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Abstract. AI-based systems for visual scene understanding benefit from
a large field of view (FOV). Multiple camera systems extend the FOV,
but larger and higher-quality images strain acquisition, communication,
and computing resources. Sub-sampling the FOV effectively addresses
this challenge without compromising performance on complex tasks that
require fine visual cues and contextual information. We demonstrate that
a variable sampling scheme, inspired by human vision, outperforms uni-
form sampling in several visual question answering (VQA) tasks with a
limited sample budget (3% of full resolution). Specifically, we show ac-
curacy gains of 3.7%, 2.0%, and 0.9% on the GQA, VQAv2, and SEED-
Bench datasets, respectively. This improvement, achieved without image
scanning, holds regardless of the fixation point location, as confirmed by
control experiments. The results show the potential of the biologically
inspired image representation to improve the design of visual acquisition
and processing models in future AI systems.

Keywords: Visual question answering · Efficient vision · Variable reso-
lution

1 Introduction

There is consistent evidence in nature that highly developed species utilize large
field of views (FOV) to cope with fundamental visual tasks, including efficient
detection of danger, food and social agents (19; 26). Similar to biological systems,
an artificial intelligence system, designed to operate autonomously in natural
environments, will require a visual system with a large FOV. Indeed, self-driving
cars utilize multiple cameras at various viewing directions, to gain a wide FOV
of the surroundings (20). On the other hand, many visual tasks also require fine
details at high resolution; for example, threading a needle. Integrating those two
requirements by utilizing images of increasing size and quality presents a great
challenge to the acquisition and compute resources of AI-based systems (22; 27).

A simple solution to these challenges is to sub-sample a sufficiently large
FOV, i.e. picking pixels at sparse locations such that the total count remains
significantly low. Evolution provided an elegant and efficient solution in the form
of a variable-resolution visual system, which acquires images at high resolution
only in a small region at the center of the visual field (a.k.a. fovea centralis). In
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Fig. 1: Visual question answering example. (a) baseline full resolution, (b) vari-
able resolution, (c) uniform resolution. The model yields the correct answer when
applied to the variable resolution image, with a mere 3% sample budget. While the
uniform resolution is sufficient to recognize the giraffes (which normally live in Africa),
only the variable resolution provides the fine details of the artificial shade, which is
critical to answer the question correctly.

the rest of the visual field, resolution decreases with eccentricity (distance from
the center). As a result, the human FOV spans over 120◦, with peak resolution
approaching 0.5 arcminutes (18). The brain provides mechanisms to facilitate
visual perception by combining foveal and peripheral vision (2; 7; 21; 29).

In this work, we study the behavior of deep neural network models perform-
ing complex visual tasks when applied to variable resolution images, inspired by
the human visual system, under an extremely limited pixel budget. In particu-
lar, we focus on the task of visual question answering (VQA). The VQA task
is highly related to the task of complex visual scene understanding, for which
we hypothesize that the contribution of a variable resolution system is signif-
icant (see example in Fig. 1). Understanding object relations and interactions
in scenes, as well as object attributes, requires the integration of fine visual
cues with contextual information, which are both available with the variable
resolution scheme. To emphasize the general advantage of the variable sampling
scheme, we focus on models’ evaluation at a single fixation, without any scan-
ning, where the variable resolution peaks at an arbitrarily chosen fixed image
location, not aligned with the objects’ layout in the image.

The main contributions of this paper are as follows:
1. Large vision-language foundation models (VLMs) provide state-of-the-art

performance on the task of VQA. We apply three VLMs on three VQA
datasets, comparing between the variable and uniform sampling schemes.
In particular, we evaluate the models ViLT (13), MDETR (12) and BLIP2
(15) on VQAv2 (6), GQA (10) and SEED-Bench (14) datasets, respectively.
We show that the models improve significantly for most question types with
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Fig. 2: Alternative sampling schemes. (a) Variable resolution with peak sample
density at the center of fixation (image center in this paper) and linearly decreasing
number of samples with eccentricity. (b) Uniform resolution with a constant density
of samples. Both schemes distribute an equal number of samples over the entire FOV
(using log-polar coordinates). In this work we address the question: which of the two
alternative (motorbike) representations improves on complex visual tasks with existing
DNN architectures, given that both alternatives consist of an equal number of samples?

the variable resolution images compared to the naive uniform resolution
alternative. Furthermore, with a mere 3% pixel budget, models reach about
80% accuracy in comparison with the full resolution baseline.

2. We conduct extensive control on the advantage exhibited by the variable
model and show that it holds generally, irrespective of fixation point location.

3. In VQA many questions are around objects, their attributes and relations,
hence requiring the capacities of sub-tasks such as object detection. We train
models for this task with each of the sampling schemes and reveal a similar
performance improvement.

2 Experimental setup

We consider three main sampling configurations of the input images given, and
train a different model for each of the input sampling configurations. Importantly,
we note that for the sub-sampling techniques (variable and uniform) we utilize
a simple bilinear interpolation to form the final image while preserving spatial
alignment. This allows us to extensively test existing vision systems made to work
with Certasian coordinates without performing architectural changes. We do
not attempt computational gains and instead isolate the effects of subsampling
strategies on complex visual tasks.

Baseline. We refer to the given original images, without any pre-processing,
as "baseline" or "full resolution", utilizing 100% of the available pixel budget.
The FOV spanned by the original image pixels is referred to as the "full FOV".

Variable sampling. The sampling approach follows (24) and (31), which
modeled the human representation of visual information in the retina and the
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Fig. 3: Evaluation of visual question answering. (a,b) Accuracy on the VQAv2
dataset (ViLT): (a) The top-5 questions where the variable scheme outperforms the
uniform, (b) where the uniform outperforms the variable. The Variable advantage is
high and statistically significant, while the uniform advantage is not. (c) Accuracy
on the GQA dataset (MDETR). (d) Accuracy on the SEED-Bench dataset (BLIP2).
Numbers above the bars indicate the marginal accuracy difference.

visual cortex. The variable resolution scheme consists of sampling with a recep-
tive field size, which continually increases with eccentricity (Fig. 2a). We apply a
Log-Polar transformation to each image, where sample density remains constant
∀θ ∈ [0, 2π] and decreases linearly with r

(r, θ) = (log(
√
(x− xf )2 + (y − yf )2), arctan(

y−yf

x−xf
))

where xf , yf are the coordinates of the fixation point. The sampling yields a
budget of about 10K samples (pixels) within the full FOV. In the context of the
COCO dataset (16), with typical image size of 480×640, this amounts to a pixel
budget of about 3%. Note that throughout this paper, we arbitrarily picked the
center of the image as the location of the highest sample density, regardless of
the task or object location in the scene. We introduce multiple mechanisms to
control for the central image bias (see Section 4).

Uniform sampling. In this sampling approach the budget of samples is
uniformly distributed across the entire FOV. We employ a concentric grid to
comply with the variable sampling. This uniform resolution schema is akin to
simply down-scaling the FOV. See Figure 2b.

Training paradigm. We trained all object detection and backbone models
(Mask-RCNN, DETR, ResNet101 (3; 8; 9)) from scratch using their original
hyperparameters and training methods. Each model was trained on one of three
versions of its dataset, matching the sampling configuration used in testing.
As such, we have three models for every experiment. Due to computational
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resource limitations we fine-tuned only the MDETR model among the VLMs,
which yielded consistent findings with the non-fine-tuned version, mitigating the
need to re-train the other VLMs.

3 Visual question answering (VQA)

Visual question answering is a complex yet one of the most fundamental vi-
sual tasks for an intelligent agent. This task requires the perception of subtle
cues related to object relations, interactions and causality in a scene. The VQA
task combines multiple mechanisms to answer questions about specific elements
of the image, the general layout of the scene or both. In our experiments, we
first applied a pretrained ViLT model, on the VQAv2 dataset consisting of 65
question types. We evaluated the model on three sampling schemes: baseline-full
resolution, variable and uniform. The results clearly indicate a significant advan-
tage for the variable sampling scheme, with an overall accuracy gain of 1.96%
on the validation set (1.44% on the test set) compared to the uniform scheme
(Mvar = 64.9±19.8% ; Muni = 62.9±19.9% ; t[64] = 9.16 ; p < 1×10−6, on the
validation set). The mean accuracy for the baseline with full resolution images
on this dataset is 81.1%.

Next, we applied the MDETR model on the GQA dataset, which demon-
strated similar trends (Table 1). The model evaluated on the variable sampling
scheme achieved a total accuracy of 47.4% compared to 43.7% for the uniform
scheme (t[4] = 2.32 ; p = 0.04). The GQA ’testdev’ set consists of 12,578 ques-
tions and 398 images. Both sampling schemes improved with fine-tuning (Ta-
ble 1). Lastly, we tested the BLIP2 model on the new SEED-Bench dataset,

Table 1: MDETR model evaluation on GQA testdev dataset.

Model Question type Accuracy
Baseline (full)

Accuracy
Variable

Accuracy
Uniform

Pretrained (1) Object existence 95.6% 91.3% 89.8%
(2) Object attribute 71.2% 58.3% 57.4%
(3) Object category 76.0% 65.5% 60.6%
(4) Object relation 53.1% 38.6% 33.7%
(5) Global scene 95.8% 94.5% 93.3%
Total 61.7% 47.4% 43.7%

Fine-tuned (1) Object existence 95.6% 93.8% 93.4%
(2) Object attribute 71.2% 62.6% 62.6%
(3) Object category 76.0% 71.1% 70.3%
(4) Object relation 53.1% 46.5% 44.9%
(5) Global scene 95.8% 95.2% 95.7%
Total 61.7% 54.3% 53.3%
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where the variable scheme outperforms the uniform by 0.9% (50.5% vs. 49.6%
total accuracy; t[14232] = −6.00 ; p < 1× 10−6; see Supplementary).

As shown in Figure 3, most question types benefit from the variable sampling
scheme, which provides finer details in the center of the image, over the uniform
scheme. The advantage is even more remarkable considering it is achieved with
a single arbitrary fixation, while the cues for answering the questions can be
located anywhere in the scenes.

Interestingly, we note that the Top-5 marginal difference question types on
VQAv2 have a very different distribution for both the uniform and the variable
schemes. The Variable resolution scheme yields marginal gains of up to 8.2% (see
Fig. 3a). On the contrary, the uniform sampling scheme prevails with at most
1.0% and in most cases orders of magnitude less (see Fig. 3b). The same pattern
is evident in both the GQA and the SEED-Bench datasets (Fig. 3c,d).

Variable resolution induces bidirectional information flow between
center and periphery. Inspection of the models’ self-attention maps reveals in-
sight into the improved performance: while the uniform scheme spreads attention
only locally, the variable scheme integrates contextual information by attention
spreading to the periphery, similar to human perception (Supp. Section 3).

4 On central image bias

The datasets under review, GQA, VQAv2, and SEED-Bench, may occasionally
concentrate on objects positioned at the center of the image, directly aligning
with our high-resolution fixation. Consequently, it is not surprising that the
variable-resolution model gains an edge in performance due to high-resolution
input focused on critical image areas. At this juncture, the reader might be
tempted to accredit the benefits of variable resolution to merely coincide with the
pre-existing photographer bias in the information-dense region of these datasets.
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Fig. 4: Bin experiment. (a) The P
A

HRR allows for measuring the degree to which a
ground-truth object is contained in the high-resolution middle area. (b-e) Evaluation
variable vs uniform sampling performance w.r.t. degree of inclusion (HRA = 200×200).
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As a gateway to explore the results achieved on the complex VQA task,
and to investigate such concerns in depth, we evaluated the behavior of several
models on the underlying task of object detection (16), which is essential for
VQA. For this task, we utilized the DETR (also used for VQA with modulation,
as MDETR) and Mask-RCNN architectures. The semantic richness of COCO,
such as object location, size, type etc. allows us to precisely measure the degree to
which a photographer bias artificially benefits the variable model. The following
are two experiments (1), (2) that demonstrate a variable model outperforms a
uniform one irrespective of fixation point location.

Creating annotation bins (1). Consider the COCO validation set V =
I1, I2, . . . , I5,000, where Ii ∈ ZWi×Hi×3. Define a square of size D ×D (D < Wi,
D < Hi for all i). For instance, D could be 200, since even the smallest images
in COCO are larger. Center this square on each validation image, calling the
area inside it the high-resolution area (HRA).

For each ground truth annotation, compute P
A , the fraction of its pixel mask

area inside the HRA (Figure 4a). This metric, the high-resolution inclusion de-
gree (or inclusion degree), measures how much of the annotation is within the
HRA. The inclusion degree varies with D. For example, an object might have
an inclusion degree of 0.5 for a 200 × 200 HRA, but 0.3 for a 150 × 150 HRA.
We tested HRA sizes from 100 × 100 to 250 × 250 in 10-pixel increments, with
consistent results across sizes.

Annotations are then binned by inclusion degree. The set G0.0−0.1 contains
annotations with inclusion degrees between 0.0 and 0.1, G0.1−0.2 includes those
between 0.1 and 0.2, and so on, forming ten bins: G0.0−0.1, G0.1−0.2, ..., G0.9−1.0.
Their union covers the entire validation set. Figure 4(b-e) shows model perfor-
mance across these bins, revealing that variable sampling significantly benefits
when objects fall within the high-information density area, while uniform sam-
pling offers limited advantages even in peripheral bins.

Counting samples (2). As an additional control, we constructed an an-
notation set containing only objects encompassed by an identical sample count,
varying only in its distribution pattern: variable or uniform (see Fig. 2). The
results show a similar performance gap of ∼2.0% in favor of the variable model
(Table S3 in the Supplementary).

5 Related Work

Several prior computational work explored aspects of foveal schemes, where sam-
ples are distributed densely around a fixation point and more sparsely in the
periphery of the FOV (1; 17; 23). Early studies developed models to evaluate
the capabilities and limitations of human peripheral vision (5). Others (4), stud-
ied the impact of foveated texture-based input representations in artificial vision
systems on the task of scene classification. They showed that peripheral tex-
ture encoding leads to representations with greater generalization, sensitivity to
high-spatial frequency and robustness to occlusion. Another study (30) explored
a neurocomputational modeling of central and peripheral vision for scene recog-
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nition. The study suggested that the advantage of peripheral over central vision
is due to intrinsic usefulness of features carried by peripheral vision, generat-
ing a greater spreading transform in the internal representational space. They
predicted that the two pathways correlate with their neural substrates, LOC
and PPA in the brain. However, scene classification may provide only limited
insight, as it can be often performed well at extremely poor resolutions (28). A
recent study (25) suggested that blurry peripheral vision may have evolved to
optimize object recognition. Applying DNNs to foveated images around objects
of interest, the study showed that the performance is peaked at the human blur
decay setting, also benefiting from reduced false detections in the blurry periph-
ery. Cortical magnification is a brain mechanism that allocates more processing
units to the densely sampled area of the foveal image. This approach was applied
to videos to fit models into embedded systems (11). This study achieved a 4×
speed-up in frame rate, but showed only a small decrease in recall within the
restricted foveal region.

6 Conclusions

We address the problem of current artificial vision systems in covering a large
FOV, while enabling the acquisition of fine details in high resolution to perform
complex visual tasks. Inspired by the human visual system, we employ and eval-
uate a variable resolution sampling scheme, under a limited budget of samples,
with a high resolution area at the center of the FOV and linearly decreasing
resolutions in the periphery.

When applied to the complex VQA task, the variable sampling scheme consis-
tently outperforms the uniform sampling scheme across most question types, as
demonstrated in Section 3 for the ViLT, MDETR and BLIP2 VLMs on VQAv2,
GQA and SEED-Bench datasets, respectively. This is an outstanding finding,
mainly from two perspectives. First by considering the fact that we arbitrarily
choose the highest resolution area location in the center of the image, while the
cues required to answer the questions can be anywhere in the scene. Second,
the improvement is achieved with a single fixation, without any scanning across
the FOV. In early studies, (28) showed that humans and machines can perform
well on the task of scene classification only with a uniformly sub-sampled gist
of an image. Our results indicate that a variable resolution scheme, is a better
alternative than the uniform sampling scheme (e.g., the question "what room
is?" in VQAv2 yields an improvement of 4.3%, the "object relation" question
type in GQA and the "instance counting" question type in SEED-Bench, both
gains 2.9%; see Fig. 3). This gain in performance at a single arbitrary fixation,
suggests the dissemination of high resolution information from the center of the
FOV to the periphery and of low resolution contextual information from the
periphery to the center.

Overall, the results show the potential of the biologically-inspired image rep-
resentation to improve the design of visual acquisition and processing models in
future AI-based systems.
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