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Abstract

Federated Reinforcement Learning (FRL) allows multiple agents to collaboratively build a
decision making policy without sharing raw trajectories. However, if a small fraction of these
agents are adversarial, it can lead to catastrophic results. We propose a policy gradient based
approach that is robust to adversarial agents which can send arbitrary values to the server.
Under this setting, our results form the first global convergence guarantees with general
parametrization. These results demonstrate resilience with adversaries, while achieving
optimal sample complexity of order Õ

(
1

Nϵ2

(
1 + f2

N

))
, where N is the total number of

agents and f < N/2 is the number of adversarial agents.

1 Introduction

Reinforcement Learning (RL) encompasses a category of challenges in which an agent iteratively selects ac-
tions and acquires rewards within an unfamiliar environment, all while striving to maximize the cumulative
rewards. The Policy Gradient (PG) based approaches serve as an effective means of addressing RL prob-
lems, demonstrating its successful application in a diverse range of complex domains, such as game playing
(Schrittwieser et al., 2020; Bonjour et al., 2022), transportation (Kiran et al., 2021; Al-Abbasi et al., 2019),
robotics (Abeyruwan et al., 2023; Chen et al., 2023b), telesurgery (Gonzalez et al., 2023), network scheduling
(Geng et al., 2020; Chen et al., 2023a), and healthcare (Yu et al., 2021).

RL applications often demand extensive training data to attain the desired accuracy level. Parallelizing train-
ing can significantly expedite this process, with one approach being Federated Reinforcement Learning (FRL)
(Jin et al., 2022). In FRL, workers exchange locally trained models instead of raw data, ensuring efficient
communication and data privacy. While Federated Learning (FL) is typically associated with supervised
learning (Hosseinalipour et al., 2020), recent developments have extended its application to FRL, enabling
multiple agents to collaboratively construct decision-making policies without sharing raw trajectories.

Distributed systems, including FRL, face vulnerabilities such as random failures or adversarial attacks.
These issues may arise from agents’ arbitrary behavior due to hardware glitches, inaccurate training data,
or deliberate malicious attacks. In the case of attacks, the possibility exists that attackers possess extensive
knowledge and can collaborate with others to maximize disruption. These scenarios fall under the Byzantine
failure model, the most rigorous fault framework in distributed computing, where a minority of agents can
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act arbitrarily and potentially maliciously with the aim of disrupting the system’s convergence (Lamport
et al., 1982). In this paper, we investigate how adversaries affect the overall convergence of federated policy
gradient methods.

Related Works:

1. Global Convergence of Policy Gradient Approaches: Recently, there has been an increasing re-
search emphasis on exploring the global convergence of PG-based methods, going beyond the well-recognized
convergence to first-order stationary policies. In (Agarwal et al., 2021a), a fairly comprehensive characteri-
zation of global convergence for PG approaches is provided. Additionally, other significant studies on sample
complexity for global convergence include (Wang et al., 2019; Xu et al., 2019; Liu et al., 2020; Masiha et al.,
2022; Fatkhullin et al., 2023; Mondal & Aggarwal, 2024). We note that both (Fatkhullin et al., 2023) and
(Mondal & Aggarwal, 2024) achieve near-optimal sample complexity of Õ(1/ϵ2). In the absence of adversarial
elements, we use the work in (Fatkhullin et al., 2023) as a foundational reference for this paper.

2. Federated Reinforcement Learning: Federated reinforcement learning has been explored in various
setups, including tabular RL (Agarwal et al., 2021b; Jin et al., 2022; Khodadadian et al., 2022), control
tasks (Wang et al., 2023b), and value-function based algorithms (Wang et al., 2023a; Xie & Song, 2023),
showcasing linear speedup. In the case of policy-gradient based algorithms, it’s evident that linear speedup is
achievable, as each agent’s collected trajectories can be parallelized (Lan et al., 2023). Nevertheless, achieving
speedup becomes challenging with increasing nodes when adversaries are introduced, and this paper focuses
on addressing this key issue.

3. Byzantine Fault Tolerance in Federated Learning: A significant body of research has focused on
distributed Stochastic Gradient Descent (SGD) with adversaries, with various works such as (Chen et al.,
2017; El Mhamdi et al., 2018; Yin et al., 2018; Xie et al., 2018; Alistarh et al., 2018; Diakonikolas et al., 2019;
Allen-Zhu et al., 2020; Prasad et al., 2020). Most studies typically employ an aggregator to merge gradient
estimates from workers while filtering out unreliable ones (Xie et al., 2018; Chen et al., 2017; El Mhamdi
et al., 2018; Yin et al., 2018). However, many of these approaches make stringent assumptions regarding
gradient noise, making it challenging to compare different aggregators. Notably, (Farhadkhani et al., 2022)
introduces the concept of (f, λ)-resilient averaging, demonstrating that several well-known aggregators can
be seen as special instances of this idea. In our work, we explore (f, λ)-averaging for combining policy
gradient estimates from workers.

4. Byzantine Fault Tolerance in Distributed Reinforcement Learning:. We note that (Fan et al.,
2021) introduces an SVRG-PG based algorithm with a local sample complexity bound of O

(
1

N2/3ε5/3 + α4/3

ε5/3

)
,

where N represents the number of workers and α denotes the fraction of adversarial workers. However, they
do not provide global convergence guarantees and require that the variance of importance sampling weights
is upper bounded, which is unverifiable in practice. Moreover, their result is sub-optimal in N , which fails to
provide linear speedup even when no adversaries are present. They additionally perform variance reduction
with samples drawn from the central server, assuming its reliability. This is not generally allowed under
federated learning since this could lead to data leakage and privacy issues (Kairouz et al., 2021). In contrast,
our study centers on the global convergence of federated RL while keeping the server process minimal,
aggregating different gradients using (f, λ)-resilient aggregator (Farhadkhani et al., 2022), without requiring
additional samples at server.

Distributed RL algorithms with adversaries have been studied for episodic tabular MDPs in (Chen et al.,
2023c). Another line of works focus on empirical evaluations of Federated RL with adversaries (Lin &
Ling, 2022; Rjoub et al., 2022; Zhang et al., 2022; Xu et al., 2022) and do not provide sample complexity
guarantees.

Main Contributions: In this paper, we address the following fundamental question:

What is the influence of adversaries on the global convergence sample complexity of Federated Reinforcement
Learning (FRL)?

To tackle this question, we introduce Resilient Normalized Hessian Aided Recursive Policy Gradient (Res-
NHARPG). Res-NHARPG integrates resilient averaging with variance-reduced policy gradient. Resilient
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averaging combines gradient estimates in a manner that minimizes the impact of adversaries on the algo-
rithm’s performance, while variance reduction accelerates convergence. Our main result is that the global
sample complexities of Res-NHARPG with (f, λ) averaging is O

( 1
ϵ2 log

( 1
ϵ

) ( 1
N + λ2 log(N)

))
. Here, N de-

notes the number of workers and f < N/2 denotes the number of faulty workers. The significance of our
contributions can be summarized as follows.

1. This paper provides the first global convergence sample complexity findings for federated policy
gradient-based approaches with general parametrization in the presence of adversaries.

2. We derive the sample complexity for Res-NHARPG for a broad class of aggregators, called (f, λ)-
aggregators (Farhadkhani et al., 2022). This includes several popular methods such as Krum (Blan-
chard et al., 2017), Co-ordinate Wise Median (CWMed) and Co-ordinate Wise Trimmed Mean
(CWTM) (Yin et al., 2018), Minimum Diameter Averaging (MDA) (El Mhamdi et al., 2018), Geo-
metric Median (Chen et al., 2017) and Mean around Medians (MeaMed) (Xie et al., 2018).

3. We observe that for certain choices of aggregators (MDA, CWTM, MeaMed), our proposed approach
achieves the optimal sample complexity of Õ

(
1

Nϵ2

(
1 + f2

N

))
, where Õ ignores logarithmic factors

(see Remark 4.7). In particular, this implies linear speedup when f = O(Nδ), where δ ≤ 0.5.

We also provide experimental results showing the effectiveness of our algorithm under popular adversarial
attacks (random noise, random action and sign flipping) under different environments (Cartpole-v1 from
OpenAI Gym and InvertedPendulum-v2, HalfCheetah, Hopper, Inverted Double Pendulum and Walker
from MuJoCo).

We obtain a significant improvement over the original bounds for (f, λ)-resilient averaging in the context
of stochastic optimization (Farhadkhani et al., 2022). We achieve this by showing that our policy gradient
update direction has certain desirable properties that allows us to utilize sharper concentration inequalities,
instead of a simple union-bound (see Section 5).

2 Problem Setup

We consider a discounted Markov decision process defined by the tuple (S, A, P, r, γ), where S denotes the
state space, A denotes the action space, P(s′|s, a) is the probability of transitioning from state s to state
s′ after taking action a, γ ∈ (0, 1) is the discount factor, and r : S × A → [−R, R] is the reward function
of s and a. At each time t, the agent is at the current state st ∈ S and takes action at ∈ A based on a
possibly stochastic policy π : S → P(A), i.e., at ∼ π(·|st). The agent then obtains a reward rt = r(st, at).
The sequence of state-action pairs τ = {s0, a0, s1, a1, s2, a2, · · · } is called a trajectory.

We consider a parameter-server architecture with a trusted central server and N distributed workers or
agents, labelled 1, 2, · · · , N . We assume each agent is given an independent and identical copy of the
MDP. Among these N agents, we assume that f are adversarial, with these agents providing any arbitrary
information (such adversaries are also called Byzantine adversaries). The aim is for the agents to collaborate
using a federated policy gradient based approach to come up with a policy π that maximizes the value
function, i.e.,

max
π

J(π) := Es0∼ρ,at∼π(·|st),st+1∼P(·|st,at)

[ ∞∑
t=0

γtrt

]
, (1)

where the initial state s0 is drawn from some distribution ρ. In practice, the state and action spaces are
typically very large and thus the policy is parameterized by some θ ∈ Rd. The problem in equation 1 now
becomes finding θ using a collaborative approach among agents that maximizes J(πθ). However since this
maximization problem is usually nonconvex, it is difficult to find the globally optimal policy.

Let J(θ) denote J(πθ) henceforth and let J∗ = maxπ J(π). The optimization problem equation 1 can be
solved using the Policy Gradient (PG) approach at each agent, where the gradient ∇J(θ) is estimated through
sampling trajectories at that agent and observing rewards collected and then used in gradient ascent.
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Using the current estimate of the parameter θ, we aim to find ∇J(θ) using the sampled trajectories
at the agent. Let G ⊂ {1, 2, · · · , N} be the set of good workers of size N − f . For n ∈ G, let
τ (n) = {s

(n)
0 , a

(n)
0 , s

(n)
1 , · · · , a

(n)
H−1, s

(n)
H } be a trajectory sampled by agent n under policy πθ of length H

and R(τ (n)) =
∑H

h=0 γhr(s(n)
h , a

(n)
h ) be the sample return. We denote the distribution of a trajectory τ

of length H induced by policy πθ with initial state distribution ρ as pH
ρ (τ |θ), which can be expressed as

pH
ρ (τ |θ) = ρ(s0)

∏H−1
h=0 πθ(ah|sh) P(sh+1|sh, ah). The gradient of the truncated expected return function

JH(θ) := Es0∼ρ,at∼πθ(·|st),st+1∼P(·|st,at)[R(τ)] can then be written as

∇JH(θ) =
∫

τ

R(τ)∇pH
ρ (τ |θ)dτ =

∫
τ

R(τ)
∇pH

ρ (τ |θ)
pH

ρ (τ |θ) pH
ρ (τ |θ)dτ = E[R(τ)∇ log pH

ρ (τ |θ)].

REINFORCE (Williams, 1992) and GPOMDP (Baxter & Bartlett, 2001) are commonly used estimators for
the gradient ∇J(θ). In this work, we will be using the GPOMDP estimator given below:

g(τ (n), θ) =
H∑

h=0

(
h∑

t=0
∇θ log πθ(a(n)

t |s(n)
t )
)

γhr(s(n)
h , a

(n)
h ). (2)

The above expression is an unbiased stochastic estimate of ∇JH(θ) (Baxter & Bartlett, 2001).

3 Proposed Algorithm

In Res-NHARPG (given in Algorithm 1), each good agent n ∈ G computes a variance-reduced gradient
estimator, d

(n)
t , in a recursive manner as follows:

d
(n)
t =(1 − ηt)(d(n)

t−1 + B(τ̂ (n)
t , θ̂

(n)
t )(θt − θt−1)) + ηtg(τ (n)

t , θt), (3)

where {ηt}t denotes a suitable choice of parameters, B(τ, θ) := ∇Φ(τ, θ)∇ log p(τ |πθ)T + ∇2Φ(τ, θ) with
Φ(τ, θ) :=

∑H−1
t=0

(∑H−1
h=t γhr(sh, ah)

)
log πθ(at, st), τ

(n)
t ∼ pH

ρ (·|πθt
), τ̂

(n)
t ∼ pH

ρ (·|π
θ̂

(n)
t

), and θ̂
(n)
t = q

(n)
t θt +

(1 − q
(n)
t )θt−1 where q

(n)
t is sampled from U([0, 1]).

Algorithm 1 Resilient Normalized Hessian-Aided Re-
cursive Policy Gradient (Res-NHARPG)

1: Input: θ0, θ1, d0, T , {ηt}t≥1, {γt}t≥1
2: for t = 1, . . . , T − 1 do
3: ▷ Server broadcasts θt to all agents
4: ▷ Agent update
5: for each agent n ∈ [N ] do in parallel
6: q

(n)
t ∼ U([0, 1])

7: θ̂
(n)
t = q

(n)
t θt + (1 − q

(n)
t )θt−1

8: τ
(n)
t ∼ pH

ρ (·|πθt); τ̂
(n)
t ∼ p(·|π

θ̂
(n)
t

)
9: v

(n)
t = B(τ̂ (n)

t , θ̂
(n)
t )(θt − θt−1)

10: d
(n)
t = (1 − ηt)(d(n)

t−1 + v
(n)
t ) + ηtg(τ (n)

t , θt)
11: end for
12: ▷ Server Update
13: dt = F (d(1)

t , · · · , d
(N)
t )

14: θt+1 = θt + γt
dt

∥dt∥
15: end for
16: return θT

The update in equation 3 is inspired by the N-
HARPG algorithm in (Fatkhullin et al., 2023) since
its use of Hessian information was shown to help
achieve sample complexity of order O

( 1
ϵ2

)
, which

is currently the state of the art. The algorithm
draws inspiration from the STORM variance reduc-
tion technique (Cutkosky & Orabona, 2019), but in-
stead of relying on the difference between successive
stochastic gradients, it incorporates second-order in-
formation (Tran & Cutkosky, 2022). This approach
removes the dependency on Importance Sampling
(IS) and circumvents the need for unverifiable as-
sumptions to bound the IS weights (Fatkhullin et al.,
2023). In Step 10 of Algorithm 1, the update di-
rection d

(n)
t is computed by adding a second-order

correction, (1 − ηt)v(n)
t (as defined in Step 9), to

the momentum stochastic gradient (1 − ηt)d(n)
t−1 +

ηtg(τ (n)
t , θt). The uniform sampling procedure in

Steps 6-9 ensures that v
(n)
t is an unbiased estimator

of ∇JH(θt)−∇JH(θt−1), closely resembling the term
used in the original STORM method (Cutkosky &
Orabona, 2019).
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In Step 9, we do not need to compute and store B(τ, θ) but only a term of form B(τ, θ)u which can be easily
computed via automatic differentiation of the scalar quantity ⟨g(τ, θ), u⟩ (Fatkhullin et al., 2023). This
allows us to exploit curvature information from the policy Hessian without compromising the per-iteration
computation cost.

Aggregation at the Server: At each iteration t, a good agent always sends its computed estimate back to
the server, while an adversarial agent may return any arbitrary vector. At the server, we aim to mitigate the
effect of adversaries is by using an aggregator to combine estimates from all agents such that bad estimates
are filtered out.

The server receives d
(n)
t , n = 1, 2, · · · , N and uses the following update

dt = F (d(1)
t , d

(2)
t , · · · , d

(N)
t ), and (4)

θk+1 = θk + γt
dt

∥dt∥
, (5)

where F is an aggregator and γt > 0 is the stepsize. For the robust aggregator F , we consider (f, λ)-averaging
introduced in (Farhadkhani et al., 2022) as this family of aggregators encompasses several popularly used
methods in Byzantine literature. The aggregator function aims to make our algorithm resilient to adversaries.
The last step of the algorithm (Step 14) uses the direction dt with normalization to update the parameter
θt+1.

We now define (f, λ)-resilient averaging as in (Farhadkhani et al., 2022) below for ease of reference, where
f < N/2. We note that f < N/2 is the optimal breakdown point as no aggregator can possibly tolerate
f ≥ N/2 adversaries (Karimireddy et al., 2020).
Definition 3.1 ((f, λ)-Resilient averaging). For f < N/2 and real value λ ≥ 0, an aggregation rule F is
called (f, λ)-resilient averaging if for any collection of N vectors x1, . . . , xN , and any set G ⊆ {1, . . . , N} of
size N − f ,

∥F (x1, . . . , xN ) − xG∥ ≤ λ max
i,j∈G

∥xi − xj∥

where xG := 1
| G |
∑

i∈G xi, and | G | is the cardinality of G.

Several well-known aggregators such as Krum, CWMed, CWTM, MDA, GM and MeaMed are known to be
(f, λ)-resilient. We note that for these aggregators, λ as a function of f is summarized in Table 1, where
these values are from (Farhadkhani et al., 2022). As a result, our unified analysis provides guarantees for
all the above mentioned methods. We define and discuss these aggregators in Appendix B.

4 Assumptions and Main Result

In this section, we first introduce a few notations and list the assumptions used for our results. Let dπθ
ρ ∈ P(S)

denote the state visitation measure induced by policy πθ and initial distribution ρ defined as

dπθ
ρ (s) := (1 − γ)Es0∼ρ

∞∑
t=0

γt P(st = s|s0, πθ) (6)

and νπθ
ρ (s, a) := dπθ

ρ (s)π(a|s) be the state-action visitation measure induced by πθ.

We assume that the policy parametrization πθ is a good function approximator, which is measured by the
transferred compatible function approximation error. This assumption is commonly used in obtaining global
bounds with parametrization (Agarwal et al., 2021a; Liu et al., 2020).
Assumption 4.1. For any θ ∈ Rd, the transferred compatible function approximation error, Lν⋆(wθ

⋆; θ),
satisfies

Lν⋆(wθ
⋆; θ) := E(s,a)∼ν⋆

[(
Aπθ (s, a) − (1 − γ)(wθ

⋆)⊤∇θ log πθ(a|s)
)2
]

≤ εbias, (7)
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Aggregator Computational λ Sample Complexity of Res-NHARPG Order
Complexity Optimal?

MDA NP-Hard 2f
N−f O

(
1
ϵ2 log

( 1
ϵ

) ( 1
N + f2 log(N)

N2

))
Yes

CWTM Θ(dN) f
N−f ∆ O

(
1
ϵ2 log

( 1
ϵ

) ( 1
N + f2∆2 log(N)

N2

))
Yes

MeaMed Θ(dN) 2f
N−f ∆ O

(
1
ϵ2 log

( 1
ϵ

) ( 1
N + f2∆2 log(N)

N2

))
Yes

CWMed Θ(dN) N
2(N−f) ∆ O

( 1
ϵ2 log

( 1
ϵ

) ( 1
N + ∆2 log(N)

))
No

Krum Θ(dN2) 1 +
√

N−f
N−2f O

(
1
ϵ2 log

( 1
ϵ

) ( 1
N + N−f

N−2f log(N)
))

No

GM O(dN log3(N/ϵ)) (1) 1 +
√

(N−f)2

N(N−2f) O
(

1
ϵ2 log

( 1
ϵ

) ( 1
N + N−f

N−2f log(N)
))

No

Table 1: In the above table, ∆ = min{
√

d, 2
√

N − f}. The computational complexity of the aggregator, and the
order optimality of sample complexity (in terms of f , N , and ϵ) are also mentioned in the Table. Remark 4.8 provides
a discussion on the sample complexity bounds. (1) We note that while GM is convex optimization with no closed-form
solution, an (1 + ϵ)-approximate solution can be found in O(dN log3(N/ϵ)) time (Cohen et al., 2016).

where Aπθ (s, a) is the advantage function of policy πθ at (s, a), ν⋆(s, a) = dπ⋆

ρ (s) · π⋆(a|s) is the state-action
distribution induced by an optimal policy π⋆ that maximizes J(π), and wθ

⋆ is the exact Natural Policy
Gradient update direction at θ.

εbias captures the parametrization capacity of πθ. For πθ using the softmax parametrization, we have
εbias = 0 (Agarwal et al., 2021a). When πθ is a restricted parametrization, which may not contain all
stochastic policies, we have εbias > 0. It is known that εbias is very small when rich neural parametrizations
are used (Wang et al., 2019).
Assumption 4.2. For all θ ∈ Rd, the Fisher information matrix induced by policy πθ and initial state
distribution ρ satisfies

Fρ(θ) := E(s,a)∼ν
πθ
ρ

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤] ≽ µF · Id,

for some constant µF > 0.
Assumption 4.3. There exists σ > 0 such that g(τ, θ) defined in equation 2 satisfies E∥g(τ, θ)−E[g(τ, θ)]∥2 ≤
σ2, for all θ and τ ∼ pH

ρ (·|θ).
Assumption 4.4. 1. ∥∇θ log πθ(a|s)∥ ≤ G1 for any θ and (s, a) ∈ S × A.

2. ∥∇θ log πθ1(a|s) − ∇θ log πθ2(a|s)∥ ≤ G2∥θ1 − θ2∥ for any θ1, θ2 and (s, a) ∈ S × A.

Comments on Assumptions 4.2-4.4: We would like to highlight that all the assumptions used in this
work are commonly found in PG literature. We elaborate more on these assumptions below.

Assumption 4.2 requires that the eigenvalues of the Fisher information matrix can be bounded from below.
This assumption is also known as the Fisher non-degenerate policy assumption and is commonly used in
obtaining global complexity bounds for PG based methods (Liu et al., 2020; Zhang et al., 2021; Bai et al.,
2022; Fatkhullin et al., 2023).

Assumption 4.3 requires that the variance of the PG estimator must be bounded and 4.4 requires that the
score function is bounded and Lipschitz continuous. Both assumptions are widely used in the analysis of PG
based methods (Liu et al., 2020; Agarwal et al., 2021a; Papini et al., 2018; Xu et al., 2020; 2019; Fatkhullin
et al., 2023).

Assumptions 4.2-4.4 were shown to hold for various examples recently including Gaussian policies with
linearly parameterized means with clipping (Liu et al., 2020; Fatkhullin et al., 2023).

We now state the main result which gives us the last iterate global convergence rate of Algorithm 1:
Theorem 4.5. Consider Algorithm 1 with γt = 6G1

µF (t+2) , ηt = 1
t and H = (1 − γ)−1 log(T + 1). Let

Assumptions 4.1, 4.2, 4.3 and 4.4 hold. Then for every T ≥ 1 the output θT satisfies

J∗ − J(θT ) =
√

εbias

1 − γ
+ O

(√
log T

NT
+ λ

√
log N + log T

T

)
.
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From Theorem 4.5, the number of trajectories required by Algorithm 1 to ensure J∗ − J(θT ) ≤
√

εbias
1−γ + ϵ is

O
(

1
ϵ2 log

(
1
ϵ

)(
1
N

+ λ2 log(N)
))

.

For ease of exposition, we keep only dependence on ϵ, N and λ while providing a detailed expression in
equation 38. We also note that the expression implicitly reflects the dependence on f , as the value of
λ depends on both f and the choice of the aggregator. The sample complexity for different aggregator
functions are summarized in Table 1. The value of λ in the table for each aggregator is from (Farhadkhani
et al., 2022).

We now remark on the lower bound for the sample complexity. In order to do that, we will first provide the
lower bound for Stochastic Gradient Descent with Adversaries in (Alistarh et al., 2018).
Lemma 4.6 (Alistarh et al. (2018)). For any D, V , and ϵ > 0, let there exists a linear function g :
[−D, D] → R (of Lipschitz continuity G = ϵ/D) with a stochastic estimator gs such that E[gs] = g and
||∇gs(x) − ∇g(x)|| ≤ V for all x in the domain. Then, given N machines, of which f are adversaries, and
T samples from the stochastic estimator per machine, no algorithm can output x so that g(x) − g(x∗) < ϵ

with probability ≥ 2/3 unless T = Ω̃
(

D2V 2

ϵ2N + f2V 2D2

ϵ2N2

)
, where x∗ = arg minx∈[−D,D] g(x).

Remark 4.7. Lemma 4.6 provides the lower bound for the sample complexity of SGD with adversaries such
as: T = Ω̃

(
1
ϵ2

(
1
N + f2

N2

))
. We note that the lower bound function class in Lemma 4.6 may not satisfy the

function class in this paper explicitly. However, we believe that since the lower bound holds for any class of
functions that includes linear functions, the result should still hold with the assumptions in this paper. We
also note that since 1/ϵ2 is a lower bound for the centralized case (Mondal & Aggarwal, 2024), it follows
that the lower bound for the distributed setup is Ω̃

( 1
Nϵ2

)
even in the absence of adversaries, which is the

same as Ω̃
(

1
ϵ2

(
1
N + f2

N2

))
when f <

√
N .

Remark 4.8. From Remark 4.7, it follows that MDA, CWTM and MeaMed achieve optimal sample com-
plexity in terms of ϵ, N and f (upto logarithmic factors). As a result, these methods exhibit linear speedup
when the number of adversarial agents is on the order of O(

√
N). When the number of adversarial agents

is O(Nδ), where δ > 0.5, they achieve speedup of order O(N2(1−δ)). It’s worth noting that while MDA
poses computational challenges, CWTM and MeaMed are computationally inexpensive, on par with simple
averaging used in vanilla federated policy gradient.
Remark 4.9. Works in Byzantine literature generally use strong assumptions on the noise. For example, there
are a line of works assuming vanishing variance (Blanchard et al., 2017; El Mhamdi et al., 2018; Xie et al.,
2018), which does not hold even for the simplest policy parametrizations. Intuitively, when the assumptions
on the noise is weakened, it becomes harder to distinguish adversarial and honest workers. In contrast, we
provide these near-optimal bounds only using standard assumptions in Policy Gradient literature.

5 Proof Outline for Theorem 4.5

Key step: The main challenge in analyses with adversaries lies in bounding the difference of the update
direction (in Algorithm 1, dt) and the true gradient, ∇JH(θt).

We bound E∥dt − ∇JH(θt)∥ as

E∥dt − ∇JH(θt)∥ ≤ E∥dt − d̄t∥ + E∥d̄t − ∇JH(θt)∥,

where d̄t = 1
N−f

∑
n∈G d

(n)
t . We note that E∥dt−d̄t∥ can be bounded using the definition of (f, λ)-aggregators

as follows (details given in Detailed Outline):

E∥dt − d̄t∥ ≤ 2λE
[

max
i∈G

∥d
(i)
t − ∇JH(θt)∥

]
. (8)
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In (Farhadkhani et al., 2022), E[maxi∈G ∥d
(i)
t − ∇JH(θt)∥] is bounded by

E
[∑

i∈G
∥d

(i)
t − ∇JH(θt)∥

]
= (N − f)E∥d

(j)
t − ∇JH(θt)∥,

where d
(j)
t is an unbiased estimate of ∇JH(θt) obtained from an honest agent j ∈ G. This results in an extra

factor of (N − f). To illustrate the impact of this term, consider the scenario where λ is of optimal order,
specifically O

(
f

N−f

)
and f = O(Nδ). Even with optimal λ and with 0 < δ ≤ 0.5, their sample complexity

bounds do not achieve linear speedup. Furthermore, if the number of faulty workers δ > 0.5, the convergence
rate deteriorates with an increase in the number of workers N . More specifically, if f = Θ(Nδ+1/2), their
sample complexity bound is O

(
N2δ

ϵ2

)
, holding true for all δ > 0.

In contrast, we show that for our algorithm, this term can be reduced to O(log(N − f)), from (N − f). This
results in significant improvement in the sample complexity bound, enabling us to obtain linear speedup
when δ ≤ 0.5 and sample complexity of order O

(
N2(δ−1)

ϵ2

)
when δ > 0.5, with certain choice of aggregators,

showing speedup of order O(N2(1−δ)).

We do this by showing that the update direction calculated by each worker i in Algorithm 1, d
(i)
t , is a sum

of bounded martingale differences. As a result, we can then invoke Azuma-Hoeffding inequality to obtain
sharper bounds. This ensures that our algorithm guarantees speedup as long as f = O(Nδ), where δ < 1.

Detailed Outline: We split the proof into three steps given below:

1. Bounding E∥dt − d̄t∥:

From the definition of (f, λ)-aggregator, we have ∥dt − d̄t∥ ≤ λ maxi,j∈G ∥d
(i)
t − d

(j)
t ∥. Thus,

E∥dt − d̄t∥ ≤ λE[max
i,j∈G

∥d
(i)
t − d

(j)
t ∥] ≤ λE[max

i,j∈G
(∥d

(i)
t − ∇JH(θt)∥ + ∥d

(j)
t − ∇JH(θt)∥)]

≤ 2λE[max
i∈G

∥d
(i)
t − ∇JH(θt)∥]. (9)

Let Xi := ∥d
(i)
t − ∇JH(θt)∥ and X := maxi∈G Xi. We shall denote the indicator function of the event A by

1A. Then for all ϵ̄ > 0

E[X] = E[X1{X≥ϵ̄} + X1{X<ϵ̄}] ≤ E[X1{X≥ϵ̄} + ϵ̄] ≤ E[C11{X≥ϵ̄} + ϵ̄]

≤ C1 P(X ≥ ϵ̄) + ϵ̄ ≤ C1
∑
i∈G

P(Xi ≥ ϵ̄) + ϵ̄ = C1(N − f)P(∥d
(i)
t − ∇JH(θt)∥ ≥ ϵ̄) + ϵ̄,

where C1 is an upper bound on X (see Appendix C.3). Thus, for all ϵ̄ > 0

E∥dt − d̄t∥ ≤ 2C1λ(N − f)P(∥d
(i)
t − ∇JH(θt)∥ ≥ ϵ̄) + 2λϵ̄. (10)

In order to bound P(∥d
(i)
t − ∇JH(θt)∥ ≥ ϵ̄), we make use of the following result.

Lemma 5.1. Consider Algorithm 1. For all i ∈ G and t ≥ 1, we have

d
(i)
t − ∇JH(θt) = 1

t

t∑
j=1

M
(i)
j ,

where ∥M
(i)
t ∥ ≤ C1 and E[M (i)

t+1 | M
(i)
t ] = 0.

The proof of the above lemma is given in Appendix C.3. Using Vector Azuma-Hoeffding inequality, we
obtain the following bound (proof in Appendix C.4)

E∥dt − d̄t∥ ≤ 4e2C1λ(N − f)e−(t+1)ϵ̄2/2C2
1 + 2λϵ̄. (11)

8



Published in Transactions on Machine Learning Research (11/2024)

Let ϵ̄ =
√

2C2
1 log(N−f)(t+1)

t+1 . Then,

E∥dt − d̄t∥ ≤ 4e2C1λ(N − f)e−(t+1)ϵ̄2/2C2
1 + 2λϵ̄ = 4e2C1λ

t + 1 + 2C1λ

√
2 log(N − f)(t + 1)

t + 1 . (12)

2. Bounding E∥d̄t − ∇JH(θt)∥:

We provide a bound for E∥d̄t − ∇JH(θt)∥ below. The proof can be found in Appendix C.2.
Lemma 5.2. Consider Algorithm 1. For all t ≥ 1, we have

E∥d̄t − ∇JH(θt)∥2 ≤ C2(1 + log t)
(N − f)t , (13)

where C2 is defined in Appendix C.2.

From equation 12 and equation 13, we have

E∥dt − ∇JH(θt)∥ ≤ 4e2C1λ

t + 1 + 2C1λ

√
2 log(N − f)(t + 1)

t + 1 +

√
C2(1 + log t)

(N − f)t . (14)

3. Obtaining the final bound:

Using Lemma 7 of (Fatkhullin et al., 2023), we have

J∗ − J(θt+1)

≤
(

1 −
√

2µ γt

3

)
(J∗ − J(θt)) + ε′ γt

3 + 8 γt

3 E∥dt − ∇JH(θt)∥ + L γ2
t

2 + 4
3 γt Dg γH ,

(15)

where µ = µ2
F

2G2
1
, ε′ =

√
εbias

µ(1−γ) and Dg, L are defined in Appendix C.1.

Substituting equation 14 in equation 15 and unrolling the recursions gives us the following bound. The full
proof can be found in Appendix C.5.
Lemma 5.3. Consider Algorithm 1. Then for all T ≥ 1

J∗ − J(θT ) ≤
√

εbias

(1 − γ) + J∗ − J(θ0)
(T + 1)2 + C3

T + 1

+ 32G1

µF

√
T + 1

(√
C2(1 + log T )

N − f
+ C1λ

√
2 log(N − f)(T + 1)

)
,

where C3 is defined in Appendix C.5.

6 Evaluation

To show the effectiveness of our algorithm design (i.e., Res-NHARPG), we provide evaluation results on
two commonly-used continuous control tasks: CartPole-v1 from OpenAI Gym (Brockman et al., 2016) and
InvertedPendulum-v2 from MuJoCo (Todorov et al., 2012). Additional experiments on more demanding
MuJoCo tasks, including HalfCheetah, Hopper, Inverted Double Pendulum, and Walker are provided in
Appendix A. For each task on CartPole-v1 and InvertedPendulum-v2, there are ten workers to individually
sample trajectories and compute gradients, and three of them are adversaries who would apply attacks to
the learning process. Note that we do not know which worker is an adversary, so we cannot simply ignore
certain gradient estimates to avoid the attacks. We simulate three types of attacks to the learning process:
random noise, random action, and sign flipping.

In Figure 1, we present the learning process of the eight algorithms in two environments under three types of
attacks. In each subfigure, the x-axis represents the number of sampled trajectories; the y-axis records the

9
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(a) CartPole (Random Noise) (b) CartPole (Random Action)

(c) CartPole (Sign Flipping) (d) InvertedPendulum (Random Noise)

(e) InvertedPendulum (Random Action) (f) InvertedPendulum (Sign Flipping)

Figure 1: Evaluation results of Res-NHARPG on CartPole and InvertedPendulum. We test Res-NHARPG with the
six aggregators as shown in Table 1. For baselines, we select Res-NHARPG with a simple mean (SM) function as
the aggregator, which is equivalent to the original N-HARPG algorithm, and a vanilla policy gradient method with
the simple mean aggregator (PG-SM). For each environment, there are ten workers, of which three are adversaries,
and we simulate three types of attacks: random noise, random action, and sign flipping. It can be observed that
N-HARPG outperforms PG and Res-NHARPG with those (f, λ) aggregators can effectively handle multiple types of
attacks during the learning process.

10
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acquired trajectory return of the learned policy during evaluation. Each algorithm is repeated five times with
different random seeds. The average performance and 95% confidence interval are shown as the solid line
and shadow area, respectively. Codes for our experiments have been submitted as supplementary material
and will be made public.

Comparing the performance of N-HARPG (i.e., SM) and Vanilla PG (i.e., PG-SM), we can see that N-
HARPG consistently outperforms, especially in Figure 1(a) and 1(b) of which the task and attacks are
relatively easier to deal with. For the ‘random action’ attack (Figure 1(b) and 1(e)), which does not directly
alter the gradient estimates, N-HARPG shows better resilience. However, in more challenging tasks (e.g.,
InvertedPendulum) and under stronger attacks (e.g., sign flipping), both N-HARPG and Vanilla PG would
likely fail, which calls for effective aggregator functions.

For CartPole, the maximum trajectory return is set as 500. Res-NHARPG, implemented with each of the
six aggregators, can reach that expert level within 1000 trajectory samples, with slight difference in the
convergence rate. As for InvertedPendulum, not all aggregators achieve the expert level (i.e., a trajectory
return of 1000), yet they all demonstrate superior performance compared to those employing only the simple
mean aggregator. It’s worth noting that Res-NHARPG with the MDA aggregator consistently converges to
the expert level across all test cases, showing its robustness. Moreover, the ‘random action’ attack brings
more challenges to the aggregators, as the influence of random actions during sampling on the gradient
estimates is indirect while all aggregators filter abnormal estimates based on gradient values.

7 Summary

In this paper, we investigate the impact of adversaries on the global convergence sample complexity of
Federated Reinforcement Learning (FRL). We introduce Res-NHARPG, and show its sample complexity is
of order Õ

(
1
ϵ2

(
1

N−f + λ2
))

using (f, λ)-aggregators, where N is the total number of workers and f is the
number of faulty workers. Notably, when certain aggregators are used (MDA, CWTM and MeaMed), we
show our approach achieves optimal sample complexity.

This work opens up multiple possible future directions in RL with adversaries, including delay in agent
feedback and heterogeneous agents. We further note that a parameter free version of the proposed algorithm
is also an important future direction.
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A Additional experiments

(a) HalfCheetah (b) Hopper

(c) Inverted Double Pendulum (d) Walker

Figure 2: Res-NHARPG with the MDA aggregator consistently outperform the baselines: N-HARPG (i.e.,
SM) and Vanilla PG (i.e., PG-SM), on a series of MuJoCo tasks.

Previous evaluation results have shown the superiority of Res-NHARPG with (f, λ)- aggregators. To further
demonstrate its applicability, we consider Res-NHARPG with MDA and compare it with the baselines: N-
HARPG (i.e., SM) and Vanilla PG (i.e., PG-SM), on a series of more challenging MuJoCo tasks: HalfCheetah,
Hopper, Inverted Double Pendulum, Walker, of which the result is shown as Figure 2. Our algorithm
consistently outperforms the baselines when adversaries (specifically, random noise) exist, and relatively,
N-HARPG performs better than Vanilla PG. Note that our purpose is not to reach SOTA performance
but to testify the effectiveness of aggregators, so the three algorithms in each subfigure share the same set
of hyperparameters (without heavy fine-tuning). In Figure 2, we illustrate the training progress, up to a
maximum number of sampled trajectories (6000 for the Inverted Double Pendulum and 1800 for other tasks),
for each algorithm by plotting their episodic returns. The advantage of Res-NHARPG is more significant
when considering the peak model performance. For instance, the highest evaluation score achieved by Res-
NHARPG on Inverted Double Pendulum can exceed 9000, i.e., the SOTA performance as noted in (Weng
et al., 2022), while the baselines’ scores are under 500. We also evaluate the Fed-ADMM algorithm proposed
in (Lan et al., 2023) in Fig. 3. As expected, even with a higher number of samples, Fed-ADMM yields
significantly lower returns compared to Res-NHARPG with the MDA aggregator (see, for instance, Fed-
ADMM performs poorly in HalfCheetah, achieves a return of 350 in Hopper compared to consistently above
400 for our algorithm; 90 in Inverted Double Pendulum to above 4000 for our algorithm; less than 300 in
Walker to around 1000 for our algorithm).

Details regarding attacks considered: By ‘random noise’ or ‘sign flipping’, the real estimated policy
gradients are altered by adding random noises or multiplying by a negative factor, respectively. While, for
‘random action’, adversarial workers would select random actions at each step, regardless of the state, when
sampling trajectories for gradient estimations. Unlike the other attacks, ‘random action’ does not directly
change the gradients, making it more challenging to detect. Also, ‘random action’ is different from the
widely-adopted ϵ-greedy exploration method, since the action choice is fully random and the randomness
does not decay with the learning process.
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(a) HalfCheetah (b) Hopper

(c) Inverted Double Pendulum (d) Walker

Figure 3: Evaluation of Fed-ADMM (Lan et al., 2023) on MuJoCo tasks with random noise. The solid lines
represent the mean performance, while the shaded areas indicate the 95% confidence intervals from repeated
experiments. We used the official implementation from (Lan et al., 2023).

B Details of aggregator functions

Let [x]k denote the k-th coordinate of x ∈ Rd. Given a set of n vectors X = {x1, . . . , xn} as input, the
outputs of different aggregator functions are given below.

• Minimum Diameter Averaging (MDA) (originally proposed in (Rousseeuw, 1985) and reused
in (El Mhamdi et al., 2018)) selects a set G∗ of cardinality N − f with the smallest diameter, i.e.,

G∗ ∈ arg min
G⊂{1,..., N

| G |=N−f

}

{
max
i,j∈G

∥xi − xj∥
}

and outputs 1
N−f

∑
i∈G∗ xi.

• Co-ordinate wise Trimmed Mean (CWTM) (Yin et al., 2018): Consider co-ordinate k =
1, 2, · · · , d. Let Gk ⊂ X be such that Gc

k consists only of elements in X with the f largest or f
smallest values of [x]k. Then, CWTM outputs

[CWTM(x1, . . . , xn)]k = 1
N − 2f

∑
x∈Gk

[x]k.

• Co-ordinate wise Median (CWMed) (Yin et al., 2018): The output of CWMed is given by

[CWMed (x1, . . . , xn)]k = Median ([x1]k, . . . [xn]k) .

• Mean around Median (MeaMed) (Xie et al., 2018): MeaMed computes the average of the N −f
closest elements to the median in each dimension. Specifically, for each k ∈ [d], m ∈ [n], let im;k be
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the index of the input vector with k-th coordinate that is m-th closest to Median([x1]k, . . . , [xn]k).
Let Ck be the set of N − f indices defined as

Ck = {i1;k, . . . , iN−f ;k}.

Then we have
[MeaMed(x1, . . . , xn)]k = 1

N − f

∑
i∈Ck

[xi]k.

• Krum (Blanchard et al., 2017): Multi-Krum∗ outputs an average of the vectors that are the closest
to their neighbors upon discarding f farthest vectors. Specifically, for each i ∈ [n] and k ∈ [n − 1],
let ik ∈ [n]\{i} be the index of the k-th closest input vector from xi, i.e., we have ∥xi −xi1∥ ≤ . . . ≤
∥xi − xin−1∥ with ties broken arbitrarily. Let Ci be the set of N − f − 1 closest vectors to xi, i.e.,

Ci = {i1, . . . , iN−f−1}.

Then, for each i ∈ [n], we define score(i) =
∑

j∈Ci
∥xi − xj∥2. Finally, Multi-Krum∗

q outputs the
average of q input vectors with the smallest scores, i.e.,

Multi-Krum∗
q (x1, . . . , xn) = 1

q

∑
i∈S(q)

xi,

where S(q) is the set of q vectors with the smallest scores. We call Krum∗ the special case of
Multi-Krum∗

q for q = 1.

• Geometric Median (GM) (Chen et al., 2017): For input vectors x1, . . . , xn, their geometric
median, denoted by GM(x1, . . . , xn), is defined to be a vector that minimizes the sum of the distances
to these vectors. Specifically, we have

GM(x1, . . . , xn) ∈ arg min
z∈Rd

n∑
i=1

∥z − xi∥.

Comments:

• We observe that MDA, CWTM and MeaMed achieve optimal bounds, while CWMed, Krum and
GM do not. This is explained in (Farhadkhani et al., 2022) by noting that Krum, CWMed, and GM
operate solely on median-based aggregation, while MDA, CWTM, and MeaMed perform an averaging
step after filtering out suspicious estimates. This averaging step results in variance reduction, similar
to simple averaging in vanilla distributed SGD.

• It’s worth mentioning that CWMed and GM do not require any knowledge of f to be implemented.
On the other hand, while MDA, CWTM, MeaMed, and Krum do rely on some knowledge of f , they
can still be implemented by substituting an upper bound for f instead. In this case, our guarantees
would scale based on this upper bound, instead of f .

C Proof details

C.1 Notations

Before proceeding further, we begin with the following lemma where we also introduce a few notations.
Lemma C.1. For all θ ∈ Rd and trajectories τ of length H sampled by policy πθ, we have

1. J is L-smooth with L := R(G2
1+G2)

(1−γ)2 .
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2. g(τ, θ) is an unbiased estimate of ∇JH(θ) and

∥g(τ, θ)∥ ≤ G1R

(1 − γ)2 := Gg. (16)

3. B(τ, θ) is an unbiased estimate of ∇2JH(θ) and

∥B(τ, θ)∥ ≤ G2G2
1R + LR

(1 − γ)2 := GH . (17)

4. For some 0 < σ2
H ≤ G2

H , we have

E∥Bt(τ, θ) − ∇2JH(θ)∥2 ≤ σ2
H . (18)

The first two statements are given in Lemma 4.2 and 4.4, (Yuan et al., 2022) and the third and fourth
statements are given in Lemma 4.1 in (Shen et al., 2019). Since the algorithm makes use of the truncated
gradient and hessian estimates ∇JH(θ) and ∇2JH(θ) instead of ∇J(θ) and ∇2J(θ), we must bound the error
terms ∇J(θ) − ∇JH(θ) and ∇2J(θ) − ∇2JH(θ). It is known that these error terms vanish geometrically fast
with H and is stated below:
Lemma C.2 (Lemma 3, (Masiha et al., 2022)). Let Assumption 4.4 be satisfied, then for all θ ∈ Rd and
every H ≥ 1, we have

∥∇JH(θ) − ∇J(θ)∥ ≤ DgγH , ∥∇J2
H(θ) − ∇J2(θ)∥ ≤ DhγH ,

where Dg := G1R
1−γ

√
1

1−γ + H and Dh := R(G2+G2
1)

1−γ

(
1

1−γ + H
)

.

C.2 Proof of Lemma 5.2

The proof follows similarly as in (Fatkhullin et al., 2023). Here, we take into account the affect of estimates
of (N − f) agents versus one agent. Since each of the d

(n)
t are updated as

d
(n)
t = (1 − ηt)(d(n)

t−1 + B(τ̂ (n)
t , θ̂

(n)
t )(θt − θt−1)) + ηtg(τ (n)

t , θ
(n)
t ), (19)

we notice that d̄t = 1
N−f

∑
n∈G d

(n)
t can be expressed as

d̄t = (1 − ηt)(d̄t−1 + B̄(θ̂t)(θt − θt−1)) + ηtḡ(θt), (20)

where B̄(θ̂t) := 1
N−f

∑
n∈G B(τ̂ (n)

t , θ̂
(n)
t ) and ḡ(θt) := 1

N−f

∑
n∈G g(τ (n)

t , θt).

It follows that

d̄t − ∇JH(θt) = (1 − ηt)(d̄t−1 + B̄(θ̂t)(θt − θt−1)) + ηtḡ(θt) − ∇JH(θt)
= (1 − ηt)(d̄t−1 − ∇JH(θt−1) + B̄(θ̂t)(θt − θt−1) + ∇JH(θt−1) − ∇JH(θt)))
+ ηt(ḡ(θt) − ∇JH(θt))
= (1 − ηt)(d̄t−1 − ∇JH(θt−1)) + (1 − ηt)W̄t + ηtV̄t, (21)

where W̄t := B̄(θ̂t)(θt −θt−1)+∇JH(θt−1)−∇JH(θt) and V̄t := ḡ(θt)−∇JH(θt). We then have the following
lemma
Lemma C.3. For all t ≥ 1, the following statements hold

(i) E[W̄t] = 0

(ii) E[V̄t] = 0
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(iii) E[∥V̄t∥2] ≤ σ2

N−f

(iv) E[∥W̄t∥2] ≤ 12
N−f ((2L2 + σ2

H + D2
h γ2H) · γ2

t + D2
g γ2H).

Proof of Lemma C.3. The first two statements are easy to see since E[V̄t] = 1
N−f

∑
n∈G E[V(n)

t ] and E[V(n)
t ] =

0 for all n ∈ G from Lemma C.1. Similar arguments show that E[W̄t] = 0.

Notice that

E[∥V̄t∥2] = 1
(N − f)2

∑
n∈G

E[∥V(n)
t ∥2] ≤ σ2

N − f
, (22)

where the last inequality follows from Assumption 4.3. Similarly,

E[∥W̄t∥2] = 1
(N − f)2

∑
n∈G

E[∥W(n)
t ∥2]. (23)

We have for all n ∈ G

E∥W(n)
t ∥2 = E∥∇JH(θt−1) − ∇JH(θt) + B(τ̂ (n)

t , θ̂
(n)
t )(θt − θt−1)∥

≤ 6E∥∇JH(θt−1) − ∇JH(θt−1)∥2 + 6E∥∇JH(θt−1) − ∇JH(θt)∥2

+ 6E∥B(τ̂ (n)
t , θ̂

(n)
t ) − ∇2JH(θ̂t)(θt − θt−1)∥2 + 6E∥∇2JH(θ̂t) − ∇2J(θ̂t)(θt − θt−1)∥2

+ 6E∥∇2J(θ̂t)(θt − θt−1)∥2

≤ 2(6L2 + 3σ2
H)E∥θt − θt−1∥2 + 12D2

gγ2H + 6D2
hγ2HE∥θt − θt−1∥2

≤ 2(6L2 + 3σ2
H) · γ2

t + 12D2
gγ2H + 6D2

hγ2H · γ2
t

= 12((2L2 + σ2
H + D2

h γ2H) · γ2
t + D2

g γ2H),

where the last inequality follows from the fact that ∥θt − θt−1∥ = ∥γt
dt

∥dt∥ ∥ = γt.

Using Lemma C.3, we obtain

E∥d̄t − ∇JH(θt)∥2 ≤ (1 − ηt)E∥d̄t−1 − ∇JH(θt−1)∥2

+ 1
N − f

(2σ2η2
t + 12((2L2 + σ2

H + D2
h γ2H) · γ2

t + D2
g γ2H).

(24)

Let yt := 1
N−f (2σ2η2

t + 12((2L2 + σ2
H + D2

h γ2H) · γ2
t + D2

g γ2H)). Unrolling the above, we obtain

E∥d̄t − ∇JH(θt)∥2 ≤
t∑

i=1

t∏
j=i+1

(1 − ηj)yi.

For ηt = 1
t , it follows that

∏j
k=j0

(1 − ηk) = j0−1
j and

E∥d̄t − ∇JH(θt)∥2 ≤ 1
t

t∑
i=1

iyi.
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Note that for ηt = 1
t , γt = 6G1

µF (t+2) and H = log(T +1)
(1−γ) , we have iη2

i = 1
i , iγ2

i ≤ 6G1
µF i and iγ2H ≤ 1

i . Thus,

E∥d̄t − ∇JH(θt)∥2 ≤ 1
(N − f)t

t∑
i=1

2σ2

i
+ 12(2L2 + σ2

H + D2
h γ2H) · 6G1

µF i
+

24D2
g

i

=
(

2σ2 + 12(2L2 + σ2
H + D2

h γ2H) · 6G1

µF
+ 24D2

g

)
· 1

(N − f)t

t∑
i=1

1
i

≤
(

2σ2 + 12(2L2 + σ2
H + D2

h γ2H) · 6G1

µF
+ 24D2

g

)
·
(

1 + log t

(N − f)t

)
(25)

= C2(1 + log t)
(N − f)t , (26)

where C2 := 2σ2 + 12(2L2 + σ2
H + D2

h γ2H) · 6G1
µF

+ 24D2
g .

C.3 Proof of Lemma 5.1

Similar to equation 21, we have

d
(i)
t − ∇JH(θt) = (1 − ηt)(d(i)

t−1 − ∇JH(θt−1)) + ηtV(i)
t + (1 − ηt)W(i)

t ,

where V(i)
t = g(τ (i)

t , θt) − ∇JH(θt) and W(i)
t = ∇JH(θt−1) − ∇JH(θt) + B(τ̂ (i)

t , θ̂t)(θt − θt−1). Let M
(i)
t :=

V(i)
t +

(
1−ηt

ηt

)
W(i)

t . Then,

d
(i)
t − ∇JH(θt) = (1 − ηt)(d(i)

t−1 − ∇JH(θt−1)) + ηtM
(i)
t .

Unrolling the above recursion gives

d
(i)
t − ∇JH(θt) =

t∑
j=1

ηj

 t∏
k=j+1

(1 − ηk)

M
(i)
j ,

where we use the convention
∏b

k=a αk = 1 if b < a.

Let ηt = 1
t . With this choice of ηt, it follows that

∏j0+j
k=j0

(1 − ηk) = j0−1
j0+j and

d
(i)
t − ∇JH(θt) =

t∑
j=1

1
j

(
j

t

)
M

(i)
j = 1

t

t∑
j=1

M
(i)
j .

Now we show that M
(i)
t is bounded and forms a martingale difference sequence. We have ∥V(i)

t ∥ ≤ Gg (from
Lemma C.1) and

∥W(i)
t ∥ ≤ ∥∇JH(θt−1) − ∇JH(θt) + B(τ̂ (i)

t , θ̂t)(θt − θt−1)∥

≤ ∥∇JH(θt−1) − ∇JH(θt)∥ + ∥B(τ̂ (i)
t , θ̂t)(θt − θt−1)∥

≤ L∥θt − θt−1∥ + ∥B(τ̂ (i)
t , θ̂t)∥∥θt − θt−1∥ ≤ (L + GH)γt.

Thus

∥M
(i)
t ∥ =

∥∥∥∥V(i)
t +

(
1 − ηt

ηt

)
W(i)

t

∥∥∥∥ ≤ Gg + γt

ηt
(L + GH) ≤ Gg + 6G1

µF
(L + GH) := C1. (27)

Note that this implies that

∥d
(i)
t − ∇JH(θt)∥ ≤ 1

t

t∑
j=1

∥M
(i)
j ∥ ≤ C1.
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Define a sequence {M̃
(i)
k }k≥0 such that M̃

(i)
0 = 0 and M̃

(i)
k = 1

C1

∑k−1
j=0 M

(i)
j for k ≥ 1. Then for all k ≥ 0

∥M̃
(i)
k+1 − M̃

(i)
k ∥ = ∥M

(i)
k /C1∥ ≤ 1.

and

E[M̃ (i)
k+1 | M̃

(i)
k ] = E

 1
C1

k∑
j=0

M
(i)
j | M̃

(i)
k

 = E

 1
C1

k−1∑
j=0

M
(i)
j + 1

C1
· M

(i)
k | M̃

(i)
k


= E

[
M̃

(i)
k + 1

C1
· M

(i)
k | M̃

(i)
k

]
= M̃

(i)
k + 1

C1
E
[
M

(i)
k | M̃

(i)
k

]
.

Note that

σ(M̃ (i)
k ) ⊂ σ(θ0, θ1, q

(i)
1 , τ

(i)
1 , τ̂

(i)
1 , θ2, · · · , θk−1, q

(i)
k−1, τ

(i)
k−1, τ̂

(i)
k−1, θk) := F (i)

k−1.

We get

E
[
M

(i)
k | M̃

(i)
k

]
= E

[
E[M (i)

k | F (i)
k−1] | σ(M̃ (i)

k )
]

.

Observe that

E[M (i)
k | F (i)

k−1] = E
[
V(i)

k +
(

1 − ηk

ηk

)
W(i)

k | F (i)
k−1

]
= E

[
V(i)

k | F (i)
k−1

]
+
(

1 − ηk

ηk

)
E
[
W(i)

k | F (i)
k−1

]
= 0.

Thus, for all k ≥ 0

E[M̃ (i)
k+1 | M̃

(i)
k ] = M̃

(i)
k . (28)

C.4 Proof of Equation equation 11

Lemma C.4 (Vector Azuma-Hoeffding Inequality, (Hayes, 2005)). Let M = (M0, . . . , Mn) taking values in
Rd be such that

M0 = 0 , E[Mn | Mn−1] = Mn−1 and ∥Mn − Mn−1∥ ≤ 1.

Then, for every δ > 0,
P (∥Mn∥ ≥ δ) < 2e2e−δ2/2n. (29)

The sequence {M̃
(i)
k }k≥0 satisfies all properties in Lemma C.4 which gives us

P(∥M̃ (i)
n ∥ ≥ ϵ) ≤ 2e2e−δ2/2n. (30)

It follows that

P
(

∥d
(i)
t − ∇JH(θt)∥ ≥ ϵ

)
= P

∥∥∥∥∥∥ 1
t + 1

t∑
j=0

M
(i)
j

∥∥∥∥∥∥ ≥ ϵ

 = P

 C1

t + 1

∥∥∥∥∥∥
t∑

j=0
(M (i)

j /C1)

∥∥∥∥∥∥ ≥ ϵ


= P

(
C1

t + 1∥M̃
(i)
t+1∥ ≥ ϵ

)
= P

(
∥M̃

(i)
t+1∥ ≥ (t + 1)ϵ/C1

)
< 2e2e−(t+1)ϵ2/2C2

1 . (31)

Plugging the above bound into equation 10 gives

E∥dt − d̄t∥ ≤ 4e2C1λ(N − f)e−(t+1)ϵ′2/2C2
1 + 2λϵ′. (32)
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C.5 Proof of Lemma 5.3

From equation 15, we have
J∗ − J(θt+1)

≤
(

1 − 2
t + 2

)
(J∗ − J(θt)) + 4

3 γt Dg γH +8 γt

3 E[∥dt − ∇JH(θt)∥] + L γ2
t

2 + ε′ γt

3 .
(33)

We use the following auxillary lemma to bound the above recursion
Lemma C.5 (Lemma 12, (Fatkhullin et al., 2023)). Let τ be a positive integer and {rt}t≥0 be a sequence
of non-negative numbers such that

rt+1 ≤ (1 − αt)rt + βt,

where {αt}t≥0 and {βt}t≥0 are non-negative sequences and αt ≤ 1 for all t. Then for all t0, T ≥ 1,

rT ≤ (t0 + τ − 1)2rt0

(T + τ − 1)2 +
∑T −1

t=0 βt(t + τ)2

(T + τ − 1)2 .

Using Lemma C.5 on equation 33 yields

J∗ − J(θT ) ≤ J∗ − J(θ0)
(T + 1)2 +

∑T −1
t=0 βt(t + 2)2

(T + 1)2 , (34)

where

βt := 4
3 γt Dg γH +8 γt

3 E[∥dt − ∇JH(θt)∥] + L γ2
t

2 + ε′ γt

3

≤ 4
3 γt Dg γH +16C1λ γt

3

√
2 log(N − f)(t + 1)

t + 1 + 64e2C1λγt

3(t + 1)

+ 8 γt

3

√
C2(1 + log t)

(N − f)t + L γ2
t

2 + ε′ γt

3

= (4
3 γt Dg γH +L γ2

t

2 + 64e2C1λγt

3(t + 1) ) + (16C1λ γt

3

√
2 log(N − f)(t + 1)

t + 1

+ 8 γt

3

√
C2(1 + log t)

(N − f)t ) + ε′ γt

3 .

Note that ∑T
t=0 ε′ γt(t + 2)2

3(T + 1)2 = ε′∑T
t=0 6G1(t + 2)

3µF (T + 1)2

= 6G1ε′

3µF

∑T
t=0(t + 2)
(T + 1)2

= 6G1ε′

3µF

T 2 + T − 1
2(T + 1)2

≤ G1ε′

µF
=

√
εbias

(1 − γ) .

Also, note that since H = log(T +1)
1−γ , γH ≤ 1

T +1 and γt = 6G1
µF (t+2)

T∑
t=0

(
4 γt Dg γH

3 + L γ2
t

2 + 64e2C1λγt

3(t + 1)

)
(t + 2)2 ≤

T∑
t=0

16G1Dg

µF
+ 18G2

1L

µ2
F

+ 950C1G1λ

µF

= (T + 1)
(

16G1Dg

µF
+ 18G2

1L

µ2
F

+ 950C1G1λ

µF

)
.
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It follows that

1
(T + 1)2

T∑
t=0

(
4 γt Dg γH

3 + L γ2
t

2 + 64e2C1λγt

3(t + 1)

)
(t + 2)2

≤
(

16G1Dg

µF
+ 18G2

1L

µ2
F

+ 950C1G1λ

µF

)
1

T + 1 .

Finally,

16C1λ γt

3

√
2 log(N − f)(t + 1)

t + 1 + 8 γt

3

√
C2(1 + log t)

(N − f)t

= 16G1

µf (t + 2)

(
C1λ

√
2 log(N − f)(t + 1)

t + 1 +

√
C2(1 + log t)

(N − f)t

)

≤ 16G1

µf (t + 2)
√

t

(
C1λ

√
2 log(N − f)(t + 1) +

√
C2(1 + log t)

(N − f)

)
.

Note that

1
(T + 1)2

T∑
t=0

(t + 2)2

(t + 2)
√

t
= 1

(T + 1)2

T∑
t=0

t + 2√
t

≤ 1
(T + 1)2

T∑
t=0

(
√

t + 2)

≤ T 3/2 + 2T

(T + 1)2 ≤ 2
(T + 1)1/2 .

Combining all of the above, we get

J∗ − J(θT ) ≤
√

εbias

(1 − γ) + J∗ − J(θ0)
(T + 1)2 +

(
16G1Dg

µF
+ 18G2

1L

µ2
F

+ 950C1G1λ

µF

)
1

T + 1

+ 32G1

µF

√
T + 1

(√
C2(1 + log T )

(N − f) + C1λ
√

2 log(N − f)(T + 1)
)

. (35)

From the above expression, we have

J∗ − J(θT ) ≤
√

εbias

1 − γ
+ O

(
G1

µF

√
T + 1

(√
C2 log T

(N − f) + C1λ
√

log((N − f)(T + 1))
))

, (36)

where C1 = Gg + 6G1
µF

(L + GH) and C2 = 2σ2 + 12(2L2 + σ2
H + D2

hγ2H) · 6G1
µF

+ 24D2
g . The Lipschitz constant

L, variance bounds σ2 and σ2
H and the remaining terms Gg, GH , Dh and Dg in turn, can be bounded in

terms of γ, µF , the bound on the reward function R and the Lipschitz and smoothness constants of the score
function G1, G2 (see Lemma C.1 and C.2). Substituting these bounds, we obtain

J∗ − J(θT ) ≤
√

εbias

1 − γ
+ O

(
G1

µF

√
T + 1

(√√√√ G1
µF

·
(

R2G2
2G4

1
(1−γ)4 + R4(G4

1+G2
2)

(1−γ)8

)
log T

(N − f)

+
(

RG2G2
1

(1 − γ)2 + R2(G2
1 + G2)

(1 − γ)4

)
λ
√

log((N − f)(T + 1))
))

.

(37)
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With the above bound, we obtain J∗ − J(θT ) ≤
√

εbias
1−γ + ϵ for

T = O
(

1
ϵ2 log

(
1
ϵ

)(
1

(N − f) ·
(

R2G2
2G7

1
µ3

F (1 − γ)4 + R4(G7
1 + G3

1G2
2)

µ3
F (1 − γ)8

)
+ λ2 log(N − f) ·

(
R2G2

2G6
1

µ2
F (1 − γ)4 + R4(G6

1 + G2
1G2

2)
µ2

F (1 − γ)8

)))
.

(38)

D Compute Resources

Experiments were conducted using the Oracle Cloud infrastructure, where each computation instance was
equipped with 8 Intel Xeon Platinum CPU cores and 128 GB of memory. In Figure 1, each subfigure contains
comparisons among eight algorithms each of which is repeated five times with different random seeds. The
single running time for an algorithm is approximately two hours. Thus, to reproduce Figure 1, it requires
approximately 480 CPU hours. Similarly, for Figure 2, the time would be about 120 CPU hours.
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