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Abstract

As deep learning models and datasets expand, the demand for computational re-1

sources and memory storage intensifies; at the same time, data privacy concerns2

hinder data and model sharing. Hence, accessibility of model training is signif-3

icantly challenged. Vector embeddings, as compact representations of medical4

images, offer a solution to the challenges of computational resource demands and5

data privacy concerns in AI-based medical imaging. In this study we investigate6

the suitability of vector embeddings as substitutes for original medical images in7

disease prediction tasks, focusing on performance and fairness. Using datasets like8

MIMIC-CXR and CheXpert, we find that vector embedding-based models gener-9

ally improve disease detection performance and mitigate unfairness in diagnosis10

rates. The reduced demographic signals in these embeddings may contribute to11

fairer outcomes without compromising performance. Our findings suggest that12

vector embeddings can enable more accessible and equitable medical computer13

vision, particularly in low-resource settings.14

1 Introduction15

Artificial Intelligence (AI) can reduce healthcare costs, burnouts of staff, and geographical and social16

disparities in care access. AI application in radiology has been showing promising results [Irvin et al.,17

2019, Wang et al., 2017a, Ahluwalia et al., 2023, Rajpurkar et al., 2018].18

However, building effective AI models is challenging, due to the need for extensive data [Akbarian19

et al., 2023], high-performance computing, human expertise, and the risk of biases and unfair-20

ness [Seyyed-Kalantari et al., 2021b,a, Nalla et al., 2024, Banerjee et al., 2023]. Here by unfairness21

we mean consistent disparate outcomes of an AI model for a predictive task against some, typically22

vulnerable, subpopulations.23

Google recently released a CXR Foundation model6 that transforms chest radiograph images into24

information-rich numerical vectors referred to as “vector embeddings”in an inference mode. So far,25

Google has released the vector embedding representation of the MIMIC-CXR and CheXpert datasets26

2’4. CXR Foundation models have been trained on a vast amount of natural and X-ray images.27

Notably, using vector embeddings instead of original images reduces or even eliminates the need for28

complex deep learning algorithm development, huge computation resources, and data storage, thus29

paving the way to AI access equity. Such practice seems inevitable as models and training datasets30

grow larger; however, whether vector embedding representations can effectively substitute for raw31

medical images from both model performance and fairness perspectives is still an open question.32

6https://github.com/Google-Health/imaging-research/tree/master/cxr-foundation
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In this work, we evaluate fairness and performance of AI models trained on vector embedding vs33

chest X-ray images in disease classification tasks. While there are concerns around AI race detection34

from medical images [Gichoya et. al., 2022] and its impact on AI model fairness, we further explore35

race and sex detection of AI models from vector embeddings vs medical images. The goal is to36

verify whether vector embedding representations carry less demographic data (e.g., race or sex) than37

medical images and explore its impact on model fairness. We compare models’ fairness in correct38

disease diagnosis [Seyyed-Kalantari et al., 2021a] and underdiagnosis (unhealthy patient flagged as39

healthy) [Seyyed-Kalantari et al., 2021b] in models that are trained on vector embedding and medical40

images. We perform the analyses on large, publicly accessible vector embeddings of MIMIC-CXR41

(MIMIC) and CheXpert (CXP) chest X-ray datasets, and a multi-source aggregation of both datasets,42

referred to as ALL. Due to data availability, we use race, sex, and age as sensitive attributes for all43

datasets, and insurance type as a proxy for socioeconomic status [Seyyed-Kalantari et al., 2021a] in44

the MIMIC-CXR dataset. The main contribution of our work can be summarized as follows:45

• Disease classification of AI model trained on vector embedding across 14 labels.46

• Fairness analysis of the vector embedding-based disease detection model.47

• Evaluating AI model race and sex detection from vector embedding vs medical images.48

• Performing the aforementioned analyses on CheXpert, MIMIMIC-CXR, and their aggrega-49

tion (ALL) datasets.50

To the best of our knowledge, this work is the first benchmark of the above tasks to date. So far,51

only disease classification of vector embedding-based model on five labels in 234 test samples of the52

CheXpert has been reported [Sellergren et al., 2022].53

2 Related Work54

2.1 Fairness and debiasing in medical imaging55

Recent studies showcased unfairness of AI models in disease diagnosis across various sensitive56

attributes and underdiagnosis in chest X-ray disease classification for historically underserved popu-57

lations [Seyyed-Kalantari et al., 2021a,b, Ahluwalia et al., 2023, Gichoya et al., 2023, Zhang et al.,58

2022]. Underdiagnosis measured by False Positive Rate (FPR) on the No Finding label demonstrates59

that the patient has a disease, but the classifiers detect the patient as healthy, potentially leading to60

receiving no treatment. In the medical imaging domain, Larrazabal et al. [2020] evaluated unfairness61

under gender imbalance training datasets. Limited efforts have been spent to address unfairness in62

medical imaging, centred around benchmarking previous debiasing methods [Zhang et al., 2022]63

and combining fine-tuning and pruning techniques [Marcinkevics et al., 2022]. MEDFAIR frame-64

work Zong et al. [2022] assessed machine learning model fairness in medical imaging, highlighting65

the prevalent bias in Empirical Risk Minimization (ERM) models across various modalities. Also66

Zhang et al. [2021] evaluate the domain generalization techniques fairness and realize no method67

outperforms ERM. Unfair AI can lead to escalating unfairness [Bohdal et al., 2023]. Fairness and68

bias analysis in medical imaging needs domain-specific consideration of sensitive attributes [Heming69

et al., 2023]. These techniques often reduce performance for privileged groups (e.g. White) rather70

than improving it for non-privileged (e.g. Black) [Zhang et al., 2022, Marcinkevics et al., 2022].71

2.2 Short-cut learning from medical images72

AI models can predict human biological age [Lu et al., 2023], sex [Yang et al., 2021, Cao et al., 2021],73

and race [Gichoya et. al., 2022], and even body mass index Abbasi Bavil et al. [2024] from medical74

images. This is an undesired outcome as the AI model may use this data to further discriminate75

against historically underserved populations. We hope that using vector embedding will degrade AI76

demographic feature detection from medical images and mitigate unfairness, which needs further77

investigation.78

2.3 Vector embedding representation79

Foundation models [Bommasani and et al., 2021, Yang et al., 2023], being large-scale deep AI80

models trained on extensive datasets, can be applied across diverse tasks with minimal fine-tuning.81
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Google trained a CXR Foundation model and released vector embedding, the vector representation of82

X-ray images in embedding space [Sellergren et al., 2022]. Vector embeddings condense intricate83

information into concise vectors with 1376 floating-point representations for each chest X-ray image.84

The model was initially trained on a large dataset of natural images, JFT-300M dataset [Sun et al.,85

2017]. Subsequently, it was trained with supervised contrastive learning on noisy labels of normal/86

abnormal over a dataset of 821, 544 chest radiographs, collected from India and the US [Sellergren87

et al., 2022]. These datasets include five different hospitals in India, the ChestX-ray14 dataset (from88

the National Institutes of Health(NIH)), and the US1 dataset (from a hospital system in Illinois, United89

States). Note the datasets and disease labels in our study were not used to train CXR Foundation90

models, and the images of our dataset are gathered from different geographical regions.91

The disease prediction performance of vector embeddings has been presented for five labels [Seller-92

gren et al., 2022] of the CheXpert dataset on a limited 234 samples. Glocker et al. [2022] conducted a93

statistical bias analysis on the chest X-ray foundation model developed by Sellergren et al. [2022] on94

the CheXpert dataset. Their findings revealed that the model embeds characteristics such as biological95

sex and racial identity. Their disease detection performance shows around 5% degradation from Sell-96

ergren et al. [2022], which might be due to different problem setups. Also, their fairness investigation97

was based on fixed threshold selection leading to a demonstration of unfairness detection in CheXpert98

vector embedding. Threshold selection significantly impacts fairness analysis [Seyyed-Kalantari99

et al., 2022], and different values may be chosen based on needs. In the lack of specific preference for100

the cost of false negative or positive prediction, a common approach focuses on threshold selection101

based on maximizing the F1 score across all labels [Irvin et al., 2019, Seyyed-Kalantari et al., 2021a,102

Rajpurkar et al., 2018] which was not the selection criteria for Glocker et al. [2022].103

104

2.4 Transfer learning105

While using vector embeddings might resemble transfer learning where a model is pre-trained and106

its classification head is fine-tuned our approach goes beyond simple transfer learning. In the age107

of foundation models, we explore the potential of generating enriched vector embeddings that can108

substitute for original images, removing the need to continuously load, fine-tune, and deploy pre-109

trained models. This novel approach of utilizing the embedding dataset significantly improves AI110

accessibility in environments with limited resources, such as instrumentation and expertise, clearly111

differentiating our method from traditional transfer learning.112

3 Methods113

3.1 Data114

There are two publicly available Chest X-ray vector embedding datasets corresponding to the MIMIC-115

CXR and Chexpert image datasets. We have done our analysis on these datasets and their aggregation116

called ALL dataset. MIMIC-CXR5 dataset, collected from the Beth Israel Deaconess Medical117

Center in Boston, MA, between 2011 and 2016 [Johnson et al., 2019] and its corresponding vector118

embedding representation has been released by Google [Sellergren et al., 2023]6. The Chexpert7119

dataset, which has gathered at the Stanford University Medical Center between October 2002 and July120

2017 [Irvin et al., 2019], and its vector embedding representation has been released by Google 8. Both121

vector embedding datasets were derived from Google’s CXR-foundation model [Sellergren et al.,122

2022]. Detailed information regarding the datasets, including distribution across patient subgroups123

and diagnostic labels, can be found in Table A1 in supplementary materials and Table 1. We also124

aggregated these two datasets to further explore the impact of using multi-source datasets.125

We should note while the CXR foundation model could encode new datasets like chest-Xray14 [Wang126

et al., 2017b], a data sharing agreement prevents us from sharing sensitive health data such as this127

dataset with a third party (Google) to get the Vector Embedding representation. Also, since chest-128

5https://physionet.org/content/mimic-cxr-jpg/2.0.0/
6https://physionet.org/content/image-embeddings-mimic-cxr/1.0/
7https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
8https://docs.google.com/forms/d/e/1FAIpQLSek0P-JSwSfonIiZJlz7gOTbL0lugsDug0FUnMhS1zVzpEKlg/

viewform
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Xray14 has been used for training the Google foundation model with noisy labels of normal/abnormal,129

we should not conduct our analysis in this dataset to avoid data leakage. By doing our analysis on130

MIMIC-CXR and CheXpert, we have ensured none of our datasets has been used in training the131

Google X-ray foundation model.132

3.2 Benchmarks133

As baselines, we benchmark the following image-based models in MIMIC, CXP and ALL:134

• Disease classification model trained on raw chest x-ray images from Seyyed-Kalantari et al.135

[2021a] and our in-house image-based model trained on ALL dataset.136

• Fairness evaluation in performance (area under the ROC Curve (AUC)) correct disease137

diagnosis and underdiagnosis [Seyyed-Kalantari et al., 2021a,b] and our in-house image-138

based model trained on ALL.139

• race detection from medical images [Gichoya et. al., 2022] for MIMIC-CXR and CheXpert140

and our in-house sex detection model from medical images across all datasets.141

For vector embedding datasets of MIMIC, CXP and ALL, we benchmark the performance of our142

trained models on:143

• The disease classification from chest x-ray vector embedding.144

• Fairness evaluation in correct disease diagnosis and underdiagnosis.145

• Race and sex detection of AI models from vector embedding.146

3.3 Fairness evaluation147

In this study, S denotes sensitive attributes, a criterion for eligibility for protection. In partic-148

ular, S = {Ssex, Sage, Srace} for all datasets; and for MIMIC-CXR dataset also SInsurance ∈149

S. For every sensitive attribute, we consider a set of protected groups. Here, the protected150

groups are; Ssex = {male, female}, Srace = {White,Black, Hispanic,Other,Asian,151

AmericanIndian/Alaskanative}, Sage = {0 − 20, 20 − 40, 40 − 60, 60 − 80, 80−}, and152

Sinsurance = {Medicare,Other,Medicaid}. Medicaid is a US governmental insurance for low-153

income families. Thus, we use insurance as a proxy for social economic status.154

We evaluate the separation statistical fairness criteria, which, given the true label Y require orthogo-155

nality of predicted label Ŷ and Si, Ŷ ⊥⊥ Si | Y . Here, Y , Ŷ ∈ RN and their elements yj , ŷj ∈ {0,156

1}. Here, N is the number of disease labels. In MIMIC-CXR and CheXpert N=14.157

Equality of odds [Hardt et al., 2016] notion of fairness satisfies separation criteria by equalizing158

the True Positive Rate (TPR) and FPR. We evaluate TPR disparities across disease labels [Seyyed-159

Kalantari et al., 2021a] and FPR differences across “No Finding ”label [Seyyed-Kalantari et al.,160

2021b]. Similar to [Seyyed-Kalantari et al., 2021a], for binary Si (e.g sex) the TPR disparity for the161

lth subpopulation within Si, is given by162

TPRDispSi;l = TPRSi;l − TPR¬Si;l. (1)

Also, for the non-binary classification, similar to [Seyyed-Kalantari et al., 2021a], the TPR disparity163

for the lth subpopulation within Si is given by:164

TPRDispSi;l = TPRSi;l − Median
(
{TPRSi;k}lk=1

)
. (2)

We calculate TPRDispSi;l per disease label yj . For a given yj , and Si, the subgroup with maximum165

TPRDispSi;l is the most favorable as it has the largest disparity in favor. The most unfavorable166

groups revive the highest negative gap and Gapi,j are given by:167

Gapi,j = max
(
{TPRDispSi;k}lk=1

)
−min

(
{TPRDispSi;k}lk=1

)
(3)

where, Gapi,j denotes the TPR disparity gap per disease label across subpopulations for a given168

Si. We then calculate E[Gapi,j ], per Si, across ∀yj and report it as the average Gapi,j for a given169
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sensitive attribute. Additionally, we zoom in “No Finding ”(no disease diagnosed) label and evaluate170

the FPRs of this label as it measures the underdiagnosis rate similar to Seyyed-Kalantari et al. [2021b].171

A false positive of “No Finding”means the patient has a disease, but the classifier marks the patient172

as healthy.173

3.4 Experiments174

We conducted the following three major experiments.175

A) Disease classification with vector embedding-based model: We evaluated three separate classi-176

fiers trained on vector embeddings of the MIMIC, CXP, and ALL datasets for disease classification177

and compared their outcomes to classifiers trained on chest X-ray images.178

B) Fairness evaluation of vector embedding-base model: We assessed the fairness of the vector179

embedding-based model in correct disease diagnosis (TPR disparity) and flagging unhealthy patients180

healthy (underdiagnosis rate) in disease classification task.181

C) Race and sex detection using vector embedding: We examine the ability of models trained on182

vector embeddings to detect race and sex.183

3.5 Models184

Label (Abbr.) MIMIC(Img) MIMIC(Emb) CXP(Img) CXP(Emb) ALL(Img) ALL(Emb)

Atelectasis (A) 0.837±0.001 0.809±0.001 0.717±0.001 0.908±0.000 0.891±0.004 0.887±0.001
Cardiomegaly (Cd) 0.828±0.002 0.805±0.001 0.855±0.003 0.902±0.000 0.887±0.004 0.884±0.000
Consolidation (Co) 0.844±0.001 0.826±0.002 0.734±0.004 0.906±0.000 0.938±0.003 0.936±0.000
Edema (Ed) 0.904±0.002 0.892±0.000 0.849±0.001 0.904±0.000 0.913±0.003 0.914±0.001
Enlarged Card (EC) 0.757±0.003 0.728±0.004 0.668±0.005 0.921±0.000 0.956±0.002 0.953±0.000
Fracture (Fr) 0.718±0.007 0.798±0.002 0.790±0.006 0.878±0.001 0.912±0.006 0.917±0.001
Lung Lesion (LL) 0.772±0.006 0.809±0.003 0.780±0.005 0.872±0.001 0.876±0.010 0.878±0.000
Lung Opacity (LO) 0.782±0.002 0.769±0.001 0.747±0.001 0.934±0.000 0.898±0.004 0.898±0.000
No Finding (NF) 0.868±0.001 0.867±0.000 0.885±0.001 0.955±0.000 0.911±0.005 0.912±0.001
Effusion (Ef) 0.933±0.001 0.909±0.000 0.885±0.001 0.904±0.000 0.916±0.004 0.911±0.000
Pleural Other (PO) 0.848±0.003 0.877±0.005 0.795±0.004 0.894±0.001 0.920±0.009 0.922±0.001
Pneumonia (Pa) 0.748±0.005 0.745±0.002 0.777±0.003 0.864±0.000 0.850±0.007 0.847±0.001
Pneumothorax (Px) 0.903±0.002 0.884±0.001 0.893±0.002 0.905±0.000 0.891±0.012 0.898±0.001
Sup. Dev. (SD) 0.927±0.001 0.928±0.000 0.898±0.001 0.942±0.001 0.929±0.006 0.941±0.000
Average (Avg) 0.834±0.001 0.832±0.000 0.805±0.001 0.906±0.000 0.906±0.006 0.907±0.000

Table 1: AUC (mean over 5 runs ± 95% CI) for disease classification, trained on raw chest X-ray image-based
model (Img) vs. our models trained on vector embeddings (Emb). The datasets are MIMIC-CXR (MIMIC),
CheXpert (CXP), and their aggregation (ALL). The Img baseline of MIMIC and CXP are from Seyyed-Kalantari
et al. [2021a]. Here, Sup. Dev. stands for support device.

All disease detection models (i.e., MIMIC-CXR, CXP, ALL(Emb), the classification head of185

ALL(Img)) and race and sex classification models have two hidden layers. Detailed configura-186

tions of all models are provided in Appendix B of supplementary materials. For ALL dataset187

image-based models, we utilized the DenseNet121, similar to other literatures [Irvin et al., 2019,188

Pooch et al., 2020, Rajpurkar et al., 2017, Seyyed-Kalantari et al., 2021b, Zhang et al., 2022]. The189

dataset was partitioned into training, validation, and testing sets according to a 80− 10− 10 split,190

ensuring no patient overlap. We report AUC and use TPR and FPR for fairness analysis.191

4 Results192

4.1 Disease classification performance using vector embedding193

We present AUC for disease classification over 14 disease labels in MIMIC, CXP, and ALL datasets194

for both vector embedding-based model (Emb) and image-based model (Img). We used the results195

presented in Seyyed-Kalantari et al. [2021a] as the baseline for MIMIC and CXP, which itself196

compared its outcomes with other models [Tanno et al., 2019, Wang et al., 2020, Cohen et al., 2020,197

Allaouzi and Ben Ahmed, 2019] and achieved SOTA results. For ALL datasets, we trained an198

in-house image-based model. Notably, ALL datasets in Seyyed-Kalantari et al. [2021a] also include199

5



the Chest X-ray 14 dataset, which has been used in training of Google CXR Foundation model200

[Sellergren et al., 2022]. Therefore, we trained both image-based and vector-embedding models for201

ALL datasets, including only CXP and MIMIC datasets.202

Table 1 shows the AUCs across labels. Our vector embedding-based models perform better on average203

across all labels in disease classification tasks for CXP and ALL datasets, particularly showing a204

notable 0.1 AUC boost for CXP. In MIMIC, the image-based model’s AUC is negligibly 0.002 higher.205

The Google CXR Foundation model paper [Sellergren et al., 2022] provides vector embedding-based206

results for five CXP labels, only for 234 hand-labeled test images, which are not publicly available.207

However, our test set covered 14 labels on o large test set of 19, 471 images for CheXpert, 21, 591 for208

MIMIC-CXR, and 41, 062 for ALL datasets. Overall, our AUCs are better or similar for all those five209

labels [Sellergren et al., 2022], except for Effusion, where ours is 0.03 lower. We report the mean and210

95% confidence interval achieved from different random seed. Training was conducted using 20 CPU211

cores, 32GB RAM, and an NVIDIA RTX 6000 GPU, completing in 7,5, and 12 minutes for MIMIC,212

CXP, and ALL vector embedding datasets, respectively. In contrast, training the ALL image-based213

model typically takes about 10 hours. In summary, vector embeddings allow to accomplish the task214

faster with much lower computational power, and lead to better performance compared to medical215

images based models [Seyyed-Kalantari et al., 2021b, Tanno et al., 2019, Cohen et al., 2020, Wang216

et al., 2020, Allaouzi and Ben Ahmed, 2019].217

4.2 Fairness Results218

4.2.1 TPR Disparities219

We have evaluated TPR disparities using Eq. 1 for sex and Eq. 2 for the remaining sensitive attributes.220

Here, positive and negative disparities reflect biases favouring or unfavouring particular subgroups.221

Here, the most favorable groups have the largest frequency of positive gaps across 13 disease labels,222

and the most unfavorable has the largest frequency of negative gaps. Figure 1 shows the distribution223

of race TPR disparities with 95% CI, sorted by Gapj for a model trained on the ALL dataset. Here,224

E[Gaprace,j ],∀j, is 0.214, “Support Devices(SD) ”has the least gap 0.037 and “Pneumonia(Pn) ”has225

the most 0.376. “Black ”patients constantly receive negative TPR disparities in 13/13 disease labels.226

We refer to them as the most unfavorable group, while patients with “Other ”races reviving the most227

frequently positive TPR disparities 13/13 are referred to as the most favorable groups. We plot TPR228

disparities for remaining sensitive attributes and datasets in Figures C1 to C9 of supplementary229

materials. We summarized all TPR disparity average gaps across all labels, the disease with the230

lowest and highest gap, and the most favorable and unfavorable subpopulation in Table 2. Ideally, we231

would have negligible TPR disparities across all subgroups, within each label ( “No Finding”label232

has been excluded to focus in disease diagnosis.).
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Figure 1: TPR race disparities (mean over 5 run ± 95% CI indicated by arrows) of ALL dataset (y-axis)
across disease labels (x-axis). The scatter plot size corresponds to the subgroup sizes per label. Here, positive
TPR disparities are favourable, while negative disparities are unfavourable. Notably, Black patients are the
unfavourable group for all 13 disease labels, and patients of other racial groups are the most favourable subgroup.
For a particular disease, the lower the distance, the fairer the model. We summarized these outcome in Table 2.
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Attribute Dataset Average Cross-Label Gap Unfavorable Favorable
Gap Lowest Highest

Sex ALL(Emb) 0.042 Fr:0.007 LL:0.114 Female(10/13) Male(10/13)
ALL(Img) 0.069 PE:0.024 Ed:0.139 Female(12/13) Male(12/13)
MIMIC(Emb) 0.071 PE:0.008 LL:0.217 Female(11/13) Male(11/13)
MIMIC(Img) 0.072 Ed:0.011 EC:0.151 Female(10/13) Male(10/13)
CXP(Emb) 0.024 Pn:0.000 Ed:0.049 Female(9/13) Male(9/13)
CXP(Img) 0.062 ED:0.000 Co:0.139 Female(7/13) Male(7/13)

Age ALL(Emb) 0.103 PE:0.029 Px:0.266 20-40(11/13) 60-80(12/13)
ALL(Img) 0.122 FR:0.054 EC:0.194 20-40(10/13) 60-80(13/13)
MIMIC(Emb) 0.190 SD:0.059 PE:0.405 80-(9/13) 60-80(9/13)
MIMIC(Img) 0.245 SD:0.091 Cd:0.440 0-20, 20-40(7/13) 60-80(10/13)
CXP(Emb) 0.114 Co:0.037 Px:0.251 0-20,20-40(10/13) 60-80(13/13)
CXP(Img) 0.270 SD:0.084 NF:0.604 0-20, 20-40, 80-(7/13) 40-60(8/13)

Race ALL(Emb) 0.214 SD:0.037 Pn:0.376 Black(13/13) Other(13/13)
ALL(Img) 0.183 EC:0.113 PX:0.316 Black(13/13) Asian(13/13)
MIMIC(Emb) 0.280 Cd:0.109 Px:0.663 Black,Asian(9/13) White(10/13)
MIMIC(Img) 0.226 NF:0.119 Pa:0.440 Hispanic(9/13) White(9/13)
CXP(Emb) 0.100 LL:0.035 Fr:0.186 Black,Native(12/13) White,Asian(10/13)
CXP(Img) 0.119 Fr: 0.055 At:0.215 Native(9/13) Other(7/13)

Insurance MIMIC(Emb) 0.008 At:0.0005 Co:0.029 Medicare(8/13) Other(9/13)
MIMIC(Img) 0.100 SD:0.021 PO:0.190 Medicaid(10/13) Other(10/13)

Table 2: Summary of TPR disparities across sensitive attributes for image-based (Img) [Seyyed-Kalantari
et al., 2021a] versus vector embedding-based (Emb) models. We calculate the E[Gapi,j ], ∀i,∀j, as listed in
the Average Gap column. A smaller average gap indicates a fairer model in disease diagnosis. The lowest and
highest gaps per attribute/dataset, along with their values, are shown (full disease names in Table 1). The most
Unfavorable/favorable subgroups have also been shown. Only MIMIC has insurance data.

In cases of minimal average gap, our model shows improved fairness regarding TPR disparity. As234

before, compare fairness between models trained on vector embeddings (Emb) and images (Img),235

with baseline results from Seyyed-Kalantari et al. [2021a], except for ALL. Vector embedding236

models consistently show a lower average gap for sex, age, and insurance attributes across MIMIC,237

CXP, and ALL datasets, indicating fairer outcomes compared to image models. However, for race238

in ALL and MIMIC, vector embeddings have a higher gap. The most and least favored subgroups239

generally remain unchanged between vector embedding and image models.240

4.2.2 Underdiagnosis241

For CXP, Fig. 2 shows the underdiagnosis rate using vector embeddings vs medical images across242

subgroups of sex, age, and race and the patients’ intersection with two/three underserved groups. We243

report the baseline results from Seyyed-Kalantari et al. [2021b], shown in gray color in Fig. 2. We244

exclude groups with fewer than 10 patients with FPR from the plot to avoid conclusions based on245

small subsets. No three-group intersections meet this criterion, so we do not provide such plots.246

Vector embedding reduces the underdiagnosis rate and narrows the fairness gap between the maximum247

and minimum rates per sensitive attribute, improving fairness in the max-min gap of underdiagnosis.248

We also evaluate the underdiagnosis rate for the MIMIC-CXR and ALL datasets. Table D1 in the249

supplementary materials summarizes underdiagnosis rate fairness, with detailed findings in Figures250

D1 and D2.251

For the MIMIC-CXR dataset, vector embedding models reduced underdiagnosis rates and max-min252

gaps across all subgroups compared to image-based models. In ALL data, both models show similar253

underdiagnosis rates and max-min gaps (Fig D1). The image model has a slightly lower FPR for254

three age subgroups, but the difference is minimal, with the max-min gap only 0.002 higher for vector255

embedding.256

4.3 Sex and race detection using vector embedding257

We aim to determine if models can learn sensitive features like race and sex when using vector258

embeddings. Lower detection of these features is preferred, as using demographic data may lead to259

unfairness. Table C1 in the supplementary materials shows the AUC for sex and race detection in260

7



 

 

 

b(i) b(ii) b(iii)

Su
bg

ro
up

 F
PR

a)

Tw
o 

gr
ou

p 
in

te
rs

ec
tio

na
l F

PR
R

b)

Figure 2: Exploration of underdiagnosis rates. (a) rates across sex, age, and race subgroups in CheXpert. (b),
Two group intersection underdiagnosis rates for (b(i)) female, (b(ii)), 20-40, and (b(iii)) Black patients amidst all
other subgroups. Subgroups with fewer than ten FPR occurrences are excluded. The gray bar represents the
image-based model from Seyyed-Kalantari et al. [2021b]. Here, using vector embeddings reduced the max-min
FPR gap and overall underdiagnosis rate,leading to more fairness. Most underdiagnosid groups and max-min
gap are presented in Table D1 of supplementary materials.

different settings. While vector embeddings still carry these signals, detecting race and sex is easier261

in images, as shown by the lower AUC in vector embeddings.262

5 Discussion263

5.1 Vector embeddings: reliable substitute for X-ray images264

Disease classification performance: On average, vector embedding-based disease classifiers265

outperform image-based models across all labels in CheXpert and multi-source ALL datasets (see266

Table 1). In MIMIC-CXR, the image-based model only slightly outperforms by 0.002, which is267

negligible compared to the computational savings. Thus, vector embeddings are a reliable substitute268

for raw images for AI model training.269

Fairness: For fairness, we compared TPR disparity, underdiagnosis rate, and max-min gap in270

underdiagnosis. Vector embeddings generally improve TPR disparity across all labels in most of271

the dataset-sensitive attribute setup pairs, reducing the gap in 8 of 10 sensitive attribute setups (see272

Table 2). Similarly, vector embeddings often reduce both the underdiagnosis rate and the max-min273

gap compared to image-based models (Table D1), doing so in 7 out of 10 dataset-attribute pairs.274

For cases where the gap isn’t smaller, the difference is minimal, ranging from 0.002 to 0.007. This275

outcome indicates greater fairness in the vector embedding model compared to the image-based276

model. We also examined multi-source data, where both model types perform similarly in disease277

detection, showing minimal max-min gaps in underdiagnosis and often small average diagnosis gaps.278

This suggests that large multi-source datasets can reduce disparities, aligning image-based models279

more closely with the representations learned by foundation models.280

Voulnerable groups: The vector embedding-based model does not alter vulnerable subgroups,281

with female, younger, and Black patients still being the most underdiagnosed (see Tables 2 and Table282

D1 in supplementary materials). Additionally, TPR disparity shifts from Medicaid to Medicare when283
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using vector embeddings. This group represents retired patients, typically of lower socioeconomic284

status, with Medicaid remaining the most underdiagnosed. Groups with multiple vulnerable traits,285

such as Black females, face higher underdiagnosis rates than white females, indicating amplified bias.286

These findings align with previously identified vulnerable groups in healthcare [Abdelmalek et al.,287

2023] and medical imaging [Seyyed-Kalantari et al., 2021a,b], reflecting existing societal biases.288

Diversity and the size of data: The image-based and vector embedding-based models demon-289

strate similar performance in disease detection and underdiagnosis rates across various datasets290

and attributes. The multi-source dataset is notably larger and more diverse than individual datasets.291

These features may help achieve performance closer to the vector embedding dataset, originally292

derived from a foundation model trained on large, diverse data. Similarly, vector embedding yields293

greater performance improvements in the CheXpert dataset compared to the MIMIC-CXR dataset,294

as CheXpert was initially smaller. These findings suggest that vector embedding may offer greater295

benefits in fairness and performance with smaller, less diverse original datasets. As data size increases,296

the advantages of using vector embedding or image-based models for improved performance and297

fairness diminish. Nonetheless, vector embedding still provides the benefit of faster training with298

lower computational resources.299

Generalizability: Across datasets, vector embedding-based models consistently improved model300

fairness compared to image-based models. However, the vulnerable subgroups remained unchanged301

with vector embedding. It’s important to note that fairness analysis outcomes on binary predictions302

can vary significantly with different thresholds. In this work, similar to prior studies [Seyyed-Kalantari303

et al., 2021a,b, Rajpurkar et al., 2017], we use the threshold that maximizes the F1 score across all304

labels, treating precision and recall equally. However, one can set the threshold to achieve a fixed305

FPR for disease classification [Glocker et al., 2022]. The choice of threshold depends on the specific306

problem and the associated costs of precision and recall in the downstream task.307

5.2 The fairer, the blinder to demographic features308

Our findings suggest that demographic features such race and sex persists in vector embedding309

but the race and sex detection performance is less than image-based model. Concurrently, vector310

embeddings reduce unfairness in disease diagnosis and underdiagnosis rates compared to image-311

based models.Digging into numbers among three datasets, CXP has more fairness (less average gap)312

in correct disease diagnosis (See Table 2) and less max-min gap in underdiagnosis rate analysis313

(See Table D1 of supplementary materials. This co-occurs with often less sex and race detection314

performance (See Table C1 of supplementary materials). In particular, for the CheXpert dataset, we315

observe the race signal dropped more in vector embedding, co-occurring with higher performance in316

disease detection (See Table 1), and less unfairness (See Table 2). Such observation amplifies the317

importance of learning representation with less sensitive signals to mitigate unfairness.318

5.3 Vector embedding: AI equity and lower environmental damage319

Our work shows that vector embeddings enhance AI efficiency and fairness while reducing memory320

and GPU usage, leading to lower carbon emissions and environmental impact. This approach makes321

AI more accessible to those with limited computational resources or expertise. Releasing and using322

vector embedding datasets as image substitutes can promote global AI equity. As AI models grow323

and become constrained to high-tech companies, vector embeddings offer a viable alternative for324

those lacking advanced computing infrastructure.325

6 Limitations and Future Work326

Considering the potential benefits showcased by the vector embedding dataset, we propose the327

expansion of producing vector embedding versions of diverse datasets. This expansion will broaden328

our fairness analysis to include a wider range of vector embedding datasets, diverse demographic329

profiles, and various analytical techniques. Our work relies on two only available vector embedding330

datasets, MIMC-CXR and CheXpert, along with their aggregations. In addition, the backbone331

CXR foundation model [Sellergren et al., 2022] that generated the vector embeddings is trained on332

data collected from limited resources in the USA and India, raising concerns about data shift and333
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drift. Using a larger and diversified dataset for these foundation models potentially leads to a more334

generalizable representation of learning. We plan to develop a fair vector embedding representation335

for future work that leads to fairer outcomes. Considering recent progress in large language models336

(LLMs), We also plan to consider multi-modality in analyzing the vector embedding or learning337

fair vector embeddings. In doing so, the fairness of applied LLMs needs to be considered so as338

not to enforce extra biases [Tian et al., 2023]. Following the hints from this research, locating339

demographic signals [Salvado et al., 2024] and disentangling or mitigating demographic signals from340

vector embedding representation seems to be a plausible path to reach our goal. We will also generate341

vector embedding representations for diverse public medical image datasets and release them for the342

public community’s use.343

7 Conclusion344

We examined the fairness and performance of the disease classification AI model using vector em-345

bedding datasets and image-based datasets. Overall, the vector embedding-based model outperforms346

or has a negligible drop in disease classification performance and improved fairness compared to the347

image-based model, suggesting vector embeddings are a proper substitute for medical images in AI348

model training. We observed large and multi-source datasets demonstrate less difference in fairness349

and performance between models based on vector embedding and image. Additionally, there are350

fewer demographic features such as race and sex information in vector embedding vs images, which351

may guide researchers to look for ways to learn representation with fewer demographic features to352

reach better fairness. We should also note training a model for the classification of vector embedding353

datasets requires less computational power and specialized knowledge while promoting privacy and354

equity in AI access and reducing negative computational environmental impact.355
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NeurIPS Paper Checklist507

1. Claims508

Question: Do the main claims made in the abstract and introduction accurately reflect the509

paper’s contributions and scope?510

Answer:[Yes]511

Justification: The main claims in the abstract and introduction accurately reflect the paper’s512

contributions and scope.513

Guidelines:514

• The answer NA means that the abstract and introduction do not include the claims515

made in the paper.516

• The abstract and/or introduction should clearly state the claims made, including the517

contributions made in the paper and important assumptions and limitations. A No or518

NA answer to this question will not be perceived well by the reviewers.519

• The claims made should match theoretical and experimental results, and reflect how520

much the results can be expected to generalize to other settings.521

• It is fine to include aspirational goals as motivation as long as it is clear that these goals522

are not attained by the paper.523

2. Limitations524

Question: Does the paper discuss the limitations of the work performed by the authors?525

Answer: [Yes]526

Justification: The paper discusses potential limitations of the work performed.527

Guidelines:528

• The answer NA means that the paper has no limitation while the answer No means that529

the paper has limitations, but those are not discussed in the paper.530

• The authors are encouraged to create a separate "Limitations" section in their paper.531

• The paper should point out any strong assumptions and how robust the results are to532

violations of these assumptions (e.g., independence assumptions, noiseless settings,533

model well-specification, asymptotic approximations only holding locally). The authors534

should reflect on how these assumptions might be violated in practice and what the535

implications would be.536

• The authors should reflect on the scope of the claims made, e.g., if the approach was537

only tested on a few datasets or with a few runs. In general, empirical results often538

depend on implicit assumptions, which should be articulated.539

• The authors should reflect on the factors that influence the performance of the approach.540

For example, a facial recognition algorithm may perform poorly when image resolution541

is low or images are taken in low lighting. Or a speech-to-text system might not be542

used reliably to provide closed captions for online lectures because it fails to handle543

technical jargon.544

• The authors should discuss the computational efficiency of the proposed algorithms545

and how they scale with dataset size.546

• If applicable, the authors should discuss possible limitations of their approach to547

address problems of privacy and fairness.548

• While the authors might fear that complete honesty about limitations might be used by549

reviewers as grounds for rejection, a worse outcome might be that reviewers discover550

limitations that aren’t acknowledged in the paper. The authors should use their best551

judgment and recognize that individual actions in favor of transparency play an impor-552

tant role in developing norms that preserve the integrity of the community. Reviewers553

will be specifically instructed to not penalize honesty concerning limitations.554

3. Theory Assumptions and Proofs555

Question: For each theoretical result, does the paper provide the full set of assumptions and556

a complete (and correct) proof?557

Answer: [Yes]558
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Justification: The paper includes all necessary assumptions and complete, correct proofs for559

each theoretical result, with proper references and cross-referencing.560

Guidelines:561

• The answer NA means that the paper does not include theoretical results.562

• All the theorems, formulas, and proofs in the paper should be numbered and cross-563

referenced.564

• All assumptions should be clearly stated or referenced in the statement of any theorems.565

• The proofs can either appear in the main paper or the supplemental material, but if566

they appear in the supplemental material, the authors are encouraged to provide a short567

proof sketch to provide intuition.568

• Inversely, any informal proof provided in the core of the paper should be complemented569

by formal proofs provided in appendix or supplemental material.570

• Theorems and Lemmas that the proof relies upon should be properly referenced.571

4. Experimental Result Reproducibility572

Question: Does the paper fully disclose all the information needed to reproduce the main ex-573

perimental results of the paper to the extent that it affects the main claims and/or conclusions574

of the paper (regardless of whether the code and data are provided or not)?575

Answer: [No]576

Justification: The paper does not fully disclose all information needed for reproducing577

the experimental results, as the code will not be released until the paper is accepted for578

publication at another conference. However, the dataset is openly available for use in579

experimentation.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a No answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model. In general. releasing code and data is often592

one good way to accomplish this, but reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of closed-source models, it may be that access to the model is limited in610

some way (e.g., to registered users), but it should be possible for other researchers611

to have some path to reproducing or verifying the results.612
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5. Open access to data and code613

Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in supplemental615

material?616

Answer: [No]617

Justification: The paper does not provide open access to the code, as the code will not be618

released until the paper is accepted for publication at another conference. However, the619

dataset is openly available for experimentation.620

Guidelines:621

• The answer NA means that paper does not include experiments requiring code.622

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/623

public/guides/CodeSubmissionPolicy) for more details.624

• While we encourage the release of code and data, we understand that this might not be625

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not626

including code, unless this is central to the contribution (e.g., for a new open-source627

benchmark).628

• The instructions should contain the exact command and environment needed to run to629

reproduce the results. See the NeurIPS code and data submission guidelines (https:630

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.631

• The authors should provide instructions on data access and preparation, including how632

to access the raw data, preprocessed data, intermediate data, and generated data, etc.633

• The authors should provide scripts to reproduce all experimental results for the new634

proposed method and baselines. If only a subset of experiments are reproducible, they635

should state which ones are omitted from the script and why.636

• At submission time, to preserve anonymity, the authors should release anonymized637

versions (if applicable).638

• Providing as much information as possible in supplemental material (appended to the639

paper) is recommended, but including URLs to data and code is permitted.640

6. Experimental Setting/Details641

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-642

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the643

results?644

Answer: [Yes]645

Justification: The paper does not fully disclose all information needed for reproducing646

the experimental results, as the code will not be released until the paper is accepted for647

publication at another conference. However, the dataset is openly available for use in648

experimentation.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The experimental setting should be presented in the core of the paper to a level of detail652

that is necessary to appreciate the results and make sense of them.653

• The full details can be provided either with the code, in appendix, or as supplemental654

material.655

7. Experiment Statistical Significance656

Question: Does the paper report error bars suitably and correctly defined or other appropriate657

information about the statistical significance of the experiments?658

Answer: [Yes]659

Justification: The models for each experiment are trained five times with different seed660

numbers, and results are reported with a 95% confidence interval for robustness, with error661

bars appropriately included.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-665

dence intervals, or statistical significance tests, at least for the experiments that support666

the main claims of the paper.667

• The factors of variability that the error bars are capturing should be clearly stated (for668

example, train/test split, initialization, random drawing of some parameter, or overall669

run with given experimental conditions).670

• The method for calculating the error bars should be explained (closed form formula,671

call to a library function, bootstrap, etc.)672

• The assumptions made should be given (e.g., Normally distributed errors).673

• It should be clear whether the error bar is the standard deviation or the standard error674

of the mean.675

• It is OK to report 1-sigma error bars, but one should state it. The authors should676

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis677

of Normality of errors is not verified.678

• For asymmetric distributions, the authors should be careful not to show in tables or679

figures symmetric error bars that would yield results that are out of range (e.g. negative680

error rates).681

• If error bars are reported in tables or plots, The authors should explain in the text how682

they were calculated and reference the corresponding figures or tables in the text.683

8. Experiments Compute Resources684

Question: For each experiment, does the paper provide sufficient information on the com-685

puter resources (type of compute workers, memory, time of execution) needed to reproduce686

the experiments?687

Answer:[Yes]688

Justification: The compute resources used and run times are clearly explained in the results689

section.690

Guidelines:691

• The answer NA means that the paper does not include experiments.692

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,693

or cloud provider, including relevant memory and storage.694

• The paper should provide the amount of compute required for each of the individual695

experimental runs as well as estimate the total compute.696

• The paper should disclose whether the full research project required more compute697

than the experiments reported in the paper (e.g., preliminary or failed experiments that698

didn’t make it into the paper).699

9. Code Of Ethics700

Question: Does the research conducted in the paper conform, in every respect, with the701

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?702

Answer: [Yes]703

Justification: The research conforms to the NeurIPS Code of Ethics as it ensures informed704

consent, protects participant privacy, adheres to data integrity standards, and considers the705

societal impact of the findings.706

Guidelines:707

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.708

• If the authors answer No, they should explain the special circumstances that require a709

deviation from the Code of Ethics.710

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-711

eration due to laws or regulations in their jurisdiction).712

10. Broader Impacts713

Question: Does the paper discuss both potential positive societal impacts and negative714

societal impacts of the work performed?715

Answer: [No]716
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Justification: This research does not discuss any negative societal impacts. It is focused on717

the performance and fairness of AI models utilizing vector-embedded chest x-ray datasets,718

which are primarily intended for improving healthcare outcomes.719

Guidelines:720

• The answer NA means that there is no societal impact of the work performed.721

• If the authors answer NA or No, they should explain why their work has no societal722

impact or why the paper does not address societal impact.723

• Examples of negative societal impacts include potential malicious or unintended uses724

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations725

(e.g., deployment of technologies that could make decisions that unfairly impact specific726

groups), privacy considerations, and security considerations.727

• The conference expects that many papers will be foundational research and not tied728

to particular applications, let alone deployments. However, if there is a direct path to729

any negative applications, the authors should point it out. For example, it is legitimate730

to point out that an improvement in the quality of generative models could be used to731

generate deepfakes for disinformation. On the other hand, it is not needed to point out732

that a generic algorithm for optimizing neural networks could enable people to train733

models that generate Deepfakes faster.734

• The authors should consider possible harms that could arise when the technology is735

being used as intended and functioning correctly, harms that could arise when the736

technology is being used as intended but gives incorrect results, and harms following737

from (intentional or unintentional) misuse of the technology.738

• If there are negative societal impacts, the authors could also discuss possible mitigation739

strategies (e.g., gated release of models, providing defenses in addition to attacks,740

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from741

feedback over time, improving the efficiency and accessibility of ML).742

11. Safeguards743

Question: Does the paper describe safeguards that have been put in place for responsible744

release of data or models that have a high risk for misuse (e.g., pretrained language models,745

image generators, or scraped datasets)?746

Answer:[Yes]747

Justification: The datasets used in this research are deidentified, which significantly reduces748

the risk of exposing personal information. Deidentification involves removing or altering749

identifiable information so that individuals cannot be readily identified.750

Guidelines:751

• The answer NA means that the paper poses no such risks.752

• Released models that have a high risk for misuse or dual-use should be released with753

necessary safeguards to allow for controlled use of the model, for example by requiring754

that users adhere to usage guidelines or restrictions to access the model or implementing755

safety filters.756

• Datasets that have been scraped from the Internet could pose safety risks. The authors757

should describe how they avoided releasing unsafe images.758

• We recognize that providing effective safeguards is challenging, and many papers do759

not require this, but we encourage authors to take this into account and make a best760

faith effort.761

12. Licenses for existing assets762

Question: Are the creators or original owners of assets (e.g., code, data, models), used in763

the paper, properly credited and are the license and terms of use explicitly mentioned and764

properly respected?765

Answer: [Yes]766

Justification: The paper properly credits the creators of all assets used, explicitly mentions767

the licenses and terms of use, and includes the relevant citations, asset versions, and URLs768

where applicable. Each asset’s license type is clearly stated, ensuring compliance with769

copyright and terms of service.770
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Guidelines:771

• The answer NA means that the paper does not use existing assets.772

• The authors should cite the original paper that produced the code package or dataset.773

• The authors should state which version of the asset is used and, if possible, include a774

URL.775

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.776

• For scraped data from a particular source (e.g., website), the copyright and terms of777

service of that source should be provided.778

• If assets are released, the license, copyright information, and terms of use in the779

package should be provided. For popular datasets, paperswithcode.com/datasets780

has curated licenses for some datasets. Their licensing guide can help determine the781

license of a dataset.782

• For existing datasets that are re-packaged, both the original license and the license of783

the derived asset (if it has changed) should be provided.784

• If this information is not available online, the authors are encouraged to reach out to785

the asset’s creators.786

13. New Assets787

Question: Are new assets introduced in the paper well documented and is the documentation788

provided alongside the assets?789

Answer:[Yes]790

Justification: The new assets introduced in the paper are well documented, with compre-791

hensive details provided alongside the assets, including information on training, limitations,792

and consent processes where applicable.793

Guidelines:794

• The answer NA means that the paper does not release new assets.795

• Researchers should communicate the details of the dataset/code/model as part of their796

submissions via structured templates. This includes details about training, license,797

limitations, etc.798

• The paper should discuss whether and how consent was obtained from people whose799

asset is used.800

• At submission time, remember to anonymize your assets (if applicable). You can either801

create an anonymized URL or include an anonymized zip file.802

14. Crowdsourcing and Research with Human Subjects803

Question: For crowdsourcing experiments and research with human subjects, does the paper804

include the full text of instructions given to participants and screenshots, if applicable, as805

well as details about compensation (if any)?806

Answer:[NA]807

Justification: This work does not involve with crowd sourcing and Research with Human808

Subjects.809

Guidelines:810

• The answer NA means that the paper does not involve crowdsourcing nor research with811

human subjects.812

• Including this information in the supplemental material is fine, but if the main contribu-813

tion of the paper involves human subjects, then as much detail as possible should be814

included in the main paper.815

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,816

or other labor should be paid at least the minimum wage in the country of the data817

collector.818

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human819

Subjects820
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Question: Does the paper describe potential risks incurred by study participants, whether821

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)822

approvals (or an equivalent approval/review based on the requirements of your country or823

institution) were obtained?824

Answer: [No]825

Justification: This work does not require Institutional Review Board (IRB) approvals or826

equivalent review for research involving human subjects.827

Guidelines:828

• The answer NA means that the paper does not involve crowdsourcing nor research with829

human subjects.830

• Depending on the country in which research is conducted, IRB approval (or equivalent)831

may be required for any human subjects research. If you obtained IRB approval, you832

should clearly state this in the paper.833

• We recognize that the procedures for this may vary significantly between institutions834

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the835

guidelines for their institution.836

• For initial submissions, do not include any information that would break anonymity (if837

applicable), such as the institution conducting the review.838
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