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Abstract

Object goal navigation is a fundamental task in embodied
AI, where an agent is instructed to locate a target object
in an unexplored environment. Traditional learning-based
methods rely heavily on large-scale annotated data or re-
quire extensive interaction with the environment in a re-
inforcement learning setting, often failing to generalize to
novel environments and limiting scalability. To overcome
these challenges, we explore a zero-shot setting where the
agent operates without task-specific training, enabling more
scalable and adaptable solution. Recent advances in Vi-
sion Foundation Models (VFMs) offer powerful capabili-
ties for visual understanding and reasoning, making them
ideal for agents to comprehend scenes, identify relevant
regions, and infer the likely locations of objects. In this
work, we present a zero-shot object goal navigation frame-
work that integrates the perceptual strength of VFMs with a
model-based planner that is capable of long-horizon deci-
sion making through frontier exploration. We evaluate our
approach on the HM3D dataset using the Habitat simulator
and demonstrate that our method achieves state-of-the-art
performance in terms of success weighted by path length for
zero-shot object goal navigation.

1. Introduction

Object-goal navigation is a core challenge in embodied AI,
where an agent is tasked with locating and navigating to an
instance of a specified object within an unfamiliar environ-
ment. Unlike map-based or point-goal navigation, this task
requires both semantic understanding and active perception,
as the agent must interpret visual cues to identify the target
object without prior knowledge of its location. This capabil-
ity is essential for a wide range of real-world applications,
including service robots in domestic environments, assistive
robots for the elderly, and search-and-rescue operations in
disaster-stricken areas.

Over the years, various learning-based methods have

been proposed for object-goal navigation. Supervised ap-
proaches [13] rely on large-scale annotated datasets, while
reinforcement learning (RL) techniques [2, 11, 19] learn
policies through trial-and-error guided by reward shaping.
However, these methods are limited to closed sets of ob-
ject categories and are tightly coupled to their training envi-
ronments. Extending them to new objects or environments
often requires costly retraining, hindering scalability and
real-world deployment where generalization to unseen cat-
egories and dynamic layouts is essential.

Recent advances in VFMs have greatly enhanced the
generalization capabilities of perception systems. Open-
vocabulary detectors [6, 9] and segmentation models [3, 4]
can recognize diverse object categories without a fixed
training set, while vision-language models (VLM) and large
language models (LLM) provide strong commonsense rea-
soning about objects and their spatial contexts. VLFM [20]
leverages BLIP-2 [5] to compute the cosine similarity be-
tween the current observation and a target image, guiding
the agent toward visually similar regions. ESC [24] utilizes
GLIP [6] for detecting candidate objects and rooms, and
employs an LLM to reason about the likelihood of the tar-
get object being present in a specific room or near certain
objects. While these approaches show promise, their re-
liance on image-text matching or reasoning explicitly with
discovered objects can hinder exploration when the target
object is far away, occluded, or when the detection is poor.
In this work, we explore the advancements in VFMs that
enables us to use more general prompts which can encour-
age the agent to move through a hallway or enter a nearby
room when the object is not currently visible.

Our approach adopts a frontier-based exploration strat-
egy, treating frontiers as long-term subgoals. We leverage
VLM to assign the likelihood of finding the target object to
these frontiers, guiding the agent’s search. Many existing
frontier-based methods are inherently myopic: they score
each frontier using a heuristic and greedily select the one
with the highest score, often leading to suboptimal and inef-
ficient behavior in complex environments. To address this,



Figure 1. Overview of SemNav

we build upon the model-based frontier planning strategy,
Learning Over Subgoals Planner (LSP) [15], which eval-
uates the expected navigation cost of selecting a frontier
given the current belief about the environment. This allows
the agent to reason about the long-term consequences of its
actions and supports more efficient long-horizon planning.

Our contributions are summarized below:
• We propose a semantic frontier-based exploration frame-

work, SemNav, that leverages VLM to assign cost to fron-
tiers for zero-shot object-goal navigation in unseen envi-
ronments.

• We integrate a non-greedy, model-based frontier plan-
ning strategy (LSP) to reason about long-term exploration
costs, enabling more efficient and informed decision-
making compared to traditional greedy frontier selection
methods.

2. Related Work
Zero-shot object-goal navigation leverages VLM and LLMs
to enable open-vocabulary object understanding and se-
mantic reasoning without task-specific training. Recent
works explore various strategies, including transfer learn-
ing [1, 10], frontier scoring with VLM and LLMs [20, 21],
structured scene reasoning [24], and topological exploration
guided by LLM [18].

3. Approach
An agent is spawned at a random location within an un-
known environment and receives a target object category
(e.g., couch). At each time step, the agent receives vi-
sual observations as egocentric RGB-D images and uti-
lizes a GPS+Compass sensor. The agent can take several
actions at each step: MOVE FORWARD, TURN LEFT,
TURN RIGHT, or STOP. The MOVE FORWARD action
moves the agent forward by 0.25m, and the TURN ac-

tions rotate the agent by 30◦ in the specified direction. An
episode is considered successful if the agent takes a STOP
action within 1m of any instance of the target object cate-
gory within 500 timesteps.

Overview At each timestep t, the robot receives an RGB-
D observation. The depth image is used to update a partial
map of the environment, identifying both navigable areas
and obstacles. Frontiers are extracted as potential explo-
ration targets. To guide exploration, a VFM model (GPT-
4o) is queried using the current RGB image and the target
object. The model estimates the likelihood of finding the
target object in the direction of the current observation. This
score is associated with the frontier. A long-horizon global
planner LSP[15], selects the most promising frontier that
minimizes the expected cost of navigation. A local naviga-
tion module then computes a low-level action to move the
agent toward the selected frontier. Once the target object is
detected, the local navigation module guides the robot to its
location and issues a STOP action (Fig. 1).

3.1. Mapping module
We maintain an egocentric, partial map of the environment
that is updated incrementally as the agent explores. At
each timestep, the depth image is converted into a 3D point
cloud, from which free space and obstacles are identified
using a height threshold. Frontiers are extracted as bound-
aries between free and unknown space. For each frontier,
the center point along its boundary is selected as the navi-
gation target.

In addition to the geometric map, we also construct
a two-channel value map, inspired by VLFM [20], con-
sisting of a semantic value, V and a confidence score
map, C. The semantic value map stores the estimated
likelihood of finding the target object from the VLM
(Sec. 3.2) in each explored cell. Instead of averaging



VLM scores across timesteps, we update the value map
using a confidence score map that reflects the agent’s vi-
sual certainty. Confidence is highest (1) along the opti-
cal axis and decays to 0 at the edges of the field of view
(FOV), ensuring that semantic scores are updated more
reliably in well-observed regions. The map cells corre-
sponding to the current FOV are updated using the equa-
tions: vnewi,j = ((ccurri,j vcurri,j ) + (cprevi,j vprevi,j )/(ccurri,j +

cprevi,j ); cnewi,j = ((ccurri,j )2 + (cprevi,j )2)/(ccurri,j + cprevi,j )

3.2. Assigning VLM-probabilities to frontiers
To guide exploration, we leverage GPT-4o to estimate the
likelihood of encountering the target object if the agent
moves in the direction of its current observation. At each
timestep t, the RGB image It is fed into GPT-4o along with
the prompt: “Output only a floating point value denoting
the likelihood of finding a <target object> if I move in this
direction.” Unlike prior approaches that rely on image cap-
tioning models (e.g., BLIP-2) [20] or spatial co-occurrence
heuristics based on object-to-object relationships [21, 24],
GPT-4o provides a richer understanding of scene semantics.
Its integrated vision-language reasoning capabilities allow it
to infer plausible object locations by incorporating knowl-
edge about indoor layouts, typical room-object associations,
and commonsense spatial relationships. This makes it par-
ticularly effective in situations where the target object is
not directly visible—such as when it is located through a
doorway, or further down a hallway—where purely visual
similarity metrics may fail (Fig. 2). Some responses from
GPT-4o are included in the Appendix Sec. 7.

Figure 2. BLIP-2 assigns a lower score for the couch from the
same location, leading the agent to explore the left room first,
while our GPT-4o-based approach assigns a higher score and
guides the agent directly through the hallway to find the couch.

3.3. Global planning with LSP
Once the semantic scores for the frontiers are computed,
we must select the most promising frontier. To do so, we
adopt the LSP [15], a model-based planning abstraction for

efficient navigation. This approach has been shown to be
effective for long-horizon reasoning in both exploration [8]
and point-goal navigation [7] tasks within simulated envi-
ronments.

Unlike myopic methods that select the frontier with the
highest immediate score, LSP evaluates the long-term util-
ity of each frontier by estimating the expected cost of navi-
gation as:

Q( {mt, qt,At} , at) = D(mt, qt, at) + PSRS+

(1− PS)(RE + max
a∈At\{at}

Q({mt, qat
,At\{at}} , a)

(1)

Here, mt is the current partial map, qt represents the
agent’s location, and At is the set of candidate frontiers.
Q({mt, qt,At} , at) estimates the expected cost of success-
fully locating the target object by first navigating to frontier
at. D(mt, qt, at) is the distance from the agent to the fron-
tier. PS is the probability of successfully finding the target
object through frontier at, which we get from the VLM. RS

and RE denote the success and exploration costs respec-
tively. Specifically, RS represents the expected distance to
the object beyond a frontier if found, while RE captures
the additional exploration and return cost if the object is not
found. Since VFMs cannot reliably predict distances in un-
explored regions, we assume RS = 3m and RE = 6m in
our experiments, assuming unsuccessful exploration costs
roughly twice as much as success. Empirically, we ob-
served that varying these constants has minimal impact on
performance. We calculate the expected cost for all fron-
tiers and select the one with the minimum expected cost.

3.4. Local navigation and object detection
The agent relies on a local navigation module to reach ei-
ther the frontier or the target object location once it is vi-
sually detected by YOLOv7 [16]. Upon detection, we use
Mobile-SAM to generate a segmentation mask of the ob-
ject. The segmentation mask is then combined with the cor-
responding depth image to estimate the closest point on the
object surface relative to the robot’s current position, which
serves as the navigation goal. For reaching any target loca-
tion (frontier or goal), we utilize the pretrained local point-
goal navigation policy from [20], which was trained on the
HM3D training split. This policy takes as input the current
depth image and the relative position of the goal point, and
produces discrete action commands to navigate towards it.

4. Experiments
Dataset We evaluate our approach using the Habitat [14]
simulator with the HM3D-val dataset [12], which comprises
2000 episodes across 20 diverse indoor scenes and includes
navigation tasks for 6 object categories (bed, couch, chair,
potted plant, toilet, tv).



Evaluation Metrics We report performance using two
standard metrics: Success Rate (SR) and Success weighted
by Path Length (SPL). SR measures the percentage of
episodes in which the agent successfully navigates to an in-
stance of the target object. SPL evaluates path efficiency by
comparing the length of the agent’s trajectory to the shortest
path from the starting location to the nearest instance of the
target object.

Baselines We compare our approach against the follow-
ing baselines:
• ZSON [10]: Transfers a trained policy on image-goal

navigation to semantic object-goals.
• ESC [24]: Uses LLM to reason about room-to-target ob-

ject and discovered objects-to-target object relationship.
• VLFM [20]: It uses BLIP-2 [5] to compute cosine simi-

larity between the current observation and the target ob-
ject and uses the similarity score to prioritize frontiers.

• VoroNav [18]: Introduces a voronoi graph-based topo-
logical map, selecting subgoals using LLM-inferred prob-
abilities with efficiency and exploration rewards.

• L3MVN [21]: Uses masked language model to assess the
relevance between frontiers with nearby objects to target

• TriHelper [23]: Builds on L3MVN by incorporat-
ing three manual intervention helpers—collision, explo-
ration, and detection—to boost navigation performance.

• MFNP [22]: Supports exploration through staircases.

5. Result

Approach HM3D
SPL ↑ SR↑

ZSON [10] 12.6 25.5
ESC [24] 22.3 39.2

VLFM [20] 30.4 52.5
VoroNav [18] 26 42
L3MVN [21] 23.1 50.4
TriHelper [23] 25.3 56.5

MFNP [22] 26.7 58.3

SemNav-Greedy 34.3 54.6
SemNav 35.9 54.9

Table 1. Obj-nav results on HM3D validation set. SemNav-
Greedy uses our frontier scoring mechanism with VLM and greed-
ily selects the frontier with the highest probability score. SemNav
uses LSP along with VLM-based scoring.

Our method, SemNav, outperforms all baselines in
terms of SPL, achieving the most efficient navigation paths
(Tab. 1). Compared to VLFM, which also leverages VLM
to score frontiers, SemNav achieves 5.5% and 2.4% im-
provement in SPL and SR, respectively. These results show
that our way of prompting the VLM for semantic reasoning,

combined with long-horizon planning through LSP, leads to
more effective exploration than relying solely on image-text
cosine similarity as done in VLFM (Fig. 2). We observe a
1.6% SPL drop with greedy frontier selection. (SemNav-
Greedy vs SemNav in Table 1). Fig. 3 compares VLFM,
SemNav, and SemNav-Greedy, showing that our approach
achieves the highest SPL (detailed discussion in Appendix
Sec. 9). Specific examples illustrating SemNav’s behav-
ior—such as efficiently exiting rooms when the target object
is absent compared to VLFM is provided in the Appendix
Sec. 8.

Figure 3. Final navigation paths for the target object bed.

While our method significantly outperforms TriHelper
and MFNP in SPL, it achieves slightly lower SR—by 1.6%
and 3.4% respectively. These methods specifically address
certain failure cases: TriHelper manually intervenes when
the robot becomes stuck by relocating it to a more open area
and double-checks object detections using a VLM, while
MFNP further enables exploration through staircases. In
contrast, our approach prioritizes improved semantic explo-
ration through better frontier reasoning and does not cur-
rently handle stair navigation.

We also observed that around 25% of the failed episodes
are due to a simulator issue, where the agent successfully
reaches an instance of the target object category but the
simulator still registers the episode as a failure. This phe-
nomenon has also been noted in previous works [17, 23].
Representative examples illustrating this issue are provided
in the Appendix (Sec. 10).

6. Conclusion

We proposed SemNav, a frontier-based zero-shot object-
goal navigation framework that combines the semantic un-
derstanding of VLMs with model-based long-horizon plan-
ning. By leveraging VLM-driven frontier scoring and the
LSP planner, our approach achieves state-of-the-art SPL
performance on the HM3D dataset. Our results highlight
the importance of general semantic reasoning and model-
based planning for open-world embodied AI tasks.
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7. Probability outputs from GPT-4o

Figure 4. Some example images with their corresponding GPT-4o responses.

8. Comparison between SemNav and VLFM

Figure 5. This is an example where we see that SemNav quickly gets out of the room to find a couch than VLFM. Top row: At timestep t=4,
both are looking at a doorway which can lead to finding a couch. At that position SemNav had a higher probability score for the frontier
closest to the doorway, which is evident from the map. This eventually leads SemNav agent to quickly get out of the room. Bottom row:
SemNav gets out of the room at timestep t = 45 whereas VLFM took timestep t = 86 to get out of the room. The map shows a longer
travelled path for VLFM.



9. Comparison among VLFM, SemNav-
Greedy and SemNav

Figure 6. Row 1: At timestep t = 20, SemNav (with LSP) selects a frontier with a lower score (0.29 in map) to minimize expected travel
cost, choosing closer frontiers that guide it toward the target. In contrast, SemNav-Greedy selects the frontier with the highest score and
moves in the opposite direction. Row 2: As a result, SemNav-Greedy is now farthest from the goal. Row 3: All agents observe the door
leading to the goal. VLFM receives a poor score from BLIP-2 in that direction and continues exploring other frontiers first. SemNav and
SemNav-Greedy, guided by higher GPT-4o scores, proceed directly through the door. Row 4: SemNav reaches the target object faster than
all other approaches.

10. Simulator issue

Figure 7. Here, we show a problem with the simulator where the agent successfully reached the target object, but it was still considered
failed episodes.


	Introduction
	Related Work
	Approach
	Mapping module
	Assigning VLM-probabilities to frontiers
	Global planning with LSP
	Local navigation and object detection

	Experiments
	Result
	Conclusion
	Probability outputs from GPT-4o
	Comparison between SemNav and VLFM
	Comparison among VLFM, SemNav-Greedy and SemNav
	Simulator issue

