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Abstract. Head and Neck (H&N) cancers represent one of the most prevalent 

malignancies worldwide, with accurate delineation of primary tumors and meta-

static lymph nodes being essential for radiotherapy planning and treatment out-

come prediction. Manual segmentation, though standard, is time-consuming and 

prone to inter-observer variability, motivating the development of automated 

deep learning–based methods. In this study, we propose HectoMixNet, a novel 

3D encoder–decoder framework augmented with a bidirectional quasiseparable 

mixing module for robust segmentation of primary tumors and lymph nodes in 

multimodal PET/CT imaging. The proposed module efficiently integrates local 

anatomical detail with global volumetric context, addressing the challenges of 

heterogeneous and spatially complex lesions. We evaluate HectoMixNet on the 

HECKTOR 2025 Task 1 dataset, the largest multicentric benchmark for H&N 

cancer analysis to date, comprising over 1,200 patients from 11 international cen-

ters. Our model achieved strong performance, with a GTVp Dice score of 0.8812, 

GTVn Dice of 0.8246, and GTVn F1 of 0.7273 on the validation and leaderboard 

sets. Compared to state-of-the-art baselines such as 3D Mamba and xLSTM, Hec-

toMixNet demonstrated superior lymph node segmentation accuracy, highlight-

ing the importance of bidirectional quasiseparable mixing for modeling long-

range spatial dependencies. These results establish HectoMixNet as an effective 

and clinically relevant tool for automated H&N cancer segmentation in large-

scale, heterogeneous imaging cohorts. 
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1 Introduction 

Head and Neck (H&N) cancers represent the fifth most common malignancy world-

wide, with a substantial global disease burden and significant clinical management 

challenges [1]. Accurate delineation of primary tumors and metastatic lymph nodes 

plays a crucial role in radiotherapy planning, treatment monitoring, and outcome pre-

diction. Conventionally, segmentation is performed manually by expert radiation on-

cologists, a process that is both time-consuming and subject to high inter-observer var-

iability. As a result, there is a growing demand for robust, automated segmentation 
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algorithms that can generalize across heterogeneous, multicenter datasets. The 

HECKTOR (Head and Neck Tumor Segmentation and Outcome Prediction) challenge, 

organized annually in conjunction with the International Conference on Medical Image 

Computing and Computer-Assisted Intervention (MICCAI), has become the leading 

benchmark for automated H&N cancer analysis on multimodal Positron Emission To-

mography (PET) and Computed Tomography (CT) data. Following the success of the 

2020–2022 editions [1-5], the 2025 HECKTOR challenge expands the dataset to more 

than 1,200 patients from 11 international centers, making it the largest multicentric co-

hort available for this task. The 2025 edition introduces refined evaluation metrics to 

better assess detection and segmentation of multiple distinct lesions, thereby improving 

clinical relevance. In recent years, numerous segmentation models have been developed 

for medical image analysis [5-18], demonstrating the potential of deep learning to ac-

curately delineate complex anatomical structures and lesions. 

In this work, we present HectoMixNet, a novel deep learning framework for automatic 

segmentation of primary tumors and lymph nodes in H&N cancer patients. The model 

builds upon a classical 3D encoder–decoder design but incorporates a specialized bidi-

rectional quasiseparable mixing module at the network bottleneck, enabling effective 

modeling of both local detail and global spatial context. By integrating fine anatomical 

information with long-range dependencies across volumetric scans, HectoMixNet is 

tailored to address the challenges of detecting irregular, heterogeneous tumor struc-

tures. We evaluate our method on the HECKTOR 2025 Task 1 dataset and demonstrate 

its ability to achieve precise and robust segmentation in a challenging multicenter set-

ting. 

2 Proposed Method 

In this section, we describe the dataset used for training and evaluation, followed by the 

architecture and implementation details of the proposed HectoMixNet framework. 

2.1 Dataset 

The dataset used in this study is provided by the HECKTOR 2025 challenge, which 

focuses on automatic detection and segmentation of head and neck primary tumors and 

lymph nodes from multimodal PET/CT imaging. The training cohort consists of ap-

proximately 850 patients drawn from the HECKTOR 2022 database [5], updated with 

additional clinical variables including HPV status and extended follow-up information. 

For the 2025 challenge, two new French cohorts have been added, forming an unseen 

test set of ~400 patients. Altogether, the dataset comprises more than 1,200 patients 

from at least 11 medical centers, ensuring significant heterogeneity in imaging proto-

cols and patient demographics [19]. 

Each patient study contains co-registered FDG-PET and CT scans, with corresponding 

expert-annotated segmentation masks for the primary tumor (GTVp) and metastatic 

lymph nodes (GTVn). PET images provide complementary metabolic information to 

the anatomical details visible in CT, enabling more reliable lesion identification. The 

segmentation task requires the model to accurately detect and delineate both lesion 

types, including cases with multiple, spatially distinct lymph node metastases. For 
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evaluation, the challenge employs updated metrics that measure both overall volumetric 

overlap (e.g., Dice similarity) and lesion-wise detection performance, reflecting the 

clinical importance of identifying all tumor sites for accurate treatment planning.  

2.2 Preprocessing 

For preprocessing, we followed the standardized pipeline provided by the challenge 

organizers. CT and PET scans were stacked as two-channel volumes and processed as 

follows: 

▪ Resampling & Alignment: All scans were resampled to an isotropic resolution 

of 1 mm³ and aligned using bounding-box coordinates to ensure PET–CT cor-

respondence. 

▪ Region-of-Interest Cropping: A fixed box of 200 × 200 × 310 voxels centered 

on PET-intensity landmarks was extracted to capture the head and neck region 

while reducing irrelevant background. 

▪ Normalization: CT intensities were clipped to [−250, 250] HU and scaled to 

[−6, 6], while PET images were normalized to zero mean and unit variance. 

▪ Reorientation & Padding: All images were reoriented to the RAS convention, 

foreground-cropped, and padded to the target size to ensure uniform input di-

mensions. 

This preprocessing pipeline, implemented with SimpleITK and MONAI, standardizes 

resolution, orientation, and intensity distributions across the cohort, while preserving 

anatomical fidelity and ensuring compatibility with deep learning workflows. 

2.3 Postprocessing 

To restore predictions to the native imaging space, we applied a structured inverse 

transformation pipeline. First, symmetric padding introduced during preprocessing was 

removed, followed by reinsertion into the cropped foreground and neck region of inter-

est. The reconstructed mask in the standardized 1-mm isotropic space was then 

resampled back to the original CT resolution using nearest-neighbor interpolation to 

preserve label integrity. This ensured voxel-level alignment of the predicted segmenta-

tion with the scanner-resolution images, facilitating accurate evaluation and down-

stream clinical usability. 

2.4 Model 

1. HectoMixNet: Proposed Model for 3D heterogeneous H&N tumors and 

lymph nodes 

To address the challenges of segmenting heterogeneous H&N tumors and lymph nodes, 

we propose HectoMixNet, a 3D convolutional encoder–decoder network augmented 

with a bidirectional quasiseparable mixing module. The architecture is designed to 

combine local feature extraction with global spatial context modeling, a critical require-

ment for distinguishing small, irregular lesions as well as capturing large-scale disease 

patterns. 

The encoder consists of hierarchical 3D convolutional blocks with strided convolutions, 

batch normalization, and non-linear activations. This stage progressively reduces spa-

tial resolution while extracting rich multi-scale representations of tumor and anatomical 



4 

structures. Skip connections are preserved to ensure high-fidelity recovery of spatial 

details. At the network bottleneck, feature maps are passed through the HectoMix mod-

ule, which reshapes the volumetric features into a sequence and applies bidirectional 

quasiseparable mixing using semiseparable state-space models. This operation effi-

ciently propagates information from both past (causal) and future (anti-causal) spatial 

positions, while preserving self-connections for stability. In doing so, each voxel rep-

resentation integrates contextual knowledge from the entire 3D volume. 

 

 

Figure 1. Architectural framework of HectoMixNet, designed for segmentation of 

complex and heterogeneous head and neck tumors. 

 

The decoder mirrors the encoder, using 3D transposed convolutions to restore spatial 

resolution. Mixed global features from the bottleneck are fused with skip-connected 

encoder features at multiple scales, allowing fine-grained lesion boundaries to be 
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reconstructed while maintaining global consistency. This design enables HectoMixNet 

to adaptively handle both small, isolated lymph nodes and larger, diffused primary tu-

mors. 

By unifying multi-scale local features with efficient long-range dependency modeling, 

HectoMixNet offers an effective and computationally scalable solution for volumetric 

medical image segmentation. Its ability to capture global relationships while preserving 

anatomical detail makes it particularly well-suited for the complexity of head and neck 

tumor segmentation in the HECKTOR 2025 dataset. 

The core mechanism of mixing aggregates information from three sources for each se-

quence position: past positions (causal context), future positions (anti-causal context), 

and the current position itself. In the causal pass, a semiseparable SSM operation accu-

mulates information from all preceding positions, with the output shifted to align with 

the current position. The anti-causal pass reverses the sequence and applies the same 

causal SSM operation; the result is shifted and reversed back to propagate information 

from future positions. This bidirectional processing ensures every spatial location ben-

efits from both preceding and succeeding spatial context. 

Additionally, a self-connection term applies learnable diagonal parameters to each po-

sition’s features, preserving local information and stabilizing the mixing process. Math-

ematically, this operation corresponds to a quasiseparable mixing matrix M structured 

as follows: the diagonal entries represent self-connection weights, the lower triangular 

part encodes causal mixing weights for past positions, and the upper triangular part 

encodes anti-causal mixing weights for future positions. The quasiseparable structure 

implies a low-rank representation that enables efficient computation without explicitly 

forming a large dense matrix [20, 21]. 

Together, this bidirectional quasiseparable mixing yields a powerful, context-aware 

feature representation that integrates global spatial relationships effectively. This 

makes mixing highly suitable for 3D medical imaging tasks like TBI, where modeling 

both local details and global spatial dependencies is critical for precise and reliable 

analysis. 

The equation below describes how the output at each sequence position 𝑖 is computed 

by combining three components: contributions from all past positions 𝑗 < 𝑖, contribu-

tions from all future positions 𝑗 > 𝑖, and direct self-connection at the position 𝑖. The 

matrix 𝑀 organizing these parameters is structured so that their diagonal elements 𝛿𝑖 

represent self-connections preserving local features. The lower triangle contains param-

eters 𝐴𝑖𝑏𝑗 that govern how information flows causally from past positions to the current 

one, while the upper triangle contains parameters 𝐴𝑖
′𝑏𝑗

′ for anti-causal mixing, aggre-

gating information from future positions. This quasiseparable structure enables effi-

cient modeling of bidirectional dependencies without explicitly storing a full dense ma-

trix. 

 

For each batch 𝑏, position 𝑖: 

𝑌𝑏,𝑖 = ∑  

𝑗<𝑖

𝐴𝑖𝑏𝑗𝑋𝑏,𝑗 + ∑  

𝑗>𝑖

𝐴𝑖
′𝑏𝑗

′𝑋𝑏,𝑗 + 𝛿𝑖𝑋𝑏,𝑖 
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Where 𝐴𝑖 , 𝑏𝑗: causal parameters, 𝐴𝑖
′ , 𝑏𝑗

′: anti-causal parameters and 𝛿𝑖: diagonal/self-

connection 

The matrix 𝑀 shown for sequence length 16 illustrates how the bidirectional mixing 

operates. Its diagonal elements 𝛿𝑖 represent self-connection weights that preserve local 

information at each position 𝑖. The lower triangular part (below the diagonal) contains 

parameters 𝐴𝑖𝑏𝑗that mix information causally from past positions 𝑗 < 𝑖 to the current 

position iii. Conversely, the upper triangular part (above the diagonal) holds parameters   

𝐴𝑖
′𝑏𝑗

′ responsible for mixing information anti-causally from future positions 𝑗 > 𝑖  back 

to position 𝑖. This structured matrix efficiently captures dependencies in both directions 

while maintaining a sparse, low-rank form for fast computation. 

𝑀 =

[
 
 
 
 

𝛿1 𝐴1
′ 𝑏2

′ 𝐴1
′ 𝑏3

′ ⋯ 𝐴1
′ 𝑏16

′

𝐴2𝑏1 𝛿2 𝐴2
′ 𝑏3

′ ⋯ 𝐴2
′ 𝑏16

′

𝐴3𝑏1 𝐴3𝑏2 𝛿3 ⋯ 𝐴3
′ 𝑏16

′

⋮ ⋮ ⋮ ⋱ ⋮
𝐴16𝑏1 𝐴16𝑏2 𝐴16𝑏3 ⋯ 𝛿16 ]

 
 
 
 

 

Where,  

▪ Diagonal: 𝛿𝑖 for 𝑖 = 1,… ,16 

▪ Lower triangle: 𝐴𝑖𝑏𝑗 for 𝑖 > 𝑗 

▪ Upper triangle: 𝐴𝑖
′𝑏𝑗

′ for 𝑖 < 𝑗 

▪ Lower triangle (below diagonal): Each entry 𝑀𝑖𝑗 for 𝑖 > 𝑗 mixes information 

from past positions using parameters 𝐴𝑖 and 𝑏𝑗 (causal direction). 

▪ Upper triangle (above diagonal): Each entry 𝑀𝑖𝑗 for 𝑖 < 𝑗 mixes information 

from future positions using parameters 𝐴𝑖
′  and 𝑏𝑗

′ (anti-causal direction). 

▪ Diagonal: Each 𝑀𝑖𝑖 is a self-connection parameter 𝛿𝑖. 

2. Training and optimization 

HectoMixNet is a 3D UNet-based architecture implemented in PyTorch, specifically 

designed for the segmentation of primary tumors and lymph nodes in head and neck 

PET/CT scans. The network integrates a bidirectional quasiseparable mixing module at 

the bottleneck, enabling it to capture both local features through convolutional layers 

and long-range spatial dependencies across the entire volume. All convolutional layers 

are initialized using He initialization, and the model uses 3×3×3 convolution kernels 

across five encoding and five decoding levels, with skip connections preserved to main-

tain high-resolution spatial information. 

For training, input patches of size 160 × 160 × 160 were used, and the AdamW opti-

mizer was applied with a cosine annealing learning rate schedule starting at 0.0002. 

The loss function combines Dice and Cross-Entropy losses, balancing volumetric over-

laps and boundary accuracy. Training was conducted for 1000 epochs on all labeled 

HECKTOR2025 cases, with a batch size of 2 due to GPU memory limitations. A 5-fold 

cross-validation scheme (~80% training, 20% validation per fold) was employed for 

robustness, and final predictions were obtained through ensemble averaging across 

folds. Extensive data augmentation, including rotations, flipping, scaling, Gaussian 

blur, and additive noise, was applied to improve generalization. Hyperparameters, such 
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as learning rate, batch size, and network depth, were tuned via grid search, and each 

fold required approximately 24 hours of training on a single NVIDIA A6000 GPU. 

The advantages of HectoMixNet stem from its combination of local convolutional fea-

ture extraction with global context modeling via the bidirectional quasiseparable mix-

ing module. This design enables accurate segmentation of both small, irregular lymph 

nodes and large, diffuse primary tumors. Coupled with standardized preprocessing, ex-

tensive data augmentation, and ensemble predictions, HectoMixNet demonstrates ro-

bust generalization and high segmentation fidelity. Its architecture ensures precise 

boundary delineation, effective detection of multiple lesions, and efficient use of mul-

timodal PET/CT information, making it particularly well-suited for the challenges 

posed by the HECKTOR 2025 Task 1 dataset. 

3 Results  

Table 1. Segmentation Performance on HECKTOR2025 Task 1 

Model GTVp Dice 
GTVn Aggregate 

Dice 

GTVnAggregate 

F1 

HectoMixNet (Test) 0.7567 0.7567 0.6407 

HectoMixNet (Validation) 0.7381 0.8021 0.7015 

HectoMixNet (Sanity Check) 0.8812 0.8246 0.7273 

3D Mamba (Sanity Check) 0.8831 0.8169 0.6667 

3D xLSTM (Sanity Check) 0.8626 0.6937 0.4286 

 

HectoMixNet demonstrates strong segmentation performance on HECKTOR2025 

Task 1 as shown in Table.1. On the validation set, it achieved a GTVp Dice score of 

0.7381, indicating good overlap with the ground truth for primary tumors, while the 

GTVn aggregate Dice of 0.8021 and F1 score of 0.7015 reflect accurate identification 

of lymph nodes. In a sanity check on the leaderboard, HectoMixNet further improved, 

reaching 0.8812 GTVp Dice, 0.8246 GTVn Dice, and 0.7273 GTVn F1, demonstrating 

its robustness under different test splits. Compared to other models, 3D Mamba slightly 

outperformed HectoMixNet on GTVp Dice (0.8831 vs 0.8812), but HectoMixNet 

achieved higher lymph node segmentation scores (GTVn Dice 0.8246 vs 0.8169, F1 

0.7273 vs 0.6667). The 3D xLSTM model, while competitive on primary tumor seg-

mentation, lagged significantly in lymph node detection (GTVn Dice 0.6937, F1 

0.4286), highlighting the advantage of HectoMixNet’s bidirectional quasiseparable 

mixing module for capturing long-range spatial context. Overall, HectoMixNet pro-

vides a balanced and robust segmentation performance for both primary tumors and 

lymph nodes, making it particularly well-suited for the HECKTOR2025 Task 1 chal-

lenge. 
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Figure 2. Columns display CT axial overlays with corresponding segmentations. The 

first column shows the ground truth (GT), followed by predictions from the proposed 

HectoMixNet, 3D Mamba, and 3D xLSTM. Red highlights the primary tumor volume 

(GTVp), while green denotes lymph nodes (GTVn). 
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Figure 3. Columns display PET axial overlays with corresponding segmentations. The 

first column shows the ground truth (GT), followed by predictions from the proposed 

HectoMixNet, 3D Mamba, and 3D xLSTM. Red indicates the primary tumor volume 

(GTVp), and green represents lymph nodes (GTVn). 

Figures 2 and 3 present segmentation results for three validation subjects from the Hec-

tor dataset, comparing ground truth (GT) with predictions from HectoMixNet, 3D 

Mamba, and 3D xLSTM. Columns show GT (first), HectoMixNet (second), 3D Mamba 

(third), and 3D xLSTM (fourth), with red representing the primary tumor volume 

(GTVp) and green indicating lymph nodes (GTVn). Rows show axial slice overlays 
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(odd) and corresponding 3D volumetric reconstructions (even) for CHUM-014 subject 

(rows 1–2), HMR-013 subject (rows 3–4), and USZ-003 subject (rows 5–6). Axial 

slices provide local segmentation detail, highlighting differences in tumor boundary 

delineation and lymph node detection, particularly for smaller or isolated nodes. 3D 

views offer volumetric context, demonstrating spatial alignment, tumor coverage, and 

connectivity of lymph nodes. Overall, HectoMixNet achieves the highest segmentation 

accuracy, effectively capturing both tumors and small lymph nodes; 3D Mamba pro-

vides the second-best performance, showing generally accurate tumor delineation but 

occasional under-segmentation of smaller nodes; 3D xLSTM ranks third, exhibiting 

smooth volumetric continuity but less consistent node detection and occasional shape 

deviations. This figure illustrates both local and global differences in model perfor-

mance for head and neck tumor and lymph node segmentation. 

4 Discussion 

4.1 Segmentation Accuracy 

HectoMixNet achieved consistently strong segmentation performance across both pri-

mary tumors (GTVp) and lymph nodes (GTVn), demonstrating its ability to handle the 

complex heterogeneity of head and neck cancers. On the validation set, it achieved a 

GTVp Dice of 0.7381 and GTVn Dice of 0.8021, with further improvements on the 

leaderboard test set (0.8812 and 0.8246, respectively). Importantly, HectoMixNet 

maintained balanced performance between tumor and lymph node segmentation, 

whereas other models tended to favor one task at the expense of the other. The superior 

voxel-level overlap reflects the effectiveness of bidirectional quasiseparable mixing in 

capturing both fine lesion boundaries and global anatomical consistency. While 3D 

Mamba slightly outperformed HectoMixNet on GTVp Dice, our model showed clear 

advantages in lymph node detection and delineation, a more challenging task given 

their small size, variable shapes, and spatial dispersion.  

4.2 Lesion Detection 

Accurate lesion detection is clinically critical for comprehensive treatment planning, as 

missed lymph nodes can lead to undertreatment. HectoMixNet’s ability to capture long-

range dependencies translated into robust lesion-wise detection, with a GTVn F1-score 

of 0.7273 on the leaderboard, surpassing both 3D Mamba (0.6667) and xLSTM 

(0.4286). This demonstrates that the bidirectional mixing module not only improves 

volumetric overlap but also enhances the model’s ability to identify multiple distinct 

lesions. By integrating local detail with broader context, HectoMixNet reduces false 

negatives while maintaining precision, ensuring that clinically relevant lymph node me-

tastases are rarely overlooked. 

4.3 Role of State Space Models 

Both HectoMixNet and competing SSM-based architectures highlight the value of state 

space modeling for volumetric medical imaging. Traditional CNNs and recurrent ar-

chitectures are limited by local receptive fields or vanishing memory, constraining their 

ability to model the irregular and dispersed nature of H&N lesions. By contrast, 
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HectoMixNet’s bidirectional quasiseparable mixing extends SSM capabilities, ena-

bling efficient propagation of contextual information across the entire 3D volume while 

preserving local fidelity. The performance gap between HectoMixNet and 3D Mamba 

underscores that architectural design choices, particularly the integration of self-con-

nections and dual causal/anti-causal processing, are critical for fully exploiting the po-

tential of state space models in medical image segmentation.  

4.4 Clinical Implications 

From a clinical standpoint, HectoMixNet offers significant advantages. Its high Dice 

scores and strong lesion-wise detection make it particularly well-suited for radiotherapy 

planning, where complete and precise delineation of both primary tumors and lymph 

nodes is essential. The model’s robustness across multicenter data also suggests poten-

tial for real-world deployment, where imaging protocols and patient characteristics vary 

widely. Compared to manual segmentation, which is labor-intensive and prone to inter-

observer variability, HectoMixNet provides a scalable and reproducible alternative. Im-

portantly, its ability to detect small, spatially separated lymph nodes enhance clinical 

safety by reducing the likelihood of missed lesions that could compromise treatment 

outcomes. 

4.5 Limitations and Future Work 

Despite its promising performance, HectoMixNet has several limitations. First, evalu-

ation was restricted to the HECKTOR 2025 dataset, which, while large and multicen-

tric, may not capture the full variability of clinical practice, such as motion artifacts, 

rare tumor subtypes, or unusual imaging conditions. Second, the current framework 

focuses solely on PET/CT; integrating additional modalities such as MRI could provide 

a richer anatomical and functional context. Third, although quasiseparable mixing is 

computationally efficient relative to dense global attention, training requirements re-

main substantial, potentially limiting accessibility for institutions with limited compu-

tational resources. 

Future directions include extending HectoMixNet for different data fusion, exploring 

self-supervised pretraining strategies to improve cross-institutional generalization, and 

developing interpretability mechanisms tailored to state space models to better align 

automated outputs with clinical decision-making. In addition, longitudinal extensions 

for outcome prediction could further enhance its value in personalized oncology work-

flows. 

5 Conclusion 

In this work, we introduced HectoMixNet, a deep learning framework specifically de-

signed for automatic segmentation of primary tumors and lymph nodes in head and 

neck cancer patients using multimodal PET/CT imaging. By incorporating a bidirec-

tional quasiseparable mixing module within a 3D encoder–decoder architecture, the 

model successfully combines fine anatomical detail with efficient global context mod-

eling, enabling robust performance across heterogeneous patient cohorts. Evaluation on 

the HECKTOR 2025 Task 1 dataset demonstrated that HectoMixNet achieves 
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competitive segmentation accuracy, with particularly strong performance in lymph 

node detection and delineation—an area where existing methods often underperform. 

Compared with state-of-the-art models, HectoMixNet provides a more balanced per-

formance between tumor and lymph node segmentation, underlining the effectiveness 

of bidirectional quasiseparable mixing in capturing long-range spatial dependencies. 

Given its scalability and generalization capability, HectoMixNet represents a promising 

step toward reliable, automated segmentation tools that can reduce inter-observer vari-

ability and support precision radiotherapy planning in clinical practice. 
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