 5 to 7, etc). From 211

each bin, we randomly sample 33 images, yielding 212

1089 images, evenly distributed across 33 count 213

bins, covering counts from 2 to 100. 214

2. Segmentation area We estimate the segmen- 215

tation area of the object(s) in each image, i.e. the 216

ratio of pixels in the objects’ bounding region over 217

the total image area. For each image, we prompt 218

CLIPSeg (Lüddecke and Ecker, 2022), with the 219

name of the object type (e.g birds). The output log- 220

its are than passed through a sigmoid function, and 221

the resulting values are thresholded. The resulting 222

binary mask is used to compute the segmentation 223

area, which essentially corresponds to “object size” 224

in previous work. 225

3. Size norm We investigate the impact of real- 226

world object size using the object-specific norms in 227

the THINGSplus database (Stoinski et al., 2024), 228

an extension of THINGS (Hebart et al., 2019). 229

Such norms are collected from human judges, and 230

they reflect “average” or “typical” values for spe- 231

cific properties. The size norm tells us something 232

about an object’s perceived real-life size, on an arbi- 233

trary scale. Objects that are not explicitly present in 234

this dataset are either mapped to the closest (base) 235

category or discarded in our size norm analyses. 236

3.1 Human Judgments 237

We recruited 203 participants, all native and pri- 238

mary speakers of English, through Prolific (52.2% 239

female; 45.8% male; 1.5% undisclosed). Partici- 240

pant ages ranged from 25 to 84, with the majority 241

aged 25-34 (31.5%) and 35-44 (25.6%). 242

3.1.1 Procedure 243

We presented each participant with 100 questions 244

in a random order. Each of these questions consist 245

of an image and a statement of the form “There are 246

[QUANT] [OBJECT] in the image.” Here, OBJECT is 247

the plural form of the object depicted and QUANT 248

∈ {few, a few, some, many, a lot of } (e.g. “There 249

are a lot of apples in the image.”). For each im- 250

age, we also include the unquantified statement 251

(omitting QUANT). Participants were asked to rate, 252

using a slider, how accurate the statement is for 253

the image (see Figure 1). The slider ranges from 254

“Completely inaccurate” to “Completely accurate”. 255

No participant saw the same image twice. 256
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Figure 2: Average human ratings with increasing counts, segmentation area and size norms. For each variable
and each quantifier, we also report Spearman’s ρ, which are all statistically significant (p < 0.05).

few a few some many a lot of ME

C -0.37 -0.38 -0.20 0.38 0.42 0.03
SG -0.07 -0.10 -0.05 0.08 0.06 0.04
SN -0.13 -0.11 -0.07 0.14 0.17 0.01∗

ME -1.71 -1.60 -0.73 -0.60 -0.69

Table 1: Estimates of the linear mixed effects model
fit to data in VAQUUM. C=Count, SG=Segmentation,
SN=Size norm, ME=Main effect. All numbers are sta-
tistically significant (p < 0.05), except the one marked
(*). For main effects, the quantifier is releveled to the
unquantified case, with intercept estimated at β = 0.89.

3.1.2 Analysis257

We analyze the effects of count, segmentation area258

and size norms on the collected appropriateness259

ratings of the vague quantifiers. We summarize the260

results in Figure 2.261

We observe from Figure 2 that an increase in262

count leads to an increase in the average ratings as-263

signed to statements containing many and a lot of,264

whose trajectories are nearly identical. Conversely,265

for the complementary pair few and a few, we find266

that average ratings decrease as object count in-267

creases. As expected, judgments for unquantified268

control statements are independent of count, with269

the exception of a slightly lower rating for the low-270

est counts. We also observe that few/a few and271

many/a lot of exhibit opposing trends in relation to272

count, again as expected. These observations are273

broadly in line with findings by e.g. Coventry et al.274

(2010). Average ratings for some also decrease as275

count increases, though less steeply than for (a) few.276

While signs of Spearman’s coefficient are the same277

across all predictors, the strength of the correlation278

for segmentation area and size norm is noticeably279

lower. Furthermore, few/a few and many/a lot of280

do not exhibit opposing trends as a function of area281

or size norm, as they do with count.282

To gain further insights into the relations be- 283

tween participants ratings and object count and size, 284

we fit a linear mixed effects model (LMM) to our 285

data, predicting human judgments from the fixed 286

effects of quantifiers, count, segmentation area and 287

size norm and using participants and object cat- 288

egory as random effects. We include interaction 289

terms between pairs of predictors to investigate 290

their joint influence on judgments. For full details 291

of the LMM, we refer to Appendix B. 292

We report LMM estimates of the main effects 293

and two-way interaction effects in Table 1. All 294

main effects except those for size norm are statis- 295

tically significant. For the two-way interactions, 296

few, a few and some consistently show negative 297

estimates across all predictors, while many and a 298

lot of are consistently positive. As expected given 299

the trends in Figure 2, object count exhibits the 300

strongest impact on each quantifier. Estimates for 301

segmentation area and size norm display similar 302

trends, but with weaker effects. The LMM ex- 303

plains 50.3% of the total variance in our participant 304

data (R2c = 0.503, R2m = 0.459). The random 305

effects present moderate variability at participant 306

level, with a variance of 0.042 suggesting that indi- 307

vidual differences among participants explain some 308

of the variance in judgments. In contrast, the ob- 309

ject random effect accounts for minimal variance 310

(0.002), indicating that differences between objects 311

have little influence on the judgments given by par- 312

ticipants in our experiments. 313

4 Experiment 1: Production Probabilities 314

Our first series of experiments studies the predicted 315

production probabilities of quantified statements by 316

SOTA VLMs. We prompt the models with “How 317

would you describe the amount of [OBJECT] in the 318

image?” We extract log probabilities, conditioned 319

on this prompt and the image, for the quantified 320
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Figure 3: Log probabilities as functions of count, segmentation area and size norm. The patterns reported for
LLaVA-NeXT and LLaVA-OneVision are most similar to human ratings. We find that InstructBLIP and Molmo do
not distinguish between the quantifiers at all, while BLIP-2 moderately correlates with humans for many/a lot of.

statements in VAQUUM, as well as the unquanti-321

fied version. All extracted scores are normalized by322

token length. We consider the following models.323

BLIP-2 (Li et al., 2023). We use the checkpoint324

powered by OPT-6.7B (Zhang et al., 2022b) con-325

nected to a EVA-CLIP ViT-g (Radford et al., 2021;326

Fang et al., 2023) image encoder via a lightweight327

Query transformer.328

InstructBLIP (Dai et al., 2023). We use the329

checkpoint with a Vicuna-13B (Zheng et al., 2023)330

language backbone, instruction-tuned on BLIP-2.331

LLaVA-NeXT (Liu et al., 2024). We use the332

7B checkpoint with a Mistral (Jiang et al., 2023)333

language backbone.334

LLaVA-OneVision (Li et al., 2024). We utilize335

the 7B checkpoint, which integrates a SigLIP (Zhai336

et al., 2023) vision encoder with a Qwen2 (Yang337

et al., 2024) language decoder.338

Molmo (Deitke et al., 2024). We use the 7B-D339

checkpoint, which connects a ViT image encoder340

to Qwen2.7B via a connector MLP.341

Figure 3 displays predicted log probabilities as a342

function of count, segmentation area and size norm343

and Table 2 reports correlations between model344

predictions and human judgments.345

Alignment with humans Of the VLMs tested, 346

the two LLaVA models exhibit the highest correla- 347

tion with the human data in VAQUUM. For these 348

models, we observe in Figure 3 patterns similar to 349

those of VAQUUM in Figure 2. Probabilities for 350

many and a lot of increase as a function of count, 351

while few and a few show a downward trend. Given 352

that the question in the prompt focused explicitly 353

on the amount of objects, the unquantified sen- 354

tence is expected to be generally dispreferred. The 355

trends in Figure 3 suggest that the LLaVA models 356

can indeed draw this distinction between quantified 357

and unquantified statements, as the unquantified 358

expression displays lowest-ranking log probabil- 359

ities across count, segmentation and size norm. 360

However, other models do not reveal that same 361

ability. This is most pronounced for InstructBLIP 362

and Molmo, which generally tend to favor the un- 363

quantified statement as a response to the question. 364

These models also show the same pattern across 365

all quantifiers, further confirming their inability to 366

differentiate among them. While the behavior of 367

BLIP-2 is seemingly random, Figure 3 shows an 368

upward trend for all quantifiers as a function of 369

count. 370
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Model few a few some many a lot of

BLIP-2 -0.18 -0.19 -0.06 0.14 0.13
InstBLIP 0.06 0.04 -0.03 -0.01 -0.04
LLaVA-N 0.34 0.39 0.21 0.43 0.52
LLaVA-O 0.30 0.40 0.22 0.52 0.54
Molmo 0.16 0.20 0.07 -0.17 -0.21

Table 2: Pearson’s correlation between human rat-
ings and model log probabilities. Numbers in boldface
are statistically significant (p < 0.05).

few a few some many a lot of ME

C 0.00 -0.01 -0.02 0.22 0.22 -0.09
SG -0.02 -0.01 0.01 0.07 0.05 -0.05
SN 0.04 0.05 -0.03 0.12 0.09 -0.05

ME 0.39 1.68 0.77 2.46 2.32

Table 3: Estimates of the LMM for log probabilities
of LLaVA-OneVision. C=Count, SG=Segmentation,
SN=Size norm, ME=Main effect. Boldface indicates
statistical significance (p < 0.05). For the main effects,
the quantifier is releveled to the unquantified case and
the estimate of the intercept is β = -1.25.

Linear mixed model In Table 3, we display the371

estimates of a linear mixed effects model fit to372

log probabilities of LLaVA-OneVision (see Ap-373

pendix B for details and Appendix C for the re-374

maining models). Following our approach in §3,375

we predict model probabilities from the fixed ef-376

fects of quantifiers, count, segmentation area and377

size norm while including object category as a ran-378

dom effect. The latter shows a variance of 0.056,379

indicating that object category accounts for a mod-380

erate amount of variance among predicted log prob-381

ability scores. Moreover, we see in Table 3 that382

many and a lot of show statistically significant in-383

teractions with all predictors, with the strongest384

effects observed with count, just as was the case385

for the human judgments. The estimates for the386

other quantifiers, however, are very different from387

what we found for humans. Overall, the LMM388

explains 91.2% of the total variance in our data389

(R2m = 0.861, R2c = 0.912).390

Prompts should target amounts For most mod-391

els, we find that simply changing the question from392

“How would you describe the amount of [OBJECT]393

in the image?” to “How would you describe the394

image?” yields different patterns in the results395

(see Appendix C). Most notably, we find that the396

observed similarity between trends in human judg-397

ments and model predictions disappear once the398

prompt does not focus on amounts.399

Interim conclusion In §3.1, most estimates of 400

the LMM fit to participant data were statisti- 401

cally significant. Moreover, object count made 402

the biggest difference across all quantifiers. For 403

LLaVA-OneVision, the model displaying the high- 404

est Pearson’s correlation with human data in Ta- 405

ble 2, a similar result can be found in Table 3 for 406

many and a lot of : effects of interaction with object 407

count are most pronounced, after which size norms 408

have a slightly higher impact than segmentation 409

area. However, these effects are absent for the other 410

quantifiers. BLIP-2, InstructBLIP and Molmo do 411

not show meaningful interactions between their 412

predicted log probabilities and the three contextual 413

variables. 414

5 Experiment 2: Generating Judgments 415

We now evaluate the instruction-tuned VLMs using 416

an approach that is more akin to the way VAQUUM 417

was constructed in §3. That is, we prompt the mod- 418

els to explicitly rate the acceptability of quantified 419

statements. We experimented with 10 different 420

prompts that are variations on the question shown 421

to human participants in §3.1. Drawing inspira- 422

tion from prompts used by Belém et al. (2024), we 423

center our analyses in the remainder of this sec- 424

tion around the following prompt: “On a scale of 425

0 (completely inaccurate) to 100 (completely ac- 426

curate), how accurate is the following statement 427

for the image? Please respond with one of the 428

following options: 0, 5, 10, 15, 20, 25, 30, 35, 429

40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 430

100. [Statement]”, where Statement is an ex- 431

pression from the VAQUUM dataset. We refer to 432

Appendix D for the complete list of prompts tested. 433

For VLMs, appropriateness is not gradable 434

We find that in this evaluation setup, BLIP-2 and 435

InstructBLIP generally fail to generate numerical 436

responses to the prompts we tested, despite some 437

prompts explicitly encouraging them to only re- 438

spond with a number. The two LLaVA models and 439

Molmo consistently provide numerical responses 440

to most of the prompt templates tested. However, 441

while we construct the prompts in such a way that 442

VLMs are encouraged to provide a response that 443

falls between a certain range, the vast majority of 444

model responses tend towards the extremes (i.e. on 445

the lower or upper bound of the specified range; 446

see Appendix D for a distribution of responses). 447
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Figure 4: Scores generated by VLMs in Experiment 2.
Note that we do not display results for BLIP-2 and In-
structBLIP, as those models generally failed to provide
numerical responses to the prompt.

Some is generally appropriate When numeric448

answers to prompts tend towards the extremes of a449

scale, it can be informative to aggregate generated450

scores, which is virtually the same as calculating451

the relative frequency of a VLM dis/agreeing with452

the statements. We report this in Figure 4 for ob-453

ject count and make the following observations.454

First, statements containing the quantifier few are455

rarely deemed appropriate. For the models in the456

LLaVA family, arguably the most interesting de-457

viation from Figure 3 is that in this setting, some458

is considered an accurate quantifier, regardless of459

object count. Indeed, we observe that the trajectory460

of some in Figure 4 corresponds to that of the un-461

quantified condition, for which the statements are,462

as anticipated, generally accepted. We hypothesize463

that in the case of judging the appropriateness of464

some, this vague quantifier could be interpreted as465

an existential quantifier. That is, “There are some466

apples in the image” can be regarded as a confirma-467

tion of the existence of apples in the image.468

Interim conclusion Experiment 1 showed that469

object count has an influence on model predictions470

for many and a lot of. Similar patterns emerge in471

Figure 4, where average scores for these quantifiers472

increase with count. Discrepancies between results473

from Experiments 1 and 2 show that in a setting474

where models are explicitly required to provide475

judgments for statements (Exp 2), the outcomes476

are unrelated to the models’ log probabilities for477

the same statements (Exp 1). In Experiment 1, log478

probabilities are extracted using an autoregressive479

method compatible with the pretraining objective 480

of the LLM backbone of a VLM. In contrast, Ex- 481

periment 2 relies on model abilities acquired dur- 482

ing post-training, which further modifies model 483

parameters. The discrepancies we observe align 484

with independent observations that post-training 485

can negatively impact model calibration (Kalai and 486

Vempala, 2024; Zhu et al., 2023). 487

6 Experiment 3: Multiple-Choice QA 488

Finally, we evaluate VLM judgments in a multiple- 489

choice question-answering (MCQA) setup using 490

a standard MCQA template of the form “Ques- 491

tion: Which statement is most accurate for the im- 492

age? Select the answer from the options below. 493

[OPTIONS] Answer: (”, with OPTIONS being the 494

set of all statements for an image in VAQUUM, 495

labeled (A) to (F). For each image, the order of 496

the expressions is shuffled to mitigate the effects of 497

positional biases (Zong et al., 2024). To compare 498

the different quantifiers and ensure that the VLMs 499

do not produce irrelevant output, we extract the 500

log probabilities of the labels rather than allowing 501

VLMs to generate a response. Note that, differ- 502

ently from §4 and §5, the VLMs are now presented 503

with all statements before being prompted for a 504

response. 505

In Figure 5, we report the predicted log proba- 506

bilities of instruction-tuned VLMs as a function of 507

count. Table 4 shows the correlation of these scores 508

with both the human judgments and the log prob- 509

abilities from Experiment 1. It is clear that in this 510

setup, too, InstructBLIP fails to differentiate be- 511

tween the various quantified statements. However, 512

while Molmo behaved similarly in Experiment 1, 513

it distinguishes between quantifiers in the current 514

setting. For Molmo and the two LLaVA models, 515

count influences predictions for many/a lot of and 516

for few/a few in the expected direction. This is 517

most pronounced in the lower count ranges. Pat- 518

terns for some once again differ from those found 519

in our earlier experiments. While probabilities for 520

some generally fell between those of few and a few 521

in Experiment 1, and some was generally judged 522

appropriate in Experiment 2, we now observe that 523

it follows the same trend as few and a few, while 524

being slightly preferred over these two by LLaVA- 525

OneVision. 526

Interim conclusion The two LLaVA models and 527

Molmo show moderate correlation with human 528

scores in VAQUUM. They also correlate with their 529
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Figure 5: Log probabilities extracted for multiple-choice labels in Experiment 3. We do not display results for
BLIP-2 because that model is not instruction-tuned.

few a few some many a lot of

IN
B r(VAQ) 0.00 0.00 0.01 -0.01 0.04

r(EXP1) -0.13 -0.14 -0.12 -0.13 -0.15

L
L

N r(VAQ) 0.32 0.27 0.14 0.42 0.33
r(EXP1) 0.36 0.35 0.26 0.44 0.35

L
L

O r(VAQ) 0.45 0.45 0.19 0.35 0.43
r(EXP1) 0.33 0.42 0.24 0.35 0.42

M
O

L r(VAQ) 0.26 0.31 0.15 0.28 0.35
r(EXP1) 0.25 0.28 0.25 -0.07 -0.12

Table 4: Pearson’s r of log probabilities in Experi-
ment 3 with human data (VAQ) and log probabili-
ties from Experiment 1 (EXP1). Models shown are
InstructBLIP (INB), LLaVA-NeXT (LLN), LLaVA-
OneVision (LLO) and Molmo (MOL). Boldfaced num-
bers are statistically significant.

log probabilities from Experiment 1. These models530

are also the most self-consistent. While Molmo is531

not self-consistent, in the multiple-choice setup it532

correlates better with human ratings.533

7 Discussion534

Alignment with humans In this paper, we ex-535

plore how vision-and-language models produce536

and evaluate simple expressions containing vague537

quantifiers. We constructed the VAQUUM dataset538

and used this to investigate whether object count,539

segmentation area and size norm affect VLMs to540

the same extent as they do humans. We showed that541

in particular for object count, the patterns found in542

some VLMs show striking similarities with the hu-543

man data in VAQUUM. This result appears to con-544

tradict the observation that VLMs perform poorly545

on counting tasks (Parcalabescu et al., 2021, 2022).546

However, our findings with vague quantifiers could547

be accounted for in terms of an approximate num-548

ber system, which cognitive scientists have posited549

to account for the human ability to rapidly esti-550

mate quantities (Feigenson et al., 2004; Condry551

and Spelke, 2008; Dehaene, 2011; Odic and Starr, 552

2018; Piantadosi, 2016). In the context of vague 553

quantifiers, it has been argued that there exists a 554

mapping between exact and approximate number 555

systems (Coventry et al., 2005, 2010). The extent 556

to which VLMs rely on something akin to an ANS 557

is a topic for future work. 558

Self-consistency Our experiments relied on 559

paradigms incorporating production (Experi- 560

ment 1) and judgment (Experiments 2 and 3). We 561

find that VLMs are not self-consistent across these 562

evaluation paradigms. That is to say, when a VLM 563

is set to judge the use of a quantifier—a meta- 564

linguistic task—its judgment is not rooted in the 565

log probabilities that govern the model’s generation 566

of the quantifier. 567

Outlook Psycholinguistics has shown that vague 568

quantifiers do not depend exclusively on the count 569

and size of target objects. This is further confirmed 570

by the residual variance (49.7%) in VAQUUM that 571

cannot be explained by the linear mixed effects 572

model (LMM) on human judgments. While the 573

LMM analysis yields a better fit for VLM log prob- 574

abilities, we find that there, too, the LMM cannot 575

explain all the variance (leaving a residual vari- 576

ance of 8.8% for LLaVA-OneVision). Future work 577

could focus on other contextual factors, such as the 578

number of other objects present, the object density 579

in the image, as well as the role of scene semantics 580

and other objects in the image background. In com- 581

bination with visual grounding capabilities, it is 582

worthwhile to investigate the role of commonsense 583

and world knowledge in vague quantifier usage: 584

while seeing 20 people at a conference will most 585

likely not be reason for one to exclaim that there 586

are many, the same amount of toddlers at such an 587

event might be. 588
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Limitations589

Model selection Our experiments focus on a se-590

lection of vision-and-language models. While this591

selection has allowed us to compare models from592

the same model family (BLIP-2 and InstructBLIP;593

LLaVA-NeXT and LLaVA-OneVision), as well as594

models that share similar language model back-595

bones (LLaVA-OneVision and Molmo), conclu-596

sions drawn in this study can be better generalised597

with experiments on a wider range of VLMs. We598

hope that VAQUUM provides the impetus for fur-599

ther model comparisons.600

Segmentation area and size norm Given that601

of the three contextual variables, the role of ob-602

ject count has been most prominent in literature603

on vague quantifiers, we focused on selecting im-604

ages that balance a range of counts that we deemed605

representative. Estimating the segmentation area606

and extracting the size norms for these images may607

subsequently have yielded distributions that do not608

represent the full range of values that these vari-609

ables can take on. It is therefore possible that the610

distributions for segmentation area and size norm611

were too sparse to say something more meaningful612

about their roles in VAQUUM and model results.613

Thus, while we at times find statistically significant614

relationships between judgments and segmentation615

area or size norm, future work could focus on in-616

vestigating the practical significance. Additionally,617

we recognize that using CLIPSeg to estimate the618

segmentation area can introduce inaccuracies.619

Variance in human judgments By aggregating620

human judgments through simply taking the av-621

erage and focusing on general trends, we might622

overlook meaningful variability that emphasize the623

complexity of human judgments on vague expres-624

sions. While the aim of this work was to investigate625

whether VLMs can approximate general patterns in626

human data, we believe that VAQUUM is a dataset627

that can contribute to the study of disagreement628

among human annotators.629

Ethical Considerations630

The data collection study for VAQUUM underwent631

an ethics check in our institution. The data col-632

lected via crowdsourcing does not contain any in-633

formation that can be traced back to individuals.634

No materials were used to our knowledge which635

could harm or otherwise adversely affect individu-636

als.637

References 638

Manoj Acharya, Kushal Kafle, and Christopher Kanan. 639
2019. TallyQA: Answering complex counting ques- 640
tions. In Proceedings of the AAAI conference on 641
artificial intelligence, volume 33, pages 8076–8084. 642

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar- 643
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, 644
and Devi Parikh. 2015. VQA: Visual Question An- 645
swering. In International Conference on Computer 646
Vision (ICCV). 647

Catarina G Belém, Markelle Kelly, Mark Steyvers, 648
Sameer Singh, and Padhraic Smyth. 2024. Percep- 649
tions of linguistic uncertainty by language models 650
and humans. In Proceedings of the 2024 Confer- 651
ence on Empirical Methods in Natural Language 652
Processing, pages 8467–8502, Miami, Florida, USA. 653
Association for Computational Linguistics. 654

Xinyi Chen, Raquel Fernández, and Sandro Pezzelle. 655
2023. The BLA Benchmark: Investigating Basic 656
Language Abilities of Pre-Trained Multimodal Mod- 657
els. In Proceedings of the 2023 Conference on Em- 658
pirical Methods in Natural Language Processing, 659
pages 5817–5830, Singapore. Association for Com- 660
putational Linguistics. 661

Kirsten F Condry and Elizabeth S Spelke. 2008. The 662
development of language and abstract concepts: the 663
case of natural number. Journal of Experimental 664
Psychology: General, 137(1):22. 665

Kenny R. Coventry, Angelo Cangelosi, Stephen E. New- 666
stead, and Davi Bugmann. 2010. Talking about quan- 667
tities in space: Vague quantifiers, context and simi- 668
larity. Language and Cognition, 2(2):221–241. 669

Kenny R Coventry, Stephen Newstead, and Rohanna Ra- 670
japakse. 2005. Grounding Natural Language Quanti- 671
fiers in Visual Attention. In Proceedings of the 27th 672
Annual Conference of the Cognitive Science Society. 673
Mahwah, NJ: Lawrence Erlbaum Associates. 674

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, 675
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale N 676
Fung, and Steven Hoi. 2023. Instructblip: Towards 677
general-purpose vision-language models with instruc- 678
tion tuning. In Advances in Neural Information Pro- 679
cessing Systems, volume 36, pages 49250–49267. 680
Curran Associates, Inc. 681

Stanislas Dehaene. 2011. The number sense: How the 682
mind creates mathematics. 683

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tri- 684
pathi, Yue Yang, Jae Sung Park, Mohammadreza 685
Salehi, Niklas Muennighoff, Kyle Lo, Luca Sol- 686
daini, Jiasen Lu, Taira Anderson, Erin Bransom, 687
Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay 688
Patel, Mark Yatskar, Chris Callison-Burch, An- 689
drew Head, Rose Hendrix, Favyen Bastani, Eli Van- 690
derBilt, Nathan Lambert, Yvonne Chou, Arnavi 691
Chheda, Jenna Sparks, Sam Skjonsberg, Michael 692
Schmitz, Aaron Sarnat, Byron Bischoff, Pete Walsh, 693

9

https://doi.org/10.18653/v1/2024.emnlp-main.483
https://doi.org/10.18653/v1/2024.emnlp-main.483
https://doi.org/10.18653/v1/2024.emnlp-main.483
https://doi.org/10.18653/v1/2024.emnlp-main.483
https://doi.org/10.18653/v1/2024.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.356
https://doi.org/10.18653/v1/2023.emnlp-main.356
https://doi.org/10.18653/v1/2023.emnlp-main.356
https://doi.org/10.18653/v1/2023.emnlp-main.356
https://doi.org/10.18653/v1/2023.emnlp-main.356
https://doi.org/10.1515/langcog.2010.009
https://doi.org/10.1515/langcog.2010.009
https://doi.org/10.1515/langcog.2010.009
https://doi.org/10.1515/langcog.2010.009
https://doi.org/10.1515/langcog.2010.009
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a6a435e75419a836fe47ab6793623e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a6a435e75419a836fe47ab6793623e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a6a435e75419a836fe47ab6793623e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a6a435e75419a836fe47ab6793623e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a6a435e75419a836fe47ab6793623e6-Paper-Conference.pdf


Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-694
Hao Zeng, Jon Borchardt, Dirk Groeneveld, Crys-695
tal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa696
Schoenick, Oscar Michel, Ranjay Krishna, Luca697
Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross698
Girshick, Ali Farhadi, and Aniruddha Kembhavi.699
2024. Molmo and PixMo: Open weights and700
open data for state-of-the-art vision-language models.701
Preprint, arXiv:2409.17146.702

Zhang Enyan, Zewei Wang, Michael A. Lepori, Ellie703
Pavlick, and Helena Aparicio. 2024. Are LLMs mod-704
els of distributional semantics? a case study on quan-705
tifiers. Preprint, arXiv:2410.13984.706

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell707
Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang,708
and Yue Cao. 2023. EVA: Exploring the Limits of709
Masked Visual Representation Learning at Scale . In710
2023 IEEE/CVF Conference on Computer Vision and711
Pattern Recognition (CVPR), pages 19358–19369,712
Los Alamitos, CA, USA. IEEE Computer Society.713

Lisa Feigenson, Stanislas Dehaene, and Elizabeth714
Spelke. 2004. Core systems of number. Trends in715
Cognitive Sciences, 8(7):307–314.716

Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija717
Jain, and Aman Chadha. 2024. Exploring the fron-718
tier of vision-language models: A survey of cur-719
rent methodologies and future directions. Preprint,720
arXiv:2404.07214.721

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv722
Batra, and Devi Parikh. 2017. Making the V in VQA723
matter: Elevating the role of image understanding724
in Visual Question Answering. In Conference on725
Computer Vision and Pattern Recognition (CVPR).726

Martin N. Hebart, Adam H. Dickter, Alexis Kidder,727
Wan Y. Kwok, Anna Corriveau, Caitlin Van Wicklin,728
and Chris I. Baker. 2019. THINGS: A database of729
1,854 object concepts and more than 26,000 natural-730
istic object images. PLOS ONE, 14(10):1–24.731

Michael Hobley and Victor Prisacariu. 2023. Learn-732
ing to count anything: Reference-less class-agnostic733
counting with weak supervision. Proceedings of the734
IEEE Conference on Computer Vision and Pattern735
Recognition (CVPR).736

Hans Hörmann. 1983. The Calculating Listener, or:737
How Many are einige, mehrere and ein paar (Some,738
Several, and a Few)?, pages 221–234. De Gruyter,739
Berlin, Boston.740

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-741
sch, Chris Bamford, Devendra Singh Chaplot, Diego742
de las Casas, Florian Bressand, Gianna Lengyel, Guil-743
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,744
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,745
Thibaut Lavril, Thomas Wang, Timothée Lacroix,746
and William El Sayed. 2023. Mistral 7b. Preprint,747
arXiv:2310.06825.748

Andreas H. Jucker, Sara W. Smith, and Tanja Lüdge. 749
2003. Interactive aspects of vagueness in conversa- 750
tion. Journal of Pragmatics, 35(12):1737–1769. 751

Adam Tauman Kalai and Santosh S. Vempala. 2024. 752
Calibrated Language Models Must Hallucinate. In 753
Proceedings of the 56th Annual ACM Symposium 754
on Theory of Computing (STOC). Association for 755
Computing Machinery. 756

Amita Kamath, Cheng-Yu Hsieh, Kai-Wei Chang, and 757
Ranjay Krishna. 2024. The Hard Positive Truth about 758
Vision-Language Compositionality. arXiv preprint. 759
ArXiv:2409.17958 [cs]. 760

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John- 761
son, Kenji Hata, Joshua Kravitz, Stephanie Chen, 762
Yannis Kalantidis, Li-Jia Li, David A. Shamma, 763
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi- 764
sual genome: Connecting language and vision us- 765
ing crowdsourced dense image annotations. Int. J. 766
Comput. Vision, 123(1):32–73. 767

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, 768
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei 769
Li, Ziwei Liu, and Chunyuan Li. 2024. LLaVA- 770
OneVision: Easy visual task transfer. arXiv preprint 771
arXiv:2408.03326. 772

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 773
2023. BLIP-2: Bootstrapping language-image pre- 774
training with frozen image encoders and large lan- 775
guage models. In Proceedings of the 40th Interna- 776
tional Conference on Machine Learning, ICML’23. 777
JMLR.org. 778

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuan- 779
han Zhang, Sheng Shen, and Yong Jae Lee. 2024. 780
LLaVA-NeXT: Improved reasoning, ocr, and world 781
knowledge. 782

Timo Lüddecke and Alexander Ecker. 2022. Image 783
segmentation using text and image prompts. In Pro- 784
ceedings of the IEEE/CVF conference on computer 785
vision and pattern recognition, pages 7086–7096. 786

Linda M Moxey and Anthony J Sanford. 1993a. Com- 787
municating quantities: A psychological perspective. 788
Lawrence Erlbaum Associates, Inc. 789

Linda M. Moxey and Anthony J. Sanford. 1993b. Prior 790
expectation and the interpretation of natural language 791
quantifiers. European Journal of Cognitive Psychol- 792
ogy, 5(1):73–91. 793

Linda M. Moxey and Anthony J. Sanford. 2000. Com- 794
municating quantities: a review of psycholinguistic 795
evidence of how expressions determine perspectives. 796
Applied Cognitive Psychology, 14(3):237–255. Pub- 797
lisher: Wiley-Blackwell. 798

S.E. Newstead, P. Pollard, and D. Riezebos. 1987. The 799
effect of set size on the interpretation of quantifiers 800
used in rating scales. Applied Ergonomics, 18(3):178– 801
182. 802

10

https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2410.13984
https://arxiv.org/abs/2410.13984
https://arxiv.org/abs/2410.13984
https://arxiv.org/abs/2410.13984
https://arxiv.org/abs/2410.13984
https://doi.org/10.1109/CVPR52729.2023.01855
https://doi.org/10.1109/CVPR52729.2023.01855
https://doi.org/10.1109/CVPR52729.2023.01855
https://doi.org/10.1016/j.tics.2004.05.002
https://arxiv.org/abs/2404.07214
https://arxiv.org/abs/2404.07214
https://arxiv.org/abs/2404.07214
https://arxiv.org/abs/2404.07214
https://arxiv.org/abs/2404.07214
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/doi:10.1515/9783110852820.221
https://doi.org/doi:10.1515/9783110852820.221
https://doi.org/doi:10.1515/9783110852820.221
https://doi.org/doi:10.1515/9783110852820.221
https://doi.org/doi:10.1515/9783110852820.221
https://arxiv.org/abs/2310.06825
https://doi.org/10.1016/S0378-2166(02)00188-1
https://doi.org/10.1016/S0378-2166(02)00188-1
https://doi.org/10.1016/S0378-2166(02)00188-1
https://doi.org/10.48550/arXiv.2311.14648
http://arxiv.org/abs/2409.17958
http://arxiv.org/abs/2409.17958
http://arxiv.org/abs/2409.17958
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://doi.org/10.1080/09541449308406515
https://doi.org/10.1080/09541449308406515
https://doi.org/10.1080/09541449308406515
https://doi.org/10.1080/09541449308406515
https://doi.org/10.1080/09541449308406515
https://doi.org/10.1002/(SICI)1099-0720(200005/06)14:3<237::AID-ACP641>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-0720(200005/06)14:3<237::AID-ACP641>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-0720(200005/06)14:3<237::AID-ACP641>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-0720(200005/06)14:3<237::AID-ACP641>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-0720(200005/06)14:3<237::AID-ACP641>3.0.CO;2-R
https://doi.org/10.1016/0003-6870(87)90001-9
https://doi.org/10.1016/0003-6870(87)90001-9
https://doi.org/10.1016/0003-6870(87)90001-9
https://doi.org/10.1016/0003-6870(87)90001-9
https://doi.org/10.1016/0003-6870(87)90001-9


Stephen E. Newstead and Kenny R. Coventry. 2000.803
The role of context and functionality in the interpre-804
tation of quantifiers. European Journal of Cognitive805
Psychology, 12(2):243–259.806

Rick Nouwen. 2010. What’s in a quantifier? In Mar-807
tin B.H. Everaert, Tom Lentz, Hannah N.M. De Mul-808
der, Øystein Nilsen, and Arjen Zondervan, editors,809
The Linguistic Enterprise, Linguistik Aktuell 150,810
pages 235–256. John Benjamins.811

Darko Odic and Ariel Starr. 2018. An introduction to812
the approximate number system. Child Development813
Perspectives, 12(4):223–229.814

Letitia Parcalabescu, Michele Cafagna, Lilitta Murad-815
jan, Anette Frank, Iacer Calixto, and Albert Gatt.816
2022. VALSE: A task-independent benchmark for817
vision and language models centered on linguistic818
phenomena. In Proceedings of the 60th Annual Meet-819
ing of the Association for Computational Linguistics820
(Volume 1: Long Papers), pages 8253–8280, Dublin,821
Ireland. Association for Computational Linguistics.822

Letitia Parcalabescu, Albert Gatt, Anette Frank, and823
Iacer Calixto. 2021. Seeing past words: Testing824
the cross-modal capabilities of pretrained V&L mod-825
els on counting tasks. In Proceedings of the 1st826
Workshop on Multimodal Semantic Representations827
(MMSR), pages 32–44, Groningen, Netherlands (On-828
line). Association for Computational Linguistics.829

Kevin B. Paterson, Ruth Filik, and Linda M. Moxey.830
2009. Quantifiers and discourse processing. Lan-831
guage and Linguistics Compass, 3(6):1390–1402.832

Sandro Pezzelle, Raffaella Bernardi, and Manuela Pi-833
azza. 2018. Probing the mental representation of834
quantifiers. Cognition, 181:117–126.835

Sandro Pezzelle, Marco Marelli, and Raffaella Bernardi.836
2017. Be precise or fuzzy: Learning the meaning of837
cardinals and quantifiers from vision. In Proceedings838
of the 15th Conference of the European Chapter of839
the Association for Computational Linguistics: Vol-840
ume 2, Short Papers, pages 337–342, Valencia, Spain.841
Association for Computational Linguistics.842

Steven T. Piantadosi. 2016. A rational analysis of the843
approximate number system. Psychonomic Bulletin844
& Review, 23(3):877–886.845

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya846
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-847
try, Amanda Askell, Pamela Mishkin, Jack Clark,848
et al. 2021. Learning transferable visual models from849
natural language supervision. In International confer-850
ence on machine learning, pages 8748–8763. PMLR.851

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh852
Hoai. 2021. Learning To Count Everything . In853
2021 IEEE/CVF Conference on Computer Vision and854
Pattern Recognition (CVPR), pages 3393–3402, Los855
Alamitos, CA, USA. IEEE Computer Society.856

Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, 857
David M Johnson, and Penny Boyes-Braem. 1976. 858
Basic objects in Natural Categories. Cognitive Psy- 859
chology, 439:382–439. 860

Stephanie Solt. 2011. Vagueness in Quantity: Two 861
Case Studies from a Linguistic Perspective. In Un- 862
derstanding vagueness. Logical, philosophical and 863
linguistic perspectives. College Publications. 864

Ionut Sorodoc, Angeliki Lazaridou, Gemma Boleda, 865
Aurélie Herbelot, Sandro Pezzelle, and Raffaella 866
Bernardi. 2016. “Look, some green circles!”: Learn- 867
ing to quantify from images. In Proceedings of the 868
5th Workshop on Vision and Language, pages 75– 869
79, Berlin, Germany. Association for Computational 870
Linguistics. 871

Ionut Sorodoc, Sandro Pezzelle, Aurélie Herbelot, 872
Mariella Dimiccoli, and Raffaella Bernardi. 2018. 873
Learning quantification from images: A structured 874
neural architecture. Natural Language Engineering, 875
24(3):363–392. 876

Laura M Stoinski, Jonas Perkuhn, and Martin N Hebart. 877
2024. THINGSplus: New norms and metadata for 878
the things database of 1854 object concepts and 879
26,107 natural object images. Behavior Research 880
Methods, 56(3):1583–1603. 881

Alberto Testoni, Sandro Pezzelle, and Raffaella 882
Bernardi. 2019. Quantifiers in a multimodal world: 883
Hallucinating vision with language and sound. In 884
Proceedings of the Workshop on Cognitive Modeling 885
and Computational Linguistics, pages 105–116, Min- 886
neapolis, Minnesota. Association for Computational 887
Linguistics. 888

Alberto Testoni, Juell Sprott, and Sandro Pezzelle. 2024. 889
Naming, describing, and quantifying visual objects 890
in humans and LLMs. In Proceedings of the 62nd 891
Annual Meeting of the Association for Computational 892
Linguistics (Volume 2: Short Papers), pages 547–557, 893
Bangkok, Thailand. Association for Computational 894
Linguistics. 895

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet 896
Singh, Adina Williams, Douwe Kiela, and Candace 897
Ross. 2022. Winoground: Probing vision and lan- 898
guage models for visio-linguistic compositionality. 899
In 2022 IEEE/CVF Conference on Computer Vision 900
and Pattern Recognition (CVPR), pages 5228–5238. 901

Kees van Deemter. 2010. Not Exactly: in Praise of 902
Vagueness. Oxford University Press. 903

Xiyao Wang, Yuhang Zhou, Xiaoyu Liu, Hongjin Lu, 904
Yuancheng Xu, Feihong He, Jaehong Yoon, Taixi 905
Lu, Gedas Bertasius, Mohit Bansal, Huaxiu Yao, and 906
Furong Huang. 2024. Mementos: A Comprehensive 907
Benchmark for Multimodal Large Language Model 908
Reasoning over Image Sequences. arXiv preprint. 909
ArXiv:2401.10529 [cs]. 910

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 911
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 912

11

https://doi.org/10.1080/095414400382145
https://doi.org/10.1080/095414400382145
https://doi.org/10.1080/095414400382145
https://doi.org/10.1075/la.150.10nou
https://doi.org/10.18653/v1/2022.acl-long.567
https://doi.org/10.18653/v1/2022.acl-long.567
https://doi.org/10.18653/v1/2022.acl-long.567
https://doi.org/10.18653/v1/2022.acl-long.567
https://doi.org/10.18653/v1/2022.acl-long.567
https://aclanthology.org/2021.mmsr-1.4/
https://aclanthology.org/2021.mmsr-1.4/
https://aclanthology.org/2021.mmsr-1.4/
https://aclanthology.org/2021.mmsr-1.4/
https://aclanthology.org/2021.mmsr-1.4/
https://doi.org/10.1111/j.1749-818X.2009.00166.x
https://doi.org/10.1016/j.cognition.2018.08.009
https://doi.org/10.1016/j.cognition.2018.08.009
https://doi.org/10.1016/j.cognition.2018.08.009
https://aclanthology.org/E17-2054
https://aclanthology.org/E17-2054
https://aclanthology.org/E17-2054
https://doi.org/10.3758/s13423-015-0963-8
https://doi.org/10.3758/s13423-015-0963-8
https://doi.org/10.3758/s13423-015-0963-8
https://doi.org/10.1109/CVPR46437.2021.00340
https://doi.org/10.18653/v1/W16-3211
https://doi.org/10.18653/v1/W16-3211
https://doi.org/10.18653/v1/W16-3211
https://doi.org/10.18653/v1/W19-2912
https://doi.org/10.18653/v1/W19-2912
https://doi.org/10.18653/v1/W19-2912
https://doi.org/10.18653/v1/2024.acl-short.50
https://doi.org/10.18653/v1/2024.acl-short.50
https://doi.org/10.18653/v1/2024.acl-short.50
https://doi.org/10.1109/CVPR52688.2022.00517
https://doi.org/10.1109/CVPR52688.2022.00517
https://doi.org/10.1109/CVPR52688.2022.00517
https://doi.org/10.48550/arXiv.2401.10529
https://doi.org/10.48550/arXiv.2401.10529
https://doi.org/10.48550/arXiv.2401.10529
https://doi.org/10.48550/arXiv.2401.10529
https://doi.org/10.48550/arXiv.2401.10529


Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-913
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,914
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin915
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,916
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-917
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,918
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize919
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,920
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,921
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,922
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing923
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,924
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,925
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-926
cal report. Preprint, arXiv:2407.10671.927

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin928
Choi. 2019. From recognition to cognition: Visual929
commonsense reasoning. In The IEEE Conference on930
Computer Vision and Pattern Recognition (CVPR).931

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,932
and Lucas Beyer. 2023. Sigmoid loss for language933
image pre-training. Preprint, arXiv:2303.15343.934

Chenyu Zhang, Benjamin Van Durme, Zhuowan Li, and935
Elias Stengel-Eskin. 2022a. Visual commonsense936
in pretrained unimodal and multimodal models. In937
Proceedings of the 2022 Conference of the North938
American Chapter of the Association for Computa-939
tional Linguistics: Human Language Technologies,940
pages 5321–5335, Seattle, United States. Association941
for Computational Linguistics.942

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.943
2024. Vision-language models for vision tasks: A944
survey. IEEE Transactions on Pattern Analysis and945
Machine Intelligence, 46(8):5625–5644.946

Susan Zhang, Stephen Roller, Naman Goyal, Mikel947
Artetxe, Moya Chen, Shuohui Chen, Christopher De-948
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-949
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel950
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu951
Wang, and Luke Zettlemoyer. 2022b. OPT: Open952
pre-trained transformer language models. Preprint,953
arXiv:2205.01068.954

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan955
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,956
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,957
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging958
LLM-as-a-judge with MT-bench and Chatbot Arena.959
Preprint, arXiv:2306.05685.960

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong961
Zhang, and Zhendong Mao. 2023. On the Calibra-962
tion of Large Language Models and Alignment. In963
Findings of the Association for Computational Lin-964
guistics: EMNLP 2023, pages 9778–9795, Singapore.965
Association for Computational Linguistics.966

Yongshuo Zong, Tingyang Yu, Ruchika Chavhan,967
Bingchen Zhao, and Timothy Hospedales. 2024.968

Fool Your (Vision and) Language Model With Em- 969
barrassingly Simple Permutations. arXiv preprint. 970
ArXiv:2310.01651. 971

A Data from Human Participants 972

A.1 Instructions and Consent 973

Below we include the information given to the par- 974

ticipants in our human experiment. 975

Thank you for taking part in this experiment. 976

This survey should take approximately 20 minutes 977

to complete. You will be presented with 100 ques- 978

tions. Each question consists of an image and a 979

corresponding statement. Your task is to rate, us- 980

ing a slider, how accurate you find the statement in 981

relation to the image. 982

Please be assured that all responses will be kept 983

strictly confidential and anonymous. The data that 984

we collect will be processed in such a way that they 985

cannot be linked to you in any way. Participation 986

in this survey is entirely voluntary. If at any point 987

you wish to exit the survey without finishing the 988

survey, you can close this form and we will delete 989

your responses. You do not have to specify your 990

reason. 991

Should you wish to withdraw consent after you 992

have participated, please send an email to AU- 993

THORS at EMAIL. Note that if you withdraw 994

consent after completing the survey, we are not re- 995

quired to undo the processing of your data that has 996

taken place up until that time. 997

If you wish to participate in the study, please 998

check the following box. If you do not wish to do 999

so, you can close this tab. 1000

A.2 Demographics 1001

In §3.1, we mentioned that we recruited 203 partic- 1002

ipants through Prolific. As reported in the Ethical 1003

Considerations, we did not collect data that allows 1004

anyone to trace the responses back to an individual. 1005

All participants were native and primary speakers 1006

of English. Besides that fact, we have the following 1007

information about the distribution of demographic 1008

information. 1009

Age 25-34 years (31.5%), 35-44 (25.6%), 18-24 1010

(17.2%), 45-54 (15.3%), 55-64 (6.9%), 65- 1011

74 (2.5%) and 75-84 (0.5%). 0.5% of the 1012

participants prefer not to disclose their age. 1013

Gender female (52.5%), male (45.8%), other 1014

(0.5%). 1.5% of the participants prefer not 1015

to say. 1016
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A.3 Participant reward1017

Participants were found through Prolific and were1018

paid £ 2.50 for 20 minutes (£ 7.50 per hour).1019

B Linear Mixed Effects Models1020

Below we provide the details for the linear mixed1021

effects models that we fit to our data. All LMMs1022

are fit using the lme4 package in R.1023

B.1 Human Data (VAQUUM)1024

In §3, we are interested in predicting human judg-1025

ments from the main effects of quantifiers, object1026

count, segmentation area and size norms, as well1027

as the interaction between these predictors. We1028

include the participants and object categories as1029

random effects. Put concretely,1030

judgment ~ quantifier * count1031

* segmentation * size_norm1032

+ (1|participant) + (1|object)1033

We scale judgments, count, segmentation area1034

and size norm to make sure they all have a mean of1035

0 and a standard deviation of 1. For example,1036

count <- scale(count,1037

center=TRUE,1038

scale=TRUE)1039

This way, we ensure that we can meaningfully in-1040

terpret the relation between one unit of change in1041

one variable with a change in another. Additionally,1042

we make the variables for quantifier and object cat-1043

egory a factor and relevel the quantifier to use1044

the unquantified (base) condition as the reference1045

category.1046

quantifier <- relevel(quantifier,1047

ref="base")1048

B.2 Model Data (Experiment 1)1049

For the models, we follow the same steps taken1050

as those for fitting an LMM to human data, but1051

now we no longer have to account for different1052

participants. That is,1053

log_prob ~ quantifier * count1054

* segmentation * size_norm1055

+ (1|object)1056

C Supplementary Material Experiment 11057

C.1 Targeting amounts1058

In Figure 6 we show the patterns of the VLMs1059

across all predictors for the prompt that does not1060
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Figure 6: Log probabilities extracted for statements
as a response to “How would you describe the im-
age?” The most obvious deviation from Figure 3 in §4
are the plots for the two LLaVA models, that no longer
appear to distinguish between the different quantified
statements.

target the amount. The question presented to the 1061

models is “How would you describe the image?”, 1062

and we extract log probabilities for expressions 1063

of the form “There are [QUANT] [OBJECT] in the 1064

image” (unchanged from those used in §4). 1065

For LLaVA-NeXT and LLaVA-OneVision, the 1066

two models observed in §4 to have the highest 1067

correlation with human ratings, we now find that 1068

patterns are the same across all quantifiers. We 1069

now find a “layered” or “stacked” pattern that is 1070

indicative of a bias towards a specific quantifier: 1071

while LLaVA-NeXT and LLaVA-OneVision tend 1072

towards always responding with a lot of, Instruct- 1073

BLIP and Molmo favor the unquantified statement. 1074

C.2 LMMs for all remaining models 1075

In Table 5, we report estimates of LMMs for BLIP- 1076

2, InstructBLIP, LLaVA-NeXT and Molmo. 1077

D Supplementary Material Experiment 2 1078

D.1 Prompts for Score Generation 1079

Below we list the 10 prompts that we have tested 1080

for Experiment 2. The prompt listed in boldface is 1081

discussed in §5. 1082

1. “On a scale of 0 (completely inaccurate) to 1083
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Intercept Main Quantifier
few a few some many a lot of

BLIP-2

Main effect

0.41

– -0.89 -0.09 -0.79 -0.26 -1.37
Count 0.03 0.21 0.02 -0.10 -0.03 0.01
Segmentation 0.03 0.06 -0.04 -0.02 0.09 -0.02
Size norm 0.02 0.01 -0.03 -0.07 -0.13 0.06

InstructBLIP

Main effect

0.57

– -0.76 -0.82 -0.86 -0.46 -1.20
Count -0.02 -0.02 -0.01 -0.01 0.03 0.00
Segmentation -0.11 -0.01 0.00 0.00 0.00 0.02
Size norm 0.33 -0.08 -0.09 -0.06 0.02 -0.09

LLaVA-NeXT

Main effect

-0.86

– -0.05 1.00 0.31 2.10 2.08
Count -0.12 -0.03 -0.07 -0.04 0.21 0.26
Segmentation -0.12 0.00 -0.03 0.02 0.14 0.13
Size norm -0.08 0.08 0.12 0.03 0.15 0.15

LLaVA-OneVision

Main effect

-1.25

– 0.39 1.68 0.77 2.46 2.32
Count -0.09 0.00 -0.01 -0.02 0.22 0.22
Segmentation -0.05 -0.02 -0.01 0.01 0.07 0.05
Size norm -0.05 0.04 0.05 -0.03 0.12 -0.09

Molmo

Main effect

0.73

– -0.71 -0.97 -1.35 -0.85 -1.30
Count -0.11 0.03 0.03 -0.05 0.02 0.04
Segmentation -0.19 0.00 0.00 -0.01 0.02 0.03
Size norm 0.22 -0.01 -0.04 -0.05 0.01 -0.06

Table 5: Linear Mixed Effects estimates for all VLMs tested. We discuss the estimates for LLaVA-OneVision in
§4.

100 (completely accurate), how accurate is1084

the following statement for the image? Please1085

only respond with a number between 0 and1086

100.1087

[Statement]”1088

2. “Question: How accurate is the following1089

statement for the image? Respond only with a1090

rating between 0 (completely inaccurate) and1091

100 (completely accurate).1092

Statement: [Statement]1093

Answer: ”1094

3. “On a scale of 0 (completely inaccurate) to1095

100 (completely accurate), how accurate is the1096

following statement for the image? Respond1097

only with a number. Decimals are allowed.1098

[Statement]”1099

4. “How accurate is the statement for the image?1100

Please only respond with a number between1101

0 and 100, where 0 is ‘completely inaccurate’1102

and 100 ‘completely accurate’.1103

[Statement]”1104

5. “On a scale of 0 (completely inaccurate) to1105

100 (completely accurate), how accurate is1106

the following statement for the image?1107

Please respond with one of the following1108

options: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45,1109

50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100. 1110

[Statement]” 1111

6. “How likely is the following caption given 1112

the image? Please respond with a number 1113

between 0 and 100, where 1114

- 0 is ‘not likely at all’ 1115

- 100 is ‘highly likely’. 1116

Caption: [Statement]” 1117

7. “What is the probability that the following 1118

sentence matches the image? 1119

[Statement]” 1120

8. “What is the probability that the following 1121

sentence matches the image? 1122

Sentence: [Statement] 1123

Answer: ” 1124

9. “What is the probability that the following sen- 1125

tence matches the image? Please only respond 1126

with a number between 0 and 100. 1127

[Statement]” 1128

10. “What is the probability that the following sen- 1129

tence matches the image? Please only respond 1130

with a number between 0 and 1. 1131

Sentence: [Statement] 1132

Answer: ” 1133
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Figure 7: Distributions for human ratings and scores
generated by VLMs per quantifier.

D.2 Distribution of Generated Scores1134

Figure 7 shows density plots displaying the distri-1135

butions of human ratings in VAQUUM, as well as1136

scores generated by VLMs as a response to prompt1137

5 in Appendix D.1, discussed in §5. Note that for1138

LLaVA-NeXT, LLaVA-OneVision and Molmo, the1139

scores tend towards the extremes. However, in the1140

human distribution, this is only the case for the1141

unquantified control statement (as expected).1142

E Dataset Licenses1143

For the construction of the VAQUUM dataset, we1144

have used images from existing datasets. We list1145

their licenses below.1146

TallyQA Apache License 2.0.1147

FSC-147 MIT License.1148

FSC-133 is MIT License.1149

Visual Genome Creative Commons Attribution1150

4.0 International License1151

VQA and VQA2 Commons Attribution 4.0 Inter-1152

national License1153

The way we include these datasets in our experi- 1154

ments is consistent with their intended use. 1155
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