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Abstract

Search of novel molecular compounds with desired properties is an important1

problem in drug discovery. Many existing generative models for molecules operate2

on the atom level. We instead focus on generating molecular fragments–meaningful3

substructures of molecules. We construct a coherent latent representation for4

molecular fragments through a learned variational autoencoder (VAE) that is5

capable of generating diverse and meaningful fragments. Equipped with the6

learned fragment vocabulary, we propose Fragment-based Sequential Translation7

(FaST), which iteratively translates model-discovered molecules into increasingly8

novel molecules with high property scores. Empirical evaluation shows that FaST9

achieves significant improvement over state-of-the-art methods on benchmark10

single-objective/multi-objective molecular optimization tasks.11

1 Introduction12

Molecular optimization is a challenging task for drug discovery, and has been explored in previous13

work through several different generation methods, including VAE [5, 15], GAN [10], and RL14

[6]. These character-by-character (for SMILES/SELFIES strings) and node-by-node (for molecular15

graphs) models generate valid molecules, but can struggle to explore the complex chemical space16

under multiple property constraints. More recent works attempt to generate molecules using a17

predefined set of fragments [20, 13, 19] and achieve impressive empirical results. However, the fixed18

fragment vocabulary limits the generative capabilities of the models.19

Shifting away from previous frameworks, we learn a distribution of molecular fragments using vector-20

quantized variational autoencoders (VQ-VAE) [18]. We then generate molecular graphs through21

addition and deletion of molecular fragments from the learned distributional fragment vocabulary,22

enabling the generative model to span a much larger chemical space than models with a fixed fragment23

vocabulary. Considering atomic edits as primitive actions, the idea of using fragments can be thought24

of as options [17, 16] as a way to simplify the search problem.25

There are two primary generation schemes from previous works: (1) generating from scratch [20, 19]26

and (2) translating from known active molecules [8, 7]. Generation under the first scheme is usually27

very challenging because the set of molecules with high property score is typically a very small28

subspace of the entire chemical space. It is, in general, much easier to generate molecules satisfying29

desired properties under the translation scheme, being able to start from a prior over “good" molecules.30

However, this generation scheme suffers from generating molecules too similar to those in the active31

set, which is undesirable as this precludes the ability of the model to produce novel molecules for32

drug discovery applications.33

To this end, we bridge the gap between the two aforementioned generation paradigms by introducing34

a novel sequential translation scheme. We start the molecular search by translating from known active35
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Figure 1: Overview of Fragment-based Sequential Translation (FaST), which consists primarily of
two component steps. In the first step, we train a VQ-VAE that embeds molecular fragments. In the
second step, we train a search policy that uses the learned embeddings as an action space. The search
policy starts from the frontier set F , which consists of an initial set of good molecules (I), and good
molecules discovered by the policy (G).

molecules, and store the discovered molecules as new potential initialization states for subsequent36

searches. As monotonic expansion of molecular graphs will end up producing undesirable, large37

molecules, we also include the deletion of fragments as a possible action. This enables our method to38

backtrack to good molecular states, and iteratively improve generated molecules during the sequential39

translation process. Our proposed framework is (1) highly efficient in finding molecules that satisfy40

property constraints since the model stay close to the high-property-score chemical manifold; and (2)41

able to produce highly novel molecules because the sequence of fragment-based translation can lead42

to very different and diverse molecules compared to the known active set.43

2 Methods44

Molecular Optimization as a Markov Decision Process. We model the molecular optimization45

problem as a Markov decision process (MDP), defined by the 5-tuple {S,A, p, r, ρ0}, where the46

state space S is the set of all molecules. The goal of molecular optimization is to find a set of47

molecules G ⊂ S that has high quality (success), novelty, and diversity (detailed in Section 3). In48

order to achieve this goal, we introduce novel designs over the action space A (and the corresponding49

transition model p : S × A → S), the reward function r and the initial state distribution ρ0. In50

summary, our action space A is based on molecular fragments learned by a VQ-VAE, while r and ρ051

interact with policy learning to implement the proposed sequential translation optimization scheme.52

An illustration of our model is in Figure 1.53

2.1 Fragment-based Molecular Generation54

VQ-VAE Encoder/Decoder We first pretrain a VQ-VAE on molecular fragments, which uses a55

GNN encoder. GNNs are suitable for describing actions on the molecular state, as they explicitly56

parametrize the representations of each atom and bond. Meanwhile, the decoder architecture is a57

recurrent network that decodes a SELFIES string representation of a molecule. We choose a recurrent58

network for the decoder, because we do not need the full complexity of a graph decoder. Due to59

the construction scheme (see Appendix A.2), the fragments are rooted trees and all have a single60

attachment point. As our fragments are small in molecular size (≤ 10 atoms), the string grammar is61

simple to learn, and we find the SELFIES decoder works well empirically.62

Adding and deleting fragments as actions. At each step of the MDP, the policy network first63

takes the current molecular graph as input and produce a Bernoulli distribution on whether to add or64

delete a fragment. Equipped with the fragment VQ-VAE, we define the Add and Delete actions at the65

fragment-level:66
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Figure 2: Each episode starts from a molecule sampled from the frontier. The molecule is encoded
by a GNN, which is then used to predict either an Add or Delete action. When the Add action is
selected, the model predicts and samples an atom as the attachment point, and subsequently predicts
a fragment to attach to that atom. When the Delete action is selected, the model samples a directed
edge, indicating the molecular fragment to be deleted.

• Fragment Addition. The addition action is characterized by a probability distribution over67

the atoms: padd(vi) = σ[MLP(hv)], where hv is the output atom embedding of the GNN.68

Conditioned on the attachment point atom vadd sampled from padd, we predict a categorical69

latent vector that is fed to the decoder: zadd = σ[MLP([hvadd
;hx])], where hx is the70

embedding of the input molecular graph. The fragment to add is then obtained by decoding71

zadd through the learned fragment decoder.72

• Fragment Deletion. The deletion action acts over the directed edges of the molecule.73

A probability distribution over deletable edges is computed with a MLP: pdel(eij) =74

σ[MLP(heij )], where heij is the final edge embedding for edge eij . One edge is then75

sampled and deleted; since the edges are directed, the directionality specify the the molecule76

to keep and the fragment to be deleted.77

With the action space A defined as above, the transition model for the MDP is simply p(s′|s, a) = 178

if applying the addition/deletion action a to s results in the molecule s′, and p(s′|s, a) = 0 otherwise.79

We terminate an episode when the molecule fails to satisfy the desired property or when the episode80

exceeds 10 steps. The fragment-based action space is powerful as it (1) is powered by the enormous81

distributional vocabulary learned by the fragment VQ-VAE, thus spans a diverse set of editing82

operations over molecular graphs; (2) exploits the meaningful latent representation of fragments,83

since the representation of similar fragments are grouped together. These advantages greatly simplify84

the molecular search problem. An illustration of the two types of actions is given in Figure 2.85

2.2 Discover Novel Molecules through Sequential Translation86

We propose sequential translation that incrementally grows the set of discovered novel molecules,87

and uses the model-discovered molecules as starting points for further search episodes. This regime88

of starting exploration from states reached in previous episodes was also explored under the setting of89

RL from image inputs [2]. More concretely, we implement sequential translation with a reinforcement90

learning policy that operates under the fragment-based action space defined in Section 2.1, while91

using a moving initial state distribution ρ0, which is a distribution over the frontier set F – the union92

of the initial set and good molecules that are discovered by the RL policy. We gradually expand93

the discovered set G by adding qualified molecules found in the RL exploration within the MDP. A94

molecule is qualified if it satisfies the desired properties and is novel compared to molecules currently95

in the frontier F , measured by fingerprint similarity. We use a simple binary reward of +1 for a96

transition that results in a molecule qualified for the set G, and a reward of 0 otherwise. We further97

discourage the model from producing invalid molecules by adding a reward of −0.1 for a transition98

that produces an invalid molecular graph. We further use an upper-confidence-bound (UCB) score to99

select good initial molecule from the frontier set. More implementation details of the method are100

included in the appendix.101
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Table 1: Results on our model (FaST) against multiple baselines. FaST outperforms all the baselines
on both single-property optimization and multi-property optimization.

Model GSK3β GSK3β+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .534 .888 .474 .699 .402 .893 .251
GA+D .846 1.00 .714 .600 .891 1.00 .628 .608
JANUS 1.00 .829 .884 .732 - - - -
MARS 1.00 .840 .718 .600 (± .04) .995 .950 .719 .680 (± .03)

MARS+Rationale .995 .804 .746 .597 (± .07) .981 .800 .807 .632 (± .07)
FaST 1.00 1.00 .905 .905 (± .000) 1.00 1.00 .861 .861 (± .001)

Model JNK3 JNK3+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .462 .862 .400 .623 .376 .865 .203
GA+D .528 .983 .726 .380 .857 .998 .504 .431
JANUS 1.00 .426 .895 .381 - - - -
MARS .988 .889 .748 .660 (± .04) .913 .948 .779 .674 (± .02)

MARS+Rationale .976 .843 .780 .642 (± .04) .634 .779 .787 .386 (± .08)
FaST 1.00 1.00 .905 .905 (± .001) 1.00 .866 .856 .741 (± .001)

Model GSK3β+JNK3 GSK3β+JNK3+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .973 .824 .800 .750 .555 .706 .294
GA+D .847 1.00 .424 .360 .857 1.00 .363 .311
JANUS 1.00 .778 .875 .681 1.00 .326 .821 .268
MARS .995 .753 .691 .520 (± .08) .923 .824 .719 .547 (± .05)

MARS+Rationale .976 .843 .780 .642 (± .04) .654 .687 .724 .321 (± .09)
FaST 1.00 1.00 .863 .863 (± .001) 1.00 1.00 .716 .716 (± .011)

3 Experiments102

Datasets, evaluation, and baselines. We use benchmark datasets for molecular optimization,103

which aims to generate ligand molecules for inhibition of two proteins: glycogen synthase kinase-3104

beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). We also optimize for quantitative estimate of105

drug-likeliness (QED) [1] and synthetic accessibility (SA) [3] as done in previous work. Following106

previous works, we evaluate our generative model on three target metrics, success, novelty and107

diversity. The metric scores are computed from 5,000 molecules generated by the model. Our model108

is initialized with molecule rationales as obtained in Jin et al. [8]. We compare to state-of-the-art109

molecular optimization methods including Rationale-RL [8] (molecular rationales as intialization +110

atom-by-atom RL compeletion); GA+D & JANUS [11, 12] (genetic algorithms); and MARS [19] &111

MARS+Rationale (MCMC sampler intialized with/without rationales). More details on the datasets,112

evaluation metrics, and baseline methods are included in the appendix.113

Performance FaST outperforms all the baselines on all tasks including both single-property and114

multi-property optimization. For the most challenging task, GSK3β+JNK3+QED+SA, our model115

improves upon the previous best model by over 30% in the product of the three evaluation metrics.116

The MARS+Rationale model, which uses the same rationale molecules as the initialization for their117

search algorithm, does not perform well compared to the original implementation, which initializes118

each search with a simple “C-C" molecule. Our model is able to efficiently search for molecules that119

stay within the constrained property space, and discover novel and diverse molecules by sequentially120

translating known active molecules.121

4 Conclusion122

We propose a new framework for molecular optimization, which leverages a learned representation of123

molecular fragments to search the chemical space efficiently. We demonstrate that our search method,124

which adaptively grows a set of promising molecular candidates, can achieve high performance on125

single-property and multi-property optimization tasks.126
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A Appendix196

A.1 Reinforcement learning algorithm details197

We detail the specifics of our reinforcement learning algorithm in Algorithm 1. To bias the initial198

state distribution to favor molecules that can derive more novel high quality molecules, we keep199

an upper-confidence-bound (UCB) score for each initial molecule in the frontier F . We record the200

number of times we initiate a search N(x, t) from a molecule x ∈ F , and the number of molecules201

qualified for adding to G that are found in episodes starting from x: R(x, t). Here t =
∑
x∈ρ0 N(x)202

is the total number of search episodes. The UCB score of the initial molecule m is calculated by:203

UCB(x, t) =
R(x, t)

N(x, t)
+

√
3
2 log(t+ 1)

N(x, t)
(1)

The probability of a molecule in the initalization set being sampled as the starting point of a new204

episode is then computed by a softmax over the UCB scores: pinit(x, t+ 1) = exp(UCB(x,t))∑
x∈I exp(UCB(x,t)) .205

We train our RL policy using the Proximal Policy Optimization (PPO, Schulman et al. 14) algorithm.206

We find the RL training robust despite both the reward function r and the initial state distribution207

ρ0 are non-stationary (i.e., changing during the course of RL training). We construct the initial set208

of molecules for our search algorithm from the rationales extracted from [8]. These rationales are209

obtained through a sampling process, Monte Carlo Tree Search (MCTS), on the active molecules210

that tries to minimize the size of the rationale subgraph, while maintaining their inhibitory properties.211

Rationales for multi-property tasks (GSK3β+JNK3) are obtained by combining the rationales for212

single-property tasks.213

A.2 Experimental setup214

Datasets. The dataset, originally extracted from ExCAPE-DB, contains 2665 and 740 actives215

for GSK3β and JNK3 respecitvely. Each target also contains 50,000 negative ligand molecules.216

Following previous works [9, 8, 19], we adopt the same strategy of using a random forest trained on217

these datasets as the oracle property predictor. QED is a quantitative score that assesses the quality218

of a molecule through comparisons of its physicochemical properties to approved drugs. SA is a219

score that accounts for the complexity of the molecule in the context of easiness of synthesis, thereby220

providing an auxiliary metric for the feasibility of the compound as a drug candidate.221
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Algorithm 1 Molecule Search through Fragment-based Sequential Translation (FaST)
1: Input: N is the desired number of discovered new molecules
2: Input: I is the initial set of molecules
3: Input: D is the decoder pretrained using the VQ-VAE
4: Input: T : X → {0, 1} is the episode termination criterion function given an input molecule x
5: Input: C : X → {0, 1} is a function that returns 1 if the input x satisfies the desired properties.
6: Let G = ∅ be the discovered set of molecules
7: Let F = I ∪G be the frontier where search is initialized from
8: Let t = 0 be the number of episodes
9: while |G| ≤ N do

10: Let t = t+ 1
11: Update UCB(x, t)∀x ∈ F according to Equation (1)
12: Sample initial molecule x0 = (V,E) from pinit = σ[UCB(x, t)]∀x ∈ F
13: Let x = x0
14: while T (x) = 0 do
15: Sample action type a from paction = σ[MLP(hx)] ∈ {ADD,DELETE}
16: if a = ADD then
17: Sample vadd from padd(v) = σ[MLP(hv)] ∀v ∈ V
18: propose fragment encoding as action f(x, vadd) = MLP([hx;hvadd

])
19: Decode fragment y = D(f(x, vadd))
20: Add fragment y to molecule: x← x+ y
21: else
22: Sample e from pdel(e) = σ[MLP(heij )] ∀e ∈ E
23: Let y be the fragment designated by e, delete fragment x← x− y
24: if C(x) = 1 then
25: G← G ∪ {x}
26: F ← I ∪G

Molecular Fragments are extracted from molecules in the ChEMBL database [4]. For each molecule,222

we randomly sample fragments by extracting subgraphs that contain 10 or fewer atoms that have a223

single bond attachment to the rest of the molecule. We then use a VQ-VAE to encode these fragments224

into a meaningful latent space. The use of molecular fragments simplifies the search problem, while225

the variable-sized fragment distribution maintains the reachability of most molecular compounds.226

Because our search algorithm ultimately uses the latent representation of the molecules as the action227

space, we find that using a VQ-VAE with a categorical prior instead of the typical Gaussian prior228

makes RL training stable and provides performance gains.229

Evaluation metrics. Following previous works, we evaluate our generative model on three target230

metrics, success, novelty and diversity. 5,000 molecules are generated by the model, and the metric231

scores are computed as follows: Success measures the proportion of generated molecules that fit232

the desired properties. For inhibition of GSK3β and JNK3, this is a score of at least 0.5 from the233

pretrained predictor. QED has a target score of ≥ .6 and SA has a target score of ≤ 4. Novelty234

measures how different the generated molecules are compared to the set of actives in the dataset, and235

is the proportion of molecules whose fingerprint similarity is at most .4 to any molecule in the active236

set. Diversity measures how different the generated molecules are compared to each other. Here,237

diversity is computed as an average of pairwise fingerprint similarity across all generated compounds.238

Baseline methods. Rationale-RL [8] extracts rationales of the active molecules and then uses239

RL to train a completion model that add atoms to the rationale in a sequential manner to generate240

molecules satisfying the desired properties. GA+D & JANUS [11, 12] are two genetic algorithms241

that use random mutations of SELFIES strings to generate promising molecular candidates; JANUS242

leverages a two-pronged approach, accounting for mutations towards both exploration and exploita-243

tion. MARS [19] uses Markov Chain Monte Carlo (MCMC) sampling to iteratively build new244

molecules by adding or removing fragments, and the model is trained to fit the distribution of the245

active molecules. We additionally include a baseline MARS+Rationale that initialize the MARS246

algorithm with the same starting initial rationale set used in Rationale-RL and our method in order to247
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provide better comparisons of the methods. Where possible, we use the numbers from the original248

corresponding paper.249
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