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Abstract

Out-of-Distribution (OoD) detection is vital for the reliability of Deep Neural
Networks (DNNs). Existing works have shown the insufficiency of Principal
Component Analysis (PCA) straightforwardly applied on the features of DNNs in
detecting OoD data from In-Distribution (InD) data. The failure of PCA suggests
that the network features residing in OoD and InD are not well separated by simply
proceeding in a linear subspace, which instead can be resolved through proper
non-linear mappings. In this work, we leverage the framework of Kernel PCA
(KPCA) for OoD detection, and seek suitable non-linear kernels that advocate the
separability between InD and OoD data in the subspace spanned by the principal
components. Besides, explicit feature mappings induced from the devoted task-
specific kernels are adopted so that the KPCA reconstruction error for new test
samples can be efficiently obtained with large-scale data. Extensive theoretical
and empirical results on multiple OoD data sets and network structures verify the
superiority of our KPCA detector in efficiency and efficacy with state-of-the-art
detection performance.

1 Introduction

With the rapid advancement of the powerful learning abilities of Deep Neural Networks (DNNs)
[1, 2], the trustworthiness of DNNs in security-sensitive scenarios has attracted considerable attention
in recent years [3]. Generally, samples from the training and test sets of DNNs are viewed as data
from some In Distribution (InD) Pin, while samples from other data sets are regarded as coming
from a different distribution Pout, i.e., out-of-distribution (OoD) data. In the practical deployment,
DNNs trained on InD data would inevitably encounter OoD data and thus yield unreliable results with
potential risks. Therefore, detecting whether a new sample is from Pin or Pout has been a valuable
research topic of trustworthy deep learning, namely OoD detection [4].

Existing OoD detection methods exploit different outputs from DNNs to unveil the hidden disparities
between InD and OoD data, e.g., logits [5], gradients [6] and features [7, 8]. In this work, we address
OoD detection from a perspective of utilizing the feature spaces learned by the backbone of DNNs.
To be specific, given a DNN f : Rd → Rc, f takes x ∈ Rd as inputs and learns penultimate layer
features z ∈ Rm before the last linear layer. Principal Component Analysis (PCA) is investigated
in [8] to calculate the reconstruction error in the z-space as the OoD detection score. That is,
PCA is executed on the penultimate features of InD training samples and learns a linear subspace
spanned by the principal components in the z-space. Then, given features ẑ of an unknown sample
x̂, one can obtain the reconstructed counterpart of ẑ by projecting ẑ to the linear subspace and
re-projecting it back. The reconstruction error is computed as the Euclidean distance between ẑ and
the reconstructed counterpart. In [9], similar ideas are adopted with energy-based models using an
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(a) T-SNE of z and PCA reconstruction errors.
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(b) T-SNE of Φ(z) and KPCA reconstruction errors.

Figure 1: The t-SNE [10] visualization on the original features z (left) and the mapped features Φ(z)
(right). Our KPCA detector alleviates the linearly inseparability between InD and OoD features in
the original z-space via an explicit feature mapping Φ, and thus substantially improves the OoD
detection performance, illustrated by the much more distinguishable reconstruction errors.

auto-encoder structure, where the neural networks are trained from scratch and the reconstruction is
conducted in the decoder. For good OoD detection performance, it is expected that InD features are
compactly allocated along the linear principal components with high variances for capturing most of
the informative patterns of InD data, leading to small reconstruction errors, while OoD features are
not supposed to be well matched with the learned subspace, causing large reconstruction errors.

However, it has been empirically observed in [8] that such PCA reconstruction errors alone cannot
distinctively differentiate OoD data from InD data, leading to poor detection performance of PCA in
the z-space. Nevertheless, [8] did not take further explorations on the reasons behind, and instead
proposed a practical fusion trick to boost PCA by multiplying with other existing powerful detection
scores. Therefore, in this work, more in-depth analyses are undertaken to improve the limitations of
PCA for OoD detection with insightful understandings on the distribution of InD and OoD features.
It is widely acknowledged that PCA falls inferior in dealing with those linearly-inseparable data,
which inspires us to explore the non-linearity existing in the z-space of InD and OoD features under
the help of the celebrated Kernel PCA (KPCA).

KPCA has long been a powerful technique in learning the non-linear patterns of data [11, 12]. By
deploying KPCA, a non-linear feature mapping Φ is imposed on the z-space in this setup, so that
the linear inseparability can be alleviated in the mapped Φ(z)-space. KPCA is generally conducted
through a kernel function k induced by the feature mapping, i.e., k(z1, z2) = ⟨Φ(z1),Φ(z2)⟩, in
order to avoid explicit calculations in the mapped Φ(z)-space. In most cases, researchers have no
prior on the unknown non-linear data distribution, e.g., the non-linearity in the z-space of InD and
OoD features. Therefore, finding an appropriate k or Φ that well adapts the data always remains a
non-trivial issue for KPCA. For example, the mostly common Gaussian kernel is shown to be unable
to separate the InD and OoD features, and leads to terrible OoD detection performance, see details in
Appendix C. In addition, KPCA also faces the challenge of calculating and storing the Ntr ×Ntr

kernel matrix on millions of training samples with a very large size Ntr, which significantly hinders
its application in practical tasks with a huge amount of data.

The proposed KPCA detection method well addresses the aforementioned issues of KPCA for OoD
detection. On the one hand, to better understand the non-linear patterns in InD and OoD features, we
take a kernel perspective on an existing OoD detector [7], which searches k-th Nearest Neighbors
(KNN) on the ℓ2 normalized features z. By decoupling and analyzing key components of the KNN
method, we acquire two effective kernels, a cosine kernel and a cosine-Gaussian kernel, for our
KPCA detector to promote the linear separability between InD and OoD features in the subspace of
the principal components, leading to substantially improved distinguishable KPCA reconstruction
errors, as shown in Figure 1. On the other hand, for a computationally-friendly implementation, two
explicit feature mappings Φ induced from the cosine and cosine-Gaussian kernels are executed on
the original features z, followed by PCA in the mapped Φ(z)-space to obtain the reconstruction
errors without calculations on the kernel matrix. Specifically, the celebrated Random Fourier Features
(RFFs) [13] are introduced to approximate the Gaussian kernel, allowing an O(M) computation
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complexity in inference, which significantly outperforms the O(Ntr) computation complexity of the
KNN [7] and the kernel-matrix-based KPCA (M is the number of RFFs and M ≪ Ntr).

Extensive experiments verify the effectiveness of the devoted two kernels, which we hope could bring
inspirations for the research community in exploring the non-linearity in InD and OoD data from a
kernel perspective. For example, the two kernels can even serve as a beneficial prior on advocating
learning more and stronger kernels for OoD detection. In addition, we supplement our method with
its implementation via the kernel matrix, and illustrate the advantageous effectiveness and efficiency
of explicit feature mappings in Section 6. The contributions of this work are summarized below:

• To the best of our knowledge, this is the first work that explores suitable kernels to seize the
non-linearity in InD and OoD features in the post-hoc stage on well-trained DNNs.

• Two task-specific kernels are carefully devised for OoD detection. Particularly, two explicit
feature mappings induced from the kernels are adopted for the KPCA detector, and lead to
separable KPCA reconstruction errors with significantly-reduced complexity in inference.

• Theoretical and experimental comparisons indicate the effects of kernels in our KPCA
detector with SOTA detection performance and remarkably reduced time complexity.

In the remainder of this work, related works and research backgrounds are outlined in Section 2 and
Section 3, respectively. Section 4 delves into details of the proposed KPCA detector. Comparison
experiments with prevailing OoD detection methods and KPCA via kernel functions are presented in
Section 5 and Section 6, respectively. Conclusions and limitations are drawn in Section 7.

2 Related work

Generally, out-of-distribution detection has been formulated as a binary classification problem
including a decision function D(·) and a scoring function S(·):

D(x) =

{
InD, S(x) > s,
OoD, S(x) < s.

(1)

The scoring function S(·) assigns a score S(x̂) for a new sample x̂. If S(x̂) is greater than a threshold
s, the decision function D(·) would view x̂ as an InD sample, and vice versa. The key to effectually
detecting OoD samples is a well-designed scoring function. Existing OoD detectors adopt different
outputs from DNNs and design justified scores to measure the disparity between InD and OoD data.

Logits-based detectors exploit the abnormal responses reflected in the predictive logits or probabilities
from DNNs to detect OoD data. Typical methods adopt either the maximum logits [14] or probability
[15, 16] or the energy function on logits [5] as the detection score.

Gradients-based methods investigate differences on gradients w.r.t InD and OoD data for OoD
detection. For example, gradient norms [6] or low-dimensional representations [17] are studied to
devise the detection score.

Features-based detectors try to capture the feature information causing over-confidence of OoD
predictions in different ways. Feature clipping [18, 19, 20, 21, 22], feature distances [23, 7, 24],
feature norms [25], rank-1 features [26], feature subspace [8], etc., have been explored with excellent
performance.

Aside from methods above, other existing OoD detectors cover the training regularization [27, 28],
the ensemble technique [29] and theoretical understandings [30, 31]. Refer to Appendix A for more
detailed descriptions on the compared methods in experiments [32, 33, 34, 35].

3 Background

3.1 PCA for OoD detection

The PCA detector with the reconstruction error as the detection score is summarized firstly. Given
the penultimate features zi ∈ Rm learned by a well-trained DNN f : Rd → Rc of the InD training
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data xi ∈ Rd, i = 1, · · · , Ntr, the covariance matrix Σ is calculated as:

Σ =

Ntr∑
i=1

(zi − µ) (zi − µ)
⊤
, µ =

1

Ntr

Ntr∑
i=1

zi. (2)

Through the eigendecomposition Σ = UΛU⊤, the dimensionality reduction matrix U q ∈ Rm×q is
obtained by taking the first q columns of the eigenvector matrix U w.r.t the top-q largest eigenvalues.

In inference, given a new sample x̂ ∈ Rd and its feature ẑ ∈ Rm from the DNN f , the reconstruction
error is computed as:

e(x̂) =
∥∥∥U qU

⊤
q (ẑ − µ)− (ẑ − µ)

∥∥∥
2
. (3)

By projecting centralized (ẑ − µ) to the U q-subspace and re-projecting back, we can obtain the
reconstructed features U qU

⊤
q (ẑ − µ) and the reconstruction error e(x̂), which then can be set as

the OoD detection score: S(x̂) = −e(x̂). An ideal case is that U q contains informative principal
components of InD data and causes projections of OoD data far away from that of InD data, leading
to separable reconstruction errors between OoD and InD data.

3.2 Random Fourier features

A concise description is firstly given on the Random Fourier Features (RFFs) [13], which will be
adopted in our method later. RFFs are proposed to approximate the kernel function so as to alleviate
the heavy computation cost in large-scale kernel machines. In kernel methods, an N×N kernel matrix
w.r.t N samples requires O(N2) kernel manipulations, O(N2) space complexity and O(N3) time
complexity to calculate the inverse of the kernel matrix, which leads to overwhelmed computation
costs for a large data size N . Therefore, RFFs are introduced by building an explicit feature mapping
to directly approximate the kernel function for efficient kernel machines on large-scale data.

RFFs are built on the Bochner’s theorem [36]: A continuous and shift-invariant kernel k(z1, z2) =
k(z1 − z2) on Rm is positive definite if and only if k(·) is the Fourier transform of a non-negative
measure. An explicit feature mapping ϕRFF induced from the kernel k is derived in [13]:

ϕRFF(z) ≜

√
2

M
[ϕ1(z), · · · , ϕM (z)] , ϕi(z) = cos (z⊤ωi + ui), i = 1, · · · ,M, (4)

where ω1, · · · ,ωM ∈ Rm are i.i.d. sampled from the Fourier transform of k(·), and u1, · · · , uM ∈ R
are i.i.d. sampled from a uniform distribution U(0, 2π). For example, the sampling distribution for ωi

of a Gaussian kernel function kgau = e−γ∥z1−z2∥2
2 is ω ∼ N (0,

√
2γIm). Such a feature mapping

ϕRFF satisfies kgau(z1, z2) ≈ ϕRFF(z1)
⊤ϕRFF(z2) and is known as the random Fourier features

(RFFs) mapping. Refer to [13] for a detailed convergence analysis. RFFs have been widely utilized
in kernel learning [37], optimization [38], etc.

4 Methodology

As empirically observed in [8], the aforementioned PCA reconstruction error in the z-space is not an
effective score in detecting OoD data from InD data. We propose that the reason behind is possibly
due to the linearly-inseparable features of InD and OoD data, as shown in Figure 1a. To address
this issue, we propose to explore the non-linearity in z-space via kernel PCA. Then, through a
kernel perspective on an existing KNN detector [7], we put forward two efficacious kernels that well
characterize the non-linear patterns in z-space of InD and OoD data: a cosine kernel (Section 4.1)
and a cosine-Gaussian kernel (Section 4.2). Particularly, we adopt two explicit feature mappings
Φ induced from the two kernels, and execute PCA in the mapped Φ(z)-space, which leads to an
informative principal subspace and distinct reconstruction errors for efficacious OoD detection.

4.1 Cosine kernel

In the KNN detector [7], the nearest neighbor searching is executed on the ℓ2-normalized penultimate
features, i.e., z

∥z∥2
. In inference, given a new sample x̂, its feature ẑ is firstly normalized as ẑ

∥ẑ∥2
,
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then the negative of its (k-th) shortest ℓ2 distance to the ℓ2-normalized features zi

∥zi∥2
of training data

is set as the detection score:

Sknn(x̂) = − min
i:1,··· ,Ntr

∥∥∥∥ ẑ

∥ẑ∥2
− zi

∥zi∥2

∥∥∥∥
2

. (5)

The ablations in KNN demonstrate the indispensable significance of the ℓ2-normalization: the nearest
neighbor searching directly on z shows a notably drop in detection performance. The critical role of
the ℓ2-normalization in KNN attracts our attention in the sense of kernel. From a kernel perspective,
the ℓ2-normalization is exactly the non-linear feature mapping ϕcos inducing the cosine kernel kcos:

kcos(z1, z2) =
z⊤
1 z2

∥z1∥2 · ∥z2∥2
= ϕcos(z1)

⊤ϕcos(z2), ϕcos(z) =
z

∥z∥2
. (6)

It indicates that a justified ϕcos(z)-space with such non-linear mapping, instead of the original
z-space, contributes to the success of nearest neighbor searching in detecting OoD.

Notice that the key of KPCA for OoD detection lies in an appropriate non-linear feature space that
captures the non-linearity in InD and OoD features, either through the kernel k or the associated
explicit feature mapping Φ. Motivated by the KNN detector, we apply Φ(·) ≜ ϕcos(·) as the feature
mapping in KPCA to introduce non-linearity. Then, PCA is executed on mapped features ϕcos(z),
following the procedures described in Section 3.1. All the features z are now mapped to Φ(z) to
formulate the covariance matrix ΣΦ, for computing non-linear principal components with matrix
UΦ

q and the corresponding reconstruction error eΦ. This detection scheme is dubbed as CoP (Cosine
mapping followed by PCA), as shown in Algorithm 1. An in-depth analysis on the effect of the
normalization of the cosine kernel is left in Appendix C.1.

4.2 Cosine-Gaussian kernel

The success of KNN (Equation (5)) suggests that the ℓ2 distance on z
∥z∥2

is effective in distinguishing
OoD data from InD data. In other words, the ℓ2 distance relation between samples in the ϕcos-space
preserves useful information that benefits the separation of OoD data from InD data. This motivates
us to seek non-linear feature spaces that can retain the ℓ2 distance relation. Hence, we propose
to introduce KPCA with non-linearity built upon ϕcos(z), through which the useful ℓ2 distance in
ϕcos-space can be preserved to further separate InD and OoD data.

In this regard, we deploy the shift-invariant Gaussian kernel to keep the ℓ2 distance information:

kgau(z1, z2) = e−γ∥z1−z2∥2
2 . (7)

The feature mapping associated with kgau is infinite-dimensional, but it can be efficiently approxi-
mated through random Fourier features (RFFs, [13]), i.e., ϕRFF defined in Equation (4). In this way,
the inner product of two mapped samples ϕRFF(z1)

⊤ϕRFF(z2) provides the approximate Gaussian
kernel, so that we can leverage the RFFs mapping ϕRFF to preserve the ℓ2 distance information
through the Gaussian kernel.

Hence, a cosine-Gaussian kernel is adopted for OoD detection, as the Gaussian kernel kgau (or ϕRFF)
is imposed on top of the cosine kernel kcos (or ϕcos), further exploiting the ℓ2 distance relationships
beyond the ϕcos-space for OoD detection. As we work with the explicit feature mapping, the non-
linearity to z is achieved by Φ(·) ≜ ϕRFF(ϕcos(·)). With mappings ϕRFF(ϕcos(z)), PCA is then
executed to compute the reconstruction errors for OoD detection. This detection scheme is dubbed
as CoRP (Cosine and RFFs mappings followed by PCA). Algorithm 1 illustrates the complete
procedure of the proposed CoP and CoRP for OoD detection. Alternative choices for more kernels
are exploited in Appendix C.2.

To warp up, we devise two effective feature mappings induced from a cosine kernel and a cosine-
Gaussian kernel to promote the separability of InD data and OoD data in non-linear feature spaces,
inspired by effectiveness of the ℓ2 normalization and the ℓ2 distance from a kernel perspective on
the KNN detector [7]. Our proposed two feature mappings well characterize the non-linearity in
penultimate features z of DNNs between InD and OoD data, enabling PCA to extract an informative
subspace w.r.t the mapped features through principal components and the reconstruction errors.
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Algorithm 1 Kernel PCA for Out-of-Distribution Detection

1: if CoP then
2: Φ(·)← ϕcos(·), ϕcos(z) =

z
∥z∥2

.

3: else if CoRP then
4: Sampling ωi ∼ N (0,

√
2γIm), i = 1, · · · ,M .

5: Sampling ui ∼ U(0, 2π), i = 1, · · · ,M .
6: Φ(·)← ϕRFF(ϕcos(·)).
7: end if
8: Calculating the covariance matrix in the mapped Φ(z)-space:

ΣΦ =
∑Ntr

i=1(Φ(zi)− µΦ)(Φ(zi)− µΦ)⊤, µΦ = 1
Ntr

∑Ntr

i=1 Φ(zi).
9: Applying eigendecomposition: ΣΦ = UΦΛΦUΦ⊤.

10: Taking the first q columns of UΦ w.r.t the top-q largest eigenvalues in ΛΦ: UΦ
q = UΦ [:, : q].

Ensure: Dimensionality-reduction matrix UΦ
q .

11: Given a new sample x̂ and its features ẑ.
12: Calculating the reconstruction error:

eΦ(x̂) =
∥∥∥UΦ

q U
Φ⊤
q (Φ(ẑ)− µΦ)− (Φ(ẑ)− µΦ)

∥∥∥
2
.

Ensure: Reconstruction error eΦ.

Computation complexity In our method, given any new sample x̂ with the penultimate features ẑ
in inference, to compute the reconstruction error eΦ(x̂), we only need the feature mapping Φ, the
projection matrix UΦ

q and the mean mapped training feature vector µΦ. Both UΦ
q and µΦ can be

pre-calculated and stored in preparation for inference. Therefore, the entire computation cost of CoP
and CoRP comes from the construction of the explicit feature mapping Φ on new features ẑ.

• For CoP, its feature mapping ϕcos is an in-place operation and does not require additional
computations. Therefore, the time and memory complexity of CoP is O(1).

• For CoRP, the feature mapping ϕRFF of the Gaussian kernel requires 2M samplings for
ωi and ui, respectively, and M dot-products and M additions. Accordingly, the time and
memory complexity of CoRP is O(M).

In contrast, regarding the Equation (5) of the KNN detector, all the training features have to be stored
at hand and iterated in inference, which implies a heavy O(Ntr) time and memory complexity. The
O(1)/O(M) of CoP/CoRP significantly outperforms the O(Ntr) of KNN (M ≪ Ntr). Detailed
empirical comparisons are provided in Section 5.1.

In the following, Section 5 exhibits the SOTA performance of our KPCA detector over multiple
prevailing detection methods. Section 6 gives an analytical discussion between our covariance-based
KPCA and classic KPCA via kernel functions for OoD detection. Due to space limitation, more
in-depth investigations on the kernel properties are left in Appendix C, covering ablation studies
(Appendix C.1), alternative kernels (Appendix C.2) and sensitivity analysis (Appendix C.3).

5 Experiments on OoD detection

In experiments, our KPCA-based detectors, CoP and CoRP, are firstly compared with KNN [7] in
Section 5.1, and show stronger detection performance and cheaper computation costs. In Section 5.2,
CoP and CoRP are further compared with the regularized PCA reconstruction error [8], and achieve
SOTA OoD detection performance over various prevailing methods. The source code of this work has
been publicly released1. All the experiments are executed on 1 NVIDIA GeForce RTX 3090 GPU.

Datasets Experiments are executed on the commonly-used small-scale CIFAR10 [39] and large-
scale ImageNet-1K benchmarks [40], following the settings in [7, 8]. For CIFAR10 as InD, OoD data
sets include SVHN [41], LSUN [42], iSUN [43], Textures [44] and Places365 [45]. For ImageNet-1K
as InD, OoD data sets contain iNaturalist [46], SUN [47], Places [45] and Textures [44].

1https://github.com/fanghenshaometeor/ood-kernel-pca
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Table 1: The detection performance of different methods (ResNet50 trained on ImageNet-1K).

method
OoD data sets AVERAGEiNaturalist SUN Places Textures

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
Standard Training

MSP [15] 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN [16] 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Energy [5] 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17

GODIN [27] 61.91 85.40 60.83 85.60 63.70 83.81 77.85 73.27 66.07 82.02
Mahala [23] 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47

KNN [7] 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01
CoP (ours) 67.25 83.41 75.53 79.93 82.48 73.83 8.33 98.29 58.40 83.86

CoRP (ours) 50.07 89.32 62.56 83.74 72.76 78.91 9.02 98.14 48.60 87.53
Supervised Contrastive Learning

MSP [15] 64.96 86.23 53.55 87.20 57.80 85.54 73.99 74.14 62.57 83.28
ODIN [16] 65.08 86.28 53.79 87.21 58.04 85.56 74.22 74.15 62.78 83.30
Energy [5] 48.13 91.28 49.57 88.54 54.40 86.90 70.66 75.83 55.69 85.64
SSD [33] 57.16 87.77 78.23 73.10 81.19 70.97 36.37 88.52 63.24 80.09
KNN [7] 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91

CoP (ours) 29.85 94.79 44.99 90.62 56.77 86.19 10.28 97.35 35.47 92.24
CoRP (ours) 23.61 95.86 41.07 91.25 53.52 87.27 10.23 97.04 32.11 92.86

Table 2: Comparisons on the computation complexity between KNN [7] and our CoRP (ResNet50
on ImageNet-1K). Experiments are executed on the same machine for a fair comparison. The nearest
neighbor searching of KNN is implemented via Faiss [48].

method time and memorty complexity time consuming (ms, per sample) storage

KNN O(Ntr) ≈ 15.59 ≈ 20 GiB
CoP O(1) ≈ 0.035 ≈ 22 MiB

CoRP O(M) ≈ 0.086 ≈ 29 MiB

Metrics For the evaluation metrics, we employ the commonly-used (i) False Positive Rate of
OoD samples with 95% true positive rate of InD samples (FPR), and (ii) Area Under the Receiver
Operating Characteristic curve (AUROC). The average FPR95 and AUROC values over the selected
multiple OoD data sets are viewed as the final comparison metrics.

5.1 Comparisons with nearest neighbor searching

The comparisons with KNN [7] cover both the benchmarks. Following the setups in KNN, for fair
comparisons, we evaluate models trained via the standard cross-entropy loss and models trained via
the supervised contrastive learning [49], and adopt the same checkpoints released by KNN: ResNet18
[50] on CIFAR10 and ResNet50 on ImageNet-1K. Here, the scoring function of CoP and CoRP is
S(x̂) = −eΦ(x̂) in Algorithm 1.

Table 1 presents empirical results of ResNet50 on the ImageNet-1K benchmark. In the standard
training, our CoRP shows superior detection performance over KNN with lower FPR and higher
AUROC values averaged over multiple OoD data sets. In supervised contrastive learning, both
CoP and CoRP outperform other baseline results on each OoD data set. These results show that
the proposed KPCA exploring non-linear patterns is more advantageous than the nearest neighbor
searching and all compared methods. Besides, the further improvements of CoRP over CoP also
verify the effectiveness of the distance-preserving property of the Gaussian kernel kgau on top of the
cosine kernel kcos for OoD detection.

On the other hand, regarding the computational complexity in inference, Table 2 empirically shows
the superior O(1)/O(M) time and memory complexity of CoP/CoRP over the O(Ntr) of KNN,
including: (i) the inference time of the nearest neighbor search in KNN and the reconstruction error
calculation in CoP/CoRP; (ii) the storage of the InD training features in KNN and the UΦ

q and µΦ

in CoP/CoRP. To be specific, for KNN, storing and iterating all the Ntr = 1, 281, 167 features of
ImageNet-1K training set requires nearly 20 GiB and 16 ms, respectively, while our CoP and CoRP
directly compute the reconstruction error for each new sample with the pre-calculated projection
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Table 3: Comparisons on the detection performance between the regularized reconstruction error [8]
and our CoP and CoRP fused with other OoD scores (MSP, Energy, ReAct and BATS) on each OoD
data set (ResNet50 trained on ImageNet-1K). Best average results are highlighted with underlines.

method
OoD data sets AVERAGEiNaturalist SUN Places Textures

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
MSP [15] 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
+ PCA [8] 51.47 88.95 67.64 82.71 71.20 80.87 60.53 85.86 62.71 84.60
+ CoP 50.84 89.21 67.35 82.81 70.96 81.08 59.96 86.21 62.28 84.83
+ CoRP 43.70 91.70 61.79 85.43 66.67 83.07 45.67 91.86 54.46 88.02
Energy [5] 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
+ PCA [8] 50.36 91.09 54.19 87.55 64.13 84.00 29.33 92.59 49.50 88.81
+ CoP 45.13 92.15 52.33 88.01 61.49 84.96 29.13 92.57 47.02 89.42
+ CoRP 26.85 95.15 40.38 90.76 51.26 87.35 12.11 97.17 32.65 92.61
ReAct [18] 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95
+ PCA [8] 10.17 97.97 18.50 95.80 27.31 93.39 18.67 95.95 18.66 95.76
+ CoP 13.30 97.44 19.80 95.37 29.92 92.64 15.90 96.51 19.73 95.49
+ CoRP 10.77 97.85 18.70 95.75 28.69 93.13 12.57 97.21 17.68 95.98
BATS [19] 42.26 92.75 44.70 90.22 55.85 86.48 33.24 93.33 44.01 90.69
+ PCA [8] 29.66 94.49 38.11 90.03 51.70 87.25 13.46 97.09 33.23 92.56
+ CoP 27.14 94.87 34.36 91.96 47.68 87.87 11.97 97.33 30.29 93.01
+ CoRP 18.74 96.31 28.02 93.49 41.41 89.78 9.45 97.79 24.41 94.34
ODIN [16] 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Mahala [23] 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
ViM [35] 68.86 87.13 79.62 81.67 83.81 77.80 14.95 96.74 61.81 85.83
DICE [34] 26.66 94.49 36.08 90.98 47.63 87.73 32.46 90.46 35.71 90.92
DICE+ReAct 20.08 96.11 26.50 93.83 38.34 90.61 29.36 92.65 28.57 93.30
NNGuide [24] 25.73 95.12 37.18 91.21 46.97 88.67 27.70 92.30 34.39 91.82
DML+ [28] 13.57 97.50 30.21 94.01 39.06 91.42 36.31 89.70 29.79 93.16
ASH-B [20] 14.21 97.32 22.08 95.10 33.45 92.31 21.17 95.50 22.73 95.06
ASH-S [20] 11.49 97.87 27.98 94.02 39.78 90.98 11.93 97.60 22.80 95.12
SCALE [21] 9.50 98.17 23.27 95.02 34.51 92.26 12.93 97.37 20.05 95.71
DDCS [22] 11.63 97.85 18.63 95.68 28.78 92.89 18.40 95.77 19.36 95.55

matrix and the mean vector from the training data, resulting in a much higher processing speed and
far less storage. The number of RFFs M for CoRP in this experiment is M = 4, 096 (M ≪ Ntr).

In addition, KPCA also outperforms KNN on the CIFAR10 benchmark with improved OoD detection
performances, which we leave to Appendix B for more details.

5.2 Comparisons with regularized reconstruction errors

In [8], to alleviate the weak detection performance of PCA reconstruction error e(ẑ) of Equation (3),
the authors proposed to regularize e(ẑ) by the feature norm ∥ẑ∥2 and a fusion strategy to boost its
detection performance by introducing existing OoD scores. Firstly, the regularized reconstruction

error ereg(ẑ) is calculated in the original z-space as : ereg(ẑ) =
∥UqU

⊤
q (ẑ−µ)−(ẑ−µ)∥2

∥ẑ∥2
. Then, the

authors claimed that such a regularized version ereg(ẑ) is still insufficient for OoD detection, and
designed a fusion strategy to combine ereg with other existing OoD scores. For example, to fuse ereg
with the Energy [5] score, the final scoring function is S(x̂) = (1− ereg(ẑ)) · SEnergy(ẑ).

In this section, we show that our KPCA reconstruction error eΦ outperforms the regularized PCA
reconstruction error ereg under the same fusion framework. Following the settings in [8], for a fair
comparison, the fused OoD scores include MSP [15], Energy [5], ReAct [18] and BATS [19]. The
detection experiments are executed on the ImageNet-1K benchmark with pre-trained ResNet50 and
MobileNet [51] checkpoints from PyTorch [52].

Table 3 presents the comparisons between [8] and ours on the ImageNet-1K benchmark of ResNet50.
When fused with MSP, Energy and BATS, both the KPCA-based CoP and CoRP outperform the
regularized reconstruction error [8] on almost all the OoD data sets with substantially improved FPR
and AUROC values. Specifically, when fused with the ReAct method [18], the CoRP achieves new
SOTA OoD detection performance among various prevailing detectors. Experiments on MobileNet
also show superior performance of CoP and CoRP, see details in Appendix B.
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All these experiment results indicate that an appropriately mapped Φ(z)-space benefits the OoD
detection, as the non-linearity in z-space gets alleviated by the feature mapping Φ. Our work provides
2 viable selections for Φ with empirical validations, which we hope could attract attentions towards
the non-linearity in InD and OoD features for the research community from a kernel perspective.

6 Analytical discussions with KPCA via kernel functions

In CoP and CoRP, KPCA is executed with the covariance matrix of mapped features Φ(z). In
contrast, in the classic KPCA [11, 12], such feature mappings Φ are not explicitly given, and it
rather works with a kernel function applied to original features z. In this section, we supplement our
covariance-based KPCA with its kernel function implementation, including theoretical discussions
and empirical comparisons on OoD detection. Our CoP and CoRP are shown to be more effective
and efficient than their counterparts that employ kernel functions.

In the classic KPCA, the kernel trick enables projections to the principal subspace via kernel functions
without calculating Φ. However, how to map the projections in the principal subspace back to the
original z-space remains a non-trivial issue, known as the pre-image problem [53], which makes
it problematic to calculate reconstructed features via kernel functions. To address this issue, the
following Proposition 1 shows a flexible way to directly calculate reconstruction errors without
building reconstructed features, so as to apply the kernel trick, shown in the subsequent Proposition 2.
Proposition 1. The KPCA reconstruction error eΦ(ẑ) can be represented as the norm of features
projected in the residual subspace, i.e., the UΦ

p -subspace with UΦ = [UΦ
q ,U

Φ
p ]:

eΦ(ẑ) = ∥UΦ⊤
p (Φ(ẑ)− µΦ)∥2. (8)

Proposition 1 implies that the reconstruction error equals to the norm of projections in the residual
UΦ

p -subspace, i.e., the subspace consisting of those principal components that are not kept, see
proofs in Appendix D. Accordingly, as typically done in the classic KPCA, we can introduce a kernel
function to perform dimension reduction, but to the residual subspace, and then calculate the norms
of the reduced features as the reconstruction error, illustrated by Proposition 2.

Given a kernel function k(·, ·) : Rm ×Rm → R, we have a kernel matrix K ∈ RNtr×Ntr on training
data with Ki,j = k(zi, zj), and a vector kẑ ∈ RNtr with the i-th element k(zi, ẑ) for a new sample
ẑ. Proposition 2 shows how to calculate the KPCA reconstruction error via the kernel function k.
Proposition 2. The KPCA reconstruction error ek(ẑ) w.r.t a kernel function k can be calculated as:

ek(ẑ) = ∥A⊤kẑ∥2, (9)
where A ∈ RNtr×l includes l eigenvectors of the kernel matrix K w.r.t the top-l smallest eigenvalues.

According to Proposition 2, now CoP and CoRP can be implemented via kernel functions. For CoP,
we just directly apply the cosine kernel function kcos on features z to compute the kernel matrix K
and the projection matrix A, so as to obtain ek(ẑ) following Equation (9). For CoRP, we should
adopt the Gaussian kernel function kgau on the ℓ2-normalized inputs z

∥z∥2
to calculate K, A and

ek(ẑ). Figure 2 shows comparisons on the detection performance between CoP/CoRP and their
kernel function implementations.

In Figure 2, the detection performance of KPCA with kernel functions is evaluated by varying the
explained variance ratio of the kernel matrix K. The larger the explained variance ratio, the smaller
the dimension l of A. The best detection results achieved by CoP/CoRP are illustrated as the dashed
lines. Clearly, regarding the OoD detection performance, reconstruction errors ek calculated by
kernel functions are less effective than those calculated explicitly in the mapped Φ(z)-space.

Aside from the detection performance, KPCA with kernel functions is far less computationally
efficient than CoP/CoRP in two aspects. On the one hand, the time expense of eigendecomposition
on the Ntr × Ntr kernel matrix K by the former is more expensive than that on the m × m or
M ×M covariance matrix ΣΦ by the latter, since Ntr ≫ M and Ntr ≫ m. For example, on the
ImageNet-1K benchmark with MobileNet, these settings are Ntr = 1, 281, 167, M = 2560 and
m = 1280, on which KPCA with kernel functions is actually nearly prohibitive. On the other hand, in
the inference stage, KPCA via kernel functions yet requires an O(Ntr) time and memory complexity
in calculating kẑ , as all the training data has to be stored and iterated, which is much higher than the
O(1)/O(M) complexity of our CoP/CoRP.
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Figure 2: Comparisons on the average detection FPR values between CoP/CoRP and their kernel
function implementations in the CIFAR10 benchmark. In experiments, 5,000 images of the CIFAR10
training set and 1,000 images of the CIFAR10 test set and OoD data sets are randomly selected.

7 Conclusion

As PCA reconstruction errors fail to distinguish OoD data from InD data on the penultimate features
z of DNNs, kernel PCA is introduced for its non-linearity in the manner of employing explicit
feature mappings. To find appropriate kernels that can characterize the non-linear patterns in InD
and OoD features, we take a kernel perspective to decouple and analyze key components of an
existing KNN detector [7], and thus propose a cosine kernel and a cosine-Gaussian kernel for KPCA.
Specifically, two explicit feature mappings Φ(·) induced from the two kernels are leveraged on
original features z. For the cosine kernel, its explicit feature mapping can be directly obtained. For
the Gaussian kernel, we adopt the celebrated random Fourier features to approximate the Gaussian
kernel. The mapped Φ(z)-space enables PCA to extract principal components that well separate
InD and OoD data, leading to distinguishable reconstruction errors. Extensive empirical results
have verified the improved effectiveness and efficiency of the proposed KPCA with new SOTA OoD
detection performance. Besides, more in-depth analyzes are drawn on the individual effects of the
cosine kernel and the Gaussian kernel, and the involved multiple hyper-parameters. In addition,
theoretical discussions and associated experiments are provided to bridge the relationships between
our covariance-based KPCA and its kernel function implementation so as to further illustrate the
advantages of our method.

One limitation of the KPCA detector is that the two specific kernels are still manually selected
with carefully-tuned parameters. It remains a valuable topic in the OoD detection task whether the
parameters of kernels could be learned from data according to some optimization objective. For
example, deep kernel learning [54] could be considered as an alternative choice so as to pursue
stronger kernels that can better characterize InD and OoD with enhanced detection performance by
an additional learning step on the features. We hope that the proposed two effective kernels verified
empirically in our work could benefit the research community as a solid example for future studies.
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kernel perspective so as to highlight the safety issue in real-world machine learning applications.

10



References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances

in neural information processing systems, 33:6840–6851, 2020.

[2] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[3] Clark Barrett, Brad Boyd, Elie Bursztein, Nicholas Carlini, Brad Chen, Jihye Choi, Amrita Roy
Chowdhury, Mihai Christodorescu, Anupam Datta, Soheil Feizi, et al. Identifying and mitigating
the security risks of generative ai. Foundations and Trends® in Privacy and Security, 6(1):1–52,
2023.

[4] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. International Journal of Computer Vision, pages 1–28, 2024.

[5] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution
detection. Advances in neural information processing systems, 33:21464–21475, 2020.

[6] Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting
distributional shifts in the wild. Advances in Neural Information Processing Systems, 34:677–
689, 2021.

[7] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep
nearest neighbors. In International Conference on Machine Learning, pages 20827–20840.
PMLR, 2022.

[8] Xiaoyuan Guan, Zhouwu Liu, Wei-Shi Zheng, Yuren Zhou, and Ruixuan Wang. Revisit pca-
based technique for out-of-distribution detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 19431–19439, 2023.

[9] Francesco Tonin, Arun Pandey, Panagiotis Patrinos, and Johan AK Suykens. Unsupervised
energy-based out-of-distribution detection using stiefel-restricted kernel machine. In 2021
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[11] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In International conference on artificial neural networks, pages 583–588. Springer,
1997.

[12] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[13] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[14] Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza
Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-
world settings. In International Conference on Machine Learning, pages 8759–8773. PMLR,
2022.

[15] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2016.

[16] Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.

[17] Yingwen Wu, Tao Li, Xinwen Cheng, Jie Yang, and Xiaolin Huang. Low-dimensional gra-
dient helps out-of-distribution detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

11



[18] Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified
activations. Advances in Neural Information Processing Systems, 34:144–157, 2021.

[19] Yao Zhu, YueFeng Chen, Chuanlong Xie, Xiaodan Li, Rong Zhang, Hui Xue, Xiang Tian,
Yaowu Chen, et al. Boosting out-of-distribution detection with typical features. Advances in
Neural Information Processing Systems, 35:20758–20769, 2022.

[20] Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
shaping for out-of-distribution detection. In The Eleventh International Conference on Learning
Representations, 2023.

[21] Kai Xu, Rongyu Chen, Gianni Franchi, and Angela Yao. Scaling for training time and post-
hoc out-of-distribution detection enhancement. In The Twelfth International Conference on
Learning Representations, 2024.

[22] Yue Yuan, Rundong He, Yicong Dong, Zhongyi Han, and Yilong Yin. Discriminability-driven
channel selection for out-of-distribution detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 26171–26180, 2024.

[23] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. Advances in neural information
processing systems, 31, 2018.

[24] Jaewoo Park, Yoon Gyo Jung, and Andrew Beng Jin Teoh. Nearest neighbor guidance for
out-of-distribution detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1686–1695, 2023.

[25] Yeonguk Yu, Sungho Shin, Seongju Lee, Changhyun Jun, and Kyoobin Lee. Block selection
method for using feature norm in out-of-distribution detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15701–15711, 2023.

[26] Yue Song, Nicu Sebe, and Wei Wang. Rankfeat: Rank-1 feature removal for out-of-distribution
detection. Advances in Neural Information Processing Systems, 35:17885–17898, 2022.

[27] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-
of-distribution image without learning from out-of-distribution data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10951–10960,
2020.

[28] Zihan Zhang and Xiang Xiang. Decoupling maxlogit for out-of-distribution detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3388–3397, 2023.

[29] Kun Fang, Qinghua Tao, Xiaolin Huang, and Jie Yang. Revisiting deep ensemble for out-of-
distribution detection: A loss landscape perspective. International Journal of Computer Vision,
pages 1–20, 2024.

[30] Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
theoretical framework of out-of-distribution generalization. Advances in Neural Information
Processing Systems, 34:23519–23531, 2021.

[31] Zhen Fang, Yixuan Li, Jie Lu, Jiahua Dong, Bo Han, and Feng Liu. Is out-of-distribution
detection learnable? Advances in Neural Information Processing Systems, 35:37199–37213,
2022.

[32] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via
contrastive learning on distributionally shifted instances. Advances in neural information
processing systems, 33:11839–11852, 2020.

[33] Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. In International Conference on Learning Representations, 2020.

[34] Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification for out-of-distribution detection. In
European Conference on Computer Vision, pages 691–708. Springer, 2022.

12



[35] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with
virtual-logit matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4921–4930, 2022.

[36] Walter Rudin. Fourier analysis on groups, volume 121967. Wiley Online Library, 1962.

[37] Kun Fang, Fanghui Liu, Xiaolin Huang, and Jie Yang. End-to-end kernel learning via generative
random fourier features. Pattern Recognition, 134:109057, 2023.

[38] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

[39] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

[40] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In Proceedings of the
NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[42] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

[43] Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R Kulkarni, and
Jianxiong Xiao. Turkergaze: Crowdsourcing saliency with webcam based eye tracking. arXiv
preprint arXiv:1504.06755, 2015.

[44] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3606–3613, 2014.

[45] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. IEEE transactions on pattern analysis and
machine intelligence, 40(6):1452–1464, 2017.

[46] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection
dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8769–8778, 2018.

[47] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference
on computer vision and pattern recognition, pages 3485–3492. IEEE, 2010.

[48] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

[49] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

13



[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[53] JT-Y Kwok and IW-H Tsang. The pre-image problem in kernel methods. IEEE transactions on
neural networks, 15(6):1517–1525, 2004.

[54] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial intelligence and statistics, pages 370–378. PMLR, 2016.

[55] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu.
A geometric analysis of neural collapse with unconstrained features. Advances in Neural
Information Processing Systems, 34:29820–29834, 2021.

[56] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 239–247, 2013.

[57] Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):863–874, 2007.

14



A Details of representative OoD detectors

In this section, we elaborate the scoring function S(·) of the OoD detectors included in the comparison
experiments of Section 5. Given a well-trained DNN f : Rd → Rc with inputs x ∈ Rd, the outputs
are c-dimension logits f(x) ∈ Rc w.r.t c classes. The DNN f learns features z ∈ Rm of x before the
last linear layer, i.e., the penultimate features z.

MSP [15] employs the softmax function on the output logits and takes the maximum probability as
the scoring function. Given a new sample x̂ ∈ Rd, its MSP score is

SMSP(x̂) = max (softmax(f(x̂))) . (10)

ODIN [16] introduces the temperature scaling and adversarial examples into the MSP score:

SODIN(x̂) = max

(
softmax(

f(x̂a)

T
)

)
, (11)

where T denotes the temperature and x̂a denotes the perturbed adversarial examples of x̂.

Mahala [23] employs the Mahalanobis score to perform OoD detection. The DNN outputs at different
layers are modeled as a mixture of multivariate Gaussian distributions, and the Mahalanobis distance
is calculated. Then, a linear regressor is trained to achieve a weighted Mahalanobis distance at
different layers as the final detection score. To train the linear regressor, the training data and the
corresponding adversarial examples are adopted as positive and negative samples, respectively.

Sl
mahal(x̂) = max

i
−(f l(x̂)− µl

i)
TΣl(f

l(x̂)− µl
i),

Smahal(x̂) =
∑
l

αl · Sl
mahal(x̂),

(12)

where f l(x̂) denotes the output features at the l-th layer with the associated mean feature vector µl
i

of class-i and the covariance matrix Σl, and αl denotes the linear regression coefficients.

Energy [5] uses an energy function on logits as energy is well aligned with input probability densities:

Senergy(x̂) = log

c∑
i=1

exp(fi(x̂)), (13)

where fi(x̂) denotes the i-th element in the c-dimension output logits f(x̂).

GODIN [27] improves ODIN from 2 aspects: decomposing the probabilities and modifying the
input pre-processing. On the one hand, a two-branch structure with learnable parameters is imposed
after the logits to formulate the decomposed probablities. On the other hand, the magnitude of the
adversarial examples is optimized instead of manually tuned in ODIN.

ReAct [18] proposes activation truncation on the penultimate features z of DNNs, as the authors
observe that features of OoD data generally hold high unit activations in the penultimate layers. The
feature clipping is implemented in a simple way:

z̄ = min {z, α} , (14)
where α is a pre-defined constant. The clipped features z̄ then pass through the last linear layer
and yield modified logits. Other logits-based OoD methods such as Energy could be applied on the
modified logits to produce a detection score.

KNN [7] is a simple but time-consuming and memory-inefficient detector since it performs nearest
neighbor search on the ℓ2-normalized penultimate features between the test sample and all the training
samples. The negative of the (k-th) shortest ℓ2 distance is set as the score for a new sample x̂.

ViM [35] combines information from both logits and features in a complicated way for OoD detection.
Firstly, penultimate features z are projected to the residual space obtained by PCA. Then the norm of
projected features gets scaled together with the logits via the softmax function. Finally the scaled
feature norm is selected as the detection score.

DICE [34] is a sparsification-based OoD detector by preserving the most important weights in the
last linear layer. Denote the weights W ∈ Rm×c and the bias b ∈ Rc in the last linear layer, the
forward propagation of DICE is defined as:

fDICE(x̂) ≜ (M ⊙W )
⊤
ẑ + b. (15)
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⊙ is the element-wise multiplication, and M ∈ Rm×c is a masking matrix whose elements are
determined by the element-wise multiplication between the i-th column wi ∈ Rm in W and the
penultimate features ẑ: wi ⊙ ẑ. Then, similar as ReAct, logits-based detectors could be executed on
the modified logits fDICE(x̂) to produce a detection score.

BATS [19] proposes to truncate the extreme outputs of Batch Normalization (BN) layers via the
estimated mean and standard deviations stored in BN layers, as those extreme features would lead to
ambiguity and should be rectified. However, in the released code, the authors actually does not use
any information from the BN layers, but instead simply perform clipping on the penultimate features
z via the feature mean and standard deviations.

PCA [8] re-formulates the reconstruction errors and empirically shows the inseparativity via the
re-formulated errors between InD and OoD data in the primal z-space. The authors further propose a
regularized reconstruction error and a fusion strategy to boost the OoD detection performance.

NNGuide [24] exploits the guidance of the Energy score on logits to boost the detection performance
of the nearest neighbor search on features. Specifically, the training features are firstly scaled by their
corresponding Energy scores, then KNN is executed on such re-scaled features for the new sample.
The final detection score is set as the multiplication of the searched distance and the Energy score.
The time and memory complexity of NNGuide is still the same O(Ntr) as that of KNN [7].

DML [28] decouples the maximum logits into two parts: the maximum cosine similarity (MaxCosine)
and the maximum norm (MaxNorm), and employs their ensemble as the detection score. DML
reveals that the cosine similarity and the feature norm jointly contribute to the effectiveness of the
previous MSP [15] and MaxLogit [14] methods and designs new training losses from the perspective
of feature collapse [55], so as to further improve the performance of MaxCosine and MaxNorm.

ASH [20] is a post-hoc detection method that removes the abnormal information in features. ASH
includes two stages: removing a large portion of the features, and adjusting the remaining feature
values by scaling up or assigning a constant value. ASH exhibits advantages over the classic ReAct
method [18]: no global thresholds and stronger flexibility, and shows better detection performance.

SCALE [21] analyzes the rectification and scaling components of the ASH method, and improves
ASH by only a scaling process in the post-hoc stage.

DDCS [22] investigates the effects of different channels based on existing feature-clipping detection
methods, and proposes a channel-level anomalous activations pre-rectifying module so as to clip
features more carefully for better detection performance.

We follow the settings in KNN [7] and include CSI [32] and SSD [33] into the comparisons in
Section 5.1. The 2 methods adopt the contrastive losses to train DNNs. In the comparison results of
Table 1 and the following Table 4, the reported detection results of CSI and SSD are directly from
[7], and are obtained by executing the Mahalanobis detector on learned features of DNNs trained by
CSI and SSD. Refer to [7] for more details.

B Supplementary experiment results on OoD detection

Table 4 illustrates the comparison results on the CIFAR10 benchmark between our CoP/CoRP and
the KNN detector [7]. Similar as the comparisons on the ImageNet-1K benchmark in Table 1, CoRP
outperforms other baselines in both the standard training and the supervised contrastive learning with
lower FPR and higher AUROC average values.

Table 5 shows the comparison results on the ImageNet-1K benchmark between our CoP/CoRP and
the regularized reconstruction error [8] of MobileNet [51]. Similar as the case of ResNet50 in Table 3,
under the same fusion trick with other detection scores, our KPCA reconstruction errors of CoP
and CoRP significantly outperform the regularized PCA reconstruction error of [8], implying the
substantial improvements by characterizing the non-linear data distribution of the InD and OoD
features via the devised two proper non-linear kernels.
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Table 4: The detection performance of different methods (ResNet18 trained on CIFAR10).

method
OoD data sets AVERAGESVHN LSUN iSUN Textures Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
Standard Training

MSP [15] 59.66 91.25 45.21 93.80 54.57 92.12 66.45 88.50 62.46 88.64 57.67 90.86
ODIN [16] 20.93 95.55 7.26 98.53 33.17 94.65 56.40 86.21 63.04 86.57 36.16 92.30
Energy [5] 54.41 91.22 10.19 98.05 27.52 95.59 55.23 89.37 42.77 91.02 38.02 93.05

GODIN [27] 15.51 96.60 4.90 99.07 34.03 94.94 46.91 89.69 62.63 87.31 32.80 93.52
Mahala [23] 9.24 97.80 67.73 73.61 6.02 98.63 23.21 92.91 83.50 69.56 37.94 86.50

KNN [7] 24.53 95.96 25.29 95.69 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15
CoP (ours) 11.56 97.57 23.24 95.56 53.71 88.74 26.28 93.87 74.11 80.24 37.78 91.20

CoRP (ours) 20.68 96.53 19.19 96.71 21.49 96.26 21.61 96.08 53.73 89.14 27.34 94.95
Supervised Contrastive Learning

CSI [32] 37.38 94.69 5.88 98.86 10.36 98.01 28.85 94.87 38.31 93.04 24.16 95.89
SSD [33] 1.51 99.68 6.09 98.48 33.60 95.16 12.98 97.70 28.41 94.72 16.52 97.15
KNN [7] 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.56 23.02 95.36 11.07 97.93

CoP (ours) 0.55 99.85 1.12 99.67 23.91 96.11 4.79 99.06 19.92 95.63 10.06 98.07
CoRP (ours) 0.74 99.82 0.89 99.75 13.08 97.36 4.59 99.03 17.44 95.89 7.35 98.37

Table 5: Comparisons on the detection performance between the regularized reconstruction error [8]
and our CoP and CoRP fused with other OoD scores (MSP, Energy, ReAct and BATS) on each OoD
data set (MobileNet trained on ImageNet-1K). Best average results are highlighted with underlines.

method
OoD data sets AVERAGEiNaturalist SUN Places Textures

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
MSP [15] 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
+ PCA [8] 59.49 86.87 73.75 79.41 76.79 77.94 65.71 83.46 68.93 81.92
+ CoP 57.14 87.62 72.86 79.45 76.17 77.77 60.71 86.42 66.72 82.82
+ CoRP 55.71 88.10 71.48 80.77 75.33 78.90 58.90 87.13 65.36 83.73
Energy [5] 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
+ PCA [8] 56.92 89.62 60.07 85.80 69.23 81.72 34.22 91.66 55.11 87.20
+ CoP 51.21 90.79 59.88 85.84 68.62 81.74 23.16 94.55 50.72 88.23
+ CoRP 43.85 91.96 52.17 87.91 63.75 83.59 19.02 95.41 44.70 89.72
ReAct [18] 43.07 92.72 52.47 87.26 59.91 84.07 40.20 90.96 48.91 88.75
+ PCA [8] 35.84 93.66 40.35 90.77 52.38 86.76 18.44 95.39 36.75 91.65
+ CoP 35.84 93.54 48.12 88.97 60.62 84.45 12.62 96.97 39.30 90.98
+ CoRP 31.72 94.27 40.77 90.98 55.69 86.42 10.48 97.49 34.66 92.29
BATS [19] 49.57 91.50 57.81 85.96 64.48 82.83 39.77 91.17 52.91 87.87
+ PCA [8] 50.51 90.86 55.41 87.00 66.43 82.60 23.26 94.70 48.90 88.79
+ CoP 42.68 92.24 55.01 86.89 65.70 82.44 13.78 96.77 44.29 89.58
+ CoRP 36.10 93.37 45.92 89.47 59.82 84.83 11.37 97.24 38.30 91.23
ODIN [16] 58.54 87.51 57.00 85.83 59.87 84.77 52.07 85.04 56.87 85.79
Mahala [23] 62.11 81.00 47.82 83.66 52.09 83.63 92.38 33.06 63.60 71.01
ViM [35] 91.83 77.47 94.34 70.24 93.97 68.26 37.62 92.65 79.44 77.15
DICE [34] 43.28 90.79 38.86 90.41 53.48 85.67 33.14 91.26 42.19 89.53
DICE+ReAct 41.75 89.84 39.07 90.39 54.41 84.03 19.98 95.86 38.80 90.03
NNGuide [24] 45.73 91.19 51.03 87.87 60.60 84.44 29.50 92.47 46.72 88.99
ASH-B [20] 31.46 94.28 38.45 91.61 51.80 87.56 20.92 95.07 35.66 92.13
ASH-S [20] 39.10 91.94 43.62 90.02 58.84 84.73 13.12 97.10 38.67 90.95

C Analytical discussions on kernels

In this section, more in-depth discussions are drawn on the effects of cosine and Gaussian kernels in
CoP and CoRP for OoD detection in Appendix C.1 and Appendix C.2, respectively. A comprehensive
sensitivity analysis on the involved hyper-parameters in CoP and CoRP are presented in Appendix C.3.

C.1 Effects of the cosine kernel

The cosine kernel in CoP and CoRP appears an indispensable basis in alleviating the linear insepara-
bility in InD and OoD features. The reason for its effectiveness lies in the imbalanced feature norms
∥z∥2 between InD and OoD features, which has also been observed in preceding works [7, 6, 32].
Figure 3 shows the feature norms of multiple InD and OoD data sets, from which one can find clear
disparities of the InD and OoD feature norms. The cosine kernel kcos and the corresponding feature
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Figure 3: A density histogram of the imbalanced norms of InD and OoD features. InD: CIFAR10 and
ImageNet-1K. OoD: LSUN and places365, SUN and Textures.
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Figure 4: T-SNE visualization of the original features (left), mapped features w.r.t a Gaussian kernel
(middle) and mapped features w.r.t a cosine kernel (right).

mapping ϕcos in Equation (6) thereby normalize the feature norms and facilitate the separability
between InD and OoD data.

Figure 4 illustrates the t-SNE visualization on the InD and OoD features to further imply the
importance of the cosine kernel. As shown in the middle panel of Figure 4, the Gaussian kernel
alone fails in creating separable InD and OoD features in the mapped space and actually leads to
a complete mess of the mapped features. In contrast, the cosine kernel significantly alleviates the
linearly-inseparability of features, shown in the right panel of Figure 4.

Ablation studies on the cosine feature mapping ϕcos in CoP and CoRP are executed to verify its
indispensability for OoD detection. Specifically, CoP without ϕcos reduces to a standard PCA on
the z-space, and CoRP without ϕcos reduces to KPCA with a Gaussian kernel. Table 6 shows
the corresponding detection FPR and AUROC values on each OoD data set in the ImageNet-1K
benchmark of ablations on ϕcos. Both the standard PCA and the Gaussian KPCA exhibit worse
detection performance than CoP and CoRP. Particularly, the single Gaussian kernel in KPCA actually
results in a complete failure in detecting OoD samples with nearly 95% FPR values. Therefore, the
cosine kernel is essential in characterizing the non-linearity in InD and OoD features and critical for
the superior performance of the KPCA detector.

C.2 Alternative kernels

The design of the Gaussian kernel in CoRP is motivated by the useful ℓ2 distance on z
∥z∥2

in the
KNN detector [7]. The Gaussian kernel preserves the beneficial ℓ2 distance relationship in ϕcos(z)-
space through the RFFs mapping. In this section, we provide two alternative choices aside from the
cosine-Gaussian kernel.

• The cosine-Laplacian kernel explores the ℓ1 distance in ϕcos(z)-space via the Laplacian
kernel klap:

klap(z1, z2) = e−γ∥z1−z2∥1 . (16)
To construct the RFFs for klap, the sampling distribution of the ωi in Equation (4) is a
Cauchy distribution ω ∼ p(ω) = γ2

πγ(ω2+γ2) .
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Table 6: The detection results among a variety of kernels (ResNet50 trained on ImageNet-1K).

kernel
OoD data sets AVERAGEiNaturalist SUN Places Textures

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
PCA (no kernels) 95.46 52.01 97.98 44.86 97.99 45.19 46.22 87.77 84.41 57.46

Polynomial 96.03 53.07 98.26 42.84 97.85 45.02 95.50 47.96 96.91 47.22
Laplacian 94.65 50.25 94.68 50.29 95.28 49.80 94.66 50.34 94.82 50.17
Gaussian 94.46 50.83 95.17 50.33 94.80 50.46 95.09 50.80 94.88 50.60
Cosine (CoP) 67.25 83.41 75.53 79.93 82.48 73.83 8.33 98.29 58.40 83.86

Cosine-Polynomial 54.10 84.48 75.97 75.04 82.82 69.01 59.15 83.27 68.01 77.95
Cosine-Laplacian 76.18 77.95 77.54 76.70 84.47 70.16 11.97 97.57 62.54 80.60
Cosine-Gaussian (CoRP) 50.07 89.32 62.56 83.74 72.76 78.91 9.02 98.14 48.60 87.53

• The cosine-polynomial kernel does not hold the ℓ1 nor ℓ2 distance-preserving property for
ϕcos(z)-space, as the polynomial kernel is defined as:

kpoly(z1, z2) = (z⊤
1 z2 + c)d. (17)

To obtain an explicit feature mapping for kpoly, we do not adopt the RFFs and take the
Tensor Sketch approximation [56] instead for simplicity.

Table 6 illustrates the comparisons on the detection performance among multiple alternative kernels.
Actually, both the cosine-Laplacian kernel and the cosine-polynomial kernel cannot bring detection
performance gains on top of the cosine kernel (CoP), which indicates that the ℓ1-distance relationship
characterized by the Laplacian kernel and the inner-product information characterized by the poly-
nomial kernel in the ϕcos(z)-space are less effective in promoting the separability between InD and
OoD features. Thus, the cosine-Gaussian kernel is used and recommended in the proposed KPCA
method for OoD detection.

C.3 Sensitivity analysis

A comprehensive sensitivity analysis is executed to show the effects of hyper-parameters in CoP
and CoRP. A common hyper-parameter in CoP and CoRP is the number of columns q of the
dimensionality-reduction matrix UΦ

q . Additional hyper-parameters of CoRP include the bandwidth
γ of the Gaussian kernel and the number of RFFs M . In the following, we discuss the influence of
each hyper-parameter, and report experiment results of the detection performance by varying one
hyper-parameter with the others fixed.

Effect of q q indicates the number of preserved principal components and determines how much
information captured by the subspace where the InD and OoD data is projected onto. q is selected as
the minimal number of principal components with the amount of information that exceeds the given
explained variance ratio.

Figure 5 illustrates the detection performance of CoP and CoRP under varied explained variance
ratios. On CIFAR10 and ImageNet-1K benchmarks, for CoP, a mild value of the explained variance
ratio is suggested with around 90% for keeping the components. Regarding CoRP, a sufficiently large
value of the explained variance ratio is no longer essential for CoRP on the ImageNet-1K benchmark,
which might be due to that the 2 concatenated kernels make the useful information for distinguishing
OoD samples more concentrated in less principal components.

Effect of γ The Gaussian kernel width γ directly affects the mapped data distribution. For a large
γ, kgau(z1, z2) = e−γ∥z1−z2∥2

2 ≈ 0 for z1 ̸= z2, which indicates that the mapped features of z1

and z2 are (nearly) mutually-orthogonal. In this case, a PCA would become meaningless. For a small
γ, the KPCA-based reconstruction errors will approach the standard PCA-based ones, shown by [57].
Figure 6 illustrates the detection FPR95 and AUROC values of CoRP w.r.t varied Gaussian kernel
width γ on CIFAR10 and ImageNet-1K benchmarks. Clearly, neither a too large nor a too small
kernel width benefits the detection performance, and a mild value of γ should be carefully tuned for
different in-distribution data.

Effect of M The number of RFFs M determines the approximation ability of RFFs towards
the Gaussian kernel. As proved in [13], the larger the M , the better the RFFs approximate kgau.
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Figure 5: A sensitivity analysis on the explained variance ratio of CoP (top) and CoRP (bottom). The
average FPR and AUROC values of OoD data sets in CIFAR10 and ImageNet-1K benchmarks are
reported. The Gaussian kernel width γ and the dimension M of RFFs in CoRP are fixed.
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Figure 6: A sensitivity analysis on the Gaussian kernel width γ of CoRP. The average detection FPR
and AUROC values of OoD data sets in CIFAR10 and ImageNet-1K benchmarks are reported. The
explained variance ratio and the dimension M of RFFs are fixed.

Figure 7 indicates the detection FPR95 and AUROC values of CoRP w.r.t. multiple values of the
RFFs dimension M on CIFAR10 and ImageNet-1K benchmarks. As M increases, the detection
performance gets improved since the RFFs better converge to the Gaussian kernel. Considering the
computation efficiency of eigendecomposition on the covariance matrix of RM×M , in the comparison
experiments, we adopt M = 4m on CIFAR10 with m = 512 for ResNet18, and M = 2m on
ImageNet-1K with m = 2048 for ResNet50 and m = 1280 for MobileNet.

D Supplementary theoretical results

The proof of Proposition 1 is presented.

Proof. Recall z ∈ Rm and suppose Φ : Rm → RM and UΦ ∈ RM×M is the eigenvector matrix
of the covariance matrix of the training data with UΦ =

[
UΦ

q ,U
Φ
p

]
and q + p = M . For the

reconstruction error eΦ(ẑ) of a new test sample ẑ ∈ Rm in the mapped Φ(z)-space, we have:
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Figure 7: A sensitivity analysis on the dimension M of RFFs of CoRP. The average detection FPR
and AUROC values of OoD data sets in CIFAR10 and ImageNet-1K benchmarks are reported. The
explained variance ratio and the Gaussian kernel width γ are fixed.
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Obviously eΦ(ẑ) =

∥∥∥UΦ⊤
p (Φ(ẑ)− µΦ)

∥∥∥
2

and the proof is finished.

The key in the proof of Proposition 1 is UΦ
q U

Φ⊤
q +UΦ

pU
Φ⊤
p = I . Since UΦ is the eigenvector matrix

of the covariance matrix, thereby UΦ is a unitary matrix and satisfies UΦUΦ⊤ = UΦ⊤UΦ = I ,
which leads to UΦ

q U
Φ⊤
q +UΦ

pU
Φ⊤
p = I .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have made clear claims on the paper’s contributions and scope in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of this work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provide the full set of assumptions and a complete and correct proof
for each theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclosed all the information needed to reproduce the main
experimental results in the appendix and submitted anonymous code for the reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted anonymous code for the reproduction of the proposed
algorithm in this work. The adopted data is public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experiment details have been specified in both the appendix and the
released anonymous code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The involved DNNs are pre-trained and the results of the PCA operation are
deterministic.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in the paper conforms with the NeurIPS Code of Ethics in every
aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts of the work in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new models nor datasets are released in this work, and thus the paper poses
no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators and original owners of assets used in the paper have been
properly credited. The license and terms of use have been explicitly mentioned and properly
respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New asserts introduced in the paper have been well documented and provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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