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ABSTRACT

The heavy communication for model synchronization is a major bottleneck for
scaling up the distributed deep neural network training to many workers. More-
over, model synchronization can suffer from long delays in scenarios such as fed-
erated learning and geo-distributed training. Thus, it is crucial that the distributed
training methods are both delay-tolerant AND communication-efficient. However,
existing works cannot simultaneously address the communication delay and band-
width constraint. To address this important and challenging problem, we propose
a novel training framework OLCO3 to achieve delay tolerance with a low com-
munication budget by using stale information. OLCO; introduces novel staleness
compensation and compression compensation to combat the influence of stale-
ness and compression error. Theoretical analysis shows that OLCOj3 achieves the
same sub-linear convergence rate as the vanilla synchronous stochastic gradient
descent (SGD) method. Extensive experiments on deep learning tasks verify the
effectiveness of OLCOj; and its advantages over existing works.

1 INTRODUCTION

Data-parallel synchronous SGD is currently the workhorse algorithm for large-scale distributed deep
learning tasks with many workers (e.g. GPUs), where each worker calculates the stochastic gradient
on local data and synchronizes with the other workers in one training iteration (Goyal et al.| 2017}
You et al. 2017; Huo et al. 2020). However, high communication overheads make it inefficient
to train large deep neural networks (DNNs) with a large number of workers. Generally speaking,
the communication overheads come in two forms: 1) high communication delay due to the unstable
network or a large number of communication hops, and 2) large communication budget caused
by the large size of the DNN models with limited network bandwidth. Although communication
delay is not a prominent problem for the data center environment, it can severely degrade training
efficiency in practical scenarios, e.g. when the workers are geo-distributed or placed under different
networks (Ethernet, cellular networks, Wi-Fi, etc.) in federated learning (Konecny et al.| 2016).

Existing works to address the communication inefficiency of synchronous SGD can be roughly clas-
sified into three categories: 1) pipelining (Pipe-SGD (L1 et al.l 2018)); 2) gradient compression (Aji
& Heafield, 2017; [Stich et al., 2018 |Alistarh et al., 2018} [Yu et al.| 2018 |Vogels et al., 2019); and
3) periodic averaging (also known as Local SGD) (Stich, [2019; |Lin et al.,|2018a). In pipelining, the
model update uses stale information such that the next iteration does not wait for the synchroniza-
tion of information in the current iteration to update the model. As the synchronization barrier is re-
moved, pipelining can overlap computation with communication to achieve delay tolerance. Gradi-
ent compression reduces the amount of data transferred in each iteration by condensing the gradient
with a compressor C(-). Representative methods include scalar quantization (Alistarh et al., 2017}
Wen et al.l 2017 Bernstein et al, [2018)), gradient sparsification (Aji & Heafield, 2017} |Stich et al.|
2018 |Alistarh et al.| 2018), and vector quantization (Yu et al., 2018} |Vogels et al., |2019)). Periodic
averaging reduces the frequency of communication by synchronizing the workers every p (larger
than 1) iterations. Periodic averaging is also shown to be effective for federated learning (McMahan
et al., |2017). In summary, exiting works handle the high communication delay with pipelining and
use gradient compression and periodic averaging to reduce the communication budget. However,
all existing methods fail to address both. It is also unclear how the three communication-efficient
techniques introduced above can be used jointly without hurting the convergence of SGD.
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Table 1: Comparison of communication-efficient methods for distributed DNN training. The period
p € N is the communication interval for periodic averaging. The staleness s € N is the number of
communication rounds that the information used in the model update has been outdated for. For all
methods in this table, delay tolerance 7 = sp.

Methods Ovel:lap Comput. Comm._ p Iterations per  Staleness s

with Comm. Compression Comm. Round  Supported
Gradient Compression X Vv =1 =0
Periodic Averaging (Local SGD) X X >1 =0
Pipelining (Pipe-SGD) 4 X =1 >1
CoCoD-SGD Vv X >1 =1
OverlapLocalSGD 4 X >1 =1
OLCO; (Ours) v v >1 >1

In this paper, we propose a novel framework Overlap Local Computation with Compressed
Communication (i.e., OLCO3) to make distributed training both delay-tolerant AND communi-
cation efficient by enabling and improving the combination of the above three communication-
efficient techniques. In Table [l we compare OLCO; with the aforementioned works and two
succeeding state-of-the-art delay-tolerant methods CoCoD-SGD (Shen et al.,2019) and OverlapLo-
calSGD (Wang et al.;[2020). Under the periodic averaging framework, we use p to denote the num-
ber of local SGD iterations per communication round, and s to denote the number of communication
rounds that the information used in the model update has been outdated for. Let the computation
time of one SGD iteration be Tt put, then we can pipeline the communication and the computation
when the communication delay time is less than sp - Ttompue. For simplicity, we define the delay
tolerance of a method as 7 = sp. Local SGD has to use up-to-date information for the model update
(s=0,p> 1,7 = sp=0). CoCoD-SGD and OverlapLocalSGD combine pipelining and periodic
averaging by using stale results from last communication round (s = 1,p > 1,7 = sp = p), while
our OLCOj; supports various staleness (s > 1,p > 1,7 = sp) and all other features in Table[T} The
main contributions of this paper are summarized as follows:

e We propose the novel OLCO; method, which achieves extreme communication efficiency by
addressing both the high communication delay and large communication budget issues.

e OLCO;s; introduces novel staleness compensation and compression compensation techniques.
Convergence analysis shows that OLCO; achieves the same convergence rate as SGD.

e Extensive experiments on deep learning tasks show that OLCOj significantly outperforms ex-
isting delay-tolerant methods in both the communication efficiency and model accuracy.

2 BACKGROUNDS & RELATED WORKS

SGD and Pipelining. In distributed training, we minimize the global loss function f(-) =
%ZkK:lfk(-), where fi(-) is the local loss function at worker k € [K]. At iteration ¢,
vanilla synchronous SGD updates the model x; € R? with learning rate 7; via x;11 = X; —

* le V Fi(x¢; t(k)), where 5,519) is the stochastic sampling variable and V Fj, (xt;gt(k)) is the

corresponding stochastic gradient at worker k. Throughout this paper, we assume that the stochastic
gradient is an unbiased estimator by default, i.e., Eg(m Vi (x¢; gt““)) =V fr(x¢).
t

Pipe-SGD (Li et al., |2018) parallelizes the communication and computation of SGD via pipelin-
ing. At iteration ¢, worker k computes stochastic gradient V Fy,(x¢; fk)) at current model x; and

communicates to get the averaged stochastic gradient % Zszl V Fi(x¢; fk)). Instead of waiting
the communication to finish, Pipe-SGD concurrently updates the current model with stale averaged
stochastic gradient via x;11 = x; — % Zszl V Fy (x¢—s; 5&)5). Note that Pipe-SGD is different
from asynchronous SGD (Ho et al.| [2013}; [Lian et al.| | 2015) which computes stochastic gradient us-
ing stale model and does not parallelize the computation and communication of a worker. A problem
of Pipe-SGD is that its performance deteriorates severely under high communication delay (large s).
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Pipelining with Periodic Averaging. CoCoD-SGD (Shen et al., 2019)) utilizes periodic averaging
to reduce the number of communication rounds and parallelizes the local model update and global
model averaging by concurrently conducting

t+p—1

X, = Kth and x{%), =x{" = > 9 VEEP D). (1)

in which xgk) denotes the local model at worker k as the local models on different workers are no

longer consistent in non-communicating iterations. When the operations in Eq. (1) finishes, the local

model is updated via X,Ei)p — X+ X,E +)p - X,E Jandt « t+ p. CoCoD-SGD can tolerate delay up to

p SGD iterations (i.e., one communication round in periodic averaging). OverlapLocalSGD (Wang

et al., 2020) improves CoCoD-SGD by heuristically pulling xg +)p back to the x; after the operations

in Eq. (1) via x§ +)p +— (1- a)xg +)p + ax; where 0 < a < 1. The motivation is to reduce the
inconsistency in the local models across workers. OverlapLocalSGD also develops a momentum
variant, which maintains a slow momentum buffer for x; following SlowMo (Wang et al.| [2019). As
both CoCoD-SGD and OverlapLocalSGD communicates the non-compressed local model update,
they suffer from a large communication budget in each communication round.

Gradient Compression. The gradient vector v € R can be sent with a much smaller communica-
tion budget by applying a compressor C(-). Specifically, Scalar quantization rounds 32-bit floating-
point gradient components to low-precision values of only several bits. One important such algo-
rithm is scaled SignSGD (called SignSGD in this paper) (Bernstein et al.,[2018; Karimireddy et al.,

2019) which uses C(v) = Hvlh sign(v) to compress v to 1 bit. Gradient sparsification only commu-
nicates large gradient components Vector quantization uses a codebook where each code is a vector
and quantizes the gradient vector as a linear combination of the vector codes. With the local error
feedback technique (Seide et al.,|[2014; Lin et al., 2018b; Wu et al., 2018} Karimireddy et al., 2019
Zheng et al,2019), which adds the previous compression error (i.e., v — C(Vv)) to current gradient
before compression, gradient compression can achieve comparable performance as full-precision
training. Local error feedback also works for both one-way compression (compress the communi-
cation from worker to sever) (Karimireddy et al., [2019) and two-way compression (compress the
communication between worker and server) (Zheng et al., 2019).

Challenges. Simultaneously achieving communication compression with pipelining and periodic
averaging requires careful algorithm design because 1) pipelining introduces staleness, and 2) state-
of-the-art vector quantization methods usually require an additional round of communication to
solve the compressor C(+), which is unfavorable in high communication delay scenarios.

3 THE PROPOSED FRAMEWORK: OLCO;

In this section, we will introduce our new delay-tolerant and communication-efficient training frame-
work OLCO3. We discuss two variants of OLCO3: OLCO;-TC for two-way compression in master-
slave communication mode, and OLCO;-VQ adopting commutative vector quantization for both the
master-slave and ring all-reduce communication modes. Note that one-way compression in just a
special case of OLCO;-TC and we omit it for conciseness. We use “line x” to refer to the x-th line
of Algorithm[I]} The key differences between OLCO3-TC and OLCO3-VQ are marked in red color.

3.1 OLCO3-TC FOR TWO-WAY COMPRESSION

Motivation. OLCOs-TC is presented in the green part of Algorithm [I] for efficient master-slave
distributed training. Naively pipelining local computation with compressed communication will

break the update rule of momentum SGD for the averaged model xt K Z i1 X (k) , leading to non-

k K k
convergence. Therefore, we consider an auxiliary variable X; == 7 Zk 1 X ( )—% b1 E )fet,

where e( ) is the local compression error at worker k£ and e; is the compression error at the server.
If x; can follow the update rule of momentum SGD, then the real trained model x; will gradually

approach X; as the training converges because the gradient and errors e( ) ,e; — 0.

Pipelining. For non-communicating iterations, we perform the local update following Local SGD
(line 4). A communicating iteration takes place every p iterations. To pipeline the communication
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Algorithm 1 Overlap Local Computation with Compressed Communication (OLCO3) on worker
k € [K]. Green part: OLCO3-TC; Yellow part: OLCO3-VQ. Best view in color.
1: Input: period p > 1, staleness s > 0, number of iterations 7', number of workers K, learning

rate {n;} -, and compression scheme C(-).
(k)
0

2: Initialize: Local model x;,’ = X, local error e(()k) = 0, server error ¢g = 0, local momentum

buffer mgk) = 0, and momentum constant 0 < g < 1. Variables with negative subscripts are 0.

3: fort=0,1,--- ,T—1do

4: mgﬁ_)l = ,,,mﬁ’“) + VF} (ng); §k)), ng_)l = ng) — ntmgi)l // Momentum Local SGD.
5: if(t+1) mod p =0 then

6: Maintain or reset the momentum buffer.

7

8:

9:
10:
11:
12:
13:
14:
15: Ag?l = ng_)l p— ng_)l 4 egli)sp // Compression compensation.
16: Invoke the communication thread in parallel which does:

. (k) _ k) (k) AR (k) ;
17: ey =e s =" =e, =0 —C(AL) // Compression.
18: (2) Average Zszl C (Agi)l) by ring all-reduce or master-slave communication.

: K k k .
19: Block until = >°," C(A§+)1_Sp) and e§+)1_sp is ready.
K 2
20: Xe11 = X4l p — B Dokl C(A§+)1—sp)
21: Xgﬁ_)l — X1 — Zf;ol Agﬁ)lﬂ-p // Staleness compensation.
22:  endif
23: end for

24: Qutput: averaged model x = % Eszl x¥€ )

and computation, we compress the local update Agi)l (line 7) for efficient communication, and at
the same time, try to update the model with a stale compressed global update C(Ay41—p) (line 13)
that has been outdated for s communication rounds (i.e., the staleness is s). The momentum buffer
can be maintained or reset to zero every p iteration (line 6). If the delay tolerance 7 = sp is larger
than the actual communication delay, the blocking in line 12 becomes a no-op and there will be no
synchronization barrier. The server compresses the sum of the compressed local updates from all
workers (line 11) and sends it back, making OLCO;3-TC an efficient two-way compression method.

Compensation. To make the update of the auxiliary variable x; follow momentum SGD, we propose
to 1) compensate staleness with all compressed local updates with staleness € [0, s — 1] (line 14),
which requires no communication and allows less stale local update to affect the local model, and
2) maintain a local error (line 8) and add it to the next local update before compression (line 7) to
compensate the compression error. With the two compensation techniques in OLCO;3-TC, Lemma@

shows that the update rule of x; follows momentum SGD with averaged momentum % Zszl mgk .

Lemma 1. For OLCO;-TC, let x; = % Zszlek) — % sz1 eik) — ey_gsp, then we have ¥, =

T Nt—1 K (k)
i — Y my

Note that there is a “gradient mismatch” problem as the local momentum mgk) is computed at the

local model x{* but used in the update rule of the auxiliary variable %, (Karimireddy et al| 2019}
2020). However, our analysis shows that it does not affect the convergence rate. We have also
considered OLCOj; for one-way compression (i.e., OLCO3-OC) as a special case of OLCO3-TC. In
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OLCO3-0C, the compressor at the server side is identity function and the server error e, is 0. For
OLCO;-0C, the auxiliary variable x; also follows momentum SGD as stated in Lemma

Lemma 2. For OLCO;3-0OC, let X; = % Zlexgk) — % szle,Ek), then we have X; = X;_1 —

1 K k
mT D k=1 mg ).
We can see that the delay tolerance of both OLCO3-TC and OLCO3-OC are 7 = sp(

s
They have a memory overhead of O(sd) for storing information with staleness € [0,
most compression schemes such as SignSGD, the computation complexity of C(+) is O(d).

>1Lp=>1).
s — 1]. For

3.2 OLCO3-VQ FOR COMMUTATIVE VECTOR QUANTIZATION

OLCO;3-TC and OLCO3-OC work for compressed communication in the master-slave communi-
cation paradigm. In contrast, OLCO3-VQ (the yellow part of Algorithm [I) works for both the
master-slave and ring all-reduce communication paradigms. Ring all-reduce minimizes communi-
cation congestion by shifting from centralized aggregation in master-slave communication (Yu et al.,
2018). OLCO;-VQ relies on a state-of-the-art vector quantization scheme, PowerSGD (Vogels et al.,
2019), which satisfies commutability for compression, i.e., C(v1) + C(v2) = C(v1 + va). However,
directly using PowerSGD breaks the delay tolerance of OLCOj as its compressor C(-) needs commu-
nication and introduces synchronization barriers. Specifically, PowerSGD invokes communication
across all workers to compute a transformation matrix, which is used to project the local updates to
the compressed form.

Pipelining with Communication-Dependent Compressor. To make OLCO;3-VQ delay-tolerant,
we further propose a novel compression compensation technique with the stale local error (line
15). This is in contrast to OLCO;-TC and OLCO;-OC, which use immediate compressed results
to calculate the up-fo-date local error. As this technique removes the dependency on immediate
compressed results, we can move the whole compression and averaging process to the communica-
tion thread (lines 17 and 18). For staleness compensation, OLCO3-VQ uses all uncompressed local
updates with staleness € [0, s — 1] instead of compressed local updates in OLCO;-TC. With the two
compensation techniques, Lemma shows that for OLCO3-VQ, the auxiliary variable X, associated
with the stale local error also follows the momentum SGD update rule.

Lemma 3. For OLCO;3-VQ, let x; = % Zle xgk) — LYK e,gli)sp, then we have X; = X;_1 —

K 2uk=1
Ni—1 K (k)
)74 Zk:l my .

4 THEORETICAL RESULTS

In this section, we provide the convergence results of the OLCOj3 variants for both SGD and momen-
tum SGD maintaining momentum (line 6 of Algorithm[I)) with common assumptions. As OLCO;-
OC is a special case of OLCO3-TC, we only analyze OLCO3-TC and OLCO3-VQ. The detailed

proofs of Theorems I} 2] [3] and ] can be found in Appendix [D] [E] [F and [G] respectively. The de-
tailed proofs of Lemmal |1} [2| and [3|can be found in Appendix |C} We use f, to denote the optimal

loss.
Assumption 1. (L-Lipschitz Smoothness) Both the local ( fi.(-)) and global (f(-) = % Zszl fi(+)
loss functions are L-smooth, i.e.,
IVf(x) = VF)ll2 < Llx —yll2, v,y € R, 2

IV fi(x) = V[l < Lllx = yll2, ¥k € [K], Vx,y € RY. 3)
Assumption 2. (Local Bounded Variance) The local stochastic gradient NV Fy,(x; &) has a bounded
variance, i.e., Eeup, |VFi(x;€) — Vi@)|3 < o2,Vk € [K],vx € R%L  Note that
Eenp, VE,(x;§) = V fi(x).
Assumption 3. (Bounded Variance across Workers) The Lo norm of the difference of the local and
global full gradient is bounded, i.e., |V fi(x) — V f(x)||3 < x?,Vk € [K],Vx € R k = 0 leads to
i.i.d. data distributions across workers.
Assumption 4. (Bounded Full Gradient) The second moment of the global full gradient is bounded,
ie, |[Vf(x)|3 < G?vx e R
Assumption 5. (Karimireddy et al.| |[2019) The compression function C(-) : R? — R is a J-
approximate compressor for 0 < § < 1ifforallv € R%, ||C(v) — |2 < (1 —6)||v||3.
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4.1 SGD

Theorem 1. For OLCO;- VQ with vanilla SGD and under Assumptions [I} 2] B B and [} if the

learning rate n < mln{m, o}, then
T— K
1 1 k)2 o 6(f(x0) = fi) | 9InLo® 272 2
IS gmivepl < 1202L )po?[l 4
T; HVf(K;xt < == =+ g 1L+ po’ [+ “
14(1 -6 5(1 -9 168(1 — 9
(52 )(S+1)p]+36’l72L2(8+1)2p2F&2(1+ (52 ))_|_ (52 )T]2L2(5+1)2p2G2.

If we set the learning rate 7 = O(K 27T~ ) and the communication interval p = O(K ~ 3T (s +
1)~1), the convergence rate will be O(K~2T~2). The O(K 2T~ 2) rate is the same as syn-
chronous SGD and Local SGD, and achieves linear speedup regarding the number of workers K.
Theorem 2. For OLCO;-TC with vanilla SGD and under Assumptions [I} 2} B} H} and [5} if the
learning rate n < min{m, &} andlet h(5) = L2 (1 + 4(2 29, then

1= N0 6(f(xo) — f.) = InLo?
T;Euwg; )3 < e )

+ 120%po?(s + 1 + 80h(8)p) + 120°pk2(3(s + 1)% 4 80h(8)) + 960n*p*Gh(0) .

If we set the learning rate 7 = O(K 2T~ 2) and the communication interval p = O(K —iTa (s +
1)~1), the convergence rate will be O(K 2T~ 2). When the data distributions across workers are
i.i.d. (i.e., Kk = 0), if we choose the learning rate n = O(K %T*%) and the communication interval
p=min{O(K 3Tz (s +1)7}), O(K~ 4T4)} (p = O(K~3T7) for a enough large T') instead,
the convergence rate will still be O(K 27~ 2).

Therefore, OLCO;-TC can tackle a larger communication interval p (O(K -iT %)) than OLCO3-
VQ (O(K~iT3% (s +1)1)) in the i.i.d. setting. But they are the same in the non-i.i.d. setting.

4.2 MOMENTUM SGD

Theorem 3. For OLCO;-VQ with Momentum SGD and under Assumptions [I} [2] [3] E} Bl if the

learning rate n < mln{m, E;L“} and let g(u, 9, s,p) = (1};’”2 + 800= 5)(5+1) , then
T-1 K
1 1 w2 o~ 61— w)(flxo) = fo) | 9Lno?
— E — < 6
P 3 BTG Yol < N ) ©
ALY s 5 24 (12(s + 1)%p? 5 2 5, 5,p)G?
+(1—u)2[( (s+1p+g(n,6,s,p))o” + (12(s + 1)°p” + g(k, 6, 5,p)) K" + g1, 0, 5, p)G"].
Theorem 4. For OLCO;3-TC with Momentum SGD and under Assumptions [1] [2] if the
learning rate n < mln{m, S} and h(0) = *25(1 + 4(%;5) ), then
K

ZEIIVf Z I3

k
0 i)Je0) 1) Ot ORI 03O
8 T (= wE "= = p)2

ﬁ +6(s +1)2p% + 168h(0)p?) + G2(

+2(s + 1)p + 168h(5)p?)

+ Kw%( + 168h(6)p?)] . (7)

_9
(1—p)?

The same convergence rate and communication interval p are achieved as in Section
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Figure 1: Training curves using 7 = 56 and s = 1 for the delay-tolerant methods, and 7 = 0 and
p = 56 for Local SGD. Test accuracy can be found in Appendix [A3] Best viewed in color.
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Figure 2: Left: Vary delay tolerance 7 = sp with staleness fixed at s = 1. Local SGD uses the
same p as the delay-tolerant methods but has 7 = 0. Right: Vary staleness s with delay tolerance
fixed at 7 = 56. Results for more configurations of s and p can be found in Appendix [A.4]

5 EXPERIMENTS

We compare the following methods: 1) Local SGD (baseline, NO delay tolerance with 7 = 0);
2) Pipe-SGD; 3) CoCoD-SGD; 4) OverlapLocalSGD with hyperparameters following
(2020); 5) OLCO3-OC with SignSGD compression; 6) OLCO3-VQ with PowerSGD compressoin;
7) OLCO3-TC with SignSGD compression. The momentum buffer is maintained (line 6 of Algo-
rithm[T)) by default. We do not report the results of Pipe-SGD as it does not converge for the large
delay tolerance 7~ we experimented. We train ResNet-110 2016) with 8 workers for the
CIFAR-10 (Krizhevsky et all) 2009) image classification task, and report the mean and standard
deviation of the test accuracy over 3 runs in both the i.i.d. and non-i.i.d. setting. We also train
ResNet-50 with 16 workers for the ImageNet (Russakovsky et al.l 2015) image classification task.
More detailed descriptions of the experiment configurations can be found in Appendix [A-T]
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Table 2: Non-i.i.d. test accuracy (%) of ResNet-110 on CIFAR-10. 7 = 56 for the delay-tolerant
methods, and 7 = 0 and p = 56 for Local SGD. Training curves can be found in Appendix[A.2]

Method Delay Tolerance 7~ Compression Ratio ~ ResNet110
Local SGD 0 1 89.93 + 0.08
Pipe-SGD 56 1 Diverges
CoCoD-SGD 56 1 87.73 £0.25
OverlapLocalSGD 56 1 88.97 £0.19
OLCOs-0C 56 172 +1/32 89.75 £ 0.21
OLCOs-VQ 56 0.0973 89.31 £ 0.08
OLCOs-TC 56 1/32 89.73 £ 0.25

Delay Tolerance with Lower Communication Budget. The training curves of ResNet-110 on
CIFAR-10 and ResNet-50 on ImageNet are shown in Figure[I] We use s = 1 because CoCoD-SGD
and OverlapLocalSGD do not support s > 2. Compared with other delay-tolerant methods, the
communication budget of the OLCO; variants is significantly smaller due to compressed commu-
nication. OLCOj is also robust to communication delay with a large 7 = sp. Therefore, OLCO3
features extreme communication efficiency with compressed communication, delay tolerance, and
low communication frequency due to periodic averaging.

Better Model Performance. The two plots in the first row of Figure|l[show that OLCO3;-OC and
OLCO;-TC outperforms other delay-tolerant methods and are comparable to Local SGD regarding
the model accuracy. The performance of OLCO3-VQ is similar to CoCoD-SGD but inferior to Over-
lapLocalSGD. However, in the non-i.i.d. results reported in Table[2} all OLCOj3 variants outperform
existing delay-tolerant methods in accuracy. This is in line with the theoretical results in Theorems
[11 21 B] and[] which show that OLCO3-TC can tackle a larger p than OLCO3-VQ in the i.i.d. setting
but the two methods are similar in the non-i.i.d. setting. In the non-i.i.d. setting, all OLCO; variants
perform very close to Local SGD. On average, OLCO3-OC and OLCO3-TC improve the test accu-
racy of CoCoD-SGD and OverlapLocalSGD by 2.0% and 0.8%, respectively. OLCO3-VQ improves
CoCoD-SGD and OverlapLocalSGD by 1.6% and 0.4%. These results empirically confirm that the
staleness compensation and compression compensation techniques in OLCOj3 are effective.

Varying Delay Tolerance. We vary the delay tolerance 7 with staleness fixed at s = 1 in the
left plot of Figure 2| The goal is to check the robustness of OLCOs to the different period p. The
results show that OLCO3-OC and OLCO;-TC always outperform other delay-tolerant methods, and
have more comparable performance to Local SGD. Note that both the OLCO3;-OC and OLCOs-
TC provide a significantly smaller communication budget according to Figure (I} OLCO3-VQ also
outperforms CoCoD-SGD with a much smaller communication budget.

Varying Staleness. We vary the staleness s of OLCOj in the right plot of Figure[2Junder fixed delay
tolerance 7. Local SGD only supports s = 0 with no delay tolerance, and CoCoD-SGD and Over-
lapLocalSGD only support s = 1, so there is only one result for them in the figure. When increasing
the staleness beyond 2 for OLCOj3, the deterioration of the model performance is very small, es-
pecially for OLCO3-VQ. This suggests that the staleness compensation techniques in OLCO; are
effective. The performance peaks at s = 2 because an appropriate staleness may introduce some
noise that helps generalization. In comparison, we cannot tune staleness s for better performance in
CoCoD-SGD and OverlapLocalSGD.

6 CONCLUSION

In this work, we proposed a new OLCOj framework to achieve extreme communication efficiency
with high delay tolerance and a low communication budget in distributed training. OLCO; uses
novel staleness compensation and compression compensation techniques, and the theoretical results
show that it converges as fast as vanilla synchronous SGD. Experimental results show that OLCOj3
significantly outperforms existing delay-tolerant methods in terms of the communication budget and
model performance.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 EXPERIMENTAL SETTING

All experiments are implemented with PyTorch (Paszke et al.} 2019) and run on a cluster of Nvidia
Tesla P40 GPUs. Each node is connected by 40Gbps Ethernet and equipped with 4 GPUs.

CIFAR. We train the ResNet-110 (He et al.l 2016) model with 8 workers on CIFAR-10 (Krizhevsky]
2009) image classification task. We report the mean and standard deviation metrics over 3

runs. The base learning rate is 0.4 and the total batch size is 512. The momentum constant is 0.9
and the weight decay is 1 x 10~%. The model is trained for 200 epochs with a learning rate decay of
0.1 at epoch 100 and 150. We linearly warm up the learning rate from 0.05 to 0.4 in the beginning 5
epochs. For OLCO; with staleness s € {2, 4, 8}, we set the base learning rate to 0.2 due to increased
staleness. The rank of PowerSGD is 4. Random cropping, random flipping, and standardization are
applied as data augmentation techniques. We also train ResNet-56 to explore more combinations of
s and p in Appendix [A-4] with the same other settings.

ImageNet. We train the ResNet-50 model with 16 workers on ImageNet (Russakovsky et al, 2015))
image classification tasks. The model is trained for 120 epochs with a cosine learning rate schedul-
ing (Loshchilov & Hutter, 2016)). The base learning rate is 0.4 and the total batch size is 2048. The
momentum constant is 0.9 and the weight decay is 1 x 10~%. We linearly warm up the learning
rate from 0.025 to 0.4 in the beginning 5 epochs. The rank of PowerSGD is 50. Random cropping,
random flipping, and standardization are applied as data augmentation techniques.

The Non-i.i.d. Setting. Similar to 2020), we randomly choose fraction « of the whole
data, sort the data by the class, and evenly assign them to all workers in order. For the rest fraction
(1 — ) of the whole data, we randomly and evenly distribute them to all workers (Figure . When
0 < a < 1 is large, the data distribution across workers is non-i.i.d and highly skewed. When
a = 0, it becomes i.i.d. data distribution across workers. In our non-i.i.d. experiments, we choose
a=0.8.

Fraction=o. Sorted by class. Fraction=1-a. Randomly mixed
Evenly divided to K workers. and evenly divided to K workers.

J J
[ | [ |

| ’ J \ : J | ’ J | ) | )\ J

Worker 1 Worker K Worker 1 Worker K

Figure 3: Non-i.i.d. data partition across workers. Best viewed in color.
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A.2 TRAINING CURVE

500 ResNet-110, CIFAR-10 55 ResNet-50, ImageNet
! — Local SGD —— Local SGD
1.75 CoC sG 5.0 —— CoCoD-SGD
0CoD-5GD 4.5 —— OverlapLocalSGD
. 1.50 —— OverlapLocalSGD o a0 — 0LCO3-0C
§ 1.25 OLCO5-0C s —— 0LCOsVQ
= —— OLCOs-VQ g, 3.5 OLCOs-TC
£1.00 0LCO5-TC £3.0
® 0.75 ©
': W ; 2.5
0.50 [——— 2.0
0.25{— — . 1.5 =
0.00 —— T P = 10—
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120
Epoch Epoch
5 00 ResNet-110, CIFAR-10 55 ResNet-50, ImageNet
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175 —— Local SGD 5.0 —— CoCoD-SGD
CoCoD-5GD 4.5 —— OverlapLocalSGD
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§1_25 —— OLCO;-0C e —— 0LCO5-VQ
> —— OLCOs3-VQ =35 0LCO5-TC
£ 1.00 OLCO3-TC £
£ 3 £3.0
® 0.75 ©
= = 2.5
0.50 2.0
0.25 1.5
0.00 1.0
00 01 02 03 04 05 06 0.7 0 10 20 30 40 50 60 70 80
Communication Budget (GB) Communication Budget (GB)

Figure 4: Training curves using 7 = 56 and s = 1 for the delay-tolerant methods, and 7 = 0 and
p = 56 for Local SGD. Best viewed in color.

ResNet-110, CIFAR-10 90 ResNet-110, CIFAR-10
1.2 \ —— Local SGD
—— CoCoD-SGD —~80
" 1.0 —— OverlapLocalSGD g\°,
"] - B
Sos : 8t§83'8c §7o P yd
2 >VQ 5 T~ Local/SGD
£o6 OLCOs-TC g ( - ColoD-SGD
'E f, 60 MI —/<6verlapLocaISGD
RS =y I ——" —~ 0LCos-0C
0.2l . : F 50 “— 0LCo;-VQ
= ‘ o~ s OLCO3-TC
%0025 s0 75 100 135 150 175 200 400735 50 75 100 135 150 175 200
Epoch Epoch
ResNet-110, CIFAR-10 90 ResNet-110, CIFAR-10
1.2 —— Local SGD
—— CoCoD-SGD ~ 80
" 1.0 —— OverlapLocalSGD é
P4 —— 0LCOs-0C >
908 3 o
> — OLCOs-VQ < 70 Local SGD
06 OLCO5-TC g —— CoCoD-SGD
'E 5 60 —— OverlapLocalSGD
= 0.4 i —— 0LCO;-0C
0.2 F 50 —— 0LCO3-VQ
OLCO5-TC
0.0 . . . . . : 40
0.0 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 0.7
Communication Budget (GB) Communication Budget (GB)

Figure 5: Non-i.i.d. training curves using 7 = 56 and s = 1 for the delay-tolerant methods, and
T = 0 and p = 56 for Local SGD. Best viewed in color.
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A.3 TEST ACCURACY

Table 3: Test accuracy (%) of ResNet-110 on CIFAR-10 and ResNet-50 on ImageNet using 7 = 56
for the delay-tolerant methods, and 7 = 0 and p = 56 for Local SGD. CR stands for compression
ratio. For each method, the first row denotes maintaining momentum and the second row denotes
resetting momentum (line 6).

Method Delay Tolerance T CR ResNetl10 CR ResNet-50
Local SGD 0 U oaeioa 1 7
CoCaD-SGD s6 U somioos ! nm
OverlapLocalSGD 56 1 gizg i 8%}; 1 ;%;;
OLCO3-0C 56 12 + 1/32 gg:ig i g:}g 112+ 1732 ;gjg
OLCOs3-VQ 56 0.0973 g}g; i 83? 0.1633 ;8;2
0LCO,TC s6 V2 gmion Y2 73w

A.4 HYPERPARAMETERS s & p

Again, Figure[6|empirically confirms the theoretical results in Theorems|[T] 2} 3] and @] that OLCO3-
TC can handle a larger period p than OLCO; and that this gap increases with the staleness s in the
i.i.d. setting. Note that in the right plot of Figure 2] the gap between OLCO3-TC and OLCO3-VQ
does not increase with s because the period p is decreasing (the delay tolerance 7 = sp is fixed).

94.0 ResNet-56, CIFAR-10 94.0 ResNet-56, CIFAR-10 94.0 ResNet-56, CIFAR-10
' —4— Local SGD 4- 0LCO5-0C (s=1) ' —4— Local SGD 4- 0LCO3-0C (s=2) ' —4— Local SGD 4- OLCO5-0C (s=4)
93.5 —4- CoCoD-SGD  —— OLCO3-VQ (s=1) 93.5 —$- CoCoD-SGD  —— OLCO3-VQ (s=2) 93.5 —#- CoCoD-SGD  —— OLCO3-VQ (s=4)
T30 —#— OverlapLocalSGD- 4 OLCO;-TC (s=1) T30 —#— OverlapLocalSGD 0OLCO5-TC (s=2) F 930 —#— OverlapLocalSGD OLCO5-TC (s=4)
2925 g925 g92.5 i |
£ £ £ — T
2 92.0 2 92.0 K 92.0 I Sa—
] < ]
<915 <915 <915
™ ™ ™
3 91.0 % 91.0 3 91.0
= [ [
90.5 90.5 90.5
90.0 90.0 90.0
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Delay Tolerance 7 Delay Tolerance 7 Delay Tolerance 7

Figure 6: Vary delay tolerance 7 for ResNet-56 on CIFAR-10. We set p of Local SGD equivalent
to 7 of other delay-tolerant methods. Left: s = 1 for the OLCOj3 variants. Middle: s = 2 for the
OLCO; variants. Right: s = 4 for the OLCOj3 variants.

Table 4: Test accuracy (%) in Figure[6|by selecting the best configurations of s and p for the OLCO;
variants. We set p of Local SGD equivalent to 7 of other delay-tolerant methods.

Method T=28 T =16 T =32 T =64 T =128

Local SGD 93.19+£ 024 9298 +£0.19 92.68£0.15 9225+£0.24 91.98=+0.19
CoCoD-SGD 92.56 £0.08 92.10£0.23 90.74 £0.14 90.63 £0.18 90.40 £ 0.11
OverlapLocalSGD  92.89 £ 0.11  92.56 £ 0.17 9222 +£0.14 9136 £0.23 90.81 £0.24
OLCO3-0C 9313 +£0.02 92.76 £0.22 9221 +£0.06 92.00=£0.10 92.02 £ 0.07
OLCO3-VQ 9273 +£0.12 92.11£0.23 91.85+£0.12 91.30£0.17 90.58 £0.21
OLCOs-TC 93.09£0.12 92.68 +£0.21 92.61 +£0.16 9227 +£0.20 91.74+0.22
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B ASSUMPTIONS

Assumption 1. (L-Lipschitz Smoothness) Both the local ( f1,(-)) and global (f(-) = + Zszl fx(+)
loss functions are L-smooth, i.e.,

IVf(x) = V)2 < Llx —yll2, vx.y € RY, ®)

IV fu(x) = Ve @)ll2 < Lllx = yll2, vk € [K],Vx,y € RY. ©)

Assumption 2. (Local Bounded Variance) The local stochastic gradient V Fy,(x;€) has a bounded
variance, i.e.,

Eenp, |VFi(x;€) — Vi (x)|3 < 02, VEk € [K],Vx € RY. (10)
Note that ]Engk, VF}, (x; f) =V f (x)

Assumption 3. (Bounded Variance across Workers) The Lo norm of the difference of the local and
global full gradient is bounded, i.e.,

|V fr(x) — VF(x)|3 < K2, Vk € [K],Vx € R?, (11)

where k = 0 leads to i.i.d. data distributions across workers.

Assumption 4. (Bounded Full Gradient) The second moment of the global full gradient is bounded,
Le.,

IVF(x)|% < G? vx e R, (12)

Assumption 5. (5-approximate compressor) The compression function C(-) : RY — R is a J-
approximate compressor for 0 < 6 < 1 if for allv € RY,

lC) —»Ii5 < (1= a)v]3. (13)

C BASIC LEMMAS

Lemma 1. For OLCO;-TC, let x; := - Zk 1X ) - 2 Zszl egk) — ei_gp, then we have

K
K
Fo=Fo - 22 m) (14)

Proof. Fort = np where n is some integer,

1 K 1 K s—1 ) 1 K
b k k k k
.2 ) BLLRESS N Et
k=1 k=1 1i=0 k=1
K s—1 ( ) 1 K
k k
=X(n-1)p — C(A(" 5)17 Z C (n— z)p E Z eglp) - e(n_S)P
k:l 1=0 k=1
1 K *) 1 K s—1 *) 1 K
_ k k k
= 0t ZC A=) = CBm—sp) = 5 D D CAGL,) = 7 D&l — esp
k=1 k=1 1i=0 k=1
_ LW 1KA(k) ca® ) -ca
- ? (n Dp K + = K Z (n s)p ( (“*S)P) - e(n*S)P
k=1
K K
_ 1 <) 1 (k)
TR & Xn—1p T ;Anp ~ En—s)p-1
1 K (k) np—1 (k)
SF DINCRIEE S O DEFEINED o HEHRES S Sl

=1 k=171=(n—1)p

(15)
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For t # np,

I (k) (k)
:?th Ze —€—sp =
k=1

Lemma 2. For OLCO3-0C, let % = + 3K x™ — LK e then we have

k=1
Proof. Fort = np where n is some integer.
1 K 1 K 1 Koot ( 1 K
— x(k) _ (k) — — k) il ()
an K np K Ze an K Z C( (n,z)p) K Zenp
k=1 k=1 k=1i=0 k=1
ZC (A® iis_lc(A(m )_iiem
(n— (n— "')10 K (n—i)p K np
k=1 i=0 k=1
K K K s—1
SE OICANND SUNNNRIES O IINER S 9 aCIH
K (n 1)p (n—1—1) K (n—s)p K ]
k=1 k=1 k=1i=0
1 XK « K
il k) k)
T K (n Lp ZC( Ze"P
k=1 k=1
15y Z A®)
K X(n—1)p ~ K
k=1
1 K ( np—1
:ﬁz (n=D)p — KZ Z nTmT-H Zenp 1
k=1 k=171=(n—1)p
1 X
= inpfl K Z nnpflmg;)
k=1
For t # np,

Il lxm_ ls~m s~ i Ne—1 S
o k k) (k (k) t—1 k)
thgth —?Zet *}Z"t —}Zetl X1 - 2 th :

k=1 k=1 k=1 k=1 k=1

Lemma 3. For OLCO3-VQ, let x; = % Zszl xgk) — % sz1 e,(gli)sp, then we have

K
< - Nt—1 Z (k)
Xt = X1 — m; .
K k=1

t—1
K

(16)

(k) < n
Z s Zet 1~ €t—sp—1 = Xp—1 —

K

k=1

O

amn

(18)

19)

O
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Proof. Fort = np where n is some integer,

R SRR lfj“N Ll
" KkIl np Kk:Zl (n o " Kk 11:=0 (n =) KkIl (n=slp
1 K 1 K s—1 K
=X-1p ~ ZC (A6, = Ay~ E? o)

=

1
C(AE?*S p K Z Z Efl)*i)p K Z egk)*

k=1 i=0 =1

=0
K K s—1
k=1

=1
1 & <) (k) 1
. k k
=2 D (Xl ZAn T
k=1

1 K 1 K )
:?; (- 1)p+ZA” 1= l)p EZAE?*S)p_EZZAEZLi)p

RS <7 1 (k)
S DI SR
1 K ) np—1
= ? Z (n p K Z Z nTmT-i-l K Zenp 1—sp
k=1 k=171=(n—1)p

*an 1= § Nnp— 1mnp .

21
For t # np,
K K K
- 1 k 1 k 1 k 1 k Ni—1
X = 2 xi)—? eg_)sp:? xg) e e()1 sp = Xt—1 — Zm
k=1 k=1 k=1 k=1
(22)
O

D PROOF OF THEOREM [I]

Lemma 4. For OLCO3-VQ with vanilla SGD and under Assumptions 2] 3| B} and 3} the local error
satisfies

12(1 -6
B3 < 2002 4 w2 1 62). @3

Proof. First we have
k k k k k k k
E|VF(x; )2 < 3EIIVFx; ) - v .12 + 3BV f(x7) — W (x) 12 + 3BV £ (x{7)]13
< 302 4+ 3k% + 3G2.

(24)
Let St = L%J,
k k) k k
Ellef") (I3 = Elle{;), |3 = EIC(AL)) — AGLI3 < (1 - HEJAL)II3
Sip—1
k k
=1-0F| Y aVFxPe) +ell I3
t'=(S¢—1)p
1 Sip—1
k k
<(1-8)(1+pEllely_,_ I3+ @ +)A+E] D gVExE; M3
t'=(S¢—1)p
1
< (1= 01+ PBle(s, 1)y ll3 +3(1+ )1+ (0% + 5+ G2).
(25)
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Therefore,
1 7t
Ellef” I3 <31 6)(1+ )0’ (0 + 5%+ G?) Z )1+ p)]
’ i= (26)
3(1-0)(1+3)
< Pl 202002 4 2L 2
S Taaaip?” (0" + K"+ G7)
Let p = 2(1 5y such that 1 —|— =220 < 2 then E||e§k)||§ < wpzvf(a? + k2 + G2). O

Lemma 5. For OLCO;3-VQ with vanilla SGD and under Assumptions|I| 2| B| @] and[3] if the learning

rate n < W, we have
T—-1K-1
k
S S Bl -3
t=0 k=1
12(1 -6 41-6 27
§37}2(s+1)p02(1+%(s+1)p)+9n (s +1)%p2k2(1 + (52 )) @7)
36(1—46
=+ (52 )772(54-1)2102@2.
Proof. Let S; = L%J,
1 K K 1 K s—1 t—1
(k K K K
E BRI = Y El S-S AE) - S A )
k=1 k=1 k'=1 =0 t'=Sp
s—1 t—1 K
k k) o(k 1 K
_ZAEs)ﬁi)p— > ﬂVFk(XE/);SIE/)))—?Z | )Hz
i=0 ’*Sfp k=1
t—1
kK k k
—ZEH—— Z Z aVE (e ST gvEGad )
k'=1¢'=(S;—s)p t'=(S¢—s)p
o) ) S0
k' k' k 2
K Z K Z D simamrp D si—icapll3
k'=1 k/ 1:=0 1=0
7] t—1
K k k
ZEH—— Z Z VEU el )+ Y VERGe))3
k=1 k'=1t'=(S;—s)p t/:(Sf—S)
9 K 1 K s—1
+ 2 DBl - Zet 5~ Zzesf —imsm 1)p+zesf Ll
k=1 k’ 1 k’:l =0
(28)
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The first term is bounded by

2772 K 1 K t—1
K’ K’ k k
S Bl - > VE (i )+ DD VRT3
k=1 k'=1t'=(S;—s)p t'=(S;—s)p

9 2 K t—1 1 K 2
<ZEYE ( & 22 (VA6 = Vi) + (VR 6) - ka<x§f“>>>>

k=1 t'=(S¢—s)p k'=1 9
2772 K t—1
T B Y (g Z () + VA
k=1 t’:(Stfs)p k’ 1
2772 K t—1 1 K
k' k' k k k
=5 D El- o (VA ) - Ve i) + (VR €07) - Vi)l
k=1t'=(Sy—s)p k'=1
2772 K t—1
+ESELY (% Z V() + VA D))
k=1 t’:(Stfs)p k’ 1
2n? K
k k
== BV (xy”:€57) = ¥ filxp”) 3
k=1t'=(S;—s)p
2772 K t—1 1 K
+72 Z (t—(St—S)p)EH—E vak’( )+ka(xt/ )3
k=1t'=(Sy—s)p k=1
2 o, 20°(s+1)p (k' ) (k)N 2
< 2(s + Dpo’ + == Z ZEH - = Z Ve (x0)) + Vr(x )12
t'=t—(s+1)p k=1 k’ 1
(29)
. . . 1 K 1 K _ 2 _ 1K 2 _
where the third inequality follows = > " ll% > i ar — aklls = w2 1 llaxls
K K
H% Dk axll3 < % > k=1 llax |13, and
1 & 1 &
/ k
2B~ X V) + VEe()I3
k=1 k/ 1
K 1 K
== ; IV £i(™) = VAu®)I3 + IV Fr (&) = VFEIS + IV F(Re) — g;vn/(x,’f )13
K
<% Z (L)% — x(P |3 + 82 + — Z IV fir (%e) = V7 fr (x5 )13
k=1 k’ 1
K
< Z 1% — x¢ |13 + 342
(30)
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The second term is bounded by

s—1

K
7 ZEH 7 Z s Z e St i—s—1)p + Zeg?ﬁifs—l)p”g

k’ 1 1 =0
1-|—5 _’_% K K s—1 s—1 *) )
E:EW* wtgﬂ2 K E: E:E:%& imamtyp 2 €5 —imacnpll3
k'=1 k=1 k’ 11:=0 =0
_201+5) 20+ &Koo o0
K ZEH (Se— s)pH2 K ZEH €5 —i—s— 1)p||2
k=1 i=0
2(1+ ) (k) 5 2(1+s) K ol
3“Rf*§:MermJb i E:E:Ewstzslmh
k=1 i=0

—_

@+1 k 24(1 -6
ZZEHe(sf ifs)p”g S— 5 s+ )P (0 + K+ GP),

€29

where the last inequality follows LemmaEl Combine the bounds of the first term and the second
term, we have

1 K
s k
= D El% x5
k=1

t—1 K
6L2
<27 (s+1)po® + 2% (s +1)p Y (TZE\\xt—xt M2 + 3k2)
t'=t—(s+1)p =
24(1 -6
+ (62 )($+1)2p2172(02+/€2+G2)

12(1 - 6)

52 (s+1)p) +6n°(s +1)°p°k>(1 + 41 -9), , 24(1 - 9)

< 20%(s + 1)po”(1 + )t s+ )6

t—1

K
1 -
+120*L%(s 4+ 1)p Z 74 Z E|x; — ng) 2.
k=1

t'=t—(s+1)p
(32)
Sum the above inequality from¢ = 0to ¢ =T — 1 and divide it by T,

T-1K-1

= >0 D Bl X3

t=0 k=1

12(1 -6 4(1 — 24(1 —
s2n2<s+1>pa2<1+%mnmﬁn s+ 122 ) PO oy

1K—

+ 1207 L% (s + 1)%p?

M’ﬂ

1 (k
T E[l% —x{"[3.
t

i
<

k=1
(33)
Therefore,

T-1K-1

2 >0 3 Bl - X

t=0 k=1
_ 2P(s + Dpo®(1+ 2 (s + Dp) +61%(s + 1% w21 ) + 2502 (s + 1)%%G?
- 1—-12n2L2(s+1)%p ’

(34)
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If we choosengm,
T-1K-1
b DAL
t=0 k=1
12(1 -6 41 -9 36(1—90
<20+ 0po?(1+ 2D (s ) o 4 1z 4 220 O e
(35)
O

Theorem 1. For OLCO;- VQ with vanilla SGD and under Assumptions [I} 2| B} B} and [ if the
learning rate n < mln{m, 57 ) then

6 — [« 9nLo? 14(1 =6
7 ZEHW w3 < S o) LT 4 yoneras t pot 4 D s 1)
k: nT K )
51 -0 168(1 — ¢
+36772L2(8+1)2 2 2(1+ (62 ))+ (52 )7]2L2(8+1)2p2G2.
(36)
Proof. According to Assumption [T}
- - -\ - - L_ .. -
Erf(Xer1) — f(%) S E(VF(Xe), Xeq1 — X¢) + E]Et||xt+1 —%i[l3
K
n(Vf (%), Z ” TR ZVF (xt: )13
k:
(37
For the first term,
1 K K
%), 2 VA = < IVIEIB ~ (VG 7 SVAK) — Vi)
k=1 k=1
K
< ~||Vf XI5+ 5 Z ~ViE)IE 38)
2 k) 9
< —*IIVf )3+ Z 1% — x|z,
where the first equality follows that V f(X;) = 7= Zk Y fk( +). For the second term,
EtH—ZVFk eI
1 K K
k k k ~ ~
= Bl SO(VAE:6) — O + o SOV — Vi(E0) + VI3
k=1 k:
1 & 1 &
k k ~ ~
< 3Bl 72 D (VE(":67) = VA3 + 3l 2 o (VAe™) = V(@) I3+ 31V (o)1
k=1 k=1
30
E Z 1% — x{7[13 + 3|V £ (%) 113
(39
Combine them and we have
- - L 3n°Lo?
Er(%+1) — f(%) < =2 (1= 39L) [V R)II3 + L5 (1 +3nL) Z % = x{9)13 + =L
(40)
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If we choose n < 9L’

K
- - n k 77 2Lo?
Ei(%i1) - f(%) < —J VA& + =L ;n xS @D
1 K (R)
Then for the averaged parameters = >, X/,
K
IVf(= Z N3 <2V Z = V&3 + 2V ()13
k k
K
k k -
<2l Ze§ Opll3 + 21V (&3 < Z e} |13 + 20V S ()11
- - K
6[f(%¢) — E¢f (Xpx1) 977La 4L k 212 k
< A =Gl ant X3+ 2D el 8.
@
Take total expectation, sum from ¢ = Oto ¢ = T — 1, and rearrange,
K
*ZEIIW Z I3
k
6 (%o) — Ef(x7) 977La 2T-1 K . 2 T-1 K
< HG) “ BT Sl + o D0 Dl — X3
n t=0 k=1 t=0 k=1
6[f(x0) — Ef(x7)] 971L02 24(1=6) 5 5,9, o 2 2
<
< T + % + 52 pn“L*(c” + k* + G%) )
12(1 -9 41 -6
+127]2L2(3+1)p02(1+%(5+1) ) + 3607 L% (s + 1)?p*k2(1 + (52 ))
144(1 = 6)
5 772L2(s+1)2p2G2
6(f(x0) = f+) | 9nLo® 272 2 14(1 - 4)
12n°L 1 14— 1
< T + = T2 L (s + Upo(1+ ——(s + 1)p)
5(1—-90 168(1 — ¢
+361°L7(s +1)°p?*k*(1 + (52 ))+ (52 )772L2(s+1)2p2G2,
where the second inequality follows Lemma[d]and 5] O

E PROOF OF THEOREM

Lemma 6. For OLCO;-TC with vanilla SGD and under Assumptions |2} 5| B} and[3] the local error

satisfies
12(1 -9
B3 < 2002 4 w2 1 62). @)
Proof. Same as the proof of Lemma except that e'?) is replaced with e(*) O
3 p . P (Sp—s—1)p 1S TEP (Si=1)p°

Lemma 7. For OLCO;3-TC with vanilla SGD and under Assumptions[2} 3| {| and 3] the server error
satisfies

962 —0)(1 =) 5 5

Elle:]|3 < 5 n*(o? 4+ k* + G?). (45)
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Proof. Let Sy = L%J,

k: k k
ZcN )3 < 2E|— Zc (A%~ Zﬁsmllfr?ﬁl\ ZA;LH%
k k k
<=z annc (AG) ~ éfL||2+—ZE||A<stLH§ (46)
<2229 ZEHAMHQ

Following the proof of Lemmane have E|| Agi)p I3 < % p’n?(02+k%+G?). Therefore,

Elle:3 = Elles,p|3 < (1 -6 EH—ZC (AS)) + egs 1l

K
k)
< (1-0)( Z (G5 + (1= 8)(1+ p)Ellecs, 1,13
k

N \

L4
<2(2-9)(1 - ZEIIAMIIQ —8)(1+ p)Ellecs, 1) 13

<2(275)(175)(1+1) 3(1+%)
- p'1—(1=0)(1+p)
6(2 —0)(1—8)(1+ 1)

G ETE

P’ (0 + 5% + G?) + (1= 6)(1 + p)Ellecs,—1), I3

PPn2(0” + K2+ GP).
(47)
Letp = 2(1 57 such that 14 =22 < %,thenIEHe,gk)H% < BCDA=2,2(52 4 121 G2). O

Lemma 8. For OLCO;-TC with vanilla SGD and under Assumptions|I| 2| B| M and[3] if the learning
rate n < and let h(8) = 352 (1 + (2 7)), we have

1
6L(s+1)p

T—1K—
1
= Z E|# — x" |2 < 3n2p02(s + 1 + 72h(6)p) + In2p?k2((s + 1)2 + 24h(5)) + 216h(5)n>

t=0 k=1
(48)
Proof. Let S; = L%J,
s—1 t—1
(k K k'
fZEth—xt I3 = KZ ||f2 (=Dl ) = > nVE )
k=1  i=0 t'=Sp
s—1 t—1
k k k
—(=Ye@al ) - S avRKE ) Kzet —eryl3,
i=0 t'=S.p k=1
(49)
where
s—1 s—1 s—1 (S¢—i)p—1

p’G?.

® (k) * )y 4 o) (k)
DA ) = IAE e ) =00 D VR el ), el i)

i=0 i=0 =0 t/=(S,—i—1)p
o e (). (), olh) (k)
Y. VET&T) tel ), e,

(50)
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Therefore
1 K
~ k
= D El% - x"|3
k=1
1 K t—1
:?Z ||_7Z Z aVE (e ST gvEa )
k= k'=1t'=(S;—s)p t/*(Sf—s)
1 K
k k k k'
— o Yl — e )+ (eh ), —el) **Ze( PR (51
k=1 k'=1
77 K t—1
K’ K
<% 2P H——Z S RGN S VR
k=1 k'=1t'=(St—s)p t'=(St—s)p
2 « ) (k)
k 2
+?Z ZeSt 9)p+e(51 s)p_eS,p e(St—s)p||27
k=1 k’ 1

where the first term can be bounded following Egs. (29]30). The second term satisfies

2 KO (k) 2
=2 El- Z (s, + €(51—gp — €50y — (5o ll3
k=1 k’ 1
6 — 1 & 6 — 6 —
k' k k
< 2 O El- 2 Do es) ), +elo ol + 7 D EleSIE + = D Elles,—s,l3
k=1 k=1 k=1 k=1 (52)
K
<9 &2 E E
< 7 D Elle(s) ), I3 + Z ||estp||2+f2 legs,—s)p 3
k=1
1-9 42—-6
<71+ ( 5 ) 1apt(of 412 G2

where the last inequality follows Lemmas|§|andl Let h(6) = 452 (1+ 4(2 4229)y Combine the above

two inequalities and we have

1 K
(K
7 O El% — x5
k=1

t—1

6L2
<2(s+1)po” +27°(s+1)p > ZEth — xM|12 4 3k2) + 144R(5)p* (02 + K2 + G?)
t=t— (s+1)p
< 20%po?(s + 1+ 72h(8)p) + 61°p? 2((s +1)2 + 24h(6)) + 144h(8)p*n*G*?
t—1
1 -
+1m* L (s+1)p > e Z E[% —x\™|2.
t'=t—(s+1)p k=1
(53)
Following Eqs. (33|34]33).
T-1K-1
1 -
= 37 ST ElR — x{73 < 30%po® (s + 1+ T2h(8)p) + In*p*k3((s + 1) + 24h(6)) + 216h(8)n*p*G? .
t=0 k=1
(54)
O
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Theorem 2. For OLCO;-TC with vanilla SGD and under Assumptions and [3] if the
learning rate n < min{m, i} and let h(6) = 152 (1 + 4(2 720, then

S <> fo) | oL
7 2 BV th W <® + L

(55
+ 12n*po?(s + 1 + 80h(8)p) + 12172p K2(3(s + 1) + 80R(6)) + 960n*p>G>h(5) .
Proof. Following the proof of Theorem|T} we have the same inequality as Eq. @I):
- - n oanL? 1 3n?Lo?
Eof (1) = F(%e) < — 4 [VF&)I3 + ”—on x5
Then for the averaged parameters % Zle X,Ek),
1 & 1
k k - -
V552 D3 < 20V F (37 Dox™) = VIG)IE + 201V 503
k=1 k=1
| K
k .
<205 e +egl3 + 2V R)I3
k=1
412 & AL2 N
< == > le3 + 7|\et_sp||§ +2 V()3
kf
6[f(%) — E¢f (Rei1)] 977LU " A2 & o AL?
e ant X153+ = D et 13 + —=lle—sp 3
g —
(57)
Take total expectation sum from¢t = 0tot =T — 1, and rearrange,
= ZEHVf Z I3
Kz
ol Go) - B/ 6r)] | 90Lo” LGRS pe® 2 2 M2 e )
< 2y S B+ o > Eller ol
t=0 k=1 t=0
2 T-1 K
> E[l% - x{M|3
t=0 k=1
6[f(%0) —Ef(xr)] , 9nLo® 2 9 A1 =96)  32(2-0)(1—-9)
< 12 1 2
< T + = +12n7po (s+1+72h(6)p+ 2 Pt 5 P)
41 -9 22-6)(1-0
+ 120" K% (3(s + 1) + 72h(5) + (52 ) 3 52( ))
41 -9 22—-90)(1-96
+ 120°p*G?(72h(5) + (52 ) | 3 52( ))

6(f(X0) — fx) n 9nLo?
- nT K
+ 120%pa®(s 4+ 1 + 80h(8)p) + 120*p*k%(3(s + 1)% + 80Ah(8)) + 9607*p*G2h(5) ,

(58)
where the second inequality follows Lemmas 6] [7]and [8] O
F PROOF OF THEOREM 3]
We first define two virtual variables z; and p, satisfying
E-(x, —%X4—1), t>1
_ T—p t t—1 = 59
P: {0’ =0 (59)
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and
Z; =X, +P;- (60)
Then the update rule of z; satisfies
Ziy1 —Zy = (it+1 - it) + 1 (Xt+1 - Xt) — u(it - it71>
N N T I TS N TR IS
__n k) K N k ko k
Kk:1mt+1 l_uKk:1mt+1+1_uK;mt
n - (k) (k) (1)
T UK ;(mt+l pmg)
K
Z Ve (x(P; €M)
which exists for OLCO3-OC, OLCO3-VQ and OLCO;-TC.
Lemma 9. For OLCO; with Momentum SGD, we have
3(c? + k% + G?
EmP|g < AT FH 4G (62)

(1—p)?

Proof.

¢

t—1
k k k
Elm{* |3 =B Y u 1 VR €03 = Zut = EHZ - tlt,VFuxi/%fL))na
t'=0 =0 t

’—

t—1

Y k 3((7 —I—K —I—G2)
< QoW TIPEIVEMT G < S s
/=0 H
(63)
O
Lemma 10. For OLCO; with Momentum SGD, we have
3uln?(o? + k2 + G?
Bllp, |2 < ¥ ¥ £ G (64)
(1—p)
Proof.
2 p 2 2 1 = (k)2
E P =—— _F|x — X 1 — < — Ellm
|| tH (1*#)2 H t t || ( ) || ; t || (17N)2K; || t ”2
. 31202 (02 + K2 + G2)
- (L—p)*
(65)
O

Lemma 11. For OLCO3-VQ with Momentum SGD and under Assumptions 2] and[3] the local
error satisfies

K 12(1 —9)
Ellei™||3 <

<S mp27]2(0'2 + K/2 + G2) . (66)

Proof. Let S, = | L],
k k k: k k
Elle” |2 =Elle |3 = E[c(AL)) — AL |2 < (1 - §)E| AL I3

Srp—1
B (k) (k)
=(1=0E[ Y mmy el )05 ©7)
t’:(St—l)
K 1. 30°p*(0® + K* + G?)
< (1—5)(1+P)]E||egsz—s_1)p“§+(l 0)(1 + p) (1—p)? .
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Therefore,
212(02 4 K2 2) 1211

k pn* (0" + K+ G7) " S ;

Elle™ 3 < 31— 8)(1 + > L [(1=8)(1+p)
i=0 (68)

31=0)1+7) pPpP(o® + K%+ G?)
_1*(1*5)(1+P) (1—p)?

Letp = 2(1 57 such that 1 +2 = 220 < 2 then Elel®|2 < %p (2 +r2+G%. O

Lemma 12. For OLCO3 VQ with Momentum SGD and under Assumptions[1) 2| 3| B} and 3] if the
learning rate n < we have

\ﬁL(S‘-ﬁ-l)p
T-1 K
RO 4n?0? 3 12(1 —6)(s + 1)2p?
KT ;;E”zt Xy ||2 = ( _u)g((l_M)Q +(S+1)p+ 52 )
120 K2 1 5 o A1 —10)(s+1)%p? 12n*G? 1 4(1—0)(s+1)%p?
Taopr o T 2 Tt oz ):

Proof. Let Sy = [%J,

K s—1
1 k % k K
7 > Bl —x(V[3 = ZEH*Z (=2 A = (6 = %)
k=1

k'=1 i=0
s—1 1 K
k k k %
— (A~ sy xS el
1=0 k'=1
t—1—(St—s)p t—1 t—1—t'
k T K'Y, oK -
szz mis gy 2 w3 aVEeE) 30 )
k'=1 7=0 t'=(S¢—s)p =0
t—1—(St—s)p t—1 t—1—t'
k T (k). o(k .
—omi_y, > T Y aVETE) 3 )
=0 t'=(S¢—s)p =0
1 K k) 1 K s—1 s—1 *)
K k 2
+ K Z € _spt K Z Ze Sg—i—s—1)p Ze(St—i—s—l)pHQ
k=1 k=1 4=0 i=0
377 t—1—(S¢—s)p " t—1—(St—s)p
< ZEII* Z (5o Z T TCRRD DR G
k=1 =0 =0
t—1—t t—1 . . t—1—t
ZJEH—Z Z VE (0 elf Z p = > VRGP ED) S umIB
k'=1t'=(S:—s)p t'=(Sy—s)p 7=0
3 ( K s—1 s—1 *)
k k 2
+§ZE” Z sp+*ZZe<st sty T D €1 —isnpll3-
k=1 k=1 k'=1i=0 i=0
(70)
The first term
t—1—(S¢—s)p t—1—(S¢—s)p
k - k -
ZEHme(sR D D D DN
k'=1 =0 7=0
K t—1—(S¢—s)p 2( .2 2 2
3n? (k) L ® g2 0P+ T+ G
S ? Z]E”m(st—s)p Z ||2 — 2K Z]E”m(sf s) ||2 — (1 . /1/)4 ’
k=1 7=0
(71)
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where the last inequality follows Lemmal9] Following Eq. (29), the second term can be bounded by

302 K 1 XK t—l t’ t—1—t'
k T
WS Y Y vAGDE) Y - S vAed) X
k=1 k'=1t'=(S;—s)p t'=(St—s)p =0
3?72 K t—1 1 K t—1—t'
K, (K k), o(k ™
SIESEL Y e S VR el) - V) - (VR - VRG] YD w3
k=1 t'=(St—s)p k'=1 7=0
3772 K t—1 t—1—t'
+7ZEII > Zwk/ x ) = VA D Wl
k=1 t’*(S,—s)p k’ 1 7=0

k k
Z Z E|VE.(x;67) - v hx))12
k 1¢'=(S—s)p

2

+(1_3%< (S —s)p Z Z EH*ZVﬁ«xt/ — VFr(x))|3

k=1t'=(S¢—s)p k'=1
3%(s+ 1)po?  3n*(s+1)p — 6L2 k
<=t 7 D 2Bl —xl3 4+ 36%),
(1=p) (1=n) ﬂ—%(+U k=1
—t—(s+1)p

(72)

where the last inequality follows Eq. (30). Combine the bounds of the first and second term with

Lemma [ T]and Eq. (31),

1 K
(k
= 2Bl —x"|I3
k=1

(o2 + K2+ G2) 32 (s+Dpo?  3n(s+1)p = L2
< + + ) ZEllztf X3+ 34%)
AV — )2 AV t
(1—p) (1—p) (1—p) t/:tf(sﬂ)p
K s
3(s +1) (k) 2
= 2 D Ellefs) iy, l3
k=1 i=0
IMm?(0? + k2 +G?)  3n*(s+ 1)po? n % (s + 1)?p%k?  36(1 —6)n*(s + 1)%p*(0? + k> + G?)
(1 —p* (1—p)? (1—p)? (1—p)?62

t—1

1872 L%(s + 1)p 1 &
g Y e 2 Bla —xl3.

A =
(73)
Sum the above inequality from¢t = 0to¢t = T — 1 and divide it by 7T,
L Zi;iﬂﬂzt B th)H2 < (f”?_‘;)z ( i _3,u)2 s+ 1p+ 12(1 - 5)6(25 + 1)2p2)
" (fn—%;(u - MR e 5); LI (?n—zg;((l —1u)2 e 6)fs§ LU
18172512(_5 +1)%p? % j_oléﬂ*”zt _ x|z,
(74)
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If we choose n <

VF’L@+1)
—— An? 3 12(1 = 6)(s + 1)2p?
t=0 k=1
12772/12 1 9 o A1 —108)(s+1)%p? 12n%G? 1 4(1—6)(s + 1)%p?
+(1—u)2((1—u)2+(8+1)p i 52 )+(1—u)2((1—u)2+ (75;52 )
O

Theorem 3. For OLCO;-VQ with Momentum SGD and under Assumptions 1] and P if the

learning rate n < mm{%, o ) and let g(y1,9,5,p) = = H)g + 60(175)5(5“)2’92, then

— 1 6(1— p)(f(xo) = f.) | 9Lno®
TZEva KZ nTO +(1—,LL)K
k=

42 L?
+ (17777#)2[(4(8 + Dp+9(p,6,8,0)0” + (12(s + 1)°p* + g(, 6, 5,p))&* + g, 6, 5, p) G*] .
(76)

Proof. Following the proof of Theorem [I]and the update rule Eq. (61, we have a similar inequality
as Eq. (41) by choosing n < -

Eif(zi41) — f(ze)

U B2 L _ 30> 3L (k)2 2
< (519 @l + QKZIIZt—xt 1B+ g+ T e =B + 31910 )
K
n 3Ln L?n 3Ln 3Ln?0?
=— 1— 1 _
sy (1 T IV IR + g (1 =) 3 sl + 5o
K 2 2
(k)2 , SLmo
< - oo
= 3(1 )va(zt)”Z K;”Zt X ||2+2(1—,UJ)2K
77
Then for the averaged parameters % Zf 1 (k),
1 X K
k
IV £ SO <2095 (e S x) — V) + 209 £ a0)l}
k=1 K
K
k
< 2L ZeE Vep = Pell3 + 20V F ()13 (78)

k
<4L?|| = Ze§ B I3+ AL2(|p, |3 + 2]V f(z)3.

Therefore
K 72 T=

T—-1 . . L 0_ 1 K
7 2 EIVS (e Soxs < PO T R S5 S el
t=0

k= t=0 k=1
1 & 4L
- Z E|— Zeﬁfspn% + > Elp,3
K T
t=0 k=1 t=0
60 =p(xo) = f) | 9Lno?
- nT (I-pwK
4n? L2
4L
(1—p)

[(4(s+ )p+ g(p, 6, 8,p))0” + (12(s + 1)*p* + g(1, 6, 5,p))6> + g(u, 6, 5,p)G?].
(79)
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where the last inequality follows Lemmasand and g(u, 0, s,p) = (1ii)2 + 60(175%(;“)2172 :

O
G PROOF OF THEOREM [4]

Lemma 13. For OLCO;-TC with Momentum SGD and under Assumptions andd] the local
error satisfies

(k)12 12(1=6) 5 5, 5 2 2
Ele; HQSWPTI (0% + K"+ G7). (80)
Proof. Same as the fof L (k) i ith olF)
. proof of Lemma|l 1} except that €, —s_1)p 15 replaced with €5, —1)p" O

Lemma 14. For OLCO;-TC with vanilla SGD and under Assumptions 2| [3| {| and[3] the server
error satisfies

96(2—-90)(1 -6
EHetH% < ((1))(2&4) 2 2(0’ + K2 +G2) 81
Proof. Let S; = L%J Following the proof of Lemma we have ]E||A(k) 13 <
3(1+%) o’ +K>+G?
1fugﬁx1+mzjn(u L ) Therefore,

1.1
Elle:]|3 < 2(2 - 5)(1—5)(1+p ZEIIAs,pllz (1= 8)(1+ p)Ellecs,—1)ll3
k=1

1 B1+35)  pPP0® + K2+ G?)
2(2_5)(1—5)(1+;)1_(1_5)(1-4-/)) (1 —p)?

_ BR-8)(1-0)(1+ b
SH= =01+ pP0-p)

+ (1= 8)(1+ p)E|les, —1)ll3

2p2772(c72 + K2+ Gz) ,

(82)
where the first inequality follows the proof of Lemma Letp = ( 5 such that 1 + 2= % < %,
then Elle;”|[3 < Ellef*” |3 < =052 p2n? (0% + 2 + G2). 0

Lemma 15. For OLCO;-TC with Momentum SGD and under Assumptions 1| 2] B B} and ] if the

. < I S
learning rate n < JHLeinp Ve have

T-1 K

377202 3
E|jz, — x\F|2 + (s + 1)p + 72h(5)p?
3772"‘32 3 2,2 2 3n°G® 3 2
1
+ (17”2((17#)2 +3(s + 1)°p* + 72h(0)p°) + (1—u)2((1—ﬂ)2 + 72h(8)p°),
where h(5) = 12 (1 + 4(2 1229),
Proof. Let S; = L%J,
1 K s—1
(k k k K
7 O Elz — x|} = ZEHf Z (=doc@af),,) - &g —x)
k=1 k'=1 =0
o1 (84)
1
—(=Ye@ly ) - () —xP) - Z o) —erl3,
=0 k:’ 1
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where
s—1 s—1
k k k k k k k
ZC(AES)t z)p) + (thL _Xl(f )) = Z[Ags)t_i)P _eES)z—i)p] + (thL _X‘(f ))
i=0 =0
s—1 p— (St—i)p—1 ). (B (St—i)p—1—t' *) (k)
T 1 .
Z i 1pZu i Yo aVETET) Y T ey, €5
i= t'=(St—i—1)p =0
t—1—Sip t—1—t'
k r k k .
n 3 S ARG 3
=Sip 7=0
t—1—(S;—s)p t—1 t—1—t'
k - k k k k
L, X e S ARG S e,
7=0 t'=(St—s)p
(85)
Therefore,
1 X i i t—=1—(S;—s)p N t—1—(Si—s)p
?ZEHzt—xE 3= ZEH—an(sRS St e, Y W
_ k=1 =0 7=0
K t—1 t—1—t t—1 t—1—t
k k -
fe X X A - T R 3
'=1t'=(S¢—s)p t'=(Si—s)p =0
= ( ) (
k
? Z Sf -s)p Sf S)P+e51)p+et 9;0”2
k Kk
= 2K Z]E”mm s>p|‘2+*ZEH* €5, ~ €5y + €5op T e1spll3
k=1
3772 K 1 K t—1—t’ t—1 t—1—t'
k k r
LS ELY Y vRWOE) Y - S ARG S w5
k=1 K'=1¢=(S;—s)p t'=(S¢—s)p 7=0

(86)

where the first term is bounded following Lemma(9]and the third term is bounded following Eq. (72)
The second term

Mx

K
(k") (k) (k) 2
Z e(Sf s)p e(St s)p + €s.p + et_s?’||2

k:
K K
9 A A 9
< 2 D Ele(s_,) ||2+—ZEnegtLu%EZ]Ene(s,,-s)pH% &7
=1 k=1
1_6 4(2_6) 2 2 2 2 2
< 1 . 216 G?).
_(17@252( t—5 ) p (07 + K7+ G7)
Combine these bounds,
K
1 (k)2 9% (0 + K> + G?) 1-4§ 4(2 —9) 2 92, 2 2 2
§ZEHzt—xt |2 < Y (1—u)252(1+ = ) - 216p° 0% (0% + K2 + G?)
32(s+ Dpo?  32(s+1)p < L2
T a2 G 2Bl —xPE+ 3
t’:t—(s+1)p k=1

BPRLA(s+1)p 1 k)12
== 2 g2 Elwoxl
t=t—(s+1)p ~ k=1

(88)
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Sum the above inequality from ¢ = 0to ¢t = T" — 1, divide it by 7', and choose 1 <

fL(sﬂ)
—a (k) 12 377 o? 3
k 2
=0 k=1 (89)
30k 3 2 2 2 3*G? 3 2
+ 4 3(s + 1)2p% + T2h(8)p%) + 4 T2h(5)p?) .
G A O+ = = O
O
Theorem 4. For OLCO;3-TC with Momentum SGD and under Assumptions[I} 2| Bl 4] and[3] if the
learning rate n < mln{m, 1Y and let h(6) = 152 (1 + 4(2 2229)) then
T Z EIIVf( Z
k=
( 1) (fxo) = fo) | 9Lno? 6n°L* L 5 9 2
< o +2(s+ 1)p+ 168h(d)p
T (R (e EL A (R e @)
9 9
+ K%( TEE +6(s + 1)?p* + 168h(8)p*) + GQ(W + 168h(8)p?)] .
(90)

Proof. Following the proof of Theorem 3]

2 L2 L 2 2
By f(z1) — f(z) < — IVF ()3 + 57 Zuzt—xt’“nz LT

3(1 1) 2(1— p)?K
1 K
IV£(5 2 < 2V (= th — Vf@)3+2|Vfz)3
k=1
< 2|~ Zet e — Pl + 2V F(z)3 (92)

k 1

k
< 6L%|— Ze£ B N2+ 6L2 e pl|3 + 6L2||p, 12 + 2[V £ (z0)13.

Therefore
T-1 K T-1 K
1 6(1 — wlf(20) = flzr)]  9Lno® 4L
- Ellz, —
T ZEHVf ;:: )iz < T + = K xT 2 kz:l Iz — x{|13
0 T—1 K 62 =1 o T—
Z T el o7 3 Blecwl+ S i
t=0 k= t=0 =0
6(1 = p)(f(x0) = ) 9Lno* 6n°L% 5 9 >
< o +2(s+1)p+ 168h(d)p
T - wi -l oz T2t ©)p")
9 9
+ K% (——= + 6(s + 1)%p? + 168h(8)p?) + G? + 168h(8)p?)],
((1—u)2 (s+1) (0)p°) ((1_M)2 (0)p7)]
(93)
where the last inequality follows Lemmas [10] [13] [[4] and [T3] O
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