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ABSTRACT

We study the Best Subset Selection (BSS) problem under Differential Privacy
(DP), where one seeks to find a subset of features and a linear estimator supported
on the said subset that minimize the least squares error. Due to the combinato-
rial structure, solving BSS has been traditionally challenging. However, thanks
to recent advancements in Mixed Integer Programming (MIP), solving large-scale
(non-private) BSS with millions of variables has become feasible in minutes. De-
spite this, the application of such algorithmic developments to BSS under DP has
remained limited. In this paper, we propose a new DP estimator for model se-
lection in BSS. Particularly, inspired by the exponential mechanism, we design
a new sampling procedure which makes use of MIP to explore the (non-convex)
objective landscape of BSS in a structured fashion. This circumvents the need
for combinatorial exhaustive search as required by the exponential mechanism.
This allows us to solve BSS with hundreds of features and (ε, 0)-DP guarantees
in minutes, whereas standard (exhaustive search based) exponential mechanism
would require tens of days of runtime and tens of terabytes of storage. To our
knowledge, our work is a first to employ techniques from integer programming to
design a differentially private algorithm for BSS, specially under pure differential
privacy.

1 INTRODUCTION

With the advancement of data acquisition, processing and storage systems, there has been a grow-
ing interest in learning from high-dimensional datasets. However, extracting meaningful models
from high-dimensional data can be challenging, for example, due to overfitting or lack of model
interpretability. Statistical regularizations that encourage model simplicity from certain perspectives
have been successful in addressing such challenges, becoming a staple of high-dimensional statis-
tics and machine learning. One such common regularization is sparsity (Hastie et al., 2015; 2009),
where one seeks to choose a small subset of features in the data to form the statistical model.

In this paper, we focus on the sparse linear regression problem. Given the data matrix X ∈ Rn×p

and the observations y ∈ Rn, in the sparse linear regression one seeks to obtain a linear estimator
such as β ∈ Rp that describes the data well (i.e., y ≈ Xβ) with only a few coordinates of β
being nonzero. A natural first formulation for this problem is the Best Subset Selection (BSS, Miller
(2002)),

min
β∈Rp

∥y −Xβ∥22 s.t. ∥β∥0 ≤ s, ∥β∥22 ≤ r2 (1)
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where ∥ · ∥0 counts the number of nonzero coordinates of a vector. In (1), the objective is the least
squares loss, ensuring the resulting estimator describes the data as well as possible and s > 0 is the
sparsity budget, enforcing the sparsity of β through the constraint ∥β∥0 ≤ s. Finally, ∥β∥22 ≤ r2

for some r > 0 serves as an additional (ridge) regularization. For a linear estimator such as β ∈ Rp,
we call {i : βi ̸= 0} the support of β. A sparse linear estimator can be more interpretable and have
better statistical performance (Hastie et al., 2009; 2015; Wainwright, 2019).

Real-world datasets often contain confidential and personal information, that should be protected.
Hence, recent years have seen a surge in private learning algorithms, hoping to preserve sensi-
tive information while extracting useful statistical knowledge. In particular, Differential Privacy
(DP, Dwork (2006)) has garnered significant interest in the machine learning and statistics litera-
ture. On a high level, DP aims to ensure one cannot obtain too much information from the private
dataset, via querying the statistical model in an adversarial way. A significant body of work is ded-
icated to designing DP algorithms for general machine learning tasks (McSherry & Talwar, 2007;
Dwork et al., 2006; Hardt et al., 2012; Dwork et al., 2010; 2014), as well as specialized algorithms
for specific statistical problems. Particularly, there is a long line of work studying the sparse linear
regression problem.

In this paper, we develop a new differentially private algorithm for model and variable selection
in the BSS problem where one releases the optimal support in (1) (i.e., the location of nonzero
coordinates in the optimal β). In what follows, we review the existing work on both non-private and
private sparse linear regression, and then discuss our approach and contributions.

1.1 RELATED WORK

Best Subset Selection (BSS) The BSS problem in (1) serves as a natural formulation for the
sparse linear regression, derived from the first principles. Hence, several papers have studied sta-
tistical properties of BSS, showing that BSS enjoys strong prediction and variable selection prop-
erties (Rad, 2009; Wainwright, 2009a; Guo et al., 2020). Despite strong theoretical and practical
strengths of BSS, solving the BSS problem can be computationally challenging due to the combi-
natorial structure (Natarajan, 1995). Therefore, several relaxations and approximations to BSS have
been developed such as Lasso (Tibshirani, 1996), Elastic Net (Zou & Hastie, 2005) and non-concave
penalties (Zhang, 2010; Fan & Li, 2001). Theoretical properties of such estimators is well-studied
in the literature (Zhao & Yu, 2006; Zhang & Huang, 2008; Wainwright, 2009b).

Thanks to the recent advancements in discrete optimization and Mixed Integer Programming
(MIP, Wolsey & Nemhauser (1999)), there has been a renewed interest in studying sparse learn-
ing problems that admit a combinatorial structure. Particularly, starting with the work of Bertsimas
et al. (2016), a growing body of work has been dedicated to developing efficient and scalable algo-
rithms for the BSS problem. Examples include cutting plane algorithms (Bertsimas & Van Parys,
2020), Branch-and-Bound methods (Hazimeh et al., 2022), as well as approximate algorithms (Haz-
imeh & Mazumder, 2020). With new optimization algorithms for BSS, obtaining global solutions
to BSS problems with millions of variables has become possible in minutes (Hazimeh et al., 2022).

The feasibility of solving large-scale BSS has triggered a new wave of theoretical and empirical
studies, investigating the differences between BSS and its convex relaxations such as Lasso. In
particular, recent work suggests that BSS can perform better than convex estimators in certain Signal
to Noise Ratio (SNR) setups (Mazumder et al., 2023; Hastie et al., 2020; Guo et al., 2023), can
have better false discovery control (Zhu & Wu, 2021) and can be robust to design dependence and
colinearity (Guo et al., 2020; Zhu & Wu, 2021). This motivates us to directly study (non-convex)
BSS, rather than a convex relaxation such as Lasso.

Private Linear Regression Due to practical and methodological importance of (sparse) linear
regression, numerous papers have developed DP algorithms for this problem. Most of the existing
literature focuses on non-sparse linear regression, or ℓ2 risk excess in sparse regression (Talwar et al.,
2015; Varshney et al., 2022; Jain & Thakurta, 2014; Cai et al., 2021; Kasiviswanathan & Jin, 2016).
However, as we mentioned, our focus in this paper is on variable selection, i.e., what features in the
data should have nonzero coefficients in the sparse linear estimator. We also note that some papers
have studied the problem of removing correlated features from the data (Dick et al., 2024), which is
different from BSS.
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Other papers have studied variable selection under differential privacy. As Lasso tends to promote
sparsity, an interesting line of work is based on releasing the variables selected by Lasso in a pri-
vate fashion (Thakurta & Smith, 2013; Liu et al., 2022; Kifer et al., 2012), using mechanisms such
as private majority voting or resample-and-aggregate (Nissim et al., 2007). Lei et al. (2018) pro-
pose an algorithm based on the exponential mechanism, requiring to enumerate all feasible supports
in (1), limiting the scalability of their method. Recently, Roy & Tewari (2023) have proposed a new
method based on the notion of Markov chain mixing to obtain DP solutions for BSS, resulting in a
statistically strong estimator.

1.2 OUR CONTRIBUTIONS

Despite significant work done in private variable selection, there has been limited exploration re-
garding how to use recently developed discrete optimization algorithms and techniques for BSS
in a private setting, leaving a gap between private and non-private BSS algorithms. In this work,
we bridge this gap by introducing a new differentially private algorithm for BSS, building on re-
cent algorithmic advancements pertaining to BSS. Our algorithm makes extensive use of discrete
optimization techniques for BSS, an approach with limited exploration in DP literature.

On a high level, our algorithm builds on the following observation: In general, when applied to a
problem with finite output space such as support selection in BSS, the exponential mechanism (Mc-
Sherry & Talwar, 2007) has a non-zero probability of outputting each solution in the outcome space,
which makes applying this mechanism infeasible for problems with a large outcome space. How-
ever, by design, this mechanism is most likely to output solutions that are close to the optimal
solution in an “objective” sense. Therefore, if one can enumerate such near optimal solutions, it is
possible to closely approximate the exponential mechanism without the need to sample from a prob-
ability distribution with exponentially large outcome space. As it turns out, in the BSS problem,
MIP enables us to quickly enumerate such solutions that are likely to be returned by the exponential
mechanism.

Our contributions can be summarized as follows: (1) We modify the exponential mechanism to
design a DP variable selection method for the (non-convex) BSS problem with the cardinality con-
straint. (2) Our selection procedure does not require enumerating all

(
p
s

)
feasible s-sparse supports

in (1). Instead, our method “approximates” the exponential mechanism by enumerating feasible
solutions that are likely to be returned by the mechanism. To obtain such likely supports, our pro-
cedure requires solving a series of convex MIPs. (3) We show numerically, our sampling procedure
can obtain BSS solutions with hundreds of features in minutes, and with (ε, 0)-DP guarantees. An
exhaustive enumeration method would require days for such problem sizes. We do not know of any
existing scalable (ε, 0)-DP method for BSS.

Notation. We let [p] = {1, · · · , p}. Throughout this paper, we assume the data points follow
xi ∈ X ⊆ Rp, yi ∈ Y ⊆ R for i ∈ [n]. We also let Z = X × Y . The rows of matrix X ∈ Rn×p

contain x1, · · · ,xn, while y ∈ Rn contains the values of y1, · · · , yn. We also use the notation
D = (X,y) ∈ Zn for a dataset containing n observations.

2 METHOD

Background on Differential Privacy Before continuing with our selection procedure, let us for-
malize the notion of differential privacy.
Definition 1 (Dwork (2006)). Given the privacy parameters (ε, δ) ∈ R+ × R+, a randomized
algorithm A(·) is said to satisfy the (ε, δ)-DP property if

IP(A(D) ∈ K) ≤ eεIP(A(D′) ∈ K) + δ

for any measurable event K ∈ range(A) and for any pair of neighboring datasets D and D′.

We note that in Definition 1, the probability is taken over the randomness of the algorithm A. When
δ = 0, the special case of (ε, 0)-DP is commonly referred to as pure differential privacy.

Next, let us briefly review the exponential mechanism (McSherry & Talwar, 2007), a general mech-
anism to achieve pure DP. Consider a general task where the dataset D ∈ Zn is given, and we seek
to design a procedure such as A : Zn → O to choose the outcome of the task, where O is the set of
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possible outcomes. We also assume we are given an objective function such as R : O × Zn → R,
where a smaller objective indicates a more desirable outcome. The global sensitivity of the objective
is then defined as

∆ = max
o∈O

max
D,D′∈Zn

D,D′ are neighbors

R(o,D)−R(o,D′). (2)

Lemma 1 (Exponential Mechanism, McSherry & Talwar (2007)). The exponential mechanism
AE(·) that follows

IP(AE(D) = o) ∝ exp

(
−εR(o,D)

2∆

)
, ∀o ∈ O (3)

ensures (ε, 0)-DP.

2.1 SELECTION PROCEDURE

A First Attempt The main inspiration for our selection procedure is the exponential mechanism,
defined in Lemma 1. In particular, in the BSS problem we seek to select a subset of features with size
s that are a good linear predictor of n observations y. Therefore, a natural choice for the outcome
set in BSS is the set of all subsets of [p] with size s, O = {S ⊆ [p] : |S| = s}. Next, a natural
choice for the objective in the BSS problem for each S is the least squares loss, when the regression
coefficients can only be nonzero for features in S. Formally,

R(S,D) = min
β∈R|S|

∥y −XSβ∥22 s.t. ∥β∥22 ≤ r2 (4)

where XS is the submatrix of X with columns indexed by S. As formalized in Lemma 2 below, we
can bound the global sensitivity of R(D, S).
Lemma 2. Suppose that |y| ≤ by for y ∈ Y , and ∥x∥∞ ≤ bx for x ∈ X . Then,

∆ ≤ 2b2y + 2b2xr
2s.

Remark 1. In practice, one might not know the exact values of bx, by , or such values might not
exist. In such cases, one can clip the values of X,y to satisfy the boundedness requirements of
Lemma 2.
Remark 2. We also note that the bound in Lemma 2 improves upon the global sensitivity of least
squares as proposed by Roy & Tewari (2023). In particular, our bound holds for all D, while the
bound of Roy & Tewari (2023) holds with high probability leading to DP guarantees that only
hold with high probability. Moreover, our sensitivity bound only needs coordinate-wise bounds
on the data, while Roy & Tewari (2023)’s requires additional assumptions on the data generation
mechanism, as well as bounds on eigenvalues of numerous submatrices of X which can be hard to
certify.

Lemma 2 shows that one can directly apply the exponential mechanism on R(S,D) and achieve a
(ε, 0)-DP procedure for the BSS problem. The issue, however, is that forming the probability distri-
bution in (3) requires calculating R(S,D) for all S ∈ O, which can be computationally infeasible
even for small problems (Roy & Tewari, 2023) as |O| =

(
p
s

)
which grows exponentially with s.

Our Proposal As discussed above, the difficulty in solving BSS under DP constraints arises from
the need to enumerate all feasible solutions in O. However, one can argue that if a support S is
far from the optimal one, the least-squares objective R(S,D) is likely to be large, therefore, the
probability mass of S in (3) should be small. Therefore, one might ask:

Is it necessary to have access to R(S,D) for all S ∈ O in the exponential mechanism?

Specifically, for the moment, suppose we have access to an oracle that for a fixed R > 1, can return
R feasible supports from O that have the smallest objectives. Formally, assume we can access
Ŝ1(D), · · · , ŜR(D) where

Ŝk(D) ∈ argmin
S

R(S,D) s.t. S ⊆ [p], |S| = s, S ̸= Ŝi(D), i = 1, · · · , k − 1. (5)

In particular, Ŝ1(D) is the optimal support for BSS in (1). Then, based on our discussion above, if
R is sufficiently large, the values R(Ŝk(D),D) for k ≥ R are expected to be significantly larger
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than R(Ŝk(D),D) for k ≪ R. Therefore, most of the probability mass of the distribution in (3) is
concentrated around Ŝk(D) for k ≪ R. Hence, we might not need to have access to the exact values
of R(Ŝk(D),D) for k ≥ R, as long as we can replace them with a suitable lower bound. This lower
bound can be taken as R(ŜR(D),D). To this end, we propose the sampling procedure M, shown
as Algorithm 1 below, where IP0 is the probability distribution following

IP0(k) ∝

exp
(
−εR(Ŝk(D),D)/(2∆)

)
if k ≤ R((

p
s

)
−R

)
exp

(
−εR(ŜR(D),D)/(2∆)

)
if k = R+ 1.

(6)

Algorithm 1 BSS with DP guarantees
1: procedure M(D, bx, by, r, R, T )
2: Clip X,y to bx, by , respectively, as in Lemma 2. Take ∆ as in Lemma 2. Form IP0 in (6).
3: Draw a(D) ∼ IP0

4: if a(D) ≤ R then
5: return Ŝa(D)(D)
6: else
7: return M0(D, R, T )

8: procedure M0(D, R, T )
9: for t ≤ T do

10: Draw S ∈ O uniformly at random, independent of IP0.
11: if S ∈ {Ŝk(D), k > R} then
12: Break
13: return S

Intuitively speaking, M replaces R(Ŝk(D),D) for k ≥ R with R(ŜR(D),D) and then “approxi-
mately” samples from the exponential mechanism. To this end, let

R̂(S,D) =

{
R(S,D) if S ∈ {Ŝ1(D), · · · , ŜR(D)}
R(ŜR(D),D) otherwise

(7)

where we substitute R(Ŝk(D),D) for k ≥ R with R(ŜR(D),D). Suppose ÂE is the exponential
mechanism that uses the objective R̂. If a(D) ≤ R in Algorithm 1, we return Ŝa(D)(D). Note that
IP(ÂE(D) = Ŝa(D)(D)) = IP0(a(D)) in this case, showing M mimics the exponential mechanism
ÂE . If a(D) = R+1, to mimic ÂE , we have to sample uniformly from the set S = {Ŝk(D), k > R}
as IP(ÂE) is uniform on S, by the definition of R̂ in (7). However, S is exponentially large in general.
Therefore, we invoke M0 that in the limit of T → ∞, samples uniformly from S. Below, we show
this procedure is indeed DP.

Theorem 1. Suppose T > 1, 1 < R <
(
p
s

)
. The procedure M in Algorithm 1 is (ε′, 0)-DP where

ε′ = log (eε + γ)− log
(
1− qT

)
, γ =

RT exp(nεb2y/(2∆))(
p
s

)T−1
, q =

R(
p
s

) .
In particular, if T = ∞, the procedure M is (ε, 0)-DP. Moreover, IP(M(D) = Ŝ1(D)) ≥ IP0(1).

The sampling procedure in Algorithm 1 only requires sampling from IP0 (which is supported on
R + 1 different values), and sampling sparse supports from a uniform distribution (in procedure
M0), which can be done efficiently. Therefore, this procedure circumvents the need to sample
from a non-uniform distribution with exponentially large support. Importantly, Algorithm 1 satisfies
pure (ε, 0)-DP. To our knowledge, no such algorithm exists for BSS that can scale to problems
with hundreds of variables. Moreover, the final part of Theorem 1 shows the probability that M
outputs the optimal BSS support Ŝ1 is at least IP0(1), showing M does not perform worse than the
exponential mechanism that uses R̂, ÂE , in terms of utility.
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MIP Formulations Next, we discuss how the top R supports in terms of least squares loss,
Ŝ1(D), · · · , ŜR(D), can be obtained by solving a series of MIPs. In particular, for k ∈ [R] consider:

(z(k),β(k),θ(k)) ∈ argmin
z,β,θ

∥y −Xβ∥22 (8)

s.t. β,θ ∈ Rp, z ∈ {0, 1}p, θ ≥ 0,

p∑
i=1

zi = s,

p∑
i=1

θi ≤ r2,

β2
i ≤ θizi ∀i ∈ [p]∑

i∈Ŝj(D)

zi ≤ s− 1

2
, j = 1, · · · , k − 1.

Proposition 1. For k ≥ 1, {i : z(k)i ̸= 0} = Ŝk(D).

Problem (8) involves a convex quadratic objective function. Moreover, if one relaxes the binary
variables z to take values in [0, 1]p, the feasible set of (8) becomes a second order cone which is
convex. In other words, the interval relaxation of (8) is convex. Therefore, Problem (8) is typically
known as a Mixed-Integer Second Order Cone Program (MISOCP), a standard class of MIPs. Most
modern off-the-shelf solvers such as Gurobi and Mosek are able to obtain globally optimal solutions
to Problem (8) for moderately-sized datasets. As we demonstrate in Section 3, this allows us to
scale our DP algorithm to problems with p ≈ 250 in a few minutes, benefiting from the enormous
progress made in the discrete optimization literature in the recent years.

Finally, let us also discuss the role of R in Algorithm 1. For k > R, we underestimate R(Ŝk,D)

with R(ŜR,D), consequently increasing the probability mass given to supports Ŝk in the procedure
ÂE . This reduces the probability mass for the best support Ŝ1. Therefore, in practice, we like to
choose a larger R to explore the objective landscape better, however, a very large R can make the
computation slower.

3 NUMERICAL EXPERIMENTS

In our experiments, we draw the data points as yi = xT
i β

∗ + ϵi for i ∈ [n], where x1, · · · ,xn
iid∼

N (0,Σ) ∈ Rp and the independent noise follows ϵ ∼ N (0, σ2In) where In is the identity matrix
of size n. Moreover, for i, j ∈ [p], we set Σi,j = 0.1|i−j| and set nonzero coordinates of β∗ to
take value 1/

√
s at indices {1, 3, · · · , 2s − 1}. We define the Signal to Noise Ratio as SNR =

∥Xβ∗∥22/∥ϵ∥22. We consider various values of n, p, s, SNR and ε.

In Algorithm 1, we set R = 100, bx = by = 1, r = 1.1 and T = ∞. We use Gurobi to obtain
values of Ŝ1, · · · , ŜR to form IP0 in (6), using the Solution Pool option. Our experiments are
run on a standard MacBook Pro, and Gurobi returned the top-R solutions in less than 5 minutes for
most cases. In Figure 1, we plot the probability of exact correct support recovery by Algorithm 1,
averaged over 10 independent repetitions. For comparison, we also tried DP Lasso of Talwar et al.
(2015), however, their method failed to recover the exact correct support in all cases. Therefore, we
do not plot their results here.

As we see, the probability of recovery increases as we increase n, as one expects. Moreover, we
observe that larger values of p make the recovery harder. Interestingly, the effect of increasing p is
more announced when s is larger as in the case of s = 7. Overall, we also observe decreasing ε
reduces the recovery probability, as this requires stronger privacy guarantees.

To demonstrate the power of our MIP-based estimator, we note that for p = 250, s = 7, we have(
250
7

)
≈ 1013. To put this in perspective, to use the standard exponential mechanism and enumerate

all feasible supports, assuming computing each feasible support takes 10−6 seconds and 16 bits of
storage, one would need 128 days and 22 terabytes of storage. This shows the usefulness of our
MIP-based estimator in practice, enabling us to solve BSS with DP for problem sizes that otherwise
would be prohibitive.
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SNR = 2, ε = 5, s = 5 SNR = 5, ε = 2, s = 7 SNR = 5, ε = 1, s = 5
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Figure 1: Numerical experiments for three different settings. On the x-axis, we vary the value of n and plot
the probability of correct recovery by Algorithm 1, for two different values of p.
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A PROOFS OF MAIN RESULTS

A.1 PROOF OF LEMMA 2

Proof. Suppose D,D′ are two neighboring datasets. Fix a support S ∈ O and suppose

β̂ ∈ argmin
β∈Rs

∥y′ −X ′
Sβ∥22 s.t. ∥β∥22 ≤ r2.

Then,
R(S,D)−R(S,D′) ≤ ∥y −XSβ̂∥22 − ∥y′ −X ′

Sβ̂∥22.
Let us assume without loss of generality that D,D′ differ in the n-th observations. Hence, we have
that

∥y −XSβ̂∥22 − ∥y′ −X ′
Sβ̂∥22 =

n−1∑
i=1

[(yi − (xi)
T
S β̂)

2 − (yi − (xi)
T
S β̂)

2] + (yn − (xn)
T
S β̂)

2 − (y′n − (xn)
′T
S β̂)2

≤ (yn − (xn)
T
S β̂)

2

≤ 2y2n + 2((xn)
T
S β̂)

2

≤ 2b2y + 2b2xr
2s

where the last step uses Cauchy-Schwartz inequality and the fact that |S| = s.

A.2 PROOF OF THEOREM 1

First, we prove some technical results that will be used in the proof of Theorem 1. Define

R̂(S,D) =

{
R(S,D) if S ∈ {Ŝ1(D), · · · , ŜR(D)}
R(ŜR(D),D) otherwise.

(A.1)

Lemma A.1. Let ∆ to be taken as in (2). Then,

max
k≥1

max
D,D′∈Zn

D,D′ are neighbors

R(Ŝk(D),D)−R(Ŝk(D′),D′) ≤ ∆.

Proof. Fix k ≥ 1 and let us consider the following cases:
Case 1: R(Ŝk(D),D′) ≤ R(Ŝk(D′),D′). Then, by the definition of ∆,

R(Ŝk(D),D)−R(Ŝk(D′),D′) ≤ R(Ŝk(D),D′)−R(Ŝk(D′),D′) + ∆

≤ ∆. (A.2)

Case 2: R(Ŝk(D),D) ≤ R(Ŝk(D′),D). Then,

R(Ŝk(D),D)−R(Ŝk(D′),D′) ≤ R(Ŝk(D),D)−R(Ŝk(D′),D) + ∆

≤ ∆. (A.3)

Case 3: R(Ŝk(D),D) > R(Ŝk(D′),D) and R(Ŝk(D),D′) > R(Ŝk(D′),D′). Trivially, in this
case we must have

(
p
s

)
> k ≥ 2. Then, there must exist S0 ⊆ [p], |S0| = s such that

R(S0,D) ≥ R(Ŝk(D),D),R(S0,D′) ≤ R(Ŝk(D′),D′).

To this end, define

S1 = {Ŝ1(D), · · · , Ŝk−1(D)}, S2 = {Ŝk+1(D), · · · }, S′ = {Ŝ1(D′), · · · , Ŝk−1(D′)}.

As R(Ŝk(D),D′) > R(Ŝk(D′),D′), we have that Ŝk(D) /∈ S′ so S′ ⊂ S1 ∪ S2. On the other hand,
as R(Ŝk(D),D) > R(Ŝk(D′),D), Ŝk(D′) ∈ S1 and as Ŝk(D′) /∈ S′, we have |S′ ∩ S1| ≤ k − 2.
As |S′| = k − 1, we must have |S′ ∩ S2| ≥ 1 which proves the existence of S0. Next, note that

R(Ŝk(D),D)−R(Ŝk(D′),D′) ≤ R(S0,D)−R(S0,D′) ≤ ∆. (A.4)
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Lemma A.2. Let ∆ to be taken as in (2). Then,

max
S⊆[p]
|S|=s

max
D,D′∈Zn

D,D′ are neighbors

R̂(S,D)− R̂(S,D′) ≤ ∆.

Proof. Suppose S = Ŝk1(D) = Ŝk2(D′). Let us consider the following cases:

Case 1: k1, k2 ≥ R: Then, we have R̂(S,D) = R(ŜR(D),D) and R̂(S,D′) = R(ŜR(D′),D′).
Therefore,

R̂(S,D)− R̂(S,D′) = R(ŜR(D),D)−R(ŜR(D′),D′) ≤ ∆ (A.5)

by Lemma A.1.

Case 2: k1 < R, k2 ≥ R: Then, we have R̂(S,D) = R(S,D) ≤ R(ŜR(D),D) and R̂(S,D′) =

R(ŜR(D′),D′). Then,

R̂(S,D)− R̂(S,D′) ≤ R(ŜR(D),D)−R(ŜR(D′),D′) ≤ ∆. (A.6)

Case 3: k1 ≥ R, k2 < R: Then, we have R̂(S,D) = R(ŜR(D),D) ≤ R(S,D) and R̂(S,D′) =
R(S,D′). Then,

R̂(S,D)− R̂(S,D′) ≤ R(S,D)−R(S,D′) ≤ ∆. (A.7)

Case 4: k1, k2 < R: Then, we have R̂(S,D) = R(S,D) and R̂(S,D′) = R(S,D′). The result
follows.

Lemma A.3. Suppose M is as defined in Algorithm 1, and ÂE is an exponential mechanism with
the objective R̂,

IP(ÂE(D) = S) ∝ exp

(
−εR̂(S,D)

2∆

)
, ∀S ∈ O. (A.8)

Then, for S ∈ O,

(1− qT )IP(ÂE(D) = S) ≤ IP(M(D) = S) ≤ IP(ÂE(D) = S) + qT (A.9)

where

q =
R(
p
s

) .
Proof. Fix S ∈ O and suppose S = Ŝk(D). Moreover, let SR = {Ŝk(D) : k ≤ R}. Consider the
following cases:
Case 1: k ≤ R: Then, based on Algorithm 1,

IP(M(D) = S) = IP ({a(D) = k} ∪ {a(D) = R+ 1,M0(D) = S}) .

Therefore,

IP(a(D) = k) ≤ IP(M(D) = S) = IP ({a(D) = k} ∪ {a(D) = R+ 1,M0(D) = S})
(a)

≤ IP(a(D) = k) + IP(M0(D) ∈ SR)
(b)

≤ IP(a(D) = k) + qT (A.10)

where (a) is true as S ∈ SR, and (b) is true as M0 return a support in SR if it selects some
support from SR for all T iterations, showing IP(M0(D) ∈ SR) = qT . Note that for k ≤ R,
IP(a(D) = k) = IP(ÂE(D) = S), therefore,

IP(ÂE(D) = S) ≤ IP(M(D) = S) ≤ IP(ÂE(D) = S) + qT . (A.11)

11
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Case 2: k > R: Then, from (6),

IP(a(D) = R+ 1) =

((
p
s

)
−R

)
exp

(
−εR(ŜR(D),D)/(2∆)

)
∑R

k=1 exp
(
−εR(Ŝk(D),D)/(2∆)

)
+
((

p
s

)
−R

)
exp

(
−εR(ŜR(D),D)/(2∆)

)
=

((
p
s

)
−R

)
exp

(
−εR̂(S,D)/(2∆)

)
∑R

k=1 exp
(
−εR̂(Ŝk(D),D)/(2∆)

)
+
∑

k≥R+1 exp
(
−εR̂(Ŝk(D),D)/(2∆)

)
=

((
p

s

)
−R

)
IP(ÂE(D) = S). (A.12)

Hence, one can write

IP(M(D) = S) = IP ({a(D) = R+ 1} ∩ {M0(D) = S})

(a)
= IP(a(D) = R+ 1)

(
T∑

i=1

qi−1(
p
s

) )

=
1(
p
s

) [(p
s

)
−R

]
IP(ÂE(D) = S)

1− qT

1− q

= (1− qT )IP(ÂE(D) = S) (A.13)

where (a) is true as

IP(M0(D) = S) =

T∑
i=1

IP(M0(D) = S,M0 stops after i iterations ) =
T∑

i=1

qi−1(
p
s

) .

The proof is complete by (A.11) and (A.13).

Next, let us prove an important intermediate result on Algorithm 1.

Theorem A.1. Suppose T > 1, 1 < R <
(
p
s

)
. The procedure M in Algorithm 1 is (ε′, δ)-DP where

ε′ = ε− log

(
1−

[
R/

(
p

s

)]T)
, δ =

[
R/

(
p

s

)]T
.

Proof. From Lemma A.2 and Lemma 1, we know that ÂE is an (ε, 0)-DP procedure. Suppose
D,D′ are neighboring datasets. Then, from Lemma A.3,

IP(M(D) = S) ≤ IP(ÂE(D) = S) + qT

≤ eεIP(ÂE(D′) = S) + qT

≤ 1

1− qT
eεIP(M(D′) = S) + qT (A.14)

where the first and last inequality use Lemma A.3.

Proof of Theorem 1. Note that by definition, for S ∈ O, we have 0 ≤ R(S,D) ≤ ∥y∥22 ≤ nb2y .
Then,

IP(ÂE(D) = S) =
exp

(
−εR̂(S,D)/(2∆)

)
∑R

k=1 exp
(
−εR̂(Ŝk(D),D)/(2∆)

)
+
∑

k≥R+1 exp
(
−εR̂(Ŝk(D),D)/(2∆)

)
≥

exp(−nεb2y/(2∆))(
p
s

) := δ0. (A.15)
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Then, from (A.14),

IP(M(D) = S) ≤ eεIP(ÂE(D′) = S) + qT

=

(
eε +

qT

δ0

)
IP(ÂE(D′) = S)− qT

δ0
IP(ÂE(D′) = S) + qT

(a)

≤
(
eε +

qT

δ0

)
IP(ÂE(D′) = S)

(b)

≤ 1

1− qT

(
eε +

qT

δ0

)
IP(M(D′) = S) (A.16)

where (a) is by (A.15) and (b) is by Lemma A.3.
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