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ABSTRACT

Optimization over high-dimensional input space is inherently difficult, especially
when safety needs to be maintained during sampling. Current safe exploration
algorithms ensure safety by conservatively expanding the safe region, which leads
to inefficiency in large input settings. Existing high-dimensional constrained opti-
mization methods also neglect safety in the search process. In this paper, we pro-
pose Optimistic Local Latent Safe Optimization (OLLSO), which is capable of
handling high-dimensional problems under probabilistic safety satisfaction. We
first use distance-preserved autoencoder to transform the original input space into
a low-dimensional continuous latent space. An optimistic local safe strategy is
then applied over the latent space to efficiently optimize the utility function. The-
oretically, we prove the probabilistic safety guarantee from the latent space to the
original space. OLLSO outperforms representative high-dimensional constrained
optimization algorithms in simulation experiments. We also show its real applica-
tion in clinical experiments for safe and efficient online optimization of a neuro-
modulation therapy.

1 INTRODUCTION

Bayesian optimization is often used for black-box optimization problems where evaluations are
expensive, such as hyperparameter tuning and experimental design (Snoek et al., 2012; Hernández-
Lobato et al., 2017). This framework typically uses Gaussian Processes (GP) (Rasmussen, 2003)
as a surrogate model to estimate function distributions, and optimize an acquisition function to
balance exploration and exploitation (Frazier, 2018; Shahriari et al., 2015). Safety-critical systems
are common in real-world applications. For example, in robot control, we need to stay away from
unsafe states to avoid the potential damage to the expensive equipment. In clinical therapy design,
we must avoid the therapies that would potentially hurt the patient. These scenarios correspond
to the problem of safe exploration, where we need to sequentially optimize an unknown utility
function while satisfying some unknown safety constraints. Most existing safe exploration methods
discriminate safe regions with estimated function lower confidence bound to ensure safety with high
probability (Sui et al., 2015; 2018; Turchetta et al., 2019; Baumann et al., 2021; Sukhija et al., 2022).
Such conservative or pessimistic strategies might be inefficient in high-dimensional and large-scale
input settings, which are common in real-life scenarios. Further more, the search space may contain
both discrete and continuous variables, which is difficult to utilize common-used GP kernel function
to model input similarities.

A motivating application of our work is the control of human movement via neuromodulation, where
therapists need to sequentially select parameters of a high-dimensional electrode array implanted in
the human body. Typically the search region consists of 16 discrete dimensions representing contact
configurations (each contact can be set to be positive, negative or unused) and one continuous dimen-
sion representing stimulation intensity. Under this high-dimensional hybrid input setting, efficiently
optimizing the task function while maintaining safety remains a challenge for existing safe optimiza-
tion algorithms. Despite the considerable attention given to use Bayesian optimization methods for
solving the high-dimensional constrained optimization problem, they often fail to incorporate safety
considerations into the optimization procedure (Griffiths & Hernández-Lobato, 2020; Notin et al.,
2021; Eriksson & Poloczek, 2021). To our best knowledge, there are no methods that can guarantee
safety, or probabilistic safety during the high-dimensional optimization.
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In this paper, we propose Optimistic Local Latent Safe Optimization (OLLSO) to address safety over
high-dimensional sequential optimization problems. To deal with high-dimensional hybrid inputs,
OLLSO uses a regularized autoencoder to map the original structured input space into a continuous
latent space while preserving distances. Over the latent space, the algorithm optimizes the objective
function using an optimistic local safe strategy, discriminating safe regions of a local search space
with estimated upper confidence bounds of the safety function. We derive the theoretical probabilis-
tic safety guarantee of OLLSO from the latent space to the original space. We applied the algorithm
to two high-dimensional safety critical problems. It achieved more efficient optimization perfor-
mance and safer sampling procedure compared to existing high-dimensional constrained Bayesian
optimization algorithms. We deployed OLLSO in real clinical experiments, and successfully opti-
mized the lower limb muscle control of a paraplegic patient.

2 RELATED WORK

2.1 SAFE BAYESIAN OPTIMIZATION

The sequential decision-making problem with safety constraints has been extensively studied, varied
by the definition of safety. To achieve full safety during exploratory sampling, algorithms have
been proposed with theoretical guarantee in near-optimality and safety with high probability (Sui
et al., 2015; Turchetta et al., 2019). These methods have been applied in safe parameter tuning of
quadrotor (Berkenkamp et al., 2021) and Swiss free electron laser (Kirschner et al., 2019). In robot
control, two recent papers achieved global safe parameter optimization by learning backup policies
during exploration (Baumann et al., 2021; Sukhija et al., 2022). These safe optimization algorithms
conservatively estimate and expand the safe region, leading to inefficient optimization performance.

In contrast to a zero-tolerance approach to unsafe actions, an alternative approach allows for lim-
ited constraint violations within a predefined budget, trading safety for more efficient optimization.
Incorporating an additional penalty term is a commonly-used method to restrict constraint viola-
tions(Zhou & Ji, 2022; Lu & Paulson, 2022; Guo et al., 2023). The effectiveness of this method is
closely tied to the selection of penalty parameters, including the penalty weight and dual update step
size. A recent work uses upper confidence bound to optimistically estimate the safe region, enjoying
global optimal guarantee as unconstrained methods (Xu et al., 2022; 2023).

Another extreme case, called constrained Bayesian optimization, aims only to find the best feasible
solution, neglecting the safety during the optimization process (Gardner et al., 2014; Gelbart et al.,
2014; Hernández-Lobato et al., 2016; Marco et al., 2020; 2021). Constrained Expected Improvement
(cEI) is a popular constrained BO algorithm that introduces feasibility constraints to acquisition
function formulation (Schonlau et al., 1998; Gelbart et al., 2014).

All of the aforementioned methods fall in the framework of Bayesian optimization (BO), which is
typically limited to low-dimensional problems with continuous input space (Frazier, 2018; Shahriari
et al., 2015). LineBO (Kirschner et al., 2019) demonstrates success in optimizing problems with di-
mension up to 40, but not compatible with discrete inputs. In high-dimensional settings, pessimistic
safe algorithms such as Sui et al. (2015; 2018); Turchetta et al. (2019) might even struggle to expand
the safe region due to sparse discretization of the input space.

2.2 HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

Over the last few years, Bayesian optimization has been used in high-dimensional problems (Turner
et al., 2021; Binois & Wycoff, 2022). In this section, we focus on dimension reduction-based and
local BO methods. Further discussion about other lines of work can be found in the Appendix D.

A large body of literature leverages dimension reduction to apply BO over a low-dimensional sub-
space. Several works use variable selection to identify and optimize important dimensions during
optimization(Chen et al., 2012; Zhang et al., 2019; Song et al., 2022). Another popular approach for
reducing the search space is random linear embedding, which as been proven to contain the optimal
solution with a certain probably relative to the objective function’s effective dimension. This method
has gained significant attention and support in the literature, as evidenced in the works (Wang et al.,
2016; Nayebi et al., 2019; Li et al., 2018; Letham et al., 2020; Papenmeier et al., 2022).
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Additionally, deep autoencoder models, such as variational autoencoder (VAE) are powerful tools
for learning continuous representations from high-dimensional structured data (Kingma & Welling,
2013). Many works also use autoencoders to learn a non-linear mapping between the original space
and the latent space (Gómez-Bombarelli et al., 2018; Moriconi et al., 2020; Tripp et al., 2020; Desh-
wal & Doppa, 2021; Grosnit et al., 2021; Siivola et al., 2021; Notin et al., 2021). Such dimension
reduction methods have also been successfully applied to high dimensional constrained optimization
problems, which are often used to relieve the invalid input issue when projecting points back to the
original space. Works such as Griffiths & Hernández-Lobato (2020) apply cEI over the latent space
to sample valid molecule sequences with a higher probability.

Another line of work utilizes local search to optimize over the high-dimensional input space, achiev-
ing better empirical performance than global BO methods(Eriksson et al., 2019; Müller et al., 2021;
Nguyen et al., 2022; Wu et al., 2023). Several works use the trust region method to address the
over-exploration issue in high-dimensional optimization(Eriksson et al., 2019; Wang et al., 2020).
This local optimization strategy is also able to be deployed in latent space optimization (Maus et al.,
2022) and high-dimensional constrained optimization problem (Eriksson & Poloczek, 2021).

Besides BO methods, evolutionary algorithms such as CMA-ES are competitive to solve high-
dimensional problems (Hansen, 2006). They can also handle constrained optimization problems
after simple modifications (Kramer, 2010; Arnold & Hansen, 2012). Although many works attempt
to solve high-dimensional constrained optimization problems, to the best of our knowledge, there
lacks work that addresses safety in high-dimensional sequential optimization.

3 PROBLEM FORMULATION

3.1 BLACK-BOX OPTIMIZATION WITH PROBABILISTIC SAFETY CONSTRAINTS

We aim to optimize an unknown objective function f : X → R by sequentially sampling points
x1, . . . ,xn ∈ X . We can also get observations of safety measurement from other unknown func-
tions g1, . . . , gm : X → R. We define a point x is safe when ∀i ∈ [1,m], gi(x) > hi, where
h1, . . . , hm are pre-defined safety thresholds. For clearer explanation we set the number of safety
functions to 1, and denote safety function as g(x) and threshold as h. In this paper, we aim to im-
prove sample efficiency by slightly relaxing the safety constraint to allow a small number of unsafe
decisions. In this sense, we introduce a probabilistic version of the safety constraint, which requires
that each sample point is safe with a probability above predefined threshold α. We can formally
write our optimization problem as follows:

max
xt∈X

f(xt) subject to Pr(g(xt) ≥ h) ≥ α,∀t ≥ 1, (1)

where the α is usually smaller than 0.5, which indicates the worst case of safety violation we can
tolerate. Furthermore, the input space X ∈ RD may be high-dimensional in real-world applica-
tions, and may consist of both discrete and continuous variables. Commonly-used kernel functions
struggle to well represent similarity between inputs.

3.2 LATENT SPACE BAYESIAN OPTIMIZATION

To deal with high-dimensional data, one way is to learn a mapping between original input space X
and a low-dimensional continuous latent space Z ∈ Rd. If we can find a low-dimensional latent
space in which distances in the original high-dimensional space could preserve, the safety boundary
can be properly estimated within this latent space. Latent space optimization sequentially samples
points z1, . . . ,z ∈ Z , and evaluates the function values by decoding the sampled points: wf (z) =
f(D(z)) and wg(z) = g(D(z)) for objective and safety functions respectively. To optimize over
the latent space, we make the following assumptions that are commonly used in the field of Bayesian
optimization, taking wg as an example.

Assumption 1. Functions over the latent space Z have bounded norm in the associated Reproduc-
ing Kernel Hilbert Space (RKHS). Let k : Rd × Rd → R be symmetric, positive-semidefinite kernel
functions, wg ∈ Hk, ∥wg∥ < B.
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Figure 1: Workflow of OLLSO. We use a regularized autoencoder to enable optimization over the
latent space and evaluation over the original space. Optimistic local safe optimization is used over
the latent space to efficiently optimize the objective function while guaranteeing probabilistic safety.

Assumption 2. Functions observations are perturbed by i.i.d. Gaussian noise: yg(zt) = wg(zt)+
nt, where nt ∼ N (0, σ2)

Under the above assumptions, we are able to use a Gaussian process as the surrogate model to
learn the unknown functions. For samples at points AT = [z1...zt]

T , we have noise-perturbed
observations yT = [yg1 ...y

g
t ]

T . The posterior over wg is also Gaussian with mean µt(z), covariance
kt(z, z

′) and variance σ2
t (z, z

′):
µt(z) = kt(z)

T (Kt + σ2I)−1yt

kt(z, z
′) = k(z, z′)− kt(z)

T (Kt + σ2I)−1kt(z
′)

σ2
t (z) = kt(z, z),

(2)

where kt(z) = [k(z1, z), ..., k(zt, z)] is the covariance between z and sampled points, Kt is the
covariance of sampled positions: [k(z, z′)]z,z′∈At . Similarly we can use GP to derive posterior of
wf under same assumptions. Using the posterior of GP, we can define the confidence interval of
point z as Ct(z) := [µt(z)±βσt(z)], where β is a scalar which can be properly set to contain f(z)
with high probability (Srinivas et al., 2009; Chowdhury & Gopalan, 2017). We define ut(z) :=
maxCt(z) as the upper confidence bound (UCB) of the function estimation.

4 OPTIMISTIC LOCAL LATENT SAFE OPTIMIZATION

4.1 ALGORITHM OVERVIEW

We introduce OLLSO, an innovative algorithm designed for probabilistic safety while optimizing in
a high-dimensional space. The main structure of this algorithm is shown in Figure 1 and detailed in
Algorithm 1. Prior to the optimization loop, an Isometrically Regularized VAE (IRVAE) is trained
with unlabeled data DX

u , which can be obtained or synthesized in large quantities. This training is
enhanced by an additional regularization loss, emphasizing scaled isometry within the latent space,
as discussed by Yonghyeon et al. (2021). The implication of scaled isometry is that the mapping
within the latent space preserves angles and distances up to a certain scale factor. Consequently, we
expect the GP estimation disparities between the latent and original spaces to be minimal. This en-
sures that points considered safe by GP in the latent space have a high probability of being safe in the
original space. Our experimental results highlight that the IRVAE provides superior GP estimation
error reduction when compared to the standard VAE (Kingma & Welling, 2013).

OLLSO begins with training an regularized autoencoder (Line 1) and projecting data features into
the latent space (Line 4). With the latent features and function observations in hand, the algorithm
estimates the posterior of the objective and safety functions using separate Gaussian processes (Line
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5). A local search region, informed by historical data which encompasses sampled observations and
the complete sample trajectory, is then defined (Line 6). Utilizing the GP posterior of the safety
function, OLLSO confidently delineates a safe space within the local region, guided by the upper
confidence bound of the safety function (Line 7). The acquisition function is then optimized over
this safe space, with the recommended latent point subsequently projected back to its original input
domain using the decoder (Lines 8-9). The history data is updated by assessing the new inputs
(Lines 10-12).

Algorithm 1 Optimistic Local Latent Safe Optimiza-
tion (OLLSO)

Input Sample set X , GP priors GP f , GP g , safety
threshold h, acquisition function A, unlabelled
dataset DX

u , initial dataset DX
0 , local region L0

1: Train encoder E and decoder D using DX
u

2: Sample trajectory ζ0 ← ∅
3: for t = 1 to . . . do
4: DZ

t−1 ← E(DX
t−1)

5: Update GP f , GP g using DZ
t−1

6: Update local region Lt using DX
t−1 and ζt−1

7: St ← {z′ ∈ Lt | ut(z) ≥ h}
8: zt ← argmaxz∈St

(A(z))
9: xt ←D(zt)

10: yft ← f (xt) + nt

11: ygt ← g (xt) + nt

12: Update DX
t and ζt using xt, y

f
t , y

g
t

13: end for

Following the standard local Bayesian
optimization algorithms, a trust region
method is employed to dynamically pin-
point local search regions (Eriksson et al.,
2019; Wang et al., 2020; Eriksson &
Poloczek, 2021). Specifically, the cur-
rent safest position is designated as the
epicenter of the search to create a safe
region with side length l. A sampling
round is considered ”successful” if it
finds a better reward while maintain-
ing comprehensive safety. Conversely,
it is labeled a ”failure” if any unsafe
points are found or if there is no dis-
cernible improvement. The side length
is adjusted—increased for successes and
decreased for failures—upon reaching a
preset threshold. Unlike conventional lo-
cal BO methods that discard all data and
restart when the side length reaches its
minimum, our approach resets l to its ini-
tial length, ensuring a different, safer trajectory sampling than the initial instance.

With respect to the acquisition function A, Thompson sampling (TS) was selected (Kandasamy
et al., 2018) due to its compatibility with the discrete nature of our safety estimation and search
space, and its innate ability for batch optimization by sampling the GP posterior—an appropriate
choice for high-dimensional tasks that support parallel evaluations.

4.2 COMPARISON WITH PREVIOUS WORK

The significant difference between OLLSO and CONFIG proposed by Xu et al. (2023) is that we
constrain the search space within the identified local region, which is crucial for high-dimensional
optimization. In terms of the objective optimization, global BO algorithms usually perform worse
than local BO algorithms on high-dimensional tasks due to the over-exploration problem (Eriksson
et al., 2019). The same issue also affects safety exploration of CONFIG. When there are too many
points with high upper confidence bounds due to large posterior uncertainty, CONFIG would identify
almost everywhere far from sampled points as safe and degenerate to an unconstrained algorithm.
Maintaining an adaptive local region contributes to more efficient optimization and safer search.

Compared to SCBO (Eriksson & Poloczek, 2021), which is a trust region-based BO method for high-
dimensional constrained optimization problems, OLLSO considers safety during the optimization
procedure by selecting points that are probabilistically safe, and adapts the trust region in a different
way. Unlike cEI (Schonlau et al., 1998; Gardner et al., 2014) which directly combines constraints
with the acquisition function, OLLSO disentangles the constraints and objective, and optimization
the original acquisition function over identified safe region.

5 THEORETICAL ANALYSIS

The safety identification of OLLSO depends on the confidence interval estimate from safety GP.
The scalar βt controls the tightness of the confidence bound. Here we also derive the choice of βt to
ensure probabilistic safety over the latent space.

5



Under review as a conference paper at ICLR 2024

Proposition 1. Let Assumptions 1 and 2 hold for the latent safety function wg , and set βt satisfying
Φ(βt) ≤ 1− α. Then:

Pr(wg(z) ≥ µt−1(z) + βtσt−1(z)) ≥ α,∀z ∈ Z,∀t ≥ 1, (3)

where Φ(·) is the cumulative distribution function of the standard normal distribution N ∼ (0, 1).

The proof uses the property of the Gaussian CDF. The resulting βt does not depend on the maximum
information gain, which scales exponentially with the function dimension((Sui et al., 2015)). When
α→ 0.5, βt → 0. In practice, choosing a small βt usually satisfies the safety requirement.

When applying safe optimization over the latent space, a natural question is whether safety can be
guaranteed in the original space. Here we show that, under certain assumptions, the probabilistic
safety guarantee can be extended to the original space. To enable GP-based safety estimation, we
need to make assumptions about the regularity of the original space. Like other dimension-reduction
based-BO methods, we assume functions to be considered have low-dimensional effective variables
(Wang et al., 2016; Nayebi et al., 2019; Papenmeier et al., 2022).

Assumption 3. There exists a mapping U ∈ RD×de with orthonormal columns, s.t. g(x) =
g(zUT ), where z = Ux, and UT is the the inverse mapping of U .

We also want the latent space mapping to approximately preserve the norms of all vectors in the
effective subspace spanned by the columns U . Here we assume that the latent space mapping is an
ε-subspace mapping (Sarlos, 2006; Cohen et al., 2015):

Definition 1. Π is an ε-subspace embedding for U ∈ RD×de , UTU = I , if ∥(ΠU)T (ΠU)−I∥ ≤ ε.
This is equivalent to ∀r ∈ Rde , (1− ε)∥r∥22 ≤ ∥Πr∥22 ≤ (1 + ε)∥r∥22.

The definition indicates that ε-embedding is able to preserve the distance between latent and original
space up to some constant. This assumption on latent space mapping can be satisfied by linear
mappings, such as principal component analysis when the number of principal components is larger
than the effective dimension. In the Experiments section, we empirically show that the latent spaces
of IRVAE approximately meet the ε-subspace embedding assumption. Under the above assumptions
about the distance preserving ability of latent space mapping, we can properly choose βt that satisfies
the probability safety guarantee, under the noise-free setting.

Theorem 1. Let assumptions 1 and 3 hold for safety function g, and the latent space mapping Π is
a ε-subspace embedding for effective subspace basis U . At every step t, given candidate set z ∈ CZ

and set βt satisfying Φ(βt + (5l(ε)∥X−g∥+ 2βt

√
3l(ε))∥̂x∥/σ̂t−1) ≤ 1− α, then

Pr(g(x) ≥ µt−1(x) + βtσt−1(x)) ≥ α,x ∈ CX (4)

where X− is the Moore-Penrose pseudoinverse of X , and l(ε) >= |k(x,x′) − k(z, z′)|x=Π−1z

is the upper bound of kernel function difference, CX = {x = Π−1z}z∈CZ , ∥̂x∥ =
maxx∈CX ∥x∥), σ̂t−1 = minz∈CZ σt−1(z).

The proof uses the GP estimation difference bound between original and latent space. Using the
mean and variance bounds of GP, we bound the difference of UCB between latent and the original
space. Then we derive the choice of β to satisfy probabilistic safety requirement over the original
space according to Gaussian CDF. As ε → 0,Π becomes a isometric mapping, where choosing the
βt same as in Proposition 1 fulfills the safety requirement.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We compared OLLSO against the following competitive constrained optimization baselines: SCBO
(Eriksson & Poloczek, 2021), CONFIG (Xu et al., 2023), two versions of constrained EI (via block-
ing the objective function of infeasible points (denoted as cEI, Schonlau et al. (1998)), and via com-
bining acquisition function with feasible probability (denoted as cEI-Prob, Gardner et al. (2014))
and CMA-ES (Hansen, 2006). We also run SafeOpt (Sui et al., 2015) on the problems, but it failed
to expand the safe region on all benchmarks we used. We run all the baselines over both original
space (suffixed with ”O”) and latent space (suffixed with ”L”) on all simulation tasks.
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We present the performance of our algorithm in two high-dimensional optimization problems in the
main paper: human musculoskeletal system control and spinal cord stimulation, which are safety-
critical during the optimization process. We also run other experiments such as constrained hand-
writing digital generation task (see Appendix C.1). Besides simulation experiments, we applied
OLLSO to a real clinical therapy optimization and achieved good safety and efficiency.

We evaluate the performance of the algorithm according to three metrics: best feasible objective
function value (Objective), safe decision ratio of all samples (Safe %), and cumulative safety viola-
tion (Violation). The plots show the means with one standard deviation.

Figure 2: Optimization for the control of a musculoskeletal model. (a) A musculoskeletal model,
where the task is actuating hand muscles to hold the bottle vertically and steadily. (b) Best feasible
objective function value. (c) Safety decision ratio. (d) Cumulative safety violations. Algorithm
performance averaged over 20 independent runs.

6.2 OPTIMIZATION FOR THE CONTROL OF A MUSCULOSKELETAL MODEL

In the musculoskeletal control task, one need to optimize the activities of hand related muscles
to hold a bottle in vertical position(Figure 2 (a)). Compared to joint-driven problems, controlling
muscle-driven models is more challenging because the number of muscles is much larger than the
number of joints. As in Mania et al. (2018), we formulate the original reinforcement learning (RL)
problem as a sampling problem, where the algorithms need to optimize a linear policy: π ∈ R|a|×|o|,
where |a| = 55 and |o| = 65 are the dimensions of the action space and the observation space, re-
spectively. The policy to be optimized has D = 3355 parameters, which is a very high-dimensional
task. We set the objective function as the accumulated reward from the environment, and the safety
function as the landing speed of the bottle after it slips from the hand. We collected muscle ac-
tivation to train a regularized autoencoder to build the muscle synergies of performing the task,
reducing action dimension from 55 to 5 (3355 to 325 for policy dimension). While the search space
is significantly reduced, the remaining optimization problem is still high-dimensional.

We show the optimization result in Figure 2 (b)-(d). All original baselines fail to make improvement
when searching over the extremely high-dimensional input space (curves overlapped in Figure 2 (b)).
Even in the latent space, no baseline algorithms can get a positive reward. They also make more
unsafe selections and cumulative safety violations than OLLSO. Our proposed method significantly
outperforms all latent baselines over three metrics, achieving efficient safe optimization over high-
dimensional latent space.

6.3 CLINICAL NEURAL STIMULATION

We validate our proposed methods through simulation and clinical experiments of spinal cord stim-
ulation therapy. As in Figure 3 (a), a 32-contact electrode array is implanted outside the patient’s
spinal dura mater. The electrical stimulation delivered by the electrode array could induce patient’s
muscle activities thus we could control the lower limb movements of the patient by setting differ-
ent parameters spatially and temporally. Typically we manipulate half of the contacts to separately
control left and right lower limbs, including 16-contact configuration (discrete) and one intensity
parameter (continuous). Our optimization goal is the selectivity index of target muscles, computed
from 12 groups of muscles (see Appendix B.4). Better selectivity index indicates better control over
the target muscle group and less influence over non-target muscles.
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Figure 3: Experiment of spinal cord stimulation. (a) Illustration of the spinal cord model. The
model was developed based on anatomical statistics, which contains multiple tissues of the spinal
cord and the electrode array. (b) Optimization of the muscle selectivity index in clinical experiment.
Shaded areas indicate configurations recommended by OLLSO. IL, RF, TA, BF, ST, GA are different
group of target muscle on the left lower limb. Selectivity indices of target muscles increased over
trials. shaded area indicates parameter was recommended by OLLSO. (c) Algorithm performance
on 6 SCS simulation tasks, averaged over 10 independent runs. The best-performing algorithm was
starred on the top of bars.

To enrich the physical meaning of this discrete representation, we transformed 17d vectors into a
2d electric field images with 52× 14 pixels using simplified computation. Then we train an IRVAE
with a 16d latent space to embed and reconstruct the electric field map. We also restrict the number
of cathode and anode to only evaluate reasonable configurations according to clinical prior.

6.3.1 SIMULATION OVER HUMAN SPINAL CORD MODEL

In simulation, we use a human spinal cord model as a function oracle, which is capable of computing
the evoked electric field given certain stimulation parameter, and inferring the lower limb muscle
activation (Figure 3 (a)). We use the maximum induced muscle activation as the safety function to
avoid hurting the patient during optimization. The total sample budget is 1000 including 200 initial
random sample parameters.

We show the simulation results in Figure 3 (c). While the dimension of latent space is similar to
the original space, latent algorithms execute less unsafe decisions by optimizing on the continuous
manifold. OLLSO finds the highest muscle selectivity in 5 out of 6 tasks and causes significantly
less cumulative safety violations than all baselines. Our proposed method also maintains the highest
the safety selection ratio in all tasks and is the only algorithm that can execute over 95% safety
samples in TA and GA task.

8



Under review as a conference paper at ICLR 2024

6.3.2 CLINICAL EXPERIMENTS

We further applied OLLSO to optimize stimulation parameters of a paraplegic patient with the same
electrode array implanted. The objectives of our optimization were the stimulation selectivity for
8 target muscles of the lower limb, which could be calculated from Electromyography (EMG). We
defined a threshold where safe parameters did not induce pain or large scale lower limb movement.
The clinical experiments were approved by the IRB of the hospital.

A total of 636 trials were conducted with the patient over 1 months. In each trial, one parameter
was configured on the stimulator, and 8 spikes of stimulation were delivered to the patient. We
used the EMG to compute the selectivity index and queried safety scores from the patient and the
therapists. The feedback would be added to the data set and the algorithm would recommended the
next parameter after each trial was done. We reused previous history data when optimizing a new
task.

As shown in Figure 3 (b), we observed selectivity improvement of 7 from 8 target muscles compared
to the baseline of initial data (left IL: 0.112, left RF: 0.143, left TA: 0.097, left BF: 0.380, right IL:
0.00, right RF: 0.266, right TA: 0.216, right BF: 0.141). During the whole experimental proce-
dure, only three configurations recommended by OLLSO were rated as unsafe stimulation, which
evoked large lower limb movements but no physical damage or pain. The clinical results indicate
OLLSO could recommended more selective parameters for different targets while ensuring safety.

6.4 DISTANCE PRESERVING OVER LATENT SPACE

In the implementation of OLLSO, we propose to learn a mapping with distance-preserving property.
Here we compare the distance-preserving method IRVAE against standard VAE in musculoskeletal
model control task. From Figure 4 (a)-(d) we observe IRVAE reduces GP estimation error over
latent space in both safety and objective function modeling. Figure 4 (e) shows that this distance
preserving properties significantly contributes to OLLSO’s optimization performance, where the
algorithm using standard VAE fails to make improvement due to large estimation error of objective
GP.

Figure 4: Distance preserving of IRVAE and standard VAE on musculoskeletal model control task.
Better scatters are closer to the dashed line in the figure, indicating identical GP estimation between
original and latent space. Errors indicate the L2 difference of the safety function estimations between
original GP and latent GP.(a)-(b) GP estimation of safety function. (c) GP estimation of safety
function. (e) Optimization performance of OLLSO when using different VAEs.

7 CONCLUSION

We develop the Optimistic Local Latent Safe Optimization method for safe optimization over high-
dimensional spaces. OLLSO uses a regularized autoencoder to map the original structured input
space into a continuous latent space while preserving distances, which allows high-dimensional
hybrid inputs. An optimistic local safe strategy is used in the latent space to optimize the objec-
tive function and expand the safe region. We provide the theoretical probabilistic safety guarantee
of OLLSO. We applied the algorithm to safety critical problems. It achieved more efficient op-
timization and safer sampling compared to state-of-the-art high-dimensional constrained Bayesian
optimization algorithms. OLLSO also successfully optimized the lower limb muscle control of a
paraplegic patient in real clinical experiments.
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Eero Siivola, Andrei Paleyes, Javier González, and Aki Vehtari. Good practices for bayesian opti-
mization of high dimensional structured spaces. Applied AI Letters, 2(2):e24, 2021.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. Advances
in neural information processing systems, 18, 2005.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte carlo tree search based variable selection
for high dimensional bayesian optimization. Advances in Neural Information Processing Systems,
35:28488–28501, 2022.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization
with gaussian processes. In International conference on machine learning, pp. 997–1005. PMLR,
2015.

Yanan Sui, Vincent Zhuang, Joel Burdick, and Yisong Yue. Stagewise safe bayesian optimiza-
tion with gaussian processes. In International conference on machine learning, pp. 4781–4789.
PMLR, 2018.

Bhavya Sukhija, Matteo Turchetta, David Lindner, Andreas Krause, Sebastian Trimpe, and Dominik
Baumann. Scalable safe exploration for global optimization of dynamical systems. arXiv preprint
arXiv:2201.09562, 2022.

A. Thomson. Fifth annual report of the committee of collective investigation of the anatomical
society of great britain and ireland for the year 1893-94. Journal of Anatomy, 29(Pt 1):35–60,
1894.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.
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A THEORETICAL ANALYSIS

A.1 PROOF OF PROPOSITION 1

Proof. Fix t ≥ 1 and z ∈ Z . Conditioned on yt−1 = (yg1 , . . . , y
g
t−1), {z1, . . . ,zt−1} are determin-

istic, and wg(z) ∼ N (µt−1(z), σt−1(z))). Now if r ∼ N (0, 1), then

Pr(r > c) = 1− Φ(c) (5)

Therefore, by applying r = (wg(z)− µt−1(z))/σt−1(z) and c = βt, the statement holds.

A.2 PROOF OF THEOREM 1

We first introduce results from Nayebi et al. (2019) which bounds the GP estimation difference and
kernel function difference between the original space and latent space under the noise-free setting.

Lemma 1. (Theorem 2 and Corollary 8 in (Nayebi et al., 2019)) Consider a Gaussian process
with kernel function k that acts directly in the unknown active subspace of dimension de with mean
and variance functions µ(·), σ2(·). Let µ̃(·), σ̃2(·) be their approximations using an ε-subspace
embedding for the active subspace. Given X = (x1, . . . ,xt) and g = (g(x1), . . . , g(xt)) we have
for every x ∈ X and z = Πx ∈ Z
1. |µ(x)− µ̃(z)| ≤ 5l(ε)∥x∥∥X−g∥
2. |σ2(x)− σ̃2(z)| ≤ 12l(ε)∥x∥2,

where X− is the Moore-Penrose pseudoinverse of X , and l(ε) >= |k(x,x′)−k(z, z′)| is the upper
bound of kernel function difference between original and latent GP.

Lemma 2. (Lemma 4-7 in (Nayebi et al., 2019)) The error upper bound of common-used kernels
can be derived as follows:

1. For the polynomial kernel k(x,x′) = (xTx+ c)p, l(ε) = εpk(x,x′),

2. For the (squared) exponential kernel k(x,x′) = exp−∥x− x′∥p/cp, l(ε) = ε,

3. For the Matérn kernel k(x,x′) = 21−ν

Γ(ν) (
√
2µ
c ∥x− x′∥)νBν(

√
2µ
c ∥x− x′∥), where ν = p+ 1

2 is
a parameter and Bν is a second kind Bessel function. We have l(ε) = 2ε.

Using above Lemmas we can extend the probability safety guarantee from latent space to original
space via additional calculations when assumptions 1 and 3 hold for original safety function g.

Proof. For simplicity we denote the upper confidence bound of safety function over original space
and latent space as u(x) and ũ(z). Using Lemma 1, we can bound the difference when using an
ε-subspace-embedding:

|u(x)− ũ(z)| = |µ(x) + βσ(x)− µ̃(z)− βσ̃(z)| (6)
≤ |µ(x)− µ̃(z)|+ β|σ(x)− σ̃(z)| (7)

= |µ(x)− µ̃(z)|+ β
√
|σ(x)− σ̃(z)|2 (8)

≤ |µ(x)− µ̃(z)|+ β
√
|(σ(x)− σ̃(z))(σ(x) + σ̃(z))| (9)

= |µ(x)− µ̃(z)|+ β
√
|σ2(x)− σ̃2(z)| (10)

≤ 5l(ε)∥x∥∥X−g∥+ 2β
√
3l(ε)∥x∥ (11)

= (5l(ε)∥X−g∥+ 2β
√
3l(ε))∥x∥, (12)

We denote E(β,x) = (5l(ε)∥X−g∥+2β
√
3l(ε))∥x∥. Therefore, to guarantee that ∀x,Pr(g(x) >

u(x)) ≥ α, we need to make sure
Pr(wg(z) ≥ ũ(z) + E(β,x) ≥ α,∀z = Πx, (13)

As before, for every single z, applying r = (wg(z) − µ̃(z))/σ̃(z) and c = β + E(β,x)/σt−1(z)
for the standard normal distribution, then
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Pr(wg(z) ≥ ũ(z) + E(β,x) = 1− Φ(β + E(β,x)/σ̃(z)). (14)
In every timestep t, we need to set βt to ensure all x ∈ CX satisfying the probabilistic safety guar-
antee. Therefore , we use ∥̂x∥ in place of ∥x∥ to derive Ê(β) = (5l(ε)∥X−g∥ + 2β

√
3l(ε))∥̂x∥,

which is the upper bound of E(β, x) when fixing β. For the statement to hold, it suffice to choose
Φ(βt + Ê(βt)/σ̂t−1) ≤ 1− α.

B EXPERIMENTAL DETAILS

B.1 AUTOENCODER TRAINING

We employ IRVAE by directly using the paper’s original repository1. We use MLP as the VAE
module for all tasks, and list the model detail in Table 1. We train all models for 300 epochs using
Adam(Kingma & Ba, 2014) optimizer with a learning rate of 0.0001.

Task Layer number Hiddien number Latent dimension

Musculoskeletal model control 2 512 5
SCS simulation 4 256 16

Digital generation 4 256 16

Table 1: Autoencoder model detail.

B.2 ALGORITHM IMPLEMENTATION

For implementation of OLLSO, We use Botorch as the GP inference part(Balandat et al., 2020). We
also use Botorch to replicate SCBO, CONFIG, cEI and cEI-Prob. We use the package pycma2 to
run CMA-ES on benchmarks.

All GP-based methods uses matérn kernel and fits kernel parameters after each iteration. During
the experiment, we set the same trust region changing threshold for OLLSO and SCBO (the default
setting of SCBO). As in SCBO and OLLSO, we use Thompson sampling as the acquisition func-
tion of CONFIG. Confidence scalar β is set as 2 for OLLSO and CONFIG across all experiments.
We set the latent optimization bound as the upper bound and lower bound of traininng points in
the latent space. Other hyperparameter of the baselines are set to default values as in the original
implementation.

During the experiment, we set the sample size as 10 for musculoskeletal model control task and
spinal cord neuromodulation task, and sample one point each iteration in constrained digital gener-
ation task.

B.3 MUSCULOSKELETAL MODEL CONTROL

We built a full-body musculoskeletal model which actuate locomotion by controlling muscle activa-
tion (model paper under review). Here we only control the right hand part (below elbow), and fix
other joints, leading to 55 muscles and 28 joints. The overall task is controlling hand muscles to hold
a bottle vertically hand steadily. In the beginning of the episode, the bottle starts horizontally on the
hand, and we need to first rotate the bottle and keep it in the right orientation. In each timestep, the
reward from the environment is computed as follows:

r = rpose + rbonus + 10 ∗ rpenalty + rgrasp ++ractivation + 100 ∗ rdrop (15)

where rpose is the difference between the bottle and vertical orientation, computed by Euler angle.
rbonus is the reward when the difference below predefined threshold. rpenalty is positive when the
bottle position out of from the predefined range. rgrasp is the distance between the centroid of the

1https://github.com/Gabe-YHLee/IRVAE-public
2https://github.com/CMA-ES/pycma
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bottle and palm joints. ractivation is the penalty for large muscle activations. rdrop is the penalty when
the bottle drop from hand. The overall simulation is based on MujocoTodorov et al. (2012).

When the height of the bottle is below 0.4m, we consider it has dropped from the hand and the
episode is end. We record the speed of episode ending as the landing speed of the bottle. We
use a safety threshold of 3.2, which is the average landing speed when randomly sampling the
environment. We train a Soft Actor-Critic agent (Haarnoja et al., 2018) for 500k timesteps, and
rollout for 1000 episode to build a muscle activation dataset with 71, 015 datapoints.

The performance video of OLLSOand other baselines is shown in the supplementary folder.
OLLSOis capable of quickly rotating the bottle and hold vertically and steadily, while other al-
gorithms either hold the bottle non-vertically, or learn drop the bottle safely to avoid penalty of
wrong orientation.

B.4 MODELING OF THE HUMAN SPINAL CORD

We developed an average model of the human spinal cord based on anatomical statistics(model paper
under review, (Thomson, 1894; Mccotter, 1916; Zhou et al., 2010; Rowald et al., 2022; Kameyama
et al., 1996)). The model contains gray matter, white matter, nerve roots, cerebrospinal fluid (CSF),
and dura mater of T12-S2 segments of the spinal cord which are related with the motor control
of lower limbs. The specific conductivity values of the modeled tissues were set refer to (Laden-
bauer et al., 2010). Electric fields induced by different stimulation parameters were derived using
finite element method (FEM). To calculate the stimulation effects for different muscles, we redis-
tricted the cord model according to reported results of the segmental innervation for lower limb
muscles((Sharrard, 1964; Schirmer et al., 2011)). Six groups of muscles of bilateral lower limbs
were studied: iliopsoas (IL), vastus lateralis and rectus femoris (VL&RF), tibialis anterior (TA),
biceps femoris muscle and gluteus maximus (BF&GM), semitendinosus (ST), and gastrocnemius
(GA).

To evaluate the selectivity of stimulation for certain muscle, we used a selectivity index (SI) to
characterize the distribution of the electric field. The selectivity index for the ith muscle was defined
as follows:

SIi = µi −
1

mneighbor − 1

mneighbor∑
j ̸=i

µj (16)

where mneighbor represents the number of muscles whose motor neuron pools are adjacent to the ith
muscle’s. The selectivity index ranges from -1 to 1, where -1 represents the maximum of activation
of all undesired muscles with a complete absence of activation of the targeted muscle, 0 indicates
that all muscles are activated at the same level, and 1 means the targeted muscle is activated at the
greatest extent while no undesired muscles are activated. And µi is the normalized activation of the
ith muscle and is defined as follows in the simulation:

µi =

∫∫∫
Ωi

f(x, y, z)dxdydz∫∫∫
Ωi

1dxdydz
(17)

f(x, y, z) =

{
1, if AF (x, y, z) > AFthreshold

0, if AF (x, y, z) ≤ AFthreshold
(18)

Ωi is the segmental volume of the ith muscle in the cord. AF is the activating function, defined as
the second spatial derivative of extracellular voltage along an axon((Rattay & Frank, 1986; Butson
& McIntyre, 2006)).

We use the spinal model to traverse all stimulation parameters with 1 cathode with anodes no more
than 3, and 2 cathodes with anodes no more than 2, leading to a SCS dataset with 218,000 stimula-
tion parameters and predicted muscle activation. We compute the objective function using 16, and
compute the safety function as g(x) = 1−maxi(µi). The selectivity index distribution is shown in
Figure 5. We set the safe threshold as 0.05, with nearly half of the traversed parameters are safe.

We convert electrode parameters from 17d vector to a 2d electric field image using simplyfied com-
putation. In concrete, we map contact combinations to the spatial position in the electrode, linearly
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compute the diffusion of electrical field from each cathode and anode, and multiply the map by
current intensity. One example of generated electric field image is shown in Figure 6.

We use the constructed SCS dataset as the function oracle. For a given 2d map, we set its function
value as the function value of the nearest unevaluated point in the dataset.

SI distribution of IL SI distribution of RF SI distribution of TA

SI distribution of BF SI distribution of ST SI distribution of GA

Figure 5: Distribution of SI for six muscle groups of different configurations used in SCS simulation
experiment

Figure 6: 2d electrical map computation.

B.5 CLINICAL EXPERIMENT OF SPINAL CORD STIMULATION

We employ OLLSO in the treatment of spinal cord stimulation to find more selective stimulation
parameters for different muscles. All the trials were conducted under the supervision of therapists.
The patient was seated in the wheelchair in a comfortable way and was told to relax. At the first
period, typical parameters which were usually used in the therapy (e.g. bipolar stimulation) were
delivered to the patient while the evoked muscle activities were recorded using EMG. These data
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(132 trials) were used to initialize OLLSO. Except for the first 132 trials as the initial data, 441 out
of 504 trials are recommended by OLLSO. The other trials were conducted by the therapist.

We focus on 8 groups of muscles: iliopsoas (IL), rectus femoris (RF), tibialis anterior (TA), and
biceps femoris (BF) for both sides. The clinical selectivity index was defined as following:

SIi =
µi

1 +
∑m

j ̸=i µj
(19)

where µi represents the normalized peak-to-peak value of the evoked EMG for the ith muscle and
m is the total number of the target muscles.

For each trial, our algorithm recommended the parameter based on the history data and configured
it onto the stimulator, which would deliver electrical stimulation to the patient for 800 ms at a
frequency of 10 Hz. Peak-to-peak values were averaged and normalized to obtain selectivity indices
of different muscles after stimulation. The calculated feedback and queried safety score were used
to update the optimizer and it would recommend a new parameter. During the optimization process,
the therapist also provided a small part of parameters for different targets (63 out of 504 trials, non-
shadow area in 3 (b)). The tasks were refined sequentially and all the history data were reused when
optimizing a new task.

B.6 DISTANCE PRESERVING OVER LATENT SPACE

To demonstrate the distance preserving capability of IRVAE. We first randomly sample 10,000 points
from the muscle activation dataset and compute the pair-wise distance in original and latent space,
shown in Figure 4 (a).

Then we use a GP with Matérn kernel (lengthscale=1 for safety function and 5 for utility function)
to prediction means and variance of the safety function given policy parameters. The training data is
the initial original and latent policy parameters. The testing data is 36000 randomly chosen original
policy parameters, the GP mean and variance esimation of orignal and latent GP is shown in in
Figure 4 (b)-(c).

We further compute point-wise distance of 10,000 random sampled points. The results shows high
linear correlation of point-wise distance between original space and latent space ( is 0.851 for mus-
culoskeletal model control task and 0.973 for neural stimulation task), indicating good distance
preserving ability of IRVAE.

C ADDITIONAL EXPERIMENT

C.1 HAND-WRITING DIGITAL GENERATION

In hand-writing digital generation task, the goal is to generate images of target digit as thick as
possible, while keeping the image valid for the required number. Using this task we can test the
algorithm performances when the latent dimension is low. We trained a fully-connected IRVAE
with a latent dimension of 6 and use a two-layer CNN model as the predictor. We set the objective
function as the sum of image pixel intensities and the safety function as the prediction probability
of target number. Since the CNN prediction is very sharp, we wrap the CNN output via a softmax
layer with temperature as 200. We set the sample budget as 200 including with 20 images of target
digit as the initial data.

We show the optimization result of generating number 0-9 figure 7 and summarize the averaging
perfromance in Table 2. We observed OLLSO outperforms all baselines in terms of optimization
performance and safety violation. Note that while OLLSO efficiently finds highest objective, its
safety violations is 63% less than the second best method original SCBO.

C.2 ABLATION ON CONFIDENCE BOUND SCALAR

Here we run OLLSO with β = 0, 2, 4, 6, 8 on musculoskeletal model control task, and shown the
results in Figure 8. We observe the algorithm performance is similar under a wide range choice of
β on this high-dimensional task.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 7: Experiment of hand-writing digital generation of number 0-9.
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Table 2: Experiment results of constrained hand-writing digital generation. We evaluate algorithm
performance of generating digital from 0 to 9 in terms of best found feasible objective value (higher
is better) and cumulative safety violation (lower is better). Objective values are normalized by best
feasible point in the MNIST dataset. The results are shown as mean performance ± one standard
deviation across ten tasks.

Metric Method OLLSO SCBO CONFIG cEI cEI-Prob CMAES

Objective Latent 1.14± 0.12 1.03±0.2 1.07±0.22 0.94±0.13 0.93±0.13 0.69±0.11
Original 1.08±0.18 0.77±0.26 0.77±0.26 0.77±0.26 0.68±0.12

Violation Latent 18.99± 10.82 59.25±21.97 64.39±18.99 70.6±8.32 69.29±8.69 76.15±7.88
Original 52.01±20.28 72.09±17.85 72.04±17.82 72.0±17.87 72.01±7.06

(a) (b) (c)

Figure 8: Ablation study on confidence bound scalar β.

C.3 COMPARISON WITH RANDOM-EMBEDDING BO

We additionally run HesBO and BAxUS on the musculoskeletal model control task and the neu-
ral stimulation task with no safety constraints in simulation. Due to the algorithmic mechanism
of HesBO and BAxUS, we cannot directly use the same initial point as OLLSO. Therefore we
randomly sample initial points from their corresponding latent space. In HesBO, we set the same
latent dimension number as in OLLSO. Table 3 shows the best objective function values found by
algorithms (shown as mean ± 1 std).

We observe OLLSO still outperforms HesBO and BAxUS across all tasks, even when optimizing
under safety constraint. We think using IRVAE enables utilizing the pre-collected unlabelled data to
learn a better representation than random projection.

D ADDITIONAL RELATED WORK

Here we additionally discuss more works about high-dimensional Bayesian optimization besides
dimension-reduction based BO and local BO.

Due to the inversion of kernel function matrix, the complexity of GP inference scales exponentially
with the sample number, limiting the search budget of high-dimensional problems. Sparse GP or
variational GP is used to achieve scalable sampling over the high-dimensional space (Seeger et al.,
2003; Snelson & Ghahramani, 2005; Hensman et al., 2013).

Table 3: Best objective function values found by algorithms.

Algorithm Muscle SCS-IL SCS-RF SCS-TA SCS-BF SCS-ST SCS-GA

OLLSO 284.08± 305.95 0.39± 0.03 0.37± 0.00 0.38± 0.02 0.28± 0.03 0.26± 0.02 0.22± 0.01
HesBO −747.8± 124.53 0.34± 0.03 0.30± 0.04 0.36± 0.05 0.25± 0.01 0.23± 0.0 0.19± 0.02
BAxUS −619.36± 302.83 0.36± 0.04 0.35± 0.02 0.34± 0.05 0.27± 0.02 0.24± 0.03 0.19± 0.05
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Another line of work assume the addictive structure of the objective functions, and decomposes the
function to solve the low-dimensional sub-problem decentrally(Kandasamy et al., 2015; Gardner
et al., 2017; Wang et al., 2018; Mutny & Krause, 2018).

To overcome over-exploration issue over the high-dimensional space, several works also propose
shape kernel prior to sample points near the search center (Oh et al., 2018; Eriksson & Jankowiak,
2021).

E FUTURE WORKS

While our current work train VAEs in a unsupervised manner, we wonder whether the optimization
could be more safe and efficient when shaping the latent space and GP prior with collected labelled
data. We are also interested in analyzing the safety guarantee under noisy observation setting and
try to employ OLLSO to safely optimize other real-world problems in the future.
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