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ABSTRACT

Inference-time compute scaling has emerged as a powerful paradigm for improv-
ing language model performance on a wide range of tasks, but the question of
how best to use the additional compute remains open. A popular approach is
Best-of-N (BoN) sampling, where N candidate responses are generated, scored
according to a reward model, and the highest-scoring response is selected. While
this approach can improve performance, it is vulnerable to reward hacking, where
performance degrades as N increases due to the selection of responses that ex-
ploit imperfections in the reward model instead of genuinely improving generation
quality. Prior attempts to mitigate reward hacking—via stronger reward models
or heavy-handed distributional regularization—either fail to fully address over-
optimization or are too conservative to exploit additional compute. In this work,
we explore the principle of pessimism in reinforcement learning (RL), which uses
lower confidence bounds on value estimates to avoid out-of-distribution (OOD)
actions with uncertain reward estimates. Our approach, termed as caution, can
be seen as the reverse of curiosity: where curiosity (e.g., via Random Network
Distillation, RND) rewards prediction error as a signal of novelty, caution penal-
izes prediction error as a signal of distributional uncertainty. Practically, caution
trains an error model on typical responses and uses its prediction error to lower re-
ward estimates for atypical ones. Our extensive empirical evaluation demonstrates
that caution is a simple, computationally efficient approach that substantially mit-
igates reward hacking in BoN sampling. We also provide a theoretical analysis in
a simplified linear setting, which shows that caution provably improves over the
standard BoN approach. Together, our results not only establish caution as a prac-
tical solution to reward hacking, but also provide evidence that curiosity-based
approaches can be a general OOD detection technique in LLM settings.

1 INTRODUCTION

Inference-time scaling has emerged as a transformative paradigm for enhancing language model
performance, enabling significant improvements across a wide range of reasoning tasks without in-
creasing model size (Brown et al., 2024; Guo et al., 2025; Jaech et al., 2024). This success motivates
the question of how best to leverage additional inference-time compute to maximize performance.
A particularly popular and effective approach is Best-of-N (BoN) sampling (Stiennon et al., 2020;
Nakano et al., 2021; Wang et al., 2022; Li et al., 2022; Huang et al., 2025a), where multiple can-
didate responses are generated for a given prompt, scored according to a reward model r̂, and the
highest-scoring response is selected. This approach capitalizes on the intuition that generating more
candidates should increase the probability of finding higher-quality solutions, allowing the model to
effectively ‘explore’ a larger portion of the response space than it could with only a single response.

While BoN is a simple and competitive baseline that is capable of astonishing gains in many settings
(Brown et al., 2024), its success is fundamentally limited by the quality of the reward model r̂
used to score and select responses. Indeed, a common phenomenon often occurs with BoN, where
performance initially improves as N increases, but then hits an inflection point after which larger
N lead to increasingly worse outcomes (Gao et al., 2023; Huang et al., 2025b; Khalaf et al., 2025);
an example of this phenomenon can be seen in Figure 1, where we plot the performance of BoN on
the mathematical reasoning task GSM8K for different N scored by several different reward models.
This counterintuitive phenomenon, whereby increasing N leads to worse performance, occurs due
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Figure 1: Average Accuracy with different sampling budgets for Best-of-N on the GSM8k
dataset. We see that standard Best-of-N sampling (blue, red, and gold) suffers from reward hacking,
exhibiting the characteristic rise-and-fall pattern as N increases. In contrast, caution (our approach,
green) consistently improves with larger N , effectively mitigating reward hacking.

to reward hacking, the process by which BoN selects responses that exploit r̂ as opposed to the
ground truth reward r⋆ we actually care about; while r̂ may be a reasonable approximation to r⋆ on
‘typical’ generations, asN increases, BoN selects more atypical responses lying outside the training
distribution of r̂ that achieve high r̂ scores through spurious correlations rather than genuine quality
improvements. In other words, reward hacking is a manifestation of Goodhart’s Law: whenever a
metric (in this case r̂) becomes an optimization target, it ceases to be a reliable measure of quality
(Goodhart, 1984; Weng, 2024); for example, reward models are known to favor certain formatting
preferences and surface-level patterns learned during training that do not necessarily correspond to
improved reasoning or correctness (Liu et al., 2024b; Yu et al., 2025; Bukharin et al., 2025).

With the intuition that reward hacking is caused by out-of-distribution (OOD) generations from
the perspective of the reward model, several works have proposed mitigation attempts by either
improving the reward model (Liu et al., 2025; Yu et al., 2025) or by regularizing the selection pro-
cess to favor in-distribution responses (Huang et al., 2025b). Unfortunately, the former approach is
fundamentally limited by the asymmetric difficulty of the problem: while it is relatively straight-
forward to obtain representative examples of high-quality responses through careful curation and
human annotation, exhaustively characterizing all possible reward hacking strategies is intractable.
Representative of the latter work is Huang et al. (2025b), who propose to regularize the selection
process to ensure that the distribution of selected responses does not drift too far from the distribu-
tion of responses seen during reward model training in a strong information theoretic sense. The
authors provide strong theoretical guarantees on the efficacy, monotonicity, and optimality of their
approach, and demonstrate that it can be efficiently implemented in practice through a simple rejec-
tion sampling scheme (Block & Polyanskiy, 2023). However, this approach is overly conservative in
practice, preventing the selection of genuinely better responses that are slightly out-of-distribution,
and thus fails to fully leverage the benefits of inference-time scaling. The problem arises because
the regularization is distributional and thus simultaneously ensures all possible OOD responses are
penalized equally, regardless of whether or not they are likely to arise from imperfections in r̂. The
starting point for this paper is thus to ask: Can we design a BoN sampling scheme that is both
robust to reward hacking and still able to leverage the full benefits of inference-time scaling?

Contributions. We answer this question in the affirmative by introducing caution, an inference-time
instantiation of the pessimism principle from Reinforcement Learning (RL) (Jin et al., 2021; Guo
et al., 2022). Pessimism relies on lower confidence bounds to avoid selecting OOD actions with
uncertain rewards. While Huang et al. (2025b) implements pessimism at the distribution level by
constraining the sampling distribution to remain close to the base policy, we instead apply it at the
reward level: we penalize OOD responses by subtracting per-response uncertainty estimates from
the scores assigned by r̂, and then select the response with the highest pessimistic score.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

① Training ② Inference

Predictor Network  P(x, y; θ) 
Randomly Initialized

Target Network  T(x,y) 
 RM Weights

🏆

𝜋(·|𝑥)
Trainset Rollout Once y

A small subset

𝜋(·|𝑥)
Rollout * N

Problem 
James writes a 3-page letter to 2 

different friends twice a week. How 
many pages does he write a year?

y1: To understand how many pages...  ### 365

y2: 12 pages per week, 624 pages per year.  ### 624

yN: Sure, to help you ... The answer is 100.

...

🏆 Reward Model  
r(x, y)

Biased, easily hacked

Pessimistic Reward

✅

❌

❌

Sorted by r(x,y)

#1: yN

#2: y1

#3: y2

Sorted by 
 r(x, y) - rp(x, y;θ)

#3: yN

#2: y1

#1: y2

👍

👎

(x, y)

🏆 RM 

 rp(x, y;θ)

Figure 2: Overview. Predictor is trained to match RM features on typical responses; at inference,
we select the candidate with the highest pessimistic reward, down-weighting OOD ones.

Conceptually, caution is the dual of curiosity, a principle used to drive optimistic exploration in deep
RL (Pathak et al., 2017; Burda et al., 2018). As in curiosity, we measure uncertainty by fixing a sim-
ple learning target (e.g., a frozen feature embedding), training a student model to predict this target
on in-distribution data, and using the prediction error as an uncertainty signal. Unlike curiosity, how-
ever, our setting is fully offline, so no continual student training is required—making the method sig-
nificantly simpler and more practical. Through extensive empirical evaluation, we show that caution
is computationally efficient and effectively mitigates reward hacking in BoN sampling. We further
provide a theoretical analysis in a simplified linear setting, proving that caution strictly improves
over standard BoN. Taken together, these results demonstrate that caution is both a powerful prac-
tical solution to reward hacking and compelling evidence for the broader efficacy of curiosity-style
uncertainty signals in OOD detection and pessimistic policy learning for language models.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

Consider a trained language model (LM) π, where π : X → ∆(Y) is a map from prompts x ∈
X to distributions over responses y ∈ Y . While the LM is typically an autoregressive model,
generating one token at a time before feeding the generated tokens back in as context, we abstract
this process away and instead consider prompts and responses as single entities, possibly consisting
of the concatenation of many individual tokens. Suppose we have access to a learned reward model
r̂ : X ×Y → R that assigns a score to a prompt-response pair (x, y) intended to reflect the quality of
the response y to the prompt x. While the learner has access to r̂, the true goal is to output a response
that approximately maximizes some ground-truth reward r⋆ : X × Y → R, which is unknown to
the learner. We focus on reward-hacking behavior that seeks to maximize r̂ at the expense of r⋆.

Given a prompt x, the learner samples N candidate responses y1, . . . , yN ∼ π(·|x) independently
from the LM and then selects one of these responses yî with î ∈ [N ] to output. Perhaps the simplest
strategy is the Best-of-N (BoN) strategy, which simply selects the response with the highest reward
model score: î = îN = argmaxi∈[N ] r̂(x, yi). Unfortunately, this strategy is vulnerable to reward
hacking when we only have r̂ ≈ r⋆ on typical samples from π. As N grows large, the distribution
of îN can differ substantially from that of typical samples from π, leading to poor performance with
respect to r⋆ as shown in (Huang et al., 2025b). While that work proposes to address this issue by
constraining the BoN sampling distribution π̂ to be close to π, we instead propose to directly apply
regularization to the reward estimates themselves. Thus, we will design an uncertainty estimate
u : X × Y → R≥0 that quantifies how uncertain we are about the reward model’s estimate r̂(x, y)
for a given prompt-response pair (x, y) and then define r̂LCB(x, y) = r̂(x, y) − λu(x, y) for some
λ > 0 to be a pessimistic variant of the reward model that penalizes uncertain responses (Jin et al.,
2021). As long as u(x, y) is small for typical samples from π(·|x) and large for ‘atypical’ samples,
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Figure 3: Scaling over N across distributions and domains. Best-of-N sampling on GSM8K,
MATH-500, and BigBench-Hard. Curves compare selection by Reward Model, Pessimism, and
Reward Model + Pessimism. Note that the pessimism function is trained only on GSM8K; thus,
MATH-500 represents an out-of-distribution setting, while BigBench-Hard represents a fully out-
of-domain setting.

this approach will successfully penalize reward-hacking responses by ensuring that r̂LCB ≤ r⋆ and
this inequality is approximately tight for actually good quality responses. The final algorithm will
thus be to return î = argmaxi∈[N ] r̂LCB(x, yi) and the question becomes what choice of uncertainty
estimate u appropriately captures OOD responses in a reward-aware manner?

2.2 CURIOSITY TO CAUTION: INSTANTIATING PESSIMISM

Our approach introduces the principle of caution, a phenomenon dual to the well-known technique
of curiosity used in online RL to incentivize exploration (Pathak et al., 2017; Burda et al., 2018).
While in online RL, OOD states are desirable (as they represent good exploration targets), in our
offline setting, OOD responses are to be avoided, as we have no reliable way to estimate their
true reward given that r̂ ≈ r⋆ only on typical responses from π. We draw inspiration from curiosity
(Pathak et al., 2017) and Random Network Distillation (RND) (Burda et al., 2018) in order to ensure
that selected responses remain close to the distribution π on which r̂ is reliable.

In curiosity and RND, the core idea is to continually train a predictor network to match the outputs
of a fixed target that is easily evaluated by the learner; the supervised learning error then becomes
a proxy for OOD detection, with the intuition being that the predictor will be accurate on states
similar to those seen during training and inaccurate otherwise. While empirically successful as an
‘intrinsic reward’ for optimistic exploration, this method can be challenging to implement due to the
continued training of the predictor during online RL, which can lead to nontrivial memory and time
overheads in practical RL pipelines. Our method uses the same core idea of using the supervised
learning error as a proxy for OOD detection, but is trained fully offline, which greatly increases
practicality and ease of implementation.

Implementing "Caution" We employ two neural networks operating on the internal representa-
tions of the reward model R(x, y): (1) a fixed target network T (x, y) = hRL(x, y), defined as the
hidden state extracted from layer L of the frozen reward model, and (2) a trainable predictor network
Pθ(x, y) that learns to predict this hidden state. The first L layers of the reward model serve as our
target feature extractor, with their output hRL(x, y) as the prediction target. The predictor network
Pθ(x, y) is a separate trainable network with parameters θ that can use various architectural choices
(shared embeddings, simplified encoders, projection layers) but is designed to be lightweight to
ensure efficient training and inference.

Training Process. We train our predictor Pθ on a dataset Dtrain of prompt-response pairs
constructed directly from the benchmark train split using mean squared error loss: L(θ) =
E(x,y)∼Dtrain

[
∥Pθ(x, y)− T (x, y)∥2

]
, where the norm is Euclidean. We construct responses y ∼

π(·|x) by sampling from π as an efficient empirical proxy for the training distribution of the re-
ward model. By training on this supervision-free distribution, the predictor achieves low error on
in-distribution patterns while preserving high error on distributional outliers. We emphasize that the
data requirements for this step are restricted to prompts, which are often much cheaper to collect
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Table 1: Scaling Performance Across Datasets with Reward Hacking Mitigation. Peak Acc:
highest accuracy achieved across all N values. Final Acc: accuracy at N = 512 where reward
hacking is most severe. Degradation: performance drop from peak to final (lower is better). Results
show mean with 95% confidence intervals as subscripts across 3 bootstrap runs. Best results are in
bold and second-best are underlined.

Method GSM8K (2021) MATH-500 (2023) BBH-Hard (2022)

Peak Final Degr. Peak Final Degr. Peak Final Degr.

Reward Model 79.3±1.2 71.5±0.3 7.7 11.5±0.3 8.5±1.0 3.0 17.3±1.0 1.7±0.1 15.6
Pessimism Only 81.3±0.5 80.3±0.3 1.0 13.6±0.7 11.9±1.0 1.7 22.9±0.7 22.1±0.4 0.9
RM + Pessimism 82.6±0.6 81.1±0.1 1.5 12.3±1.0 10.1±0.6 2.3 18.5±1.0 11.0±0.3 7.5

than the high-quality labelled data used to train reward models; a gold standard would be to reuse
the same prompts used to train the reward model itself, but in practice we find that our method’s
OOD detection is relatively robust across different prompt distributions (cf. Section 3.1).

Pessimistic Reward Estimation at Inference Time. Once we have trained our predictor Pθ, we
can use it to define our uncertainty estimate u(x, y) = ∥Pθ(x, y) − T (x, y)∥2, the prediction error
of the predictor on the target network’s features. We then plug this into our pessimistic reward
estimate r̂LCB(x, y) = r̂(x, y) − λu(x, y) = r̂(x, y) − λ · ∥Pθ(x, y)− T (x, y)∥2. Note that this
score is very easy to compute at inference time, requiring only two forward passes (one through
Pθ and one through T ) in addition to the forward pass through the reward model to compute r̂;
note that all of these passes can be fully parallelized and the cost of evaluating u(x, y) is on the
same order as that of evaluating r̂ due to the reuse of features from r̂. The parameter λ controls the
strength of the pessimism penalty, with λ = 0 recovering standard BoN sampling. The final selection
becomes î = argmaxi∈[N ] r̂LCB(x, yi), i.e., choosing the response with the highest pessimistic
reward estimate. This procedure is summarized in Figure 2.

2.3 THEORETICAL INTERPRETATION

In order to provide further motivation for our approach, we analyze in Appendix C a simple theoret-
ical setting in which our approach provably improves upon BoN. While we defer the details to the
appendix, we summarize the main theorem here:
Theorem 1 (Informal version of Theorem 3). Let y1, . . . , yN ∈ Rd be i.i.d. samples from a model
π and let r⋆(y) be a linear reward function. Let i⋆ = argmaxi∈[N ] r

⋆(yi) be the optimal response
and let î = argmaxi∈[N ] r̂(yi) be the response selected by BoN using a learned reward model r̂. If
ipess = argmaxi∈[N ] r̂LCB(yi), where r̂LCB is our caution-regularized reward estimate, then under
suitable conditions on the target network, r⋆, r̂, π, and the predictor network, it holds that

E
[
r⋆(yipess)− r⋆(yî)

]
≳
√

log(N), and lim
N↑∞

E
[
r⋆(yi⋆)− r⋆(yipess

)
]

E [r⋆(yi⋆)]
= 0.

While the assumptions and conditions of Theorem 1 are necessarily somewhat strong in order to
facilitate the analysis, the theorem provides a proof-of-concept that our approach can provably out-
perform BoN in a stylized setting as well as, to the best of our knowledge, the first theoretical
guarantee on the success of curiosity- and RND-style methods for OOD detection.

3 EXPERIMENTS

We now empirically evaluate our proposed approach, with a focus on answering the following three
questions: (1) How well does caution mitigate reward hacking as the number of candidates N in-
creases? (2) What design decisions (e.g. architecture and training hyperparameters) contribute most
to the overall success of our method? (3) In which scenarios does our method outperform standard
BoN sampling, and what factors drive its success? We now briefly describe our empirical setup
(with full details deferred to Appendix D) before addressing each of these questions in turn.
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Table 2: Weight Ablation and Design Comparison on GSM8K. We compare different mixing
weights between uncertainty score and r̂ score, contrasting our approach (distilling reward model
features) against traditional RND (distilling random network features). Peak Acc: best accuracy
across all N . Final Acc: accuracy at N = 512. Results demonstrate that distilling reward model
representations substantially outperforms random network distillation across weight combinations.

Pessimism strength (λ) Caution (Ours) Traditional RND

Peak Acc Final Acc Peak Acc Final Acc

0.0 (RM Only) 78.9 71.2 78.9 71.2
0.2 79.5 72.5 78.7 71.3
0.4 80.3 76.0 78.5 72.1
0.6 81.5 80.2 78.4 73.1
0.8 82.1 81.0 78.1 74.9
1.0 (Caution Only) 81.3 79.8 77.0 72.9

Experimental Setup. We use Llama-3.2-3B-Instruct (Dubey et al., 2024) as our language
model π due to its strong reasoning capabilities and open-source availability.1 We consider
three prompt distributions coming from reasoning datasets of varying difficulty: GSM8K (Cobbe
et al., 2021), MATH-500 (Hendrycks et al., 2021), and BigBench-Hard (Suzgun et al., 2022).
Our ground truth reward r⋆ is binary, with reward given if and only if a response provides the
correct answer to the given prompt. While we consider several reward models r̂, we focus
primarily on OASST (Köpf et al., 2023), which Figure 1 demonstrates provides better perfor-
mance than comparably sized reward models like Skywork-Reward-V2-Qwen3-0.6B and
Skywork-Reward-V2-Llama-3.2-1B (Liu et al., 2025), making it a strong baseline for demon-
strating reward hacking phenomena. For each prompt and N , we use vLLM (Kwon et al., 2023)
to generate N independent responses from the base model π (and boostrap this process 3 times to
generate confidence intervals), before scoring each response with r̂ and measuring the performance
of the selected response according to r⋆. To train our predictor network Pθ, we use an independent
dataset of responses generated by the base model π itself on the training split of GSM8K, and
evaluate the performance of the uncertainty estimates both in-distribution (prompts from the test
set of GSM8K) and out-of-distribution (prompts from other reasoning datasets). In order to maintain
consistency, we normalize all rewards r̂ to be centred with unit variance using an independent set
of responses and we do the same for the uncertainty estimates from Pθ.

3.1 CAUTION MITIGATES REWARD HACKING

Our main results demonstrate that our proposed mechanism of caution mitigates reward-hacking
and leads to improved performance of BoN sampling as N increases both for in- and out-
of-distribution prompts. In Figure 1, we exhibit the performance of BoN sampling on GSM8K for
several choices of reward models and observe that they all exhibit reward hacking, with performance
degrading for large N . We also see that using our pessimistic approach, this reward-hacking is
substantially mitigated, with performance improving monotonically with N for all considered N .
Moreover, we get a substantial performance boost of 4.2% over peak accuracy for the reward model
alone and an astonishing 15.5% boost over the final accuracy of the reward model alone. This trend
compares favorably with that of Huang et al. (2025b), who observe monotonicity of performance in
N , but struggle to outperform BoN sampling for optimally tuned N for most choices of π and r̂.

The above results involve evaluating caution on the same distribution of prompts used to train the
predictor network Pθ, which is likely beneficial to its performance. In reality, we expect to use
caution in scenarios where the prompts are potentially OOD and hope that the uncertainty estimates
remain valid. To evaluate the extent to which this holds, we used the same uncertainty estimates to
produce pessimistic BoN sampling on two significantly harder reasoning datasets: MATH-500 and
BigBench-Hard. These datasets comprise prompts that are significantly different from those in
GSM8K, with the latter even coming from a different, non-mathematical domain.

1Some other open-weight models are thought to be contaminated with benchmark datasets (Wu et al., 2025),
which could skew our results, further motivating our choice in model.
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Table 3: Ablation study of predictor architecture. Training Loss measures how well the predictor
fits reward model representations. Peak Acc shows best performance across allN . Final Acc shows
performance at largest N , where reward hacking is most severe.

Predictor Configuration Reconstruction Loss Peak Acc (%) Final Acc (%)

Simplified Architecture Variants
Lightweight + Trainable Emb. 0.242 82.2 82.2
Lightweight + Frozen Emb. 0.246 81.5 81.3
Lightweight + Separate Emb. 0.255 82.7 81.8
Lightweight w/o Projection 0.281 81.8 81.3

Full Architecture Variants
Full + Trainable Emb. 0.127 80.3 80.2
Full + Frozen Emb. 0.127 80.4 78.4

We report the results of these OOD prompt experiments in Figure 3 and Table 1, comparing the
performance of the in-distribution prompts (left) with the two other tasks (centre and right). As in
Figure 1, we sweep over a logarithmic grid in N from 1 to 512 and compare three approaches: BoN
using only r̂, BoN using only the uncertainty estimates from Pθ, and BoN using caution. As in
Figure 1, we see that caution successfully mitigates reward hacking while preserving the benefits of
reward-guided selection. The results on MATH-500 reveal a different pattern: pessimism-only out-
performs the combined approach, achieving 13.6% peak accuracy with only 1.7 points degradation
compared to 2.3 points for the combined method. This counterintuitive finding reflects the increased
problem difficulty—while MATH-500 shares the mathematical reasoning domain with GSM8K, the
problems are significantly more complex and multi-step, making the task of r̂ more difficult. In this
regime, r̂ becomes less reliable at distinguishing genuine quality improvements, making its contribu-
tion less beneficial. However, caution still effectively prevents the severe degradation seen with BoN
(3.0 points). The most challenging task we consider is BigBench-Hard, where the reward model
r̂ fails catastrophically. Indeed, we observe the counterintuitive phenomenon that using the uncer-
tainty penalty alone is the most performant of all three methods, doing even better than combining
uncertainty with r̂. This surprising result is due to the fact that when reward models encounter prob-
lems substantially harder than their training distribution, their learned spurious correlations dominate
their judgments, leading to systematic selection of responses that superficially mimic quality patterns
without genuine correctness. Caution, while also operating outside its training distribution, avoids
being misled by these hacking features and maintains stable performance by preferring responses
that match familiar distributional patterns rather than chasing unreliable reward signals.

3.2 ABLATION STUDIES

In this section, we dissect the design and implementation of our proposed caution mechanism to
understand which components contribute most to its success. Further ablation studies, including
detailed inspections of uncertainty scores for individual responses and the effect they have on r̂
and r⋆ scores can be found in Appendix F, while additional details on the ablations can be found
in Appendix D. We evaluate three critical design decisions: (1) the precise architectural choice of
the predictor network; (2) the use of pre-trained embeddings in the target network; (3) the use of a
projector layer between the predictor and target networks. We also conduct two additional ablations
to validate our core design choices: (a) the choice of mixing weights between r̂ and the uncertainty
estimates; (b) the choice of distilling reward model features versus random network features.

Architectural Ablations. We first examine the extent to which the complexity of Pθ and its re-
lationship to the target network T affects performance, in particular whether Pθ needs to share an
architecture with the teacher T . The results are shown in Table 3: while greater flexibility in Pθ leads
to a better reconstruction loss, this does not transfer to better performance when used to instantiate
caution. This occurs because improving the reconstruction loss can actually hurt the ability of Pθ

to detect distributional novelty, as it becomes too good at reconstructing even out-of-distribution
features. We observe a similar trend when considering whether or not to tune the embeddings or
share them between Pθ and T : while sharing embeddings leads to better reconstruction, it can hurt
the final performance, which suggests that forcing predictors to learn representations from scratch
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Response: Let's break down the information given: 1. Sarah does 4 times as much laundry as David.   

If  we represent David's laundry as x, then Sarah's laundry is 4x.  2. Sarah does 400 pounds of  laundry.   

We can set up the equation 4x = 400 and solve for x.   4x = 400   x = 400 / 4   x = 100   So, David does 

100 pounds of  laundry. 3. Raymond does half  as much laundry as Sarah.   If  we represent Raymond's 

laundry as y, then y = (1/2)x.   y = (1/2) * 100   y = 50   So, Raymond does 50 pounds of  laundry. 4. 

The difference in the amount of  laundry Raymond and David do is:   Difference = Raymond's laundry 

- David's laundry = 50 – 100 = -50 Since we're looking for the difference, we take the absolute value of  

the result. The difference in the amount of  laundry Raymond and David do is 50 pounds.

Question: If  Raymond does half  as much laundry as Sarah, and Sarah does 4 times as much 

laundry as David, calculate the difference in the amount of  laundry Raymond and David do if  

Sarah does 400 pounds of  laundry.

Question: A pet shop had 6 cages of  rodents. 3 of the 

cages have 10 hamsters and the other 3 have 5 guinea 

pigs. How many rodents did the pet shop have in total?

Response: To find the total number of  rodents, we need to 

find the total number of  hamsters and the total number of  

guinea pigs. The total number of  hamsters is 3 * 10 = 30. The 

total number of  guinea pigs is 3 * 5 = 15. Now, we add the 

number of  hamsters and guinea pigs to find the total number 

of  rodents: Total rodents = 30 + 15 Total rodents = 45  

#### 45

System Prompt: Solve the following problem step by step. Give your final numerical answer at the end with: #### {NUM}

Answer: 100 

Reward: 0.15 (#1 / 1000);  Reward + Pessimism: -0.62 (#996 / 1000)

Answer: 45 

Reward: 0.31 (#976/1000); Reward + Pessimism: 1.72 (# 1 / 1000)

Figure 4: Contrasting Selection Behaviors: Reward Hacking vs. Format Compliance. Two rep-
resentative examples showing how reward models favor verbose responses regardless of correctness,
while our curiosity-driven pessimism prioritizes format compliance and distributional familiarity.
RM assigns high scores to detailed responses regardless of correctness, while pessimism detects
distributional deviation from training patterns and prefers correctly formatted solutions.

creates more sensitive distributional boundaries than inheriting potentially overly simplified features
from pre-trained models. Finally, we see that adding a projection layer between the predictor and
target networks provides consistent but modest benefits, indicating that information bottlenecks can
help prevent pure memorization while preserving signal quality. Together, these findings establish
a key empirical finding for instantiating caution: effective detection requires a careful balance
between reconstruction accuracy and novelty sensitivity.

Strength of regularization with Caution. To validate our core design choices, we systematically
vary the mixing weights between the uncertainty score and that of r̂ to identify the optimal balance
for reward hacking mitigation and understand the robustness of our results to this choice. Note
that due to the normalization of r̂ and uncertainty estimates described above, the strength λ can
be viewed as a direct measurement of the influence of the pessimism relative to r̂. We report our
findings in Table 2 and Appendix F. We observe that our approach is relatively robust to the choice
of λ, with moderate to high weights (0.6-0.8) achieving optimal performance. While the precise
optimal weight will vary by task and choice of r̂, with larger λ being required in situations where r̂
is less reliable, the results suggest that our approach does not require delicate tuning to be effective.

Comparing Caution to RND. Finally, we compare our approach of distilling reward model fea-
tures (motivated by curiosity in Pathak et al. (2017)) against the RND (Burda et al., 2018), which
takes the teacher T to be a randomly initialized network (possibly on top of pre-trained embeddings),
testing whether our hypothesis about distributional familiarity requires semantic grounding in the re-
ward model’s representations. We again consider a range of mixing weights λ and report the results
in Table 2. The results reveal a stark contrast between caution and RND, with the latter exhibiting
dramatically inferior performance across all choices of λ. This observation provides evidence for
the hypothesis that effective distributional regularization requires semantic grounding: randomly
initialized features cannot provide meaningful distributional boundaries, while reward model fea-
tures capture task-relevant patterns that enable robust novelty detection. The results establish that
curiosity-driven pessimism succeeds not merely because of prediction error signals, but specifically
because these signals are computed relative to the reward model’s learned task representations.

3.3 WHY IT WORKS: A CASE STUDY

We now turn to a case study to illustrate the mechanism by which caution mitigates reward hack-
ing and improves performance. In Figure 4, we present two representative examples of questions-
response pairs. On the left, we see an instance that r̂ scores highly (99.8th percentile of all scored
responses) despite being incorrect; this response is verbose and contains multiple mathematical rea-
soning steps, but ultimately fails to provide the correct answer and does not follow the required
formatting, instead demonstrating exactly the type of reward hacking our method targets: super-
ficial mimicry of quality patterns (detailed explanations, step-by-step structure) without genuine
correctness or adherence to specified requirements. Note that the caution score for this response
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appropriately identifies it as OOD, likely due to its failure to follow the formatting requirements that
are common in high-quality responses in the training data.

By contrast, on the right of Figure 4, we see a concise, accurate response following the formatting
requirements. While r̂ does not rank this response as well as the first, the pessimism recognizes it as
familiar, matching the patterns of high-quality responses in the training data that consistently follow
formatting specifications and provide direct, correct solutions. This juxtaposition reveals that reward
models can conflate verbosity with quality, particularly at larger N where more elaborate responses
become available. Our method effectively distinguishes between responses that appear sophisticated
(verbose explanations) and those that are actually correct and compliant with task specifications.

4 DISCUSSION

In this work, we investigated instantiating pessimistic reward estimation with the principle of cau-
tion, an approach adapted from curiosity-driven exploration in RL that uses a supervised learning
error as a measure of distributional uncertainty and penalizes the estimated reward of uncertain,
out-of-distribution (OOD) inputs. While our focus was on mitigating reward hacking in Best-of-N
sampling, a particular inference-time scaling technique, our results demonstrate that, when properly
applied on top of pre-trained features, caution can effectively detect OOD samples and instantiate
pessimistic policies in general. While we defer a more complete survey of related work to Ap-
pendix B, we now provide a brief summary thereof as well as discuss future directions.

Related Work. Best-of-N sampling was introduced in Stiennon et al. (2020) and has been empir-
ically investigated in many reasoning settings (Cobbe et al., 2021; Lightman et al., 2023; Li et al.,
2022; Brown et al., 2024). While often effective, when the scoring rule is learned (as opposed to
oracular), the approach has long been shown to be vulnerable to reward-hacking (Amodei et al.,
2016; Skalse et al., 2022; Gao et al., 2023). While many attempted mitigations of reward-hacking
have been explored for RL finetuning, relatively few works have focused on the inference-time set-
ting. Of particular note is Huang et al. (2025b), which proposes a distributional regularization
approach that samples according to a χ2-regularized BoN procedure. While theoretically well-
motivated and empirically effective at ensuring monotonicity in N , the approach is overly conser-
vative in practice. Another approach is that of Jinnai et al. (2024), who apply distributional regular-
ization with respect to a Wasserstein distance on some embedding space; while potentially effective,
the computation required grows quadratically in N , making it impractical for even moderate values
of N . In contradistinction to these works, our approach applies pessimism directly to the estimated
rewards in a way that naturally leverages the beyond-worst-case errors present in estimated reward
models in a way that is impossible for these distributional regularization approaches.

Our key technique of caution is built on top of the foundational curiosity (Pathak et al., 2017) and
Random Network Distillation (RND) (Burda et al., 2018) from classical deep RL. While the such
techniques have been very popular in aiding exploration, the extent to which they can be used for
OOD detection and pessimistic learning has been a matter of some debate, with Rezaeifar et al.
(2022) claiming negative results and Ciosek et al. (2019); Nikulin et al. (2023) demonstrating some
positive results. While these works are (i) in classical RL or supervised learning settings and (ii) do
not use pre-trained features, our results morally align with the latter camp, demonstrating that such
approaches can be effective for OOD detection and pessimistic learning in language models.

Future Directions. Our work provides strong evidence that caution, when correctly applied on top
of pre-trained features, can be an effective detector of OOD text. While we instantiate this approach
for pessimistic reward estimation, it is natural to wonder if curiosity can be used as an explicit reward
signal to encourage exploration of novel behaviors either purely during inference or during RL post-
training of reasoning models. While some preliminary work like Gao et al. (2025) has explored this
idea, we believe that their mixed results stem from the fact that the curiosity module was trained
from scratch rather than on top of pre-trained features, which we find to be so effective for OOD
detection. Another interesting direction is to explore the extent to which our proposed approach
can help ensure continued AI alignment in the face of adversarial prompting or distributional shift
due to inference-time scaling. While the tasks we consider in this work are related to reasoning,
we expect that our results would carry over to safety and alignment tasks mutatis mutandis, which
would represent a promising new approach to ensuring robust alignment of language models.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used assist refining the writing of this paper, including grammar correction, wording
refinement, and formatting adjustments. We also use LLM agents to help with finding relevant work
and implementing parts of our code. The use of AI tools does not affect the originality of the work
or the authors’ responsibility for the content.

B ADDITIONAL RELATED WORK

We now give a more detailed discussion of how the present paper relates to prior work. Our approach
is situated at the intersection of three key areas of research: Best-of-N sampling with reward models,
reward hacking and its mitigation attempts, and curiosity-driven exploration techniques.

Best-of-N Sampling and Reward Models. Best-of-N (BoN) sampling generates N can-
didate responses and selects the highest-scoring according to a reward model: y∗ =
argmaxy∈YN

r(x, y) (Stiennon et al., 2020). This technique has proven effective for mathemati-
cal reasoning (Cobbe et al., 2021; Lightman et al., 2023) and competitive programming (Li et al.,
2022) and the version of BoN with oracular rewards (called ‘pass@k’) is a standard evaluation
metric for reasoning models (Dubey et al., 2024; Ouyang et al., 2022; Abdin et al., 2024; Hui
et al., 2024; Lambert et al., 2024). Reward models are typically trained on tuples of preference
data (x, ychosen, yrejected) consisting of a prompt x as well as preferred and dispreferred responses
ychosen and yrejected using ranking losses. While a powerful paradigm, this training procedure intro-
duces vulnerabilities: models must infer complex reasons for preferences, often leading them to
rely on spurious correlations like response length, formatting patterns, or stylistic preferences (Liu
et al., 2024b). High-quality reward models are also computationally expensive to train, requiring re-
sources similar to base language models. This cost makes ensemble approaches, a common strategy
for reducing vulnerabilities in ML systems, impractical, as organizations typically train only a single
reward model per domain (Gao et al., 2023; Jinnai et al., 2024). Our work focuses on mitigating
reward hacking in BoN sampling with a single reward model, without retraining or modifying the
reward model itself.

Reward Hacking and Mitigation Attempts. Reward hacking occurs when optimizing against
imperfect proxy rewards leads to high-scoring but low-quality outcomes—a manifestation of Good-
hart’s Law (Amodei et al., 2016; Skalse et al., 2022). Gao et al. (2023) observed a common trend in
BoN sampling, where as N increases, performance first rises then falls. As demonstrated theoreti-
cally in Huang et al. (2025b), these two phases correspond to an initial phase (when N is small) and
the learned reward r̂ is an effective proxy for the true reward r⋆, leading to BoN succeeding, and a
second phase where N grows so large so as to produce atypical responses on which r̂ is no longer
effective due to spurious correlations and poor coverage during training (Eisenstein et al., 2023; Liu
et al., 2024b; Yu et al., 2025). Broadly, there have been two main approaches to mitigating this
reward-hacking problem: training-time and inference-time approaches.

Training-time ensemble methods attempt to mitigate this by combining multiple reward mod-
els (Coste et al., 2023; Zhai et al., 2023; Ramé et al., 2024; Yan et al., 2024). However, Eisenstein
et al. (2023) demonstrate that ensembles reduce but do not eliminate reward hacking. More criti-
cally, ensemble methods require multiple expensive reward sources, creating prohibitive costs for
practical applications.

Inference-time approaches work with existing reward models and intervene in the sampling proce-
dure itself. Of note, Jinnai et al. (2024) proposed an approach that involves regularizing the BoN
selection with respect to a Wasserstein distance in some embedding space and demonstrated em-
pirical improvement over BoN as N grows. Unfortunately, this approach requires computation to
scale quadratically in N , making it somewhat impractical for larger N . Of greatest relevance to the
present work is that of Huang et al. (2025b), who propose instead to use an information-theoretic
divergence, the χ2-divergence, to regularize the BoN selection. They demonstrate that this approach
is statistically and computationally optimal under the assumption that the learned reward model is
close to the true reward in expected squared error loss for responses sampled from the base model.
While theoretically well-motivated and empirically effective at ensuring monotonicity in N , the ap-
proach is overly conservative in practice, leading to suboptimal performance when N is moderate.
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Another inference-time approach is that of Khalaf et al. (2025), who consider a KL-regularized BoN
procedure as well as a computationally efficient approximation using the Poisson distribution. Un-
fortunately, their method exhibits limited improvement over standard BoN, likely due to the fact
that BoN is already effectively KL-regularized unless N is growing exponentially. Unlike these
works, our approach does not seek to provide distributional regularization but instead instantiates
pessimism through the reward estimates themselves. Thus, our approach is able to leverage the fact
that reward models may be imperfect in ways that are not information-theoretically ‘worst-case’ and
adapt accordingly.

Curiosity-Driven Exploration and Random Network Distillation. Curiosity-driven exploration
in reinforcement learning uses prediction error to quantify novelty of given states (Pathak et al.,
2017; Sun et al., 2025; Li & Gajane, 2023). The Intrinsic Curiosity Module (ICM) (Pathak et al.,
2017) uses prediction error ∥ϕ̂(st+1) − ϕ(st+1)∥22 as a curiosity signal, while Random Network
Distillation (RND) (Burda et al., 2018) employs a simpler approach with two networks: a fixed
target network T (s) and a trainable predictor P (s) that minimizes ∥P (s) − T (s)∥22. In both cases,
the supervised learning error serves as a proxy for OOD detection, with high error indicating states
that are far outside the distribution (and thus worth exploring from the perspective of online RL).
While these methods were originally developed for exploration, they can instead be instantiated
to prevent a policy from moving to far out of the distribution of observed states. While there has
been some debate as to the efficacy of these approaches for OOD detection and pessimistic learning
(Rezaeifar et al., 2022; Ciosek et al., 2019; Nikulin et al., 2023), our results suggest that when
properly implemented, such an approach can be effective in language modeling.

C THEORY

In this section, we give formal statements for and prove our theoretical results. We begin in Ap-
pendix C.1 for formalizing the setting we consider in which pessimism can help mitigate reward
hacking in Best-of-N sampling. We emphasize that this setting is a simplified abstraction intended
to cleanly showcase the benefits of pessimism and help develop intuition for our approach and is
not intended to represent a realistic model of language or reward modeling. We then continue in
Appendix C.2 to prove general results on the performance of BoN and pessimistic selection in our
setting. We proceed in Appendix C.3 to introduce a simplified model of our proposed caution ap-
proach, motivated by Random Network Distillation (RND) (Burda et al., 2018). We prove in simpli-
fied linear and two-layer ReLU settings that this approach can be used to instantiate pessimism under
an idealized optimization model. Finally, we combine these results in Appendix C.4 to prove our
main theorem that our proposed approach improves over BoN sampling in the model we consider.

C.1 FORMAL SETTING

In order to formalize the setting we consider, we suppose that a learner is given access to a language
model π that maps a prompt x to a distribution over responses y. We will further identify these
prompt-response pairs with their embeddings in some linear feature space Rd and, for the sake of
simplicity, consider results on a per-prompt basis. Thus we will assume a fixed prompt x and write
π for π(x). We will further suppose that there exists a ground truth reward function that is linear in
the embedded features, i.e.,

r⋆(y) = ⟨θ⋆, y⟩ .

Such an abstraction is partially justified by the fact that many modern reward models are linear
layers on top of pre-trained Language Models (Lambert et al., 2024; Liu et al., 2024a; Wang et al.,
2024a;b) and we thus simply directly associate the concatenation of prompt and response with its
embedding in the final layer of the LM.

The goal of the learning problem is similar to that in Huang et al. (2025b): given access to
y1, . . . , yn ∼ π sampled independently, as well as some imperfect proxy reward function r̂ : Rd →
R (e.g., a learned reward model), we wish to select a response yî with î ∈ [n] such that r⋆(yî) is
as large as possible. Note that if r̂ were in fact a perfect reward model, so that r̂ = r⋆, then the
optimal strategy would be to simply select yî with î = argmaxi∈[n] r̂(yi), which is the popular
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Best-of-N (BoN) strategy. However, as discussed in the main text, this strategy can fail when r̂ is a
poor approximation to r⋆ due to reward-hacking.

Unlike Huang et al. (2025b), wherein the authors suppose that r̂ and r⋆ are close in expected squared
error under π, we will instead suppose that r̂ and r⋆ agree on a low dimensional subspace of Rd

but may be arbitrarily different on the orthogonal complement. More precisely, suppose that there
exists a linear subspace V ⊂ Rd such that dim(V ) = k ≪ d and r⋆(y) = r̂(y) for all y ∈ V .
We will further make the assumption that r⋆ and r̂ are linear functions, i.e., r̂(y) =

〈
θ̂, y
〉

and

r⋆(y) = ⟨θ⋆, y⟩ for some θ̂, θ⋆ ∈ Rd. To aid our analysis, we will make the simplifying assumption
that θ⋆ ∈ V , i.e. projV ⊥θ⋆ = 0, representing the fact that the true reward is a function only of certain
linear features; the error between the learned reward r̂ and the groundtruth r⋆ is thus restricted to
OOD effects, conceptualized as the orthogonal complement V ⊥ of V .

Finally, in order to make the analysis tractable, we will assume that π is a centred Gaussian distri-
bution with covariance Σ ∈ Rd×d, i.e., π = N (0,Σ). Note that Σ may have full rank d and thus π
may have full support on Rd, which ensures that r̂ ̸= r⋆ on V ⊥, the orthogonal complement of V .

C.2 PESSIMISTIC SELECTION AND BEST-OF-N SAMPLING

In this section we provide two key bounds on the performance of Best-of-N sampling and pes-
simistic selection, which will demonstrate the benefits of pessimism in our setting. Before doing so,
we state and prove a simple bound on the best possible performance that can be achieved by any
selection strategy.

Proposition 1. Let y1, . . . , yN ∼ π be independent samples from π. Then it holds that

E
[
max
i∈[N ]

r⋆(yi)|θ⋆
]
=
∥∥∥Σ1/2θ⋆

∥∥∥ ·Mn,

where MN = E
[
maxi∈[N ] Zi

]
and Z1, . . . , ZN are i.i.d. N (0, 1) random variables. Moreover, it

holds that √
2 log(N)− o(1) ≤MN ≤

√
2 log(N).

Proof. The second claim is a classical fact about the maximum of Gaussians (Wainwright, 2019;
Vershynin, 2018), thus it suffices to prove the first statement. Note that

r⋆(y) = ⟨θ⋆, y⟩ ∼ N (0,
∥∥∥Σ1/2θ⋆

∥∥∥2).
Thus r⋆(y) d

=
∥∥Σ1/2θ⋆

∥∥Z for Z ∼ N (0, 1). The result then follows by positive homogeneity of the
maximum and expectation.

We now provide a lower bound on the performance of BoN in the setting we consider

Proposition 2. Let y1, . . . , yN ∼ π be independent samples from π and let î = argmaxi∈[N ] r̂(yi)

for r̂(y) =
〈
θ̂, y
〉

. Let i⋆ = argmaxi∈[N ] r
⋆(yi) for r⋆(y) = ⟨θ⋆, y⟩. Then it holds that

E
[
r⋆(yi⋆)− r⋆(yî)|θ̂, θ

⋆
]
= E [r⋆(yi⋆)]

1− 1√
1 +

∥Σ1/2proj
V ⊥ θ̂∥2

∥Σ1/2θ⋆∥
2



=

1− 1√
1 +

∥Σ1/2proj
V ⊥ θ̂∥2

∥Σ1/2θ⋆∥
2

 ·
∥∥∥Σ1/2θ⋆

∥∥∥ ·MN .
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Proof. As we have already computed the expectation of r⋆(yi⋆) in Proposition 1, it suffices to
compute the conditional expectation of r⋆(yî). Note that because, conditioned on θ̂ and θ⋆, r̂(y) and
r⋆(y) are jointly Gaussian, it holds that

E [r⋆(y)|r̂(y)] = Cov(r̂(y), r⋆(y))

Var(r̂(y))
· r̂(y)

=

〈
θ⋆,Σθ̂

〉
∥∥∥Σ1/2θ̂

∥∥∥2 · r̂(y)

=

∥∥Σ1/2θ⋆
∥∥2∥∥∥Σ1/2θ̂
∥∥∥2 · r̂(y)

=

∥∥Σ1/2θ⋆
∥∥2∥∥∥Σ1/2projV θ̂

∥∥∥2 + ∥∥∥Σ1/2projV ⊥ θ̂
∥∥∥2 · r̂(y)

=

∥∥Σ1/2θ⋆
∥∥2∥∥Σ1/2θ⋆

∥∥2 + ∥∥∥Σ1/2projV ⊥ θ̂
∥∥∥2 · r̂(y).

By the same computation as in Proposition 1, it holds that

E
[
r̂(yî)|θ

⋆, θ̂
]
=
∥∥∥Σ1/2θ̂

∥∥∥ ·MN =

√∥∥Σ1/2θ⋆
∥∥2 + ∥∥∥Σ1/2projV ⊥ θ̂

∥∥∥2 ·MN .

The result follows by plugging in and rearranging.

We now show that with pessimism instantiated correctly, we can strictly improve on the performance
of BoN.
Proposition 3. Let y1, . . . , yN ∼ π be independent samples from π and let α : Rd → R+ be a
function satisfying

(1− c) ∥projV ⊥y∥ − ε ≤ α(y) ≤ ∥projV ⊥y∥+ ε

for some c ∈ (0, 1) and ε > 0. Let

ipess = argmax
i∈[N ]

r̂(yi)− λ · α(yi), λ ≥

∥∥∥projV ⊥ θ̂
∥∥∥

1− c
.

Then it holds that

E
[
r⋆(yi⋆)− r⋆(yipess

)
]
≤ λ

(√
2

π
· Tr (ΣprojV ⊥) + 2ε

)
.

Proof. Let

r̂LCB(y) = r̂(y)− λ · α(y).

We claim that with the assumption on λ and α, it holds that r̂LCB(y) ≤ r⋆(y) + λ · ε for all y ∈ Rd.
Indeed, note that

r⋆(y)− r̂LCB(y) =
〈
θ⋆ − θ̂, y

〉
+ λ · α(y)

=
〈
projV ⊥ θ̂, y

〉
+ λ · α(y)

≥ −
∥∥∥projV ⊥ θ̂

∥∥∥ · ∥projV ⊥y∥+ λ · ((1− c) ∥projV ⊥y∥ − ε)

≥ −λε,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where the first inequality is by Cauchy-Schwarz.

Now observe that

r⋆(yi⋆)− r⋆(yipess
) = [r⋆(yi⋆)− r̂LCB(yi⋆)] +

[
r̂LCB(yi⋆)− r̂LCB(yipess

)
]
+
[
r̂LCB(yipess

)− r⋆(yipess
)
]

≤ r⋆(yi⋆)− r̂LCB(yi⋆) + λε,

where the second group of terms is non-positive by definition of ipess and the last group of terms is
non-positive by the claim above. To conclude, we observe that

r⋆(yi⋆)− r̂LCB(yi⋆) = r⋆(yi⋆)− r̂(yi⋆) + λ · α(yi⋆)

=
〈
projV ⊥ θ̂, yi⋆

〉
+ λ · (∥projV ⊥yi⋆∥+ ε) .

We now observe that as random variables, i⋆ is independent of the set {projV ⊥yi|i ∈ [N ]} by Gaus-
sian orthogonality and the fact that projV ⊥θ⋆ = 0. Thus it holds first that

E
[〈

projV ⊥ θ̂, yi⋆
〉
|θ̂, θ⋆

]
=

N∑
i=1

E
[〈

projV ⊥ θ̂, yi

〉
|θ̂, θ⋆, {i⋆ = i}

]
· Pr[i⋆ = i|θ̂, θ⋆]

=

N∑
i=1

E
[〈

projV ⊥ θ̂, yi

〉
|θ̂, θ⋆

]
· Pr[i⋆ = i|θ̂, θ⋆]

= 0,

where the last equality follows from the fact that yi is centred. For the second term, observe similarly
that

E
[
∥projV ⊥yi⋆∥ |θ̂, θ⋆

]
=

N∑
i=1

E
[
∥projV ⊥yi∥ |θ̂, θ⋆, {i⋆ = i}

]
· Pr[i⋆ = i|θ̂, θ⋆]

=

N∑
i=1

E
[
∥projV ⊥yi∥ |θ̂, θ⋆

]
· Pr[i⋆ = i|θ̂, θ⋆]

= E
[
∥projV ⊥y1∥ |θ̂, θ⋆

]
=

√
2

π
·
∥∥∥Σ1/2projV ⊥

∥∥∥
F
.

The result follows by combining the above.

Critically, the bound in Proposition 3 does not depend on N and so, as long as r⋆(yi⋆) grows with
N , the pessimistic algorithm will eventually outperform BoN. We now show that guarantees on α
can be obtained through Random Network Distillation.

C.3 ACHIEVING OOD DETECTION WITH CAUTION

Above we isolated the key role that ∥projV ⊥y∥ plays in the failure of the greedy algorithm. While in
the linear setting, projection to V results in the optimal algorithm, it is impractical in general settings,
where V is unknown. Here we demonstrate that two simplified models of caution, both inspired by
Random Network Distillation (RND) (Burda et al., 2018) can be used to approximate projection
to V and thus yield a pessimistic algorithm that avoids the failure modes of the greedy algorithm.
Recall that RND involves training a student network fŵ : Rd → Rm to predict a teacher network
fw⋆ : Rd → Rm on samples from the the explored distribution, which in this case is supported on
V . The error ∥fŵ(y)− fw⋆(y)∥2 is then used as a measure of how far out of distribution y is. We
will consider two simplified models of RND. The first is a linear model, where fW (y) = Wy for
w ∈ Rm×d. The second is a two-layer ReLU network of the form

f(y) =
1

T

T∑
ℓ=1

fWℓ
(y),

where

fW (y) =
1

m
· UReLU(Wy), ReLU(u) = max{u, 0}, (1)
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and W = (w1, . . . , wm) ∈ Rm×d, U ∈ Rm×m, and ReLU is applied coordinate wise. In both
cases, we will suppose that the teacher network is fixed with a randomly initialized parameter and
the student network is trained to minimize squared error on samples from V . We abstract the mini-
mization in the following definition.

Definition 1. Given a distribution D on Rd and an initial parameter W 0, we say that Ŵ is
trained with gradient based methods with samples from D if Ŵ − W 0 is in the linear span of
{∇W fW (y)}y∈supp(D).

This definition abstracts the precise optimization method used to train the student network, but
captures the key property that the final parameter is obtained by following gradients of the squared
error loss on samples from D. Note that this includes gradient descent and its variants as well as
more sophisticated approaches involving preconditioning, momentum, and continuous time limits.

We begin with the simpler linear case.
Proposition 4. Suppose that W ⋆,W0 ∈ Rm×d are Gaussian random matrices with independent
N (0, 1/m) entries. Let Ŵ denote the minimizer of the expected squared error on samples from a
distribution with support V attained through gradient based methods from samples y supported in
V initialized at W0 in the sense of Definition 1. Then with probability at least 1− δ over the choice
of W ⋆ and W0, it holds that for all y ∈ Rd,(
1− C

√
k + log(1/δ)

m

)2

∥projV ⊥y∥2 ≤
∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2 ≤

(
1 + C

√
k + log(1/δ)

m

)2

∥projV ⊥y∥2 .

In particular, if as long as m ≫ k, then
∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2 is a good approximation to
∥projV ⊥y∥2.

Proof. We first observe that ŴprojV ⊥ = W0projV ⊥ since the training data is supported on V .
Indeed, the gradient of the squared error loss on a sample y ∈ V is given by

∇W ∥Wy −W ⋆y∥2 = 2(Wy −W ⋆y)y⊤ = 2(W −W ⋆)(projV y)y
⊤proj⊤V ,

where we used the fact that y = projV y for all y ∈ V . Thus ∇W ∥Wy −W ⋆y∥2 projV ⊥ = 0 for
all y ∈ V and the claim follows. Moreover, it is immediate that ŴprojV =W ⋆projV since the loss
is minimized at Ŵ by strong convexity of the loss function. Thus it holds that∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2 =
∥∥∥(Ŵ −W ⋆)y

∥∥∥2 =
∥∥∥(Ŵ −W ⋆)projV ⊥y

∥∥∥2 = ∥(W0 −W ⋆)projV ⊥y∥2 .

Letting Z = W0 −W ⋆, we see that Z is a Gaussian random matrix with independent N (0, 2/m)
entries. We may now apply standard results on the singular values of Gaussian random matrices
(cf. e.g. Vershynin (2018, Theorem 4.6.1)) to observe that there is some constant C such that with
probability at least 1− δ,

1− C

√
k + log(1/δ)

m
≤ λmin(Z) ≤ λmax(Z) ≤ 1 + C

√
k + log(1/δ)

m
.

This suffices to prove the first statement. The second statement follows immediately.

Note that the above result shows that the RND error is a good approximation to ∥projV ⊥y∥2 uni-
formly over all y ∈ Rd with high probability as long as the embedding dimension is sufficiently
large relative to the intrinsic dimension of the explored distribution. While this is a nice first step,
the lack of flexibility of linear functions is a significant limitation. We now proceed to the hidden
layer ReLU network case.

Instead of assuming that fW (y) is a linear function, we now suppose that fW (y) is a two-layer ReLU
network of the form given in (1). For the sake of simplicity, we assume that only the weights W
are trained and that the second layer weights ui ∼ N (0, 1/m) are fixed. Note that, while practically
unrealistic, the assumption that only a single layer is trained is common in the study of deep learning
(cf. e.g. (Jacot et al., 2018; Yehudai & Shamir, 2019; Song et al., 2018) and the references therein)
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and is motivated by the utility of random features (Rahimi & Recht, 2007). Our analysis is inspired
by that of Melamed et al. (2023), who consider a similar model of neural networks, but for the very
different aim of investigating adversarial robustness. We show that as long as the number of hidden
features m is sufficiently large relative to ∥y∥, then the RND error is again a good approximation to
∥projV ⊥y∥2 uniformly over all y ∈ Rd with bounded norm with high probability.

Theorem 2. Let W ⋆,W 0 ∈ Rm×d be Gaussian random matrices with independent N (0, 1) entries
with rows w⋆

i and w0
i respectively. Let u⋆i , u0 ∼ N (0, 1) and let fW⋆ and fW 0 be the corresponding

ReLU networks as in (1). Suppose (i) that Ŵ is obtained through a gradient-based method from
a distribution with support V initialized at W 0 as in Definition 1 and (ii) that f

Ŵ
(y) = fW⋆(y)

for all y ∈ V . Then it holds with probability at least 1 − δ over the choice of W ⋆,W 0, ui, u0 that
simultaneously for all y ∈ Rd,

c ∥projV ⊥y∥2 − C ∥y∥2
√
d log(dm/δ)

Tm
− C ∥y∥2 d log(

dm/δ)

Tm
≤
∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2
and

∥∥f
Ŵ
(y)− fW⋆(y)

∥∥2 ≤ ∥projV ⊥y∥2 + C ∥y∥2
√
d log(dm/δ)

Tm
+ C ∥y∥2 d log(

dm/δ)

Tm
,

In particular, for Tm ≫ ∥y∥4 and up to constants,
∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2 ≍ ∥projV ⊥y∥2 with high
probability.

Proof. We first prove the result for T = 1. This step rests four lemmata. We first show in Lemma 1
the key property that, due to the training data being supported on V and the fact that we are only
training the first layer weights, it holds that ŴprojV ⊥ =W 0projV ⊥ , i.e., weights in the orthogonal
complement of V are never changed during training. By the assumption that we have trained to
convergence, then, it holds that W ⋆projV = ŴprojV . We then use prove in Lemma 2 a decompo-
sition of the RND error that rests on the precise funcitonal form of the ReLU network. Using this
decomposition, we are able to provide bounds on the mean and concentration of the RND error in
Lemma 3 and Lemma 4 in the special case that ∥y∥ = 1. The result then follows by combining
these lemmata with the positive homogeneity property of ReLU networks: for any r > 0, it holds
that fW (ry) = rfW (y) for all y ∈ Rd and all W ∈ Rm×d.

Now that the result is proved for T = 1, the general case follows by tensorization across the inde-
pendent Wℓ.

Lemma 1. Let fW⋆ , fW 0 , and f
Ŵ

be as in Theorem 2. Then it holds thatW 0projV ⊥ = ŴprojV ⊥ .

Proof. By Definition 1 suffices to show that for any y ∈ V , (∇W fW (y)) projV ⊥ = 0. To see this,
observe that

∇W fW (y)i =
1

m

m∑
j=1

uijI [⟨wj , y⟩ > 0] y.

Because yprojV ⊥ = 0 for all y ∈ V , it follows that ∇W fW (y)projV ⊥ = 0. The result follows.

Lemma 2. Let fW⋆ , fW 0 , and f
Ŵ

be as in Theorem 2. Then with probability at least 1− δ over the
choice of W ⋆,W 0, ui, u0, it holds that for all y ∈ Rd,

(f
Ŵ
(y)− fW⋆(y))j =

1

m

(
m∑
i=1

〈
u0jiw

0
i ,projV ⊥y

〉 ∫ 1

0

I
[〈
projV w

⋆
i + projV ⊥w0

i ,projV y + tprojV ⊥y
〉
> 0
]
dt

)

− 1

m

(
m∑
i=1

〈
u⋆jiw

⋆
i ,projV ⊥y

〉 ∫ 1

0

I [⟨w⋆
i ,projV y + tprojV ⊥y⟩ > 0] dt

)
.
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Proof. By the fundamental theorem of calculus, we have that

m(f
Ŵ
(y)− f

Ŵ
(projV y))j =

∫ 1

0

〈
∇yfŴ (projV y + t(projV ⊥y − projV y))j , y − projV y

〉
dt

=

∫ 1

0

〈
∇yfŴ (projV y + tprojV ⊥y)j ,projV ⊥y

〉
dt.

For any W , it holds that

m∇yfW (y)j =

m∑
i=1

ujiwiI [⟨wi, y⟩ > 0] .

Thus by the linearity of the integral and Lemma 1, it holds that

m(f
Ŵ
(y)− f

Ŵ
(projV y))j =

m∑
i=1

⟨ujiŵi,projV ⊥y⟩
∫ 1

0

I [⟨ŵi,projV y + tprojV ⊥y⟩ > 0] dt

=

m∑
i=1

〈
ujiw

0
i ,projV ⊥y

〉 ∫ 1

0

I
[〈
projV w

⋆
i + projV ⊥w0

i ,projV y + tprojV ⊥y
〉
> 0
]
dt,

where we used the fact that Ŵ = W ⋆projV +W 0projV ⊥ by Lemma 1. A similar, but simpler,
argument applies to fW⋆ . We now use the fact that ŴprojV =W ⋆projV to observe that

f
Ŵ
(y)− fW⋆(y) = f

Ŵ
(y)− f

Ŵ
(projV y)− (fW⋆(y)− fW⋆(projV y))

and the result follows.

Lemma 3. Let fW⋆ , fW 0 , and f
Ŵ

be as in Theorem 2. Then it holds that

∥projV ⊥y∥2

4
≤ E

[∥∥f
Ŵ
(y)− fW⋆(y)

∥∥2] ≤ ∥projV ⊥y∥2 .

Proof. Let

g(w, y) = ⟨w,projV ⊥y⟩
∫ 1

0

I [⟨w,projV y + tprojV ⊥y⟩ > 0] dt (2)

and let

g′(w,w′, y) = ⟨w′,projV ⊥y⟩
∫ 1

0

I [⟨projV w + projV ⊥w′,projV y + tprojV ⊥y⟩ > 0] dt. (3)

By Lemma 2 it holds that

E
[(
f
Ŵ
(y)− fW⋆(y)

)2
j

]
=

1

m2
E

( m∑
i=1

u0jig
′(w⋆

i , w
0
i , y)− u⋆jig(w

⋆
i , y)

)2


=
2

m
E
[
g(w⋆

1 , y)
2
]
,

because the u0ji and u⋆ji are independent and have variance 1 and g′(w⋆
i , w

0
i , y) and g(w⋆

i , y) are
independent of u0ji and u⋆ji and identically distributed. Note now that

g(w⋆
i , y)

2 ≤ ⟨projV ⊥y,projV ⊥y⟩2

and thus has expectation at most ∥projV ⊥y∥2. For the lower bound, observe that

g(w⋆
i , y)

2 =

∫ 1

0

∫ 1

0

⟨w⋆
i ,projV ⊥y⟩2 I [⟨w⋆

i ,projV y + tprojV ⊥y⟩ > 0] I [⟨w⋆
i ,projV y + sprojV ⊥y⟩ > 0] dsdt

≥
∫ 1

0

∫ 1

0

⟨w⋆
i ,projV ⊥y⟩2 I [⟨w⋆

i ,projV y⟩ > 0] I [⟨w⋆
i ,projV ⊥y⟩ > 0] dsdt

≥ ⟨w⋆
i ,projV ⊥y⟩2

4
.
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Thus

∥projV ⊥y∥2

4m
=

⟨w⋆
i ,projV ⊥y⟩2

4m
≤ E

[
(f

Ŵ
(y)− fW⋆(y))2j

]
≤

E
[
⟨w⋆

i ,projV ⊥y⟩2
]

m
=

∥projV ⊥y∥2

m
.

Summing over j gives the result.

Lemma 4. Let f
Ŵ

, fW 0 , and fW⋆ be as in Theorem 2. Then with probability at least 1− δ over the
choice of W ⋆,W 0, ui, u0, it holds that uniformly in y for ∥y∥ = 1,∣∣∣∥∥fŴ (y)− fW⋆(y)

∥∥2 − E
[∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2]∣∣∣ ≤ C

(√
d log(dm/δ)

m
+
d log(dm/δ)

m

)
.

Proof. Begin by noting that by positive homogeneity, it suffices to set ∥y∥ = 1. Continuing with
the notation introduced in (2) and (3) we see that, conditional on w⋆

i , w
0
i , it holds that (f

Ŵ
(y) −

fW⋆(y))j are independent centred Gaussians with variancse given by

Var((f
Ŵ
(y)− fW⋆(y))j |w⋆

i , w
0
i ) =

1

m2

m∑
i=1

g′(w⋆
i , w

0
i , y)

2 + g(w⋆
i , y)

2.

Thus by standard bounds on the concentration of norm of Gaussian vectors, it holds that with prob-
ability at least 1− δ,∣∣∣∣∣∥∥fŴ (y)− fW⋆(y)

∥∥2 − 1

m

m∑
i=1

g′(w⋆
i , w

0
i , y)

2 + g(w⋆
i , y)

2

∣∣∣∣∣
≤ C

√√√√m ·

(
1

m2

m∑
i=1

g′(w⋆
i , w

0
i , y)

2 + g(w⋆
i , y)

2

)2

log(1/δ)

+ C

(
1

m2

m∑
i=1

g′(w⋆
i , w

0
i , y)

2 + g(w⋆
i , y)

2

)
log(1/δ).

Letting

G(w⋆, w0, y) =
1

m

m∑
i=1

g′(w⋆
i , w

0
i , y)

2 + g(w⋆
i , y)

2,

we see that∣∣∣∥∥fŴ (y)− fW⋆(y)
∥∥2 −G(w⋆, w0, y)

∣∣∣ ≤ C ·G(w⋆, w0, y)

(√
log(1/δ)

m
+

log(1/δ)

m

)
. (4)

We now demonstrate that G(w⋆, w0, y) concentrates around its mean for fixed y. To do this, we
will first observe that g(w, y) and g′(w,w′, y) are identically distributed and thus it suffices to show
concentration for g(w, y) and apply a union bound. Indeed, we have that

g(w⋆
i , y)

2 ≤ ⟨w⋆
i ,projV ⊥y⟩2

and thus has Orlicz ψ1 norm at most C ∥projV ⊥y∥2 for some constant C. Thus by standard concen-
tration results for sums of independent subexponential random variables (cf. e.g. Vershynin (2018);
Wainwright (2019)), it holds that with probability at least 1− δ,∣∣∣∣∣ 1m

m∑
i=1

g(w⋆
i , y)

2 − E
[
g(w⋆

i , y)
2
]∣∣∣∣∣ ≤ C ∥projV ⊥y∥2

(√
log(1/δ)

m
+

log(1/δ)

m

)
.

Combining this argument with the triangle inequality and (4) along with the fact that ∥y∥ = 1 and
Lemma 3 gives that with probability at least 1− δ,∣∣∣∥∥fŴ (y)− fW⋆(y)

∥∥2 − E
[∥∥f

Ŵ
(y)− fW⋆(y)

∥∥2]∣∣∣ ≤ C

(√
log(1/δ)

m
+

log(1/δ)

m

)
.

We now observe that by standard high probability bounds on the operator norms of Gaussian random
matrices (cf. e.g. Vershynin (2018, Theorem 4.6.1)), it holds that with probability at least 1 − δ,
that f

Ŵ
and fW⋆ are C-Lipschitz as is E

[
g(w⋆

i , y)
2
]

in y for ∥y∥ = 1. Thus by a standard covering
argument on the unit sphere and a union bound, the result follows.
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C.4 MAIN RESULT

We now state our main result, which combines the analysis of pessimism in Appendix C.2 with the
analysis of caution in Appendix C.3.
Theorem 3. Let V be a k-dimensional subspace of Rd and let Σ be a positive semidefinite matrix
such that Tr(ΣprojV ⊥) > 0. Let {yi}Ni=1 be i.i.d. samples from N (0,Σ) and let r⋆(y) = ⟨θ⋆, y⟩
for some θ⋆ ∈ V . Suppose that θ̂ ∈ Rd such that projV θ̂ = θ⋆ and let r̂(y) =

〈
θ̂, y
〉

. Let

r̂LCB(y) = r̂(y) − λ · α(y), for α(y) =
∥∥f

Ŵ
(y)− fW⋆(y)

∥∥ with fW (y) being either the linear
model considered in Proposition 4 or the one hidden layer ReLU network considered in Theorem 2.
Let î = argmaxi∈[N ] r̂LCB(yi) and i⋆ = argmaxi∈[N ] r

⋆(yi). In the case that fW is linear, as long

as m ≳
k(d−k)∥projV ⊥ θ̂∥2

log(N) and λ = Θ(
∥∥∥projV ⊥ θ̂

∥∥∥), it holds that

E
[
r⋆(yipess

)− r⋆(yî)
]
≳
√
log(N).

In the case that fW is a one hidden layer ReLU network, as long as Tm ≳
d(d−k)∥projV ⊥ θ̂∥2

log(N) , the

same holds with λ = Θ(
∥∥∥projV ⊥ θ̂

∥∥∥). Moreover, in both of these cases it holds that

lim
N↑∞

E
[
r⋆(yi⋆)− r⋆(yipess

)
]

E [r⋆(yi⋆)]
= 0 < lim

N↑∞

E [r⋆(yi⋆)− r⋆(yî)]

E [r⋆(yi⋆)]
.

Proof. The result follows immediately by combining Proposition 3 with Proposition 4 and Theo-
rem 2 and observing that ∥projV ⊥y∥ ≲

√
(d− k) log(1/δ) with probability at least 1−δ by standard

concentration results for chi-squared random variables (cf. e.g. Wainwright (2019)).

D EXPERIMENTAL DETAILS

Hyperparameter Configuration. Table 4 provides a comprehensive overview of all hyperparam-
eters used throughout our experimental evaluation. The configuration represents a careful balance
between computational efficiency and model expressiveness, with key design choices motivated by
our theoretical analysis and empirical ablations.

The RND architecture employs 10 layers for both target and predictor networks, significantly deeper
than the default 4 layers, which we found provides better representation quality for uncertainty es-
timation. The RND weight λ = 0.2 represents a moderate pessimism strength that effectively
mitigates reward hacking while preserving the benefits of reward-guided selection. Training hyper-
parameters including the reduced learning rate (1×10−5) and extended training duration (5 epochs)
ensure stable convergence of the predictor network on the GSM8K training distribution.

Architectural Ablations. For the architectural ablation study, we design different levels of net-
work complexity and check their impact on the training objective, the reconstruction loss and also
the final accuracies. Table 5 contains a comprehensive introduction of settings involved in our abla-
tion studies.

Implementation Framework. Our experimental setup utilizes PyTorch 2.3.1 as the primary deep
learning framework, with model inference accelerated through vLLM 0.10.0 and Transformers
4.55.1 for efficient large-scale language model deployment. For RND training, we extract repre-
sentations from the first 10 layers of both predictor and target networks, employing a learning rate
of 1 × 10−5 with 50 warmup steps across 5 training epochs. The RND models are trained on out-
puts generated by the backbone model using the GSM8K training set, and subsequently evaluated
against the validation set of GSM8K as well as Math-500 and BigBench-Hard benchmarks to assess
generalization capabilities.

Inference Configuration. All inference experiments maintain consistent hyperparameters with
temperature set to 1.0 and maximum token limits of 500 for GSM8K and 1024 for Math-500 and
BigBench-Hard evaluations. The increased token limit for harder datasets is necessary because these
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benchmarks require significantly more reasoning tokens to avoid truncation before reaching a con-
clusion. Response generation uses vLLM for efficient parallel sampling across multiple candidates
in Best-of-N evaluation.

E ADDITIONAL CASE STUDY

To gain deeper insights into the mechanisms underlying reward hacking and our caution-based mit-
igation, we analyze the correlation patterns between reward model scores and pessimism scores
through detailed scatter plot visualizations. Each plot displays z-normalized scores for all responses
to individual GSM8K problems, with green points representing correct responses and red points
representing incorrect responses.

The scatter plots in Figure 5 reveal two critical failure modes of reward models that our approach
successfully identifies. In the high reward, low pessimism region (upper-left quadrant), we ob-
serve responses that exemplify systematic reward hacking. These responses achieve high reward
scores not through genuine correctness or adherence to task requirements, but by exploiting spu-
rious correlations that the reward model learned during training. Crucially, these responses often
ignore fundamental formatting requirements of the mathematical reasoning task, such as provid-
ing the final answer in the required format, yet still receive high rewards because the reward model
prioritizes superficial indicators like verbosity, step-by-step presentation, or mathematical terminol-
ogy over actual task compliance. This reveals that reward models can be systematically misled by
responses that mimic the surface patterns of high-quality reasoning without delivering the essential
components of a correct solution.

Conversely, the low reward, high pessimism region (lower-right quadrant) contains responses that
follow proper formatting conventions and adhere closely to the expected task structure, yet receive
low reward scores. This pattern illuminates a fundamental limitation of reward models: they func-
tion primarily as distributional fitness measures rather than objective quality assessors. These
well-formatted responses are penalized not because they lack correctness or clarity, but because
they deviate from the specific stylistic preferences and response patterns that dominated the re-
ward model’s training distribution. The reward model essentially measures how closely a response
matches its learned notion of “preferred” responses rather than evaluating genuine task performance
or adherence to explicit instructions.

This analysis demonstrates that our caution mechanism successfully identifies both forms of reward
model failure: it flags spurious high-reward responses that exploit correlational biases while rec-
ognizing genuinely task-compliant responses that happen to fall outside the reward model’s narrow
preference distribution. The results underscore that effective reward hacking mitigation requires
moving beyond simple score-based selection toward distributional awareness that can distinguish
between genuine quality and superficial pattern matching.

F DETAILED RESULTS FOR ABLATION STUDIES

This section complements Table 2 with full scaling curves. We sweep pessimism
strength λ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and vary the Best-of-N budget over N ∈
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. Figure 6 shows our caution variant that uses reward-model
features; Figure 7 shows traditional RND with random targets.

Caution (RM features). Moderate–high λ (about 0.6–0.8) maintains or improves accuracy as N
grows, preventing the reward-hacking drop seen at λ = 0 (RM-only). λ = 1.0 (pessimism-only) is
competitive but slightly conservative at small N , this is because for easier problems, most responses
contain the correct answer but not all of them strictly follows the specified answering format, and
applying pessimism only would at least filter out the incorrectly formatted responses. Overall, λ ∈
[0.6, 0.8] delivers the best trade-off across most N .

Traditional RND (random targets). Accuracy remains flat or declines with N for all λ, and
rarely exceeds the RM-only baseline. Sweeping λ offers little benefit, indicating that random targets
lack the semantic grounding needed for useful uncertainty estimates.
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Question: Mandy owes Benedict $100. They agreed to have monthly interest of 2%. If 
Mandy was able to pay it after 3 months, how much should she give to Benedict?

Response 1: To solve this problem, we need to calculate the interest for 3 months. The 
formula for simple interest is: Interest = Principal * Rate * Time Here, Principal = $100, 
Rate = 2% or 0.02 (in decimal), and Time = 3 months. First, let's convert the time from 
months to years, since the interest rate is annual. 3 months = 3/12 years = 0.25 years. 
Now, we can calculate the interest: Interest = $100 * 0.02 * 0.25 Interest = $5  So, 
Mandy owes Benedict an additional $5 as interest. In total, Mandy should pay $100 
(original amount) + $5 (interest) = $105 to Benedict.          [High Reward, Low Pess.]

Answer: The monthly interest is $100 x 2/100 = $<<100*2/100=2>>2. After 3 
months, the total interest amount to $2 x 3 = $<<2*3=6>>6. Therefore, Mandy 
should give Benedict a total of $100 + $6 = $<<100+6=106>>106. #### 106

Response 2: To find out how much Mandy should give to Benedict, we need to 
calculate the total interest for 3 months  1. Calculate the monthly interest: 2% of $100 is 
(2/100) * $100 = $2 per month.  2. Calculate the total interest for 3 months: $2 * 3 = 
$6.  3. Add the total interest to the original amount: $100 + $6 = $106. So, Mandy 
should give Benedict $106. #### {106}                       [High Pess., Low Reward]

Question: Mack wants to count things and decided to count how many birds there are 
in the sky over the next week. On days one and two, Mack saw a total of 50 birds. On 
day three he saw none. On days four and five, he saw 120 birds. On day six he saw 20 
and on day seven he saw 90. On average, how many birds did Mack see in a day?

Response 1: To find the average number of birds Mack saw per day, we need to calculate 
the total number of birds he saw and divide it by the number of days. Let's add up the 
number of birds Mack saw on each day: Day 1: 50 birds Day 2: 50 birds Day 3: 0 birds 
Day 4: 120 birds Day 5: 120 birds Day 6: 20 birds Day 7: 90 birds Total number of birds 
= 50 + 50 + 0 + 120 + 120 + 20 + 90 Total number of birds = 450 Since Mack counted 
birds over 7 days, we divide the total number of birds by the number of days: Average 
number of birds per day = Total number of birds / Number of days Average number of 
birds per day = 450 / 7 Average number of birds per day = 64.29 So, Mack saw 
approximately 64.29 birds per day on average. [High Reward, Low Pess.]

Answer: On days one to three, Mack saw 50+0=<<50+0=50>>50 birds. On days four 
to seven, he saw 120+20+90=<<120+20+90=230>>230 birds. For the whole week he 
saw 230+50=<<230+50=280>>280 birds. On average Mack saw 
280/7=<<280/7=40>>40 birds a day. #### 40

Response 2: To find the average number of birds Mack saw in a day, we need to calculate 
the total number of birds he saw and divide it by the total number of days. Let's calculate 
the total number of birds Mack saw:- Days 1 and 2: 50 birds- Day 3: 0 birds- Days 4 and 5: 
120 birds- Day 6: 20 birds- Day 7: 90 birds Total number of birds = 50 + 0 + 120 + 20 + 
90 = 280 Now, we need to find the total number of days. Mack counted birds over 7 days. 
Total number of days = 7 To find the average, we divide the total number of birds by the 
total number of days: Average number of birds per day = Total number of birds / Total 
number of days\n= 280 / 7 = 40 #### 40                          [High Pess., Low Reward]

Figure 5: Pessimism–Reward visualization on GSM8K. Each row shows one problem: a scatter
plot of z-normalized pessimism (x-axis) and z-normalized reward (y-axis), with green points for
correct responses and red for incorrect. Upper-left points (high reward, low pessimism) illustrate re-
ward hacking—responses that score well despite low distributional support. Lower-right points (low
reward, high pessimism) are well-formed, instruction-following responses that the reward model un-
dervalues; our caution mechanism up-weights these relative to reward-only selection.

Table 6: Layer depth ablation for target
network and predictor network.

L Peak Acc. Final Acc.

2 79 77
4 81 77
6 83 78
8 84 81
10 84 84

Number of Layers (L). In Table 6, we study how the
selection of L would impact performance, on a smaller
subset of GSM8K with 100 problems and 100 responses
for each problem. Generally we observe higher peak ac-
curacies and less degradation when given more layers, al-
though at the cost of compute budget.

G ADDITIONAL BASELINE COMPARISONS

To further validate the effectiveness of our pessimism approach against reward hacking, we con-
duct comprehensive comparisons with additional baseline methods from the literature. Specifically,
we compare ours against χ2 regularized sampling Huang et al. (2025b), softmax best-of-n (which
applies temperature-based softening to the selection distribution), and Best-of-Poisson sampling
(which draws a Poisson-distributed number of samples before selection). We also evaluate com-
binations of pessimism with these alternative sampling strategies to assess whether our approach
provides complementary benefits. All methods are evaluated on the same experimental setup using
GSM8K.
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Figure 6: Caution (RND-on-RM-features) scaling with λ. Best-of-N accuracy on GSM8K versus
samples per problem (x-axis) for Pessimism strengths λ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. The predic-
tor is trained against a frozen target network built from reward-model features. Larger λ increases
pessimism strength; λ = 0 reduces to Reward-Model-only selection, and λ = 1 to pessimism-only.
Moderate–high weights (roughly 0.6–0.8) preserve scaling while curbing reward hacking, outper-
forming both the RM-only and RND-only extremes across most N .
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Figure 7: Traditional RND (random targets) baseline. Best-of-N GSM8K accuracy when us-
ing classical RND with a randomly initialized target network (no reward-model features), sweeping
λ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Unlike our caution variant, this baseline shows little to no scal-
ing benefit and generally does not surpass the Reward-Model-only curve, indicating that semantic
grounding from reward-model features is crucial for effective distributional regularization.

Figure 8 presents the scaling curves for all methods. The results demonstrate that our pessimism
approach exhibits superior robustness against reward hacking degradation. While the standard Best-
of-N baseline shows severe performance degradation. Notably, combinations of pessimism with
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Figure 8: Comparison of pessimism-based sampling with alternative baseline methods.

other sampling strategies (e.g., Pessimism + χ2, Pessimism + Poisson, Pessimism + Softmax) show
comparable stability to pessimism alone.
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Table 4: Comprehensive Hyperparameter Configuration. All hyperparameters used in training
and evaluation of the Random Network Distillation (RND) approach for mitigating reward hacking.
The table is organized by component: RND architecture, training process, inference settings, and
evaluation configurations.
Component Parameter Value Description

RND
Architecture

Target layers 10 Number of layers extracted from reward model for target net-
work

Predictor layers 10 Number of layers in predictor network architecture
RND weight (λ) 0.8 Strength of pessimism penalty in combined scoring
Exact architecture False Whether predictor copies exact reward model architecture
Embedding strategy shared_trainable How embeddings are handled: shared_trainable, shared_frozen,

or separate
Use projection True Whether to add projection layer between predictor and target

Training
Process

Batch size 8 Training batch size for RND predictor
Learning rate 1e-5 Learning rate for predictor network
Number of epochs 5 Training epochs for predictor network
Warmup steps 50 Learning rate scheduler warmup steps
Max examples 5000 Maximum training examples from GSM8K train split
VRAM usage 24GB Minimum VRAM requirement for GPU

Inference
Settings

Temperature 1.0 Sampling temperature for response generation
Max tokens (GSM8K) 500 Maximum tokens for GSM8K responses
Max tokens (MATH/BBH) 1024 Maximum tokens for harder reasoning tasks
Number of samples (N ) 1-512 Range of Best-of-N sampling candidates

Evaluation
Configuration

Backbone model Llama-3.2-3B-Instruct Base language model for response generation
Reward model OASST DeBERTa Primary reward model for scoring responses
Training dataset GSM8K train Dataset for training RND predictor
Test datasets GSM8K, MATH-500, BBH Evaluation benchmarks (in-domain and OOD)
Bootstrap runs 3 Number of bootstrap runs for confidence intervals
Score normalization Z-score Normalization method for reward and RND scores
Selection strategy highest_reward Method for selecting best response from candidates

Ablation
Study

RND weight range 0.0-1.0 Range of λ values tested in weight ablation
Architecture variants 4 types Full, simplified, embedding strategies, projection ablations
Comparison baselines BoN, RND-only Standard Best-of-N and pessimism-only baselines

Table 5: Summary of ablations. Each row defines one setting and what it means in practice.
Ablation Setting What it means / Rationale

Predictor architecture
Same as Target Predictor uses the same overall structure as the target network (e.g., same

block type and connectivity), matching width and depth. Isolates training
dynamics from architectural mismatch.

Simplified Predictor keeps the same hidden size and number of layers as the tar-
get but replaces specialized target blocks with vanilla Transformer encoder
blocks. This deliberately reduces architectural complexity while preserving
depth/width, aiming for better generalization and lower overfitting risk.

Embedding strategy
Shared, trainable Predictor shares the target’s token embeddings and updates them during train-

ing. Pros: reuse target’s pretrained semantic representations and potentially
quicker convergence. Cons: tighter coupling may leak target-specific biases
into the predictor.

Shared, frozen Predictor reuses the target’s token embeddings but keeps them frozen. Pros:
stable token mapping and clean isolation of predictor encoder learning. Cons:
less flexibility to adapt embeddings to the predictor’s simplified blocks.

Separate, randomly initialized Predictor creates its own embedding layer with random initialization (initial-
ized via the model’s standard weight init). Pros: full decoupling from the
target, potentially better regularization. Cons: longer warm-up and higher op-
timization burden to reach alignment.

Projection head
No projection head The predictor’s final hidden states are directly mapped to the output space used

for matching the target’s features. Minimal additional parameters; simplest
path that reduces opportunities for overfitting.

Linear projection head Adds a single linear layer after the predictor’s hidden states and before the
output. Acts as a light adapter/bottleneck to better match target feature ge-
ometry; can improve fit at small cost in extra parameters, but may introduce
overfitting.
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