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Abstract

We study Individual Fairness (IF) for Bayesian neural networks (BNNs). Specifically, we
consider the ϵ-δ-individual fairness notion, which requires that, for any pair of input points
that are ϵ-similar according to a given similarity metrics, the output of the BNN is within
a given tolerance δ > 0. We leverage bounds on statistical sampling over the input space
and the relationship between adversarial robustness and individual fairness to derive a
framework for the systematic estimation of ϵ-δ-IF, designing Fair-FGSM and Fair-PGD
as global, fairness-aware extensions to gradient-based attacks for BNNs. We empirically
study IF of a variety of approximately inferred BNNs with different architectures on fairness
benchmarks, and compare against deterministic models learnt using frequentist techniques.
Interestingly, we find that BNNs trained by means of approximate Bayesian inference con-
sistently tend to be markedly more individually fair than their deterministic counterparts.

1. Introduction

Deep learning models have achieved state-of-the-art performance in a wide variety of tasks
(Goodfellow et al., 2016). Several calls for caution have, however, recently been raised about
their deployment in tasks where fairness is of concern (Barocas and Selbst, 2016). In fact,
Neural Networks (NNs) have been found to reinforce negative biases from sensitive datasets
(Bolukbasi et al., 2016), discriminating against individuals on the basis of attributes such
as gender or race. To address this, research efforts have been directed at both measuring
the fairness of NNs, their de-biased training, as well as defining precise notions of fairness.

Given a BNN f and a similarity metric between individuals dfair, which encodes a
task-dependent notion of similarity (Ilvento, 2020), Individual Fairness (IF) enforces that
all pairs of similar individuals in the input space get treated similarly by f (Dwork et al.,
2012). As opposed to the statistical nature of group fairness (Mehrabi et al., 2021), IF aims
at computing worst-case bias measures over a model input space. Consequently, albeit being
defined on the full input space and over a fairness similarity metric, because of its worst-case
nature, IF has been linked to adversarial robustness (Yeom and Fredrikson, 2021). As it
has recently been show that Bayesian Neural Networks (BNNs) have a tendency to be less
fragile to adversarial attacks than their frequentist counter-parts (Carbone et al., 2020),
it is natural to wonder whether approximate Bayesian inference may also have a positive
impact over the IF of a neural network. However, to the best of our knowledge, no work
has been conducted along these lines of inquire.

In this paper, we investigate the IF of BNNs and empirically evaluate it on various bench-
marks. While exact computations of IF in BNNs is infeasible due to their non-convexity,
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we exploit the relationship between IF and adversarial robustness (Yeom and Fredrikson,
2021; Benussi et al., 2022) to develop a framework for the adaptation of adversarial attack
methods for IF. In particular, we explicitly instantiate Fair-FGSM and Fair-PGD as ex-
tensions of their corresponding adversarial attacks (Goodfellow et al., 2015; Athalye et al.,
2018) by employing gradient steps modifications and projections specific to dfair metrics
commonly used in the fairness literature. Furthermore, while attack methods estimate IF
locally around a given individual, we use concentration inequalities (Boucheron et al., 2004)
to statistically bound the worst-case expected IF over all pairs of individuals.

We perform an empirical evaluation of IF in BNNs on a selection of benchmarks, includ-
ing the Adult dataset (Dua and Graff, 2017) and Folktables (Ding et al., 2021), and on a
variety of different architectural, approximate Bayesian inference, and similarity metric pa-
rameters. We compare the results obtained by BNNs with those obtained by deterministic
NNs and deep ensembles. We find that BNNs consistently outperform their deterministic
counterparts in terms of individual fairness. That is, albeit still learning certain biases, all
things being equal, BNNs show a tendency to be fairer than their deterministic counter-
parts. We finish the paper with an empirical analysis inquiring this interesting property and
a discussion on why approximate Bayesian inference may lead to fairer prediction models.

2. Individual Fairness for BNNs

We consider a NN fw : X → Rm trained on a dataset D = {(xi, yi)}Ni=1 composed by
N points, where w is the aggregated vector of weights and biases, X ⊂ Rn is the input
space, and n and m are respectively the input and output dimensions. For simplicity, we
focus on the case of binary classification, however, our results can be trivially extended
to the regression and multi-class case. In a Bayesian setting, w is sampled from a random
variable w whose posterior distribution is obtained by application the Bayes rule: p(w|D) ∝
p(D|w)p(w), where p(w) is the prior and p(D|w) is the likelihood. The posterior predictive
distribution π over an input x is then obtained by averaging the posterior distribution
over a sigmoid function σ, i.e., π(x) =

∫
σ(fw(x))p(w|D)dw. To define individual fairness

for BNNs, we adopt the ϵ-δ-IF (John et al., 2020), which depends on a similarity metric
dfair : X ×X → R≥0 encapsulating task-dependent information about sensitive attributes.

Definition 1 Given ϵ ≥ 0 and δ ≥ 0, we say that a BNN fw is ϵ-δ-individually fair
iff ∀x′, x′′ ∈ Xs.t. dfair(x

′, x′′) ≤ ϵ =⇒ |π(x′) − π(x′′)| ≤ δ, that is, if the predictive
distribution of ϵ-similar individuals are δ-close to each other.

Notice that while related to notion of adversarial robustness for BNNs (Cardelli et al.,
2019; Wicker et al., 2020), Definition 1 has some key differences. First, rather than being
a local definition specific to a test point and its neighbourhood, individual fairness looks
at the worst-case behaviour over the whole input space, i.e., simultaneously looking at
neighbourhoods around all the input points in X. Furthermore, while adversarial attacks
are generally developed for an ℓp metric, individual fairness is built around a task-specific
similarity metric dfair. Intuitively, dfair needs to encode the desired notion of similarity
between individuals (Dwork et al., 2012). While a number of metrics have been discussed
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in the literature (Ilvento, 2020), we focus on the following ones, which are widely used and
can be automatically learnt from data (Yurochkin et al., 2020):1

• Weighted ℓp. In this case dfair(x
′, x′′) is defined as a weighted version of an ℓp metric,

i.e. dfair(x
′, x′′) = p

√∑n
i=1 θi|x′i − x′′i |p, where the weights θi can be set accordingly to

their correlation with the sensitive attribute.

• Mahalanobis distance. In this case we have dfair(x
′, x′′) =

√
(x′ − x′′)TS−1(x′ − x′′),

for a given positive semi-definite (SPD) matrix S. Intuitively, S accounts for the intra-
correlation of features to capture latent dependencies w.r.t. the sensitive features.

3. Fairness attacks

Definition 1 could be reformulated according to the following optimization problem

δ∗ = max
x′∈X

max
x′′∈X

dfair(x
′,x′′)≤ϵ

|π(x′)− π(x′′)|. (1)

Checking IF is then equivalent to check whether δ∗ ≤ δ or not. In Eqn (1), the inner
maximization problem finds the point in a specific dfair-neighbourhood that maximizes
the variation in the predictive posterior, while the outer one considers the global part of
the definition. We proceed by solving the inner-optimisation problem with gradient-based
techniques, and rely on statistical methods to solve with high confidence the outer problem.

Inner Problem Because of the non-convexity of NN architectures, exact computation of
the inner maximization problem in Eqn (1) is generally infeasible. We proceed by adapting
gradient-based optimization techniques commonly used to detect adversarial attacks to our
setting. In particular, in the case of the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015), given the log-loss L associated to the likelihood function (e.g., the binary
entropy for the sigmoid), and a point x with associated label y, we obtain that:

xx′,max ≈ x′ + η · sgn(Ew∼p(w|D)[∇xL(f
w(x), y)]).

η ∈ Rn scales the attack strength according to ϵ and dfair. It is the first ingredient that
needs to be adapted for ϵ-δ-IF. In the case of the weighted ℓp metric, η can be simply
defined as the vector with entries ηi = ϵ/

√
θi. For the Mahalanobis distance, given x′ and

ϵ, dfair(x
′, x′′) ≤ ϵ describes a hyper-ellipsoid centred in x′. We can hence set η to be the

vector whose generic component is scaled according to the ellipsoid axis, i.e., ηi = ϵ
√
Sii.

Furthermore, while one is guaranteed to remain inside the dfair-neighbourhood in the ℓp
case, for the Mahalanobis metric one needs to check whether the attack is inside the ϵ-dfair
ball or not. In the latter case, we set up a local line search problem to project xx′,max back
to a point inside the ball. Other gradient-based attacks such as PGD (Madry et al., 2018) or
CW (Carlini and Wagner, 2017) can be similarly adapted by taking consecutive gradients.
Similarly, other more general attacks could be employed (Yuan et al., 2020; Däubener et al.,
2020) as well as training techniques (Liu et al., 2019; Wicker et al., 2021). In Section 4, we
will consider both FGSM and PGD, which we denote with Fair-FGSM and Fair-PGD to
distinguish them from the adversarial attack counter-parts.

1. While not directly investigated in this paper, our fairness attacks can be generalised to similarity metrics
built over embeddings (Ruoss et al., 2020), by attacking the embeddings as well.
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Outer Problem The final step needed for the computation ϵ-δ-IF is to check whether:

max
x′∈X

(
π(xx′,max)− π(x′)

)
≤ δ. (2)

Again, exact computation of Eqn (2) is infeasible as it would require solving a non-convex
optimisation problem over a possibly large input space. We relax the problem and in-
stead compute the probability that a point sapled from X is fair. In order to do that
we iid sample nsamples points from X and build the following empirical estimator: p̂ =∑nsamples

i=1
ϕ(xi)

nsamples
, where ϕ(xi) =

{
1 if π(xxi,max)− π(xi) ≤ δ

0 otherwise
. Note that ϕ(xi) is a bi-

nary variable. Consequently, p̂ approximate the probability that a point sampled from X
satisfies the inner condition in Eqn (1). Lemma 2 below is an application of the Chernoff
bound (Hellman and Raviv, 1970) and guarantees that if nsamples is large, then the error
introduced by the empirical estimator can be made arbitrarily small with high confidence.

Lemma 2 Consider nsamples points sampled iid from X.Call p = Ex′∼P [ϕ(x
′)]. Then for

γ, θ > 0 such that nsamples >
1

2θ2
log

(
2
γ

)
, it holds that P (|p̂− p| > θ

)
≤ γ.

Therefore, in order to approximate the solution of the optimisation problem in Equation
(2) with statistical confidences θ and γ we compute the smallest δ such that p̂ = 1.

4. Results

We employ Fair-FGSM and Fair-PGD to evaluate and compare the IF of deterministic
Neural Networks (dNNs) and Bayesian Neural Networks (BNNs). We approximate the
BNNs’ posterior either with VI (in particular using variational online Gauss-Newton (Khan
et al., 2018)) or with Hamiltonian Monte Carlo (HMC) (Neal, 2012). The NNs are trained
to solve the taks associated to the Adult (Dua and Graff, 2017) and the Folktables (Ding
et al., 2021) datasets, where we take gender as the sensitive attribute.2

Parametric Analysis We evaluate how IF is affected by the architecture. Namely, across
the two similarity metrics, we begin by fixing ϵ = 0.1 and analysing how δ is affected by
the numbers of hidden layers and of neurons per layer, in ranges typically used for these
datasets (Yurochkin et al., 2020; John et al., 2020; Yeom and Fredrikson, 2021; Benussi
et al., 2022). The results for these analyses are plotted in the heatmaps in Figure 1. The
three columns of heatmaps respectively show the IF estimations for models learned with
dNN, VI, and HMC. The first two rows give the results for the Adult dataset, respectively
for Fair-FGSM with the weighted ℓp metric and Fair-PGD with the Mahalanobis similarity
metric. The last two rows show the analogous results on the Folks dataset.

We immediately observe how, in the overwhelming majority of the cases, the models
learnt by HMC are markedly fairer (i.e., they have lower values of δ) than their deterministic
counter-parts. The same generally applies also to VI models, except for the IF obtained on
the Adult dataset by means of Fair-PGD for the Mahalanobis metric (second row, second
column). This combined observations almost perfectly mirrors the behaviour of approximate

2. Code to run the experiments can be found at https://github.com/alicedoherty/bayesian-fairness.
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Figure 1: Heatmaps for the estimations of individual fairness (δ) across various architec-
tures, inference methods (dNN, VI or HMC), datasets, and similarity metrics.
The first two rows give results for the Adult dataset (respectively Fair-FGSM with
ℓp, and Fair-PGD with Mahalanobis). The last two for the Folktables dataset.

Bayesian inference in adversarial robustness settings (Carbone et al., 2020). Interestingly,
both adversarial robustness and overfitting generally worsen as the model becomes deeper.
Instead, we observe that more often than not this pattern is reversed in IF. We posit that
while the NNs are indeed becoming more fragile to attacks as they get deeper, it is also
less reliant on each specific input feature, rather it builds on a non-trivial representation of
them – therefore having a tendency to perform better on IF tasks. On the other hand, as
expected, when the number of neurons per layer increases, we get less fair models. In the
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Figure 2: Left: Fairness for different maximum distances ϵ for deterministic and Bayesian
NNs with 3 layers and either 16 (thick lines) or 32 (dashed lines) neurons per layer.
Right: Changes in empirical distribution of fairness across deterministic and
Bayesian predictors computed over an increasing number of posterior samples.

left plot of Figure 2 we analyse how individual fairness is affected by ϵ. We give a selection
of the results for an architecture with 3 layers and 16 or 32 neurons trained on the Adult
dataset. Of course, we observe that as ϵ increases δ increases as well. Interestingly, we find
that BNNs’ tendency to be more fair is consistent across the different values of epsilon.

Analysis of Posterior Predictive We experimentally inquire on the reason behind
BNNs’ improved individual fairness. To this end, for a given BNN posterior predictive
distribution, we solve the inner problem of Section 3 over 100 randomly sampled test points.
Rather than doing this over the full posterior, we randomly sample 15 times a number k of
weights realisation from the posterior, and compute the predictive posterior over them. We
investigate values of k ranging from 1 (i.e., a single deterministic-like network extracted from
the BNN) to 50. We also compare BNNs with an averaging of deterministic NNs in the form
of a Deep Ensemble (DE) (Lakshminarayanan et al., 2017). The results for this analysis
are given in the right plot of Figure 2. Surprisingly, even when using only one posterior
sample from the BNN distribution, the models learnt with Bayesian approximation method
are already significantly more fair than with the frequentist DE technique. Furthermore,
especially in the case of HMC, the more samples are drawn from the posterior distribution
at prediction time, the fairer the model becomes – with a 50% bias reduction when going
from 1 to 50. On the other hand, notice that averaging does not help with DE.

5. Conclusion

In this paper we extended adversarial attack techniques to study individual fairness (IF) for
BNNs. On a set of experiments we empirically showed that BNNs tend to be intrinsically
fairer than their deterministic counter-parts. Furthermore, we showed how the particular
approximate inference method has an impact on IF, with more approximate methods being
less fair compared to approaches such as HMC. Finally, we have empirically shown how
increased fairness is likely due to a combination of Bayesian training and Bayesian averaging,
which may have a beneficial effect in reducing the magnitude of the gradients.
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Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities.
Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia,
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Sina Däubener, Joel Frank, Thorsten Holz, and Asja Fischer. Efficient calculation of ad-
versarial examples for bayesian neural networks. In Third Symposium on Advances in
Approximate Bayesian Inference, 2020.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New
datasets for fair machine learning. Advances in Neural Information Processing Systems,
34:6478–6490, 2021.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://

archive.ics.uci.edu/ml.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. In Proceedings of the 3rd innovations in theoretical computer
science conference, pages 214–226, 2012.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT Press, 2016.

7

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Doherty Wicker Laurenti Patane

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. International Conference on Learning Representations, 2015.

Martin Hellman and Josef Raviv. Probability of error, equivocation, and the chernoff bound.
IEEE Transactions on Information Theory, 16(4):368–372, 1970.

Christina Ilvento. Metric learning for individual fairness. In 1st Symposium on Foun-
dations of Responsible Computing (FORC 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fair-
ness in machine learning models. In Conference on Uncertainty in Artificial Intelligence,
pages 749–758. PMLR, 2020.

Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Sri-
vastava. Fast and scalable bayesian deep learning by weight-perturbation in adam. In
International conference on machine learning, pages 2611–2620. PMLR, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Improved adversarial
defense through robust bayesian neural network. International Conference on Learning
Representations, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. International
Conference on Learning Representations, 2018.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.
A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR),
54(6):1–35, 2021.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. Learning certified in-
dividually fair representations. Advances in Neural Information Processing Systems, 33:
7584–7596, 2020.

Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska. Probabilistic
safety for bayesian neural networks. In Conference on Uncertainty in Artificial Intelli-
gence, pages 1198–1207. PMLR, 2020.

Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng Zhang, and Marta
Kwiatkowska. Bayesian inference with certifiable adversarial robustness. In International
Conference on Artificial Intelligence and Statistics, pages 2431–2439. PMLR, 2021.

8



Individual Fairness in Bayesian Neural Networks

Samuel Yeom and Matt Fredrikson. Individual fairness revisited: transferring techniques
from adversarial robustness. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pages 437–443, 2021.

Matthew Yuan, Matthew Wicker, and Luca Laurenti. Gradient-free adversarial attacks
for bayesian neural networks. Third Symposium on Advances in Approximate Bayesian
Inference, 2020.

Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models
with sensitive subspace robustness. International Conference on Learning Representa-
tions, 2020.

9


	Introduction
	Individual Fairness for BNNs
	Fairness attacks
	Results
	Conclusion

