

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  

# LIGHT DIFFERENTIABLE LOGIC GATE NETWORKS

**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Differentiable logic gate networks (DLGNs) exhibit extraordinary efficiency at inference while sustaining competitive accuracy. But vanishing gradients, discretization errors, and high training cost impede scaling these networks. Even with dedicated parameter initialization schemes from subsequent works, increasing depth still harms accuracy. We show that the root cause of these issues lies in the underlying parametrization of logic gate neurons themselves. To overcome this issue, we propose a reparametrization that also shrinks the parameter size logarithmically in the number of inputs per gate. For binary inputs, this already reduces the model size by 4x, speeds up the backward pass by up to 1.86x, and converges in 8.5x fewer training steps. On top of that, we show that the accuracy on CIFAR-100 remains stable and sometimes superior to the original parametrization.

## 1 INTRODUCTION

Contemporary large, overparametrized neural networks have demonstrated remarkable expressivity (Allen-Zhu et al., 2019), but their computational cost necessitates efficiency improvements while sustaining their approximation accuracy (Gusak et al., 2022). With that goal, several approaches directly draw from the physical structure of the underlying hardware to parametrise model classes (Wang et al., 2020; Benamira et al., 2024; Bacellar et al., 2024; Hubara et al., 2016). Among them, differentiable logic gate networks maintain an unparalleled performance-efficiency trade-off (Petersen et al., 2022). Subsequent works have since advanced this model to convolutional or recurrent architectures (Petersen et al., 2024; Bührer et al., 2025). Yet, several issues like vanishing gradients, discretization errors, and high training cost impede scaling these models in depth.

So far, prior works have mainly patched these problems with alternative parameter initialization schemes (Petersen et al., 2024; Yousefi et al., 2025). But these remedies do not fully resolve the issues, as they neglect that the primary root cause lies in the parametrization of logic gate neurons themselves. For that reason, scaling the convolutional DLGN from Petersen et al. (2024) in depth still grossly degrades its discretized accuracy (cf. Figure 5b).

In this work, we tackle the DLGN parameterization, study how it gives rise to the problems mentioned above, and propose a reparametrization that overcomes the problems; the reparametrization is illustrated in Figure 2. Over and above, we explicate the impact that initializations have on gradient stability and optimization dynamics in deep logic gate networks. In particular, we identify RIs as proposed by Petersen et al. (2024) as one of the simplest instances of a larger class of negation-asymmetric heavy-tail initializations, and

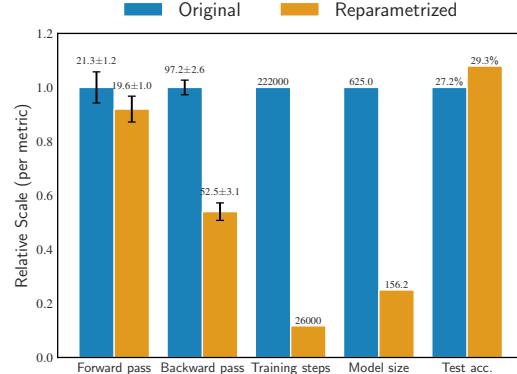


Figure 1: For a CIFAR DLGN (Petersen et al., 2022), our reparametrized DLGNs require 4x less memory, converge in 8.5x fewer training steps, and perform the forward and backward passes in up to 8% and 45% less time, respectively. Details in Section 5 and Section B.5.

elucidate why such initialization schemes are particularly beneficial for the information flow in both the forward and backward pass during training. Combining such initializations with the reparametrization, we overcome the issues mentioned above and obtain logic gate networks that are more expressive, more scalable, and more efficient to train (cf. Figure 1).

Petersen et al. (2022) showed that DLGNs can process one million MNIST or CIFAR-10 images per second on a single CPU core, Petersen et al. (2024) later showed that convolutional DLGNs take less than 10 nanoseconds per CIFAR-10 image on an FPGA, and Bührer et al. (2025) showed that recurrent DLGNs require 20'000 times fewer logic operations to deliver performance comparable to RNN, GRU, and Transformer-based models in the WMT'14 German to English translation task (Bojar et al., 2014b). These values show that DLGNs are very suitable for real-world deployment once the accuracy matches state-of-the-art models. To facilitate the research needed to close this accuracy gap, our reparametrization makes training more efficient without altering the inference dynamics that make DLGNs attractive. We find that models require 4x less VRAM to train, process backward passes up to 1.86x faster, and 8.5x fewer training steps.

## 2 BACKGROUND ON LOGIC GATE NETWORKS & RELATED WORK

### 2.1 LOGIC GATE NETWORKS

In essence, differentiable logic gate networks differ from feed-forward neural networks in the parametrization of each neuron. In standard architectures, each neuron is a composition of vector-algebraic operations with non-linear activation functions (Fukushima, 1980; Schmidhuber, 2015; LeCun et al., 2015; Goodfellow et al., 2016). By contrast, differentiable logic gate networks (DLGNs) associate each neuron with a binary Boolean function  $G : \{0, 1\}^2 \rightarrow \{0, 1\}$  (Petersen et al., 2022). That way, each neuron is connected to only two neurons in the previous layer. Combined with bit-level operations, this extreme sparsity renders DLGNs particularly suitable for high-performance inference on devices with low computational resources.

Adhering to the canonical ordering of Boolean functions (cf. Table 5), we denote the 16 binary Boolean functions by  $G_i, 1 \leq i \leq 16$ . We categorize these functions based on the number of non-zero outputs into four ANDs, four ORs, two constants, two XORs, and four pass-throughs, which merely forward one of the inputs, negated or non-negated. A layer of such neurons is referred to as the logic layer.

Naturally, the space of Boolean functions and the functions themselves are discrete, and thus do not immediately give rise to differentiable neurons. To apply gradient-based optimization methods, the original paper proposed to continuously relax each neuron to the probability simplex over all 16 functions (Petersen et al., 2022),

$$g(p, q) := \sum_{i=1}^{16} \omega_i g_i(p, q), \quad p, q \in [0, 1], \quad \omega_i \geq 0, \quad \sum_j \omega_j = 1. \quad (1)$$

where each function  $g_i$  is a probabilistic surrogate of the deterministic  $G_i$ , defined as

$$g_i(p, q) := \mathbb{E}_{\substack{A \sim \text{Ber}(p), \\ B \sim \text{Ber}(q)}} [G_i(A, B)], \quad p, q \in [0, 1]. \quad (2)$$

Such a surrogate is necessary to deal with real-valued inputs  $p, q$  during training, for which the underlying  $G_i$  are not defined. Accordingly, we will refer to  $\omega_i$  as the weight of  $g_i$ .

Moving back to the parameters of each neuron, the authors decided to initialize the weights in Equation (1) via a softmax of i.i.d. random variables

$$\omega_i = \frac{\exp(\Omega_i)}{\sum_j \exp(\Omega_j)}, \quad \Omega_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2). \quad (3)$$

Likewise, a softmax operation is used to eventually obtain differentiable class scores from this network for classification tasks. In particular, for  $C$  classes, a layer coined GroupSum

108 partitions the gate outputs of the final logic layer into  $C$  contiguous bins and accumulates  
 109 them to obtain the corresponding logits.  
 110

111 At inference, all these softmax operations are replaced by argmax operations. This rounds  
 112 each neuron to the binary gate  $g_i$  with the highest weight  $\omega_i$ , which yields a logic gate  
 113 circuit that can be directly embedded in hardware such as FPGAs or ASICs (Zia et al.,  
 114 2012). Naturally, this rounding operation entails a discretization error that might further  
 115 reduce performance at deployment. We hence refer to both versions of the network as the  
 116 continuous and discretized DLGN.  
 117

118 Contending with both this discretization error and vanishing gradients, Petersen et al. (2024)  
 119 observed superior performance when they replaced the Gaussian initialization in Equation  
 120 (3) by an RI, which deterministically assigns a high initial weight to the pass-through  
 121 gate function  $G_4(A, B) = A$ ,  
 122

$$\Omega_i = \begin{cases} 5, & i = 4 \\ 0, & i \neq 4 \end{cases}, i = 1, \dots, 16. \quad (4)$$

123 Similar to the original idea of residual connections (He et al., 2016), this pass-through bias  
 124 stabilized training. On top of that, it notably reduces the number of non-trivial logic gates  
 125 that remain after the discretized DLGN undergoes a logic simplification. That way, they  
 126 obtained a logic gate circuit that achieves a test accuracy of 85% on CIFAR-10 with less  
 127 than 29 million gates, which is far less than what competitive networks required (Petersen  
 128 et al., 2024, Sec. 5.1).  
 129

130 Albeit effective, this initialization is still subject to limitations that arise from the underlying  
 131 parametrization, which we will pinpoint in Section 3. But first, we present other related  
 132 work and explain how they differ from DLGNs in both their reparametrized and original  
 133 form.  
 134

## 135 2.2 OTHER RELATED WORK

136 Several works have exploited that learning circuits of logic gates with more than two inputs  
 137 allows for embedding more functional expressivity on the same hardware (Umuroglu et al.,  
 138 2020; Bacellar et al., 2024). On the contrary, DLGNs were practically limited to learn logic  
 139 gates with very few inputs, as processing  $2^{2^n}$  parameters per logic gate with  $n$  inputs quickly  
 140 becomes intractable. With our reparametrization that reduces the number of parameters to  
 141  $2^n$ , advancing DLGNs to process more than two inputs per gate becomes a viable option.  
 142

143 In contrast to our reparametrization, these works do not directly estimate the outputs of the  
 144 logic gates. Instead, they use a different representation class and quantize this class to logic  
 145 gates after training. However, these indirect representations either fall short of exploiting the  
 146 expressivity of logic gates (Umuroglu et al., 2020) or are costlier to parametrize (Andronic &  
 147 Constantinides, 2023; 2025). We provide a detailed comparison in Section H.  
 148

## 149 3 REPARAMETRIZING LOGIC GATE NEURONS

### 151 3.1 WEAKNESSES OF THE CURRENT PARAMETRIZATION

152 We demonstrate that redundancies in the parametrization are the primary cause of vanishing  
 153 gradients and large discretization errors.  
 154

#### 155 3.1.1 GRADIENT STABILITY

156 Each Boolean function  $G_i$  has a negated counterpart. Adhering to the canonical ordering  
 157 of Boolean functions (cf. Table 5), we denote this counterpart by  $G_{-i} := G_{17-i} \equiv \mathbf{1} - G_i \equiv$   
 158  $\neg G_i$ . The same holds for the probabilistic surrogates  $g_i$ . Under this condition, choosing  
 159 independent weights for each  $g_i$  and its negated counterpart  $g_{-i}$  is fatal, as it provokes self-  
 160 cancellations in the partial derivatives, progressively diminishing the gradient norm during  
 161 backpropagation.  
 162

162 To see this, we equally denote  $\omega_{-i} := \omega_{17-i}$  to expose the symmetry in Equation (1) as  
 163

$$164 \quad g(p, q) := \sum_{i=1}^8 \omega_i g_i(p, q) + \sum_{i=1}^8 \omega_{-i} g_{-i}(p, q) \quad (5)$$

$$167 \quad = \sum_{i=1}^8 \omega_i g_i(p, q) + \omega_{-i} (1 - g_i(p, q)). \quad (6)$$

169 Having i.i.d.  $\omega_i$ , this translates to a weighted sum of sign-symmetric random variables in  
 170 the partial derivatives  
 171

$$172 \quad \frac{\partial g(p, q)}{\partial p} = \sum_{i=1}^8 (\omega_i - \omega_{-i}) \frac{\partial g_i(p, q)}{\partial p}. \quad (7)$$

174 Initializing  $\Omega_i$  with the default variance  $\sigma = 1.0$  will concentrate the gradient norm around  
 175 0 (cf. Figure 23a) and entail vanishing gradients with high probability, as Petersen et al.  
 176 (2024) have already encountered. Notably, even with a variance as large as  $\sigma^2 = 16.0$ , many  
 177 partial derivatives remain concentrated at zero (cf. Figure 23b).

178 RIs as proposed by Petersen et al. (2024) successfully break this sign-symmetry to  
 179

$$180 \quad \frac{\partial g(p, q)}{\partial p} = \sum_{i=1}^8 (\omega_i - \omega_{-i}) \frac{\partial g_i(p, q)}{\partial p} \stackrel{(3)}{=} \sum_{i=1}^8 \frac{e^{\Omega_i} - e^{\Omega_{-i}}}{\sum_j e^{\Omega_j}} \frac{\partial g_i(p, q)}{\partial p} \stackrel{(4)}{=} \frac{e^{\Omega_4} - 1}{e^{\Omega_4} + 15}. \quad (8)$$

182 Once more, symmetric overparametrization traps RIs in a tension between maintaining  
 183 gradient stability and stalling optimization for other gate functions (cf. Section F.1).  
 184

185 While sign-symmetries interfere with the gradient signal in a destructive way, there are also  
 186 other redundancies in the parametrization that contribute to the discretization error.  
 187

### 3.1.2 DISCRETIZATION ERROR

189 When converting the continuous relaxation to a logic gate circuit, the softmax-to-argmax  
 190 rounding principle (cf. Section 2.1) discretizes each neuron to the logic gate function with  
 191 the highest weight  $\omega_i$ . But with the redundancies in this parametrization, the logic gate that  
 192 is rounded to is not necessarily the one that the neuron is closest to. For example, assume a  
 193 neuron with weight 0.4 for the one pass-through gate  $G_4(A, B) = A$ , weight 0.3 for the other  
 194 pass-through gate  $G_6(A, B) = B$ , and weight 0.3 for the OR function  $G_8(A, B) = A \vee B$ . For  
 195 the four binary inputs  $(0, 0), (0, 1), (1, 0), (1, 1)$ , the neuron will output  $0, 0.6, 0.7, 1$ . Clearly,  
 196 this output behaviour is closest to the OR function  $G_8$ , although the argmax is the pass-  
 197 through gate  $G_4$ . Argmax is effective only when applied to inputs that are exclusive and  
 198 independent.

199 Redundancies in the parametrization are the leading cause of vanishing gradients. In the  
 200 following, we present an exact, redundancy-free parametrization.  
 201

### 3.2 INPUT-WISE PARAMETRIZATION

203 In fact, each binary function  $G : \{0, 1\}^2 \rightarrow \{0, 1\}$  has a unique decomposition  
 204

$$205 \quad G(k, \ell) = \alpha_{00} E_{00}(k, \ell) + \alpha_{01} E_{01}(k, \ell) + \alpha_{10} E_{10}(k, \ell) + \alpha_{11} E_{11}(k, \ell), \quad (9)$$

206 where  $\alpha_{ij} \in \{0, 1\}$ , and  $E_{ij}$  is the indicator function  $E_{ij}(k, \ell) = \mathbb{1}\{(k, \ell) = (i, j)\}$ . This exact  
 207 representability also transfers to the probabilistic surrogates  
 208

$$g = \alpha_{00} e_{00} + \alpha_{01} e_{01} + \alpha_{10} e_{10} + \alpha_{11} e_{11}, \quad (10)$$

209 where  $e_{ij}(p, q) = \mathbb{E}[E_{ij}(p, q)]$  as in Equation (2). Relaxing the binary coefficients  $\alpha_{ij}$  to  
 210 the continuous interval  $\omega_{ij} \in [0, 1]$  and rounding back via  $\omega_{ij} > 0.5$ , we obtain the exact  
 211 parametrization  
 212

$$213 \quad g_\omega(p, q) = (1 - p) \cdot (1 - q) \cdot \omega_{00} \quad (11)$$

$$214 \quad + (1 - p) \cdot q \cdot \omega_{01}$$

$$215 \quad + p \cdot (1 - q) \cdot \omega_{10}$$

$$+ p \cdot q \cdot \omega_{11}.$$

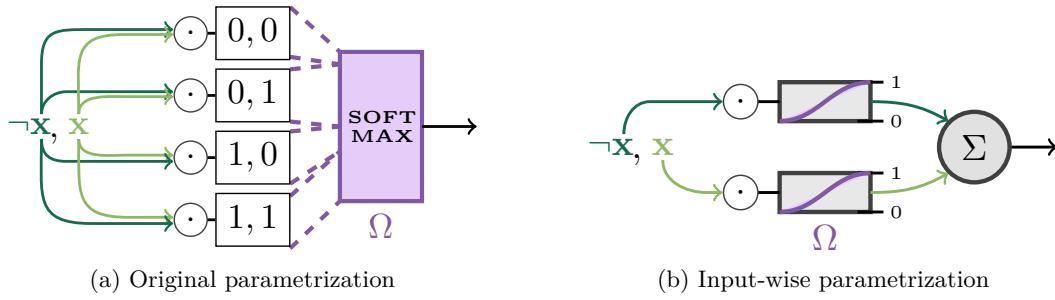


Figure 2: Illustrating the reparametrization for logic gates with one input. It requires only  $2^n$  learnable parameters  $\Omega$  for  $n$  inputs, opposed to  $2^{2^n}$  for the original parametrization.

Similar to Petersen et al. (2022), one could learn such a bounded coefficient  $\omega_{ij} \in [0, 1]$  by mapping a real parameter  $\Omega_{ij} \in \mathbb{R}$  to an activation function  $\rho : \mathbb{R} \rightarrow [0, 1]$ . We will defer the specific function choice to Section C.1.1 and stick with the standard sigmoid function for now, i.e.  $\rho(x) := \frac{1}{1+\exp(-x)}$ .

Since the basis of the class of Boolean functions with  $n$  inputs has cardinality  $2^n$ , this equally expressive parametrization requires logarithmically fewer parameters than the softmax parametrization used by Petersen et al. (2022), which assigns an individual parameter to each of the  $2^{2^n}$  Boolean functions. For the class of binary functions used here, this already shrinks the model size by a factor of 4, and renders learning higher-dimensional Boolean functions computationally more viable. We hence also refer to this reparametrization as input-wise parametrization (**IWP**), and use the abbreviation **OP** for the original parametrization.

### 3.3 NO GRADIENT STABILITY WITHOUT APPROPRIATE INITIALIZATIONS

We now show that the IWP eliminates the pathways causing gradient cancellations and discretization errors. Any remaining gradient instability arises from other architectural factors, particularly parameter initialization.

To begin with, rounding the outputs of  $g_\omega$  to their closest binary numbers clearly attains minimal errors with respect to any Minkowski norm and any other norm that is based on a uniform distance metric between outputs of the function. Proof in Section F.3.

Moving on with gradient stability, the partial derivative now becomes

$$\frac{\partial g_\omega(p, q)}{\partial p} = (1 - q)(\omega_{10} - \omega_{00}) + q(\omega_{11} - \omega_{01}) \quad (12)$$

$$= \mathbb{E}_{B \sim \text{Ber}(q)} [\omega_{1B} - \omega_{0B}]. \quad (13)$$

An i.i.d. parameter initialization with sufficiently low variance would still entail cancellations, but, opposed to the OP, the IWP itself does not compound this problem further. Heavy-tail initializations that concentrate most weights  $\omega_{ij}$  close to 0, 1 would already resolve these cancellations inside a neuron to a sufficient extent, as we explain exhaustively in Section F.4. But a heavy tail alone is not enough in general. As long as the parameter initialization treats each function and its negated counterpart independently, gradients will distribute sign-symmetrically between different neurons during backpropagation. The more subsequent gates a neuron passes its output to, the more likely it is that the sum of partial derivatives that it receives during backpropagation will concentrate at 0. Therefore, appropriate initialization schemes should be negation-asymmetric as well.

270 A residual initialization (RI) as proposed by Petersen et al. (2024) that  
 271 assigns a high initial bias to the pass-  
 272 through  $G_4(A, B) = A$  is a simple  
 273 instance satisfying both requirements.  
 274 More complex instances, like an AND-OR  
 275 initialization that concentrates each  
 276 gate either to the AND or OR function,  
 277 are also feasible in principle. However,  
 278 it turns out that RIs entail a gate output  
 279 distribution (cf. Figure 3) that organizes  
 280 the optimization of logic gate networks  
 281 consecutively from earlier to later layers,  
 282 which is advantageous for training deep  
 283 networks. We substantiate this argument  
 284 in Section F.4.1, where we study the  
 285 class of heavy-tail, negation-asymmetric  
 286 initialization schemes in more detail.

287 To conclude, we pair our IWP with RIs  
 288 and show that the result is more scal-  
 289 able in depth and expressive complex-  
 290 ity.

291

292  
293

## 4 EXPERIMENTS

294

295  
296  
297  
298  
299

To verify our claims of better gradient stability, discretization accuracy, and training efficiency of our IWP, we adopt the original DLGN models and the experimental training setup from Petersen et al. (2022). We also cover the models and experimental setup from Petersen et al. (2024) to show the benefits apply to CDLGNs as well.

300  
301

### 4.1 BENCHMARKS

302  
303  
304  
305  
306  
307  
308

In both works, the networks were evaluated on several image classification benchmarks, with CIFAR-10 (Krizhevsky, 2009) as the most challenging dataset. However, the shallow models used there already perfectly fit the training dataset after a few iterations, which restricts the measurability of further expressive benefits when scaling the networks in depth. Thus, we decided to lift the complexity of the task in two ways: Firstly, we transition to CIFAR-100, a 100-class extension of CIFAR-10 (Krizhevsky, 2009). Secondly, we employ random resized crops and horizontal flips as standard data augmentations (PyTorch Core Team, 2023).

309  
310  
311  
312  
313

We need to account for the 10-fold class increase in the final prediction head of the model. Apart from that, no further adjustments to the original experimental setup for CIFAR-10 are required. The class increase can be encountered in two different ways. Following recommendations of Petersen et al. (2024, Appendix A.2), we explore both options; see Section D.2.1 for details.

314  
315  
316  
317  
318  
319

As a trade-off between computational feasibility and expressiveness, we finally decided to consider the medium-sized M models for both papers. When we refer to the DLGN and CDLGN in the experiments, we hence always mean the specific CIFAR-10 M architecture from Petersen et al. (2022, Appendix A.1) and Petersen et al. (2024, Appendix A.1.1), respectively. To estimate uncertainty, we train each model on three different seeds.

320  
321

### 4.2 IMPLEMENTATION OF REPARAMETRIZATION

322  
323

To implement our IWP and the adjusted initialization schemes in the given Python and CUDA implementation, we merely have to override the weight initialization and the forward and backward functionality according to Equations (11) and (12).

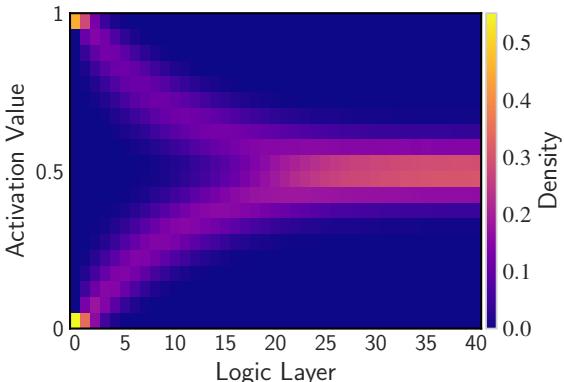


Figure 3: Distribution of gate outputs for an IWP DLGN right after residual initialization (RI), averaged over 100 images of CIFAR-100. That way, RI postpones gate learning in later layers until earlier layers are more refined. This incremental refinement allows to learn complex deep networks.

324 While we assumed the sigmoid function as the binary gate output estimator  $\rho$  in Equation  
 325 (11) for the sake of exposition, we observed slightly superior expressivity with a rescaled  
 326 sinusoidal estimator  $\sin_{01}(x) = 0.5 + 0.5 \sin(x)$  and adopted that one for subsequent experiments.  
 327 See Section C.1.1 for details.

### 329 4.3 SCALING MODELS IN DEPTH

331 Eventually, we want to reliably assess how increasing model depth affects performance for  
 332 both parametrizations. To scale both DLGNs and CDLGNs in a comparable, architecture-  
 333 agnostic way, we introduce a depth-scale parameter  $D \in \mathbb{N}$ , and obtain depth-scaled networks  
 334 by placing  $D$  (convolutional) logic layers instead, where only one was placed in the original  
 335 architecture. Section D.1 presents implementation details of this depth scaling.

## 336 5 RESULTS

### 339 5.1 REPARAMETERIZATION REDUCES VANISHING GRADIENTS

341 To begin with, vanishing gradients as the major hindrance for scaling DLGNs in depth,  
 342 the input-wise parametrization drastically reduces the shrinkage of gradient norm as we  
 343 backpropagate over layers. As Figure 8a showcases, the gradient norm undercuts machine  
 344 precision after 16 logic layers already, and vanishes to  $10^{-34}$  over 40 layers, when the OP is  
 345 used. But as already discussed in Section 3.3, an IWP alone without appropriate negation-  
 346 asymmetric, heavy-tail initializations can not reduce the gradient norm shrinkage sufficiently  
 347 and also ends up with an average gradient norm of  $10^{-16}$  after 40 layers.

### 348 5.2 RESIDUAL INITIALIZATIONS SCALE BEST WITH DEPTH

350 The residual initialization (RI), although biasing towards a single gate function only, proves  
 351 most effective for training deep DLGNs. On the one side, all other single-gate biases quickly  
 352 concentrate the gate outputs at one value (cf. Figure 27) where their gradients become  
 353 0 and stifle gradient flow (cf. Figure 24b). On the other side, some multi-gate biases  
 354 appeared competitive alternatives to RI, such as the AND-OR initialization, which exerts  
 355 a theoretically more appealing anticoncentration that retains inputs close to 0 and 1 over  
 356 the layers (cf. Figure 27e). Nonetheless, these methods remain slightly inferior to RI in  
 357 terms of both gradient stability (cf. Figure 24a) and accuracy (cf. Figure 26a). While  
 358 the former drawback is rather obvious because the pass-through gate  $G_4$  is unparalleled in  
 359 retaining a uniformly high gradient of 1, the latter relates to the more intricate discrepancy  
 360 in the optimization dynamics that each of the two initialization schemes gives rise to. As  
 361 discussed in Section F.4.2, RIs order optimization of neurons from earlier to later layers. On  
 362 the contrary, AND-OR initializations allow for non-uniform updates of the four gate outputs  
 363 for neurons at later layers right from the beginning. This additional freedom, however, seems  
 364 not only detrimental to the accuracy of the continuous relaxation. Surprisingly, despite its  
 365 anti-concentration, this alternative initialization grossly compounds to the discretization  
 366 error as we further increase depth (cf. Figure 26b).

### 367 5.3 REPARAMETERIZATION DRASTICALLY STRENGHTENS HYPERPARAMETER ROBUSTNESS

368 Hyperparameters needed to be carefully chosen for the original DLGN. Besides the choice  
 369 of optimizer and learning rate, the softmax temperature  $\tau$  of the GroupSum layer was  
 370 already identified a highly sensitive parameter in Petersen et al. (2022). By contrast, we  
 371 find that IWP DLGNs are far more robust than OP DLGNs against variations of these  
 372 hyperparameters. When swapping the Adam optimizer for established alternatives such as  
 373 Stochastic Gradient Descent (SGD), Nesterov Accelerated Gradient (NAG), or Adadelta,  
 374 the test accuracy of the OP DLGN deteriorates drastically while the IWP DLGN maintains  
 375 a stable discretized test accuracy of above 30% for all of them (cf. Figure 4a). On top  
 376 of that, the large discretization errors of the OP DLGNs become particularly apparent  
 377 when shrinking the GroupSum temperature  $\tau$  (cf. Figure 4b). Conversely, raising the  
 temperature already reduces the test accuracy of the continuous OP DLGN. A complete

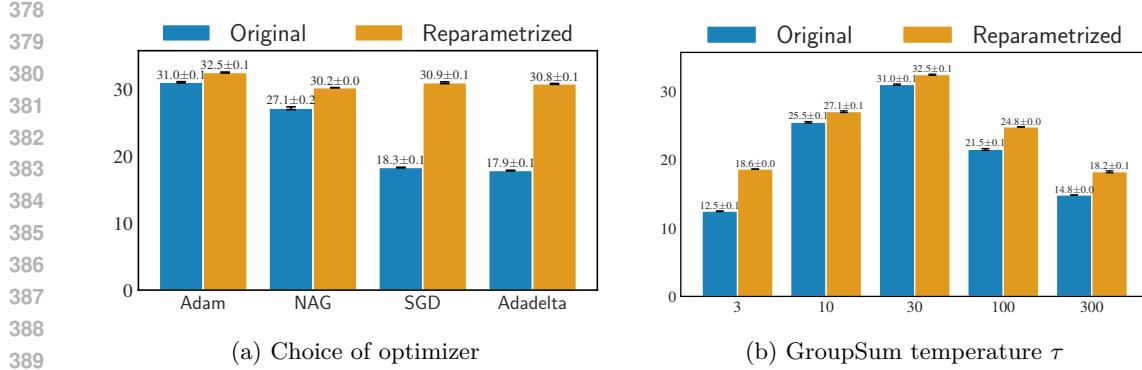


Figure 4: Discretized test accuracy of the CIFAR DLGN with 3-fold depth when varying hyperparameters, averaged over two seeds. Details in Section B.1.

overview of continuous and discrete accuracies is provided in Table 2. We continue these stability experiments in Section D.2, where we show that IWP DLGNs remain consistently superior to the OP for different learning rates and binary input encodings as well.

#### 5.4 ORIGINAL PARAMETRIZATION SCALES WORSE WITH DEPTH

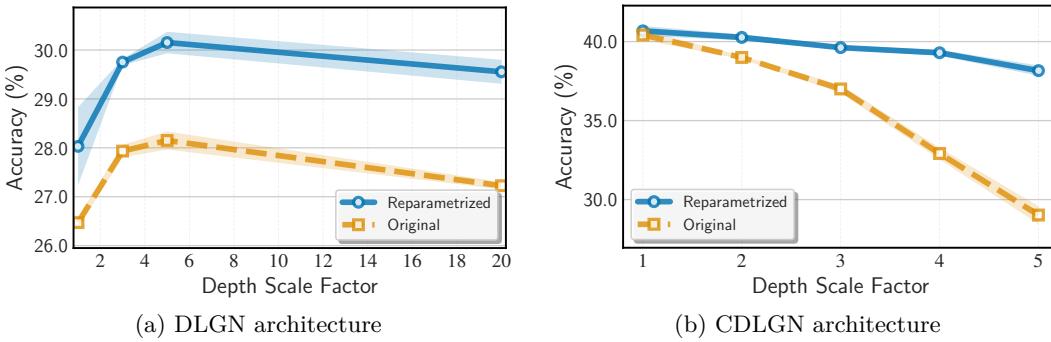


Figure 5: Discretized test accuracy, averaged over three seeds, when scaling the CIFAR M DLGN (Petersen et al., 2022) and CDLGN (Petersen et al., 2024) in depth.

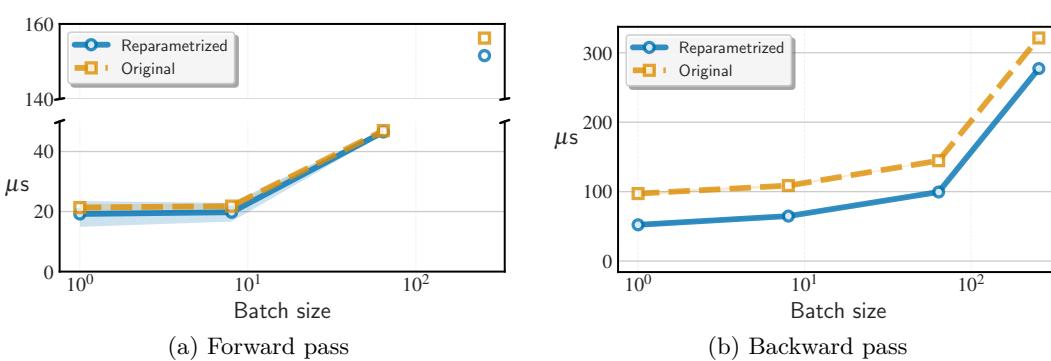


Figure 6: Training times for the DLGN with 20-fold depth. Mean and standard deviation were computed over 20 batches of CIFAR-100.

RIs also suppress the undesirable properties of the OP but cannot fully level them out, demonstrating that an inappropriate underlying parametrization can irreversibly condition shortcomings for optimization. The IWP addresses these weaknesses, and pairing it with an RI achieves superior performance to the OP with an RI. For one, the IWP with RI

432 still retains a higher gradient norm than the OP with RI (cf. Figure 8b). For another,  
 433 we observe a clear gap in the predictive performance as well. For the DLGN, this gap  
 434 is already apparent with baseline depth scale  $D = 1$ . Moreover, the IWP consistently  
 435 maintains this gap, which the OP cannot close even with 20-fold depth (cf. Figure 5a) and  
 436 eventually plateaus at roughly 28% test accuracy. For the CDLGN, the shallow baseline  
 437 network performs almost equivalently. But increasing depth now begins to expose a drastic  
 438 performance gap that culminates in a more than 1.3 times better test accuracy of the IWP  
 439 for  $D = 5$  (cf. Figure 5b).

440 We observe that this gap is mainly attributable to a large discretization error for the OP.  
 441 Figure 9b shows that the accuracy of the continuous OP CDLGN trails the IWP only by  
 442 a few percent. Unfortunately, the increasing depth ceases to benefit performance for the  
 443 IWP as well at some point, at least when not increasing the number of optimization steps.  
 444 Henceforth, we suppose that this is caused by shared underlying characteristics of the overall  
 445 DLGN architecture, and discuss potential reasons later in Section 6.

## 446 447 5.5 TRAINING EFFICIENCY

448 By reducing the number of real parameters per neuron from 16 to 4, we shrink the model  
 449 size by a factor of 4 (cf. Figure 1). This reduction also reduces the working set size during  
 450 the forward and backward passes in the CUDA kernel. This advantage becomes particularly  
 451 apparent for small batch sizes, where the parameter tensors dominate the memory footprint.  
 452 For an 80-layer DLGN trained with batch size 1, we observe a 1.86x speedup for the backward  
 453 pass and a 1.11x speedup for the forward pass (cf. Figure 6).

454 However, for large batch sizes, as they are typically used during training of such large  
 455 models, the parametrization plays an increasingly negligible role in the overall memory and  
 456 operation usage, and the relative speedup over the OP fades. We discuss further potential  
 457 efficiency improvements in Section B.5.

458 Besides the models being lighter, the significant benefit of our IWP lies in the better gradient  
 459 signal. In Figure 11 (Section B.5.1), we see that IWP converges in 8.5x fewer training steps  
 460 than the OP, and as the steps are slightly faster, this means we can converge more than  
 461 8.5x faster in terms of wall clock time.

## 462 463 5.6 CONSISTENT IMPROVEMENTS ACROSS VISION AND LANGUAGE BENCHMARKS

464 The superior performance of IWP DLGNs is not particular to CIFAR-100, but holds across  
 465 several vision datasets (cf. Table 1). We evaluate DLGNs on five vision datasets ranging  
 466 from the simple MNIST to the more challenging vision dataset ImageNet32 (Krizhevsky,  
 467 2009; LeCun et al., 2010; Russakovsky et al., 2015; Xiao et al., 2017), and on the NLP English  
 468 to German translation task (Bojar et al., 2014a). For contextualization, we compare the  
 469 achieved vision accuracies to a vanilla convolutional neural network (CNN) (Krizhevsky  
 470 et al., 2012) with 2 convolutional layers that get as input the same quantized low-resolution  
 471 inputs as the DLGNs.

| Model    | ImageNet32      | CIFAR-100       | CIFAR-10         | Fashion-MNIST    | MNIST            | WMT'14           |
|----------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| DLGN OP  | $4.84 \pm 0.02$ | $27.7 \pm 0.05$ | $55.33 \pm 0.23$ | $81.39 \pm 0.07$ | $92.43 \pm 0.17$ | $15.11 \pm 0.64$ |
| DLGN IWP | $4.93 \pm 0.02$ | $29.5 \pm 0.02$ | $57.47 \pm 0.20$ | $82.34 \pm 0.15$ | $94.02 \pm 0.08$ | $17.38 \pm 0.04$ |
| CNN      | $5.19 \pm 0.37$ | $39.2 \pm 0.07$ | $64.01 \pm 0.16$ | $77.66 \pm 0.85$ | $92.91 \pm 1.61$ | —                |

481 Table 1: Discretized test accuracy (%, $\uparrow$ ) across vision datasets for the DLGN, compared to  
 482 a vanilla 2-layer CNN (Krizhevsky et al., 2012), and corpus BLEU scores ( $\uparrow$ ) for the NLP  
 483 WMT'14 English to German task. For ImageNet32, we consider DLGNs with 3-fold depth.  
 484 Details in Section D.4.

486 6 DISCUSSION  
487488 IWP DLGNs are not prone to performance degradation for increasing depth, as they mitigate  
489 the discretization error and improve gradient stability. On top of that, they are more robust  
490 against variations in optimization and input distribution hyperparameters. However, scaling  
491 these networks in depth did not yield large expressivity benefits. And DLGNs still have a  
492 considerable generalization gap despite data augmentations. We want to discuss how to  
493 overcome both problems in the following, and present further avenues for future research.  
494495 6.1 REMAINING EXPRESSIVITY BOTTLENECKS IN DLGNs  
496497 Although scaling DLGNs in depth provides slight benefits, the expressive advantage of deep  
498 DLGNs fades beyond a certain depth despite the IWP. This is expected, as the CDLGN  
499 baseline with depth  $D = 1$  already contains 15 learnable gate layers. Reducing initialization  
500 variance does not alleviate this expressivity bottleneck (cf. Figure 10a). We hypothesize  
501 that this limitation does not arise from the expressivity of DLGNs. Instead, we identify  
502 possible bottlenecks in the randomized, fixed connection topology and input preprocessing.  
503 We expose the former bottleneck in Section B.7, where we show that DLGNs fail to leverage  
504 higher input resolution in contrast to CNNs. The latter bottleneck can be seen from Table 1,  
505 where the vanilla CNN performs comparably to DLGNs when provided with the same low-  
506 resolution quantized input data. An encoding-aware connection heuristic or even learned  
507 connections, as in Bacellar et al. (2024), might overcome these limitations.  
508509 6.2 CLOSING THE GENERALIZATION GAP OF DLGNs  
510511 Even before discretization, IWP DLGNs only slightly outperform the OP on test accuracy,  
512 despite a substantial increase in the training set (cf. Figure 9). Dataset augmentations alone  
513 do not close this gap, and standard techniques like dropout (Srivastava et al., 2014), random  
514 interventions, or residual connections (He et al., 2016) fail to improve test performance  
515 (cf. Section G). Designing constraints that promote generalizable functionality in DLGNs  
516 remains an open problem.  
517518 6.3 LEARNING GATES WITH MORE INPUTS  
519520 As discussed in Section 2.2, advancing DLGNs to learn logic gates with more than two  
521 inputs finally becomes a viable option. We showcase several benefits for DLGNs with six-  
522 input gates, namely stronger expressivity (cf. Figure 14) and another 8.4x convergence  
523 speedup in the number of training steps (cf. Figure 15). Moreover, arity 6 DLGNs could  
524 also result in more efficient hardware embeddings on modern FPGAs that typically admit  
525 six inputs to their lookup tables (Bacellar et al., 2024; Zia et al., 2012). We leave this avenue  
526 to be explored in future research.  
527528 7 CONCLUSION  
529530 We proposed an input-wise parametrization (IWP) of logic gate networks with tailored  
531 initializations that allow scaling DLGNs in depth without degrading performance, while  
532 reducing parameter count logarithmically in the number of inputs per gate. Moreover, the  
533 IWP is significantly more robust against variations in hyperparameters and reduces the  
534 training time. We demonstrate the benefits of IWP across vision classifications (MNIST to  
535 ImageNet32), and a language translation task (WMT’14 English to German). That way, it  
536 facilitates research for learning logic gate circuits that are not only far deeper, but also far  
537 more complex per logic gate by increasing the number of gate inputs.  
538539 Finally, closing the generalization gap in DLGNs has become a pressing problem because  
540 the IWP and the higher gate arity notably increase the expressivity of DLGNs. But in view  
541 of the appealing performance-efficiency trade-off, DLGNs continue to lend themselves for  
542 deployment on computationally restricted hardware like real-time systems or edge devices,  
543 and advancing their potential remains a promising avenue for future research.  
544

540 REPRODUCIBILITY  
541

542 The source code of IWP DLGNs and the associated experiments is provided in the sup-  
543 plementary material. There, a step-by-step guide explains how to set up the runtime en-  
544 vironment in which we conducted our experiments, and how to reproduce any particular  
545 experiment in this environment. That way, we hope to make our experiment infrastructure  
546 as conveniently accessible as possible. To guarantee the reproducibility of our experiments,  
547 we restrict PyTorch to deterministic algorithms and fix the seeds of the random number  
548 generators that are used for the randomized initialization of weights and connections and  
549 for data loading.

550 For source code and experiments on the convolutional extension of logic gate networks, the  
551 source code of Petersen et al. (2024) has not yet been made publicly available. We can hence  
552 provide no further details at this time, and we kindly ask the reader to directly correspond  
553 with Petersen et al. (2024) for further inquiries.

554  
555 REFERENCES  
556

557 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization  
558 in overparameterized neural networks, going beyond two layers. In H. Wallach,  
559 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-  
560 vances in Neural Information Processing Systems*, volume 32. Curran Associates,  
561 Inc., 2019. URL [https://proceedings.neurips.cc/paper\\_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf).

562 Marta Andronic and George A. Constantinides. Polylut: Learning piecewise polynomials  
563 for ultra-low latency FPGA lut-based inference. In *International Conference on Field  
564 Programmable Technology, ICFPT 2023, Yokohama, Japan, December 12-14, 2023*, pp.  
565 60–68. IEEE, 2023. doi: 10.1109/ICFPT59805.2023.00012. URL <https://doi.org/10.1109/ICFPT59805.2023.00012>.

566 Marta Andronic and George A. Constantinides. NeuraLUT-Assemble: Hardware-Aware  
567 Assembling of Sub-Neural Networks for Efficient LUT Inference. In *2025 IEEE 33rd  
568 Annual International Symposium on Field-Programmable Custom Computing Machines  
569 (FCCM)*, pp. 208–216. IEEE, 2025. doi: 10.1109/FCCM62733.2025.00077.

570 Marta Andronic, Jiawen Li, and George A. Constantinides. Polylut: Ultra-low latency poly-  
571 nomial inference with hardware-aware structured pruning. *IEEE Trans. Computers*, 74  
572 (9):3181–3194, 2025. doi: 10.1109/TC.2025.3586311. URL <https://doi.org/10.1109/TC.2025.3586311>.

573 Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John,  
574 Lizy Kurian John, Priscila Machado Vieira Lima, and Felipe M.G. Fran  a. Differ-  
575 entiable weightless neural networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine  
576 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),  
577 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of  
578 *Proceedings of Machine Learning Research*, pp. 2277–2295. PMLR, 21–27 Jul 2024. URL  
579 <https://proceedings.mlr.press/v235/bacellar24a.html>.

580 Adrien Benamira, Thomas Peyrin, Trevor Yap, Tristan Gu  rand, and Bryan Hooi. Truth  
581 table net: Scalable, compact and verifiable neural networks with a dual convolutional  
582 small boolean circuit networks form. In Kate Larson (ed.), *Proceedings of the Thirty-  
583 Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pp. 13–21.  
584 International Joint Conferences on Artificial Intelligence Organization, 8 2024. doi:  
585 10.24963/ijcai.2024/2. URL <https://doi.org/10.24963/ijcai.2024/2>. Main Track.

586 Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Jo-  
587 hannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu  
588 Soricut, Lucia Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical  
589 machine translation. In *Proceedings of the Ninth Workshop on Statistical Machine Trans-  
590 lation*, pp. 12–58, Baltimore, Maryland, USA, June 2014a. Association for Computational  
591 Linguistics. URL <http://www.aclweb.org/anthology/W/W14/W14-3302>.

594 Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Jo-  
 595 hannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu  
 596 Soriceut, Lucia Specia, and Aleš Tamchyna. Findings of the 2014 workshop on statistical  
 597 machine translation. In Ondřej Bojar, Christian Buck, Christian Federmann, Barry Had-  
 598 dow, Philipp Koehn, Christof Monz, Matt Post, and Lucia Specia (eds.), *Proceedings of*  
 599 *the Ninth Workshop on Statistical Machine Translation*, pp. 12–58, Baltimore, Maryland,  
 600 USA, June 2014b. Association for Computational Linguistics. doi: 10.3115/v1/W14-3302.  
 601 URL <https://aclanthology.org/W14-3302/>.

602 Simon Bührer, Andreas Plesner, Till Aczel, and Roger Wattenhofer. Recurrent deep differ-  
 603 entiable logic gate networks, 2025. URL <https://arxiv.org/abs/2508.06097>.

604

605 Hugo C.C. Carneiro, Felipe M.G. França, and Priscila M.V. Lima. Multilingual part-  
 606 of-speech tagging with weightless neural networks. *Neural Networks*, 66:11–21, 2015.  
 607 ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2015.02.012>. URL <https://www.sciencedirect.com/science/article/pii/S0893608015000465>.

609 Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mech-  
 610 anism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, 36:  
 611 193–202, 1980.

612 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT Press, 2016.  
 613 <http://www.deeplearningbook.org>.

614

615 Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi  
 616 Zhao, Lionel Eyraud-Dubois, Oleh Shliazhko, Denis Dimitrov, Ivan Oseledets, and Olivier  
 617 Beaumont. Survey on efficient training of large neural networks. In Lud De Raedt (ed.),  
 618 *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence*,  
 619 *IJCAI-22*, pp. 5494–5501. International Joint Conferences on Artificial Intelligence Or-  
 620 ganization, 7 2022. doi: 10.24963/ijcai.2022/769. URL <https://doi.org/10.24963/ijcai.2022/769>. Survey Track.

622 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-  
 623 age Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*  
 624 (*CVPR*), pp. 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1.  
 625 doi: 10.1109/CVPR.2016.90.

626

627 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.  
 628 Binarized neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett  
 629 (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates,  
 630 Inc., 2016. URL [https://proceedings.neurips.cc/paper\\_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf).

632 Alex Krizhevsky. Learning multiple layers of features from tiny images. *Technical Report*,  
 633 *University of Toronto*, pp. 32–33, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

635

636 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep  
 637 convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger  
 638 (eds.), *Advances in Neural Information Processing Systems*, volume 25. Curran Associates,  
 639 Inc., 2012. URL [https://proceedings.neurips.cc/paper\\_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf).

640

641 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs*  
 642 *[Online]*. Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.

643

644 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):  
 645 436–444, 2015.

646

647 Ryan O’Donnell. *Analysis of Boolean Functions*. Cambridge University Press, 2014. ISBN  
 9781107038325. First edition published June 2014; corrected via arXiv version 2021  
 (arXiv:2105.10386).

648 Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep dif-  
 649 ferentiable logic gate networks. In Sanmi Koyejo, S. Mohamed, A. Agarwal,  
 650 Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-  
 651 mation Processing Systems 35: Annual Conference on Neural Infor-  
 652 mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, No-  
 653 vember 28 - December 9, 2022*. URL [http://papers.nips.cc/paper\\_files/paper/2022/hash/0d3496dd0cec77a999c98d35003203ca-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2022/hash/0d3496dd0cec77a999c98d35003203ca-Abstract-Conference.html).  
 654

655

656 Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, and Stefano Ermon. Convo-  
 657 lutional differentiable logic gate networks. In Amir Globersons, Lester Mackey, Danielle  
 658 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-  
 659 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-  
 660 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December  
 661 10 - 15, 2024*. URL [http://papers.nips.cc/paper\\_files/paper/2024/hash/db988b089d8d97d0f159c15ed0be6a71-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/db988b089d8d97d0f159c15ed0be6a71-Abstract-Conference.html).  
 662

663 PyTorch Core Team. *PyTorch Documentation*. PyTorch, 2023. <https://pytorch.org/docs/>.  
 664

665

666 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng  
 667 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and  
 668 Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. *International Journal of  
 669 Computer Vision (IJCV)*, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.  
 670

671 Jürgen Schmidhuber. Deep learning in neural networks: An overview. *Neural networks*, 61:  
 672 85–117, 2015.  
 673

674 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-  
 675 dinov. Dropout: A simple way to prevent neural networks from overfitting. *Journal of  
 676 Machine Learning Research*, 15(56):1929–1958, 2014. URL <http://jmlr.org/papers/v15/srivastava14a.html>.  
 677

678

679 Yaman Umuroglu, Yash Akhauri, Nicholas J Fraser, and Michaela Blott. Logicnets: Co-  
 680 designed neural networks and circuits for extreme-throughput applications. In *Proceedings  
 681 of the International Conference on Field-Programmable Logic and Applications*, pp. 291–  
 682 297, Los Alamitos, CA, USA, sep 2020. IEEE Computer Society.  
 683

684 V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies  
 685 of events to their probabilities. *Theory of Probability & Its Applications*, 16(2):264–280,  
 686 1971. doi: 10.1137/1116025. URL <https://doi.org/10.1137/1116025>.  
 687

688 Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constantinides. Lut-  
 689 net: Learning fpga configurations for highly efficient neural network inference. *IEEE  
 690 Transactions on Computers*, 69(12):1795–1808, 2020. doi: 10.1109/TC.2020.2978817.  
 691

692 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for  
 693 benchmarking machine learning algorithms, 2017. URL <https://arxiv.org/abs/1708.07747>.  
 694

695 Shakir Yousefi, Andreas Plesner, Till Aczel, and Roger Wattenhofer. Mind the gap: Re-  
 696 moving the discretization gap in differentiable logic gate networks, 2025. URL <https://arxiv.org/abs/2506.07500>.  
 698

699 Razia Zia, Muzaffar Rao, Arshad Aziz, and Pervez Akhtar. Efficient Utilization of FPGA  
 700 Using LUT-6 Architecture. *Applied Mechanics and Materials*, 241–244:2548–2554, 12 2012.  
 701 doi: 10.4028/www.scientific.net/AMM.241–244.2548.

| $\tau$ | IWP DLGN (cont.) | IWP DLGN (disc.) | OP DLGN (cont.)  | OP DLGN (disc.)  |
|--------|------------------|------------------|------------------|------------------|
| 3      | $26.53 \pm 0.05$ | $18.64 \pm 0.01$ | $26.21 \pm 0.20$ | $12.48 \pm 0.05$ |
| 10     | $29.13 \pm 0.12$ | $27.05 \pm 0.12$ | $28.02 \pm 0.04$ | $25.49 \pm 0.11$ |
| 30     | $32.33 \pm 0.25$ | $32.46 \pm 0.08$ | $30.99 \pm 0.04$ | $31.02 \pm 0.09$ |
| 100    | $24.75 \pm 0.01$ | $24.81 \pm 0.02$ | $21.52 \pm 0.12$ | $21.52 \pm 0.13$ |
| 300    | $18.25 \pm 0.12$ | $18.25 \pm 0.14$ | $14.85 \pm 0.04$ | $14.84 \pm 0.03$ |

Table 2: Test accuracies (continuous and discretized) for CIFAR DLGNs with 3-fold depths when varying the GroupSum temperature  $\tau$ . While the continuous test accuracy of the OP DLGNs closely tracks the IWP for smaller temperatures, the large discretization error exposes a clear gap in the discretized accuracy compared to the IWP. For higher temperatures, the OP DLGNs are already worse in their native continuous version. Mean and standard deviation are evaluated on the CIFAR DLGN with 3-fold depth trained on two seeds.

## A USAGE OF LLMs

We have used LLMs to polish the writing of this paper and for code generation through chats, Cursor, and Claude code. ChatGPT, Claude, Gemini, and Grammarly were employed for spellchecking, refining and condensing text, and reviewing to improve clarity and readability. Furthermore, ChatGPT, Claude, and Cursor were used to assist with code completion and generate visualizations. These tools served as auxiliary aids for writing and implementation, while all core research ideas, experimental design, and interpretation of results are our own.

## B FURTHER EXPERIMENT RESULTS

### B.1 SUPERIORITY ACROSS HYPERPARAMETERS AND INPUT DISTRIBUTIONS

#### B.1.1 OPTIMIZER

All new optimizers, i.e. SGD, NAG and Adadelta, use the same learning rate of 100. Lower learning rates slowed down convergence for both the OP and IWP. Figure 7b substantiates that the IWP does not only prevail on this particular learning rate, but remains superior across this range of learning rates.

#### B.1.2 GROUPSUM TEMPERATURE

To convert the real-valued inputs  $x \in [0, 1]$  to binary encodings, Petersen et al. (2022) adopt the thermometer encoding  $x_{th} := (x > t_1, t > t_2, \dots, x > t_k)$ , where  $t_i = i/k + 1$  are evenly spaced thresholds in  $[0, 1]$  (Carneiro et al., 2015). We extend our experiments beyond this particular choice and evaluate DLGNs on a diverse range of encodings, namely

1. a binary number system encoding, where 1s express 2-moduli at various granularity,
2. a graycode encoding, where 1s express how centered the value is at various subintervals, and
3. a sparse interval indicator encoding, where a 1 is placed only for the interval which the value is contained in.

For any of these encodings, the IWP attains superior performance (cf. Figure 7a). The same holds for deviating the learning rate from the default 0.01 (cf. Figure 7b).

### B.2 VANISHING GRADIENTS IN DEEP DLGNs

While the IWP eliminates cancellations inside a neuron, cancellations between partial derivatives of different neurons are out of the control of the parametrization. For that reason, IWP alone does not reduce the gradient norm shrinkage sufficiently, and also ends up with an

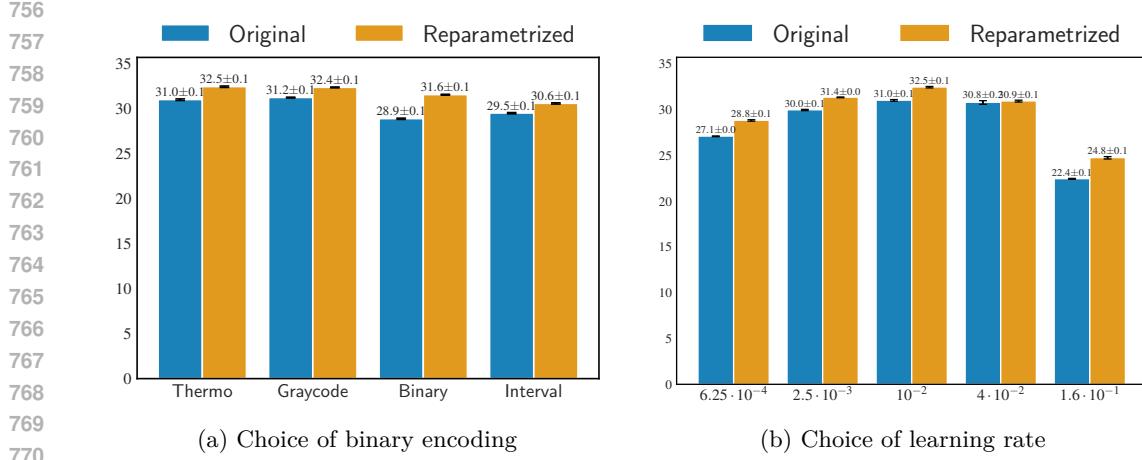


Figure 7: IWP DLGNs achieve consistently superior test accuracy across variations of the experimental setup. Here, we compare different input encodings and deviate the learning rate from the default value  $10^{-2}$  that was used in Petersen et al. (2022).

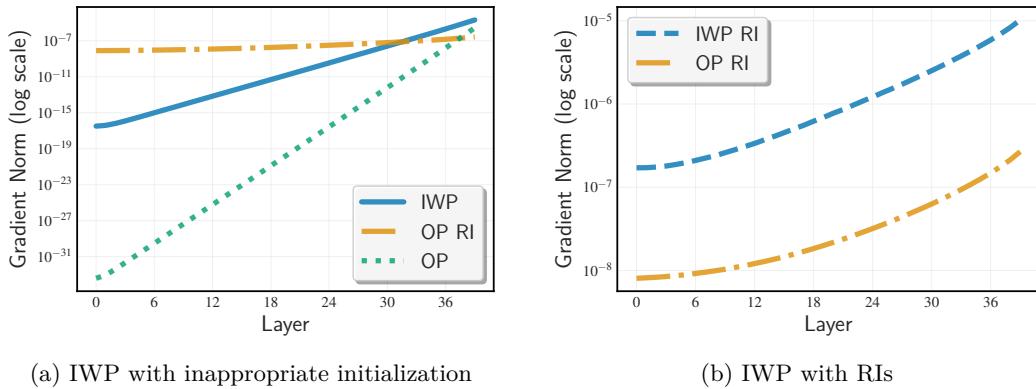


Figure 8: Gradient norm decrease of an IWP DLGN with 40 layers.

average gradient norm of  $10^{-16}$  after 40 layers. Avoiding this requires appropriate negation-asymmetric, heavy-tail initializations as already discussed in Section 3.3.

### B.3 DISCRETIZATION ERROR OF OP

The discretization error is one major reason for the performance decrease of the OP for deeper models. For five-fold depth, the discretization gap is already substantial for both the DLGN and CDLGN architecture (cf. Figure 9).

### B.4 DEEP NETWORKS DO NOT REQUIRE LOWER INITIALIZATION VARIANCE

Deeper IWP CDLGNs with RIs do neither converge faster nor improve test accuracies (cf. Figure 10a) when lowering the initialization variance and concentrating the weights  $\omega_{ij}$  closer to 0, 1, as illustrated in Figure 10b. We believe that this is also attributable to the implicit organization of neuron optimization for RIs (cf. Section F.4.2).

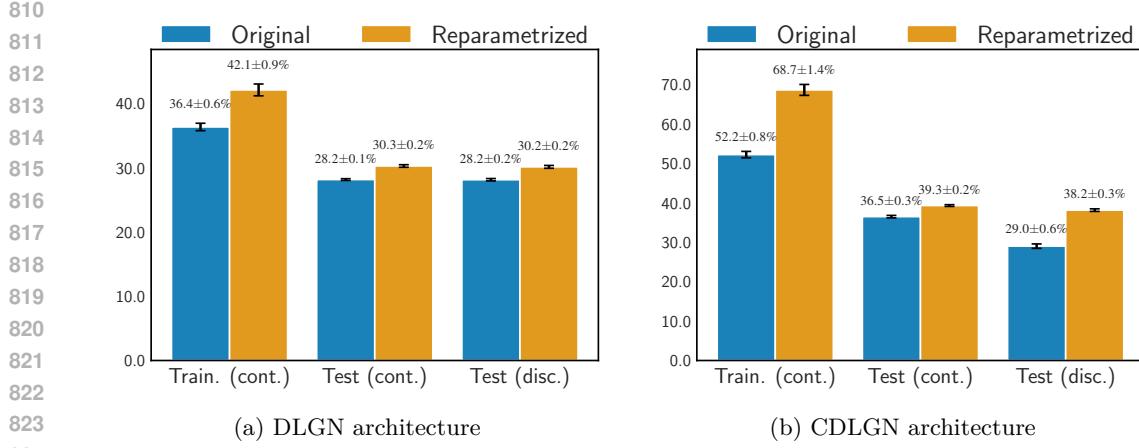
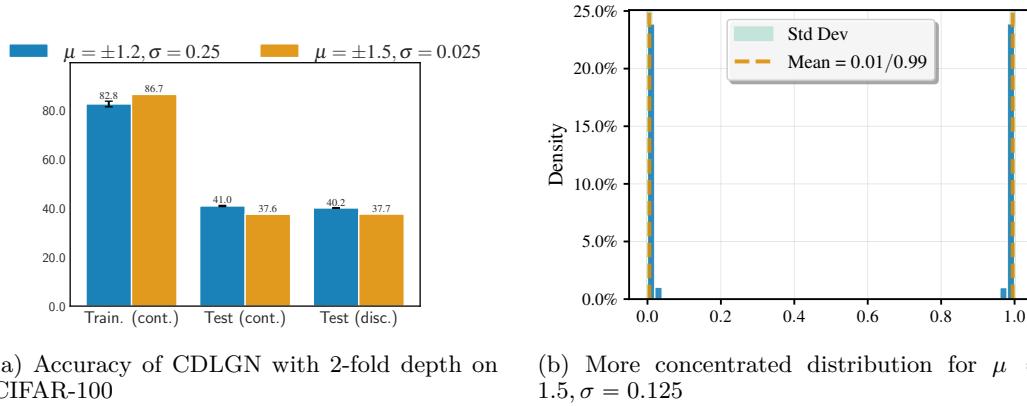


Figure 9: Accuracies of the DLGN and CDLGN with five-fold depth on CIFAR-100

Figure 10: Reducing the initialization variance by concentrating the weights  $\omega_{ij}$  even further at the tails 0, 1 for deeper models does not improve performance.

## B.5 TRAINING EFFICIENCY

### B.5.1 FASTER CONVERGENCE OF IWP

We show in Figure 11 a roofline plot (running maximum) of the test accuracy for 20-fold depth models under our IWP and the OP. We show in red the maximum accuracy of the OP, which is achieved after 222000 steps. Meanwhile, our IWP achieves this after only 26000 steps. Thus, we can converge 8.5x faster in the number of training steps. As shown in Figure 6, the steps under IWP are as fast or faster than the OP. Thus, we can also train more than 8.5x faster in terms of wall-clock time.

### B.5.2 MINIMAL EFFICIENCY IMPACT OF GATE OUTPUT ESTIMATOR

We observe that the choice of the gate output estimator  $\rho(x)$  has a noticeable impact on both the runtime of the forward computation, but only a minimal effect on the backward pass. We compare the sinusoidal gate output estimator  $\rho(x) = 0.5 + 0.5 \cdot \sin(x)$  with a custom double-capped linear  $\rho(x) = \max(0, \min(1, x))$ , whose gradient is set to 1 throughout. This not only avoids arithmetic operations during the forward and backward pass, but it also alleviates memory requirements because the constant gradient does not require saving the particular input tensor for the backward pass. Although the forward pass speeds up by 22%, the computationally dominant runtime of the backward pass reduces only by 4% (cf.

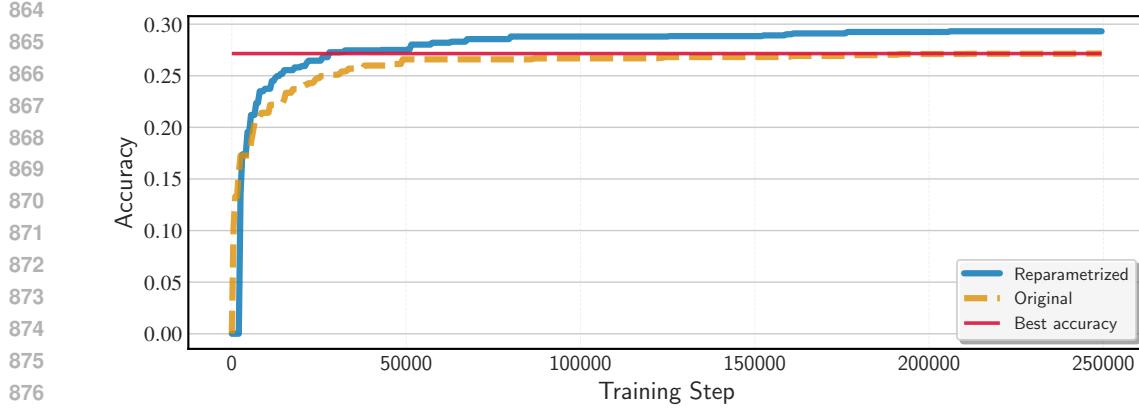


Figure 11: For the DLGN with 20-fold depth, we juxtapose the best discretized accuracy that has been achieved so far during training for both parametrizations. The OP reaches its best accuracy after 222000 steps, which is indicated by the red roofline. The IWP already surpasses this accuracy after only 26000 steps. It hence achieves more than 8.5x faster convergence.

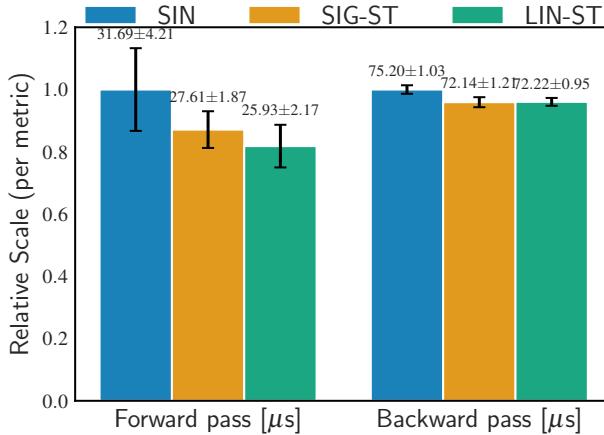


Figure 12: Runtime of the forward and backward pass for an IWP DLGN with different gate output estimators. The default sinusoidal estimator (SIN) is compared to a straight-through sigmoid (SIG-ST) and the linear straight-through estimator (LIN-ST) as introduced in Section B.5.2. Measurements are taken for a DLGN of 20-fold depth and are averaged over 20 batches with 25 CIFAR-100 instances.

Figure 12). After all, we have not measured whether a linear straight-through estimator can meet the performance of the sinusoidal estimator.

## B.6 LEARNING LOGIC GATES WITH HIGHER ARITY

The exact, redundancy-free reparametrization of logic gates finally allows to optimize circuits with gates of higher arities  $n > 2$ . This further leverages the expressive potential of modern FPGAs which typically admit  $n = 6$  inputs to their lookup tables (Bacellar et al., 2024; Zia et al., 2012). To showcase the computational feasibility, gradient stability and optimization efficiency of training DLGNs with such an arity, we have implemented and profiled CUDA kernels for  $n = 4$  and  $n = 6$ .

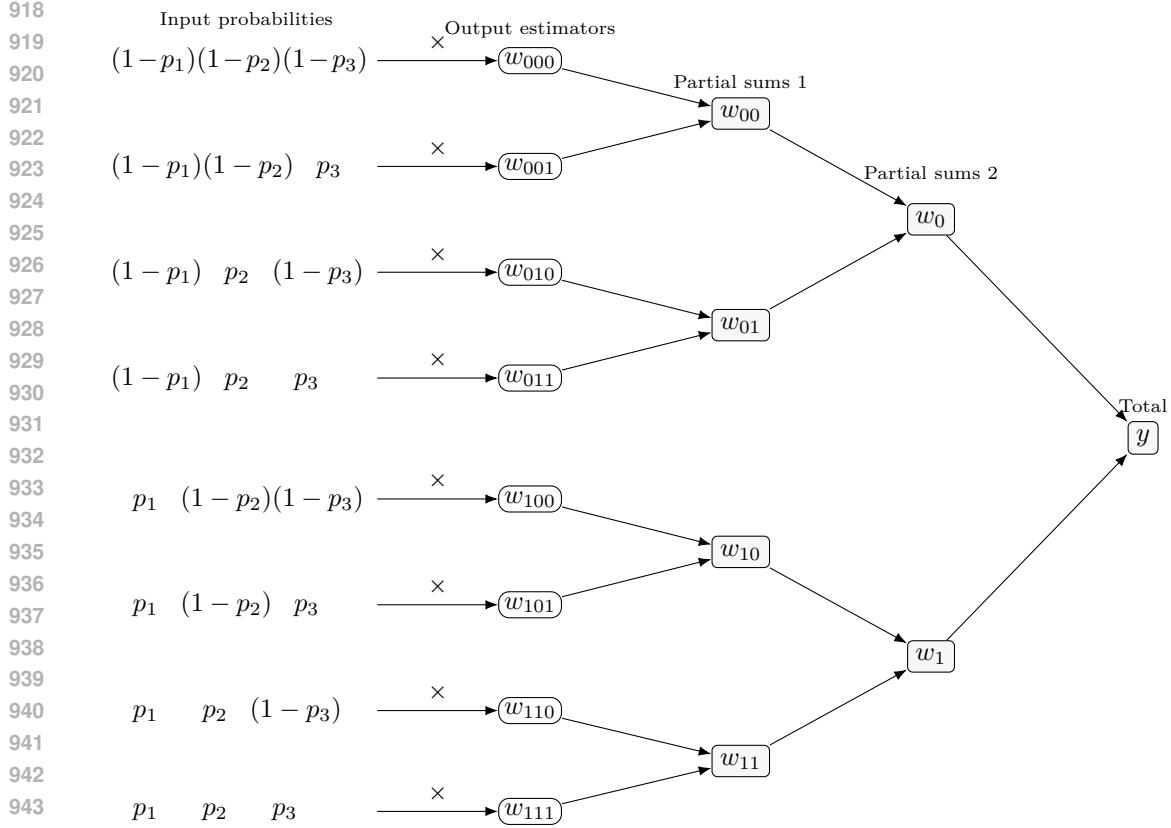


Figure 13: Computation graph of the forward kernel of a differentiable logic gate with arity  $n = 3$ . The tree-like accumulation order gathers terms with similar probability weights and thus mitigates numerical instability.

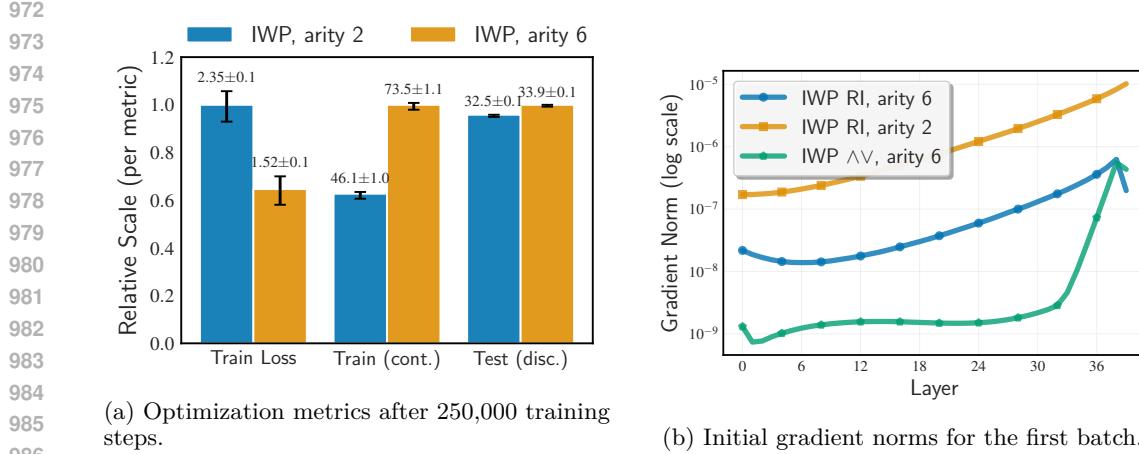
#### B.6.1 COMPUTATIONAL FEASIBILITY

Even for double-precision floating point computations and fully unrolled single scalar assignment instructions, the register usage of the forward and backward kernels for gate arity 6 remains below the maximum 255 registers per thread on modern NVIDIA GPUs. By contrast, OP DLGNs exceed this boundary for gate arity 3 already, where the number of parameters alone becomes 256.

Still, the number of registers is evidently larger than for arity 2 kernels, and we do need to decrease the number of threads per thread block by a factor of up to 4 for the backward kernels to meet the register constraints of an NVIDIA streaming multiprocessor. Moreover, the computation graph of each logic gate deepens by a factor of 3. The overall runtime per training step thus increased by a factor of 8.

#### B.6.2 ANALYTICAL AND NUMERICAL GRADIENT STABILITY

Computing the forward and backward pass boils down to a computing a weighted sum of the output estimators  $\omega$ . Recall Equation (11) for the case  $n = 2$ . At low-level implementation in the forward and backward kernels, this accumulation is performed in a tree-like accumulation order which we visualize in Figure 13 for  $n = 3$ . This tree structure is not only a natural choice to minimize instruction dependencies and latency. It also ensures that terms have a similar magnitude when added together. For example, no matter how extreme  $p_1$  and  $p_2$  concentrate towards 0 and 1, the tree accumulation consecutively accumulates “nearest-neighbour” weights whose probability term only differs in  $p_3, (1 - p_3)$ . That way, the risk of precision loss due to numerical instability increases only moderately with higher arity.



(a) Optimization metrics after 250,000 training steps.

(b) Initial gradient norms for the first batch.

Figure 14: Juxtaposition of the gradient norm and prediction accuracies of IWP DLGNs with arity  $n = 2$  and  $n = 6$ .

Consequently, the average gradient norm remains similarly stable as for arity  $n = 2$ , both for the residual initializations and the AND-OR initialization (cf. Figure 14b).

### B.6.3 OPTIMIZATION EFFICIENCY

Increasing the gate arity from 2 to 6 drastically raises the model’s ability to fit the training dataset in a small number of steps. However, the test accuracy improves only slightly (cf. Figure 14a). We emphasize that this is not due to a high discretization error but to a high generalization error.

However, increasing the arity to 6 unleashes another 8.4 convergence speedup. Figure 15 showcases that the arity 2 IWP DLGN reaches its best test accuracy after 210000 steps, while the arity 6 IWP DLGN already surpasses this accuracy after 25000 training steps only. However, this benefit in convergence speed remains on par with the eightfold longer runtime of each training step that was reported in Section B.6.1. However, the current CUDA kernels are just naive implementations without common optimizations such as pipelining or improved memory access patterns. Such optimizations could further improve runtime performance and eventually render arity 6 DLGNs more efficient.

Another caveat is that the arity 6 model is larger, because each neuron in the arity 2 model only corresponds to a lookup-table (LUT) with 2 inputs, of which multiple can be merged into a single LUT-6 during hardware embedding.

## B.7 REMAINING ARCHITECTURAL WEAKNESSES OF DLGNs

### B.7.1 RANDOMIZED CONNECTION TOPOLOGY FAILS TO EXPLOIT STRUCTURE IN ENCODING

To convert the real-valued inputs  $x \in [0, 1]$  to binary encodings, Petersen et al. (2022) adopt the thermometer encoding  $x_{th} := (x > t_1, t > t_2, \dots, x > t_k)$ , where  $t_i = i/k + 1$  are evenly spaced thresholds in  $[0, 1]$  (Carneiro et al., 2015). The number of thresholds directly determines the discretization resolution, and an increase should hence further decrease the approximation error. For a standard CNN architecture (cf. Figure 17), there is indeed a noticeable improvement. But for the convolutional DLGN, such an improvement fails to appear (cf. Figure 16).

Since the DLGN architecture does not lag behind the CNN architecture in expressivity (cf. Figure 16a), we hence locate the bottleneck in the random, fixed initialization of connections. In the early layers, an encoding-aware connection heuristic or even learned connections as in Bacellar et al. (2024) might overcome this limitation.

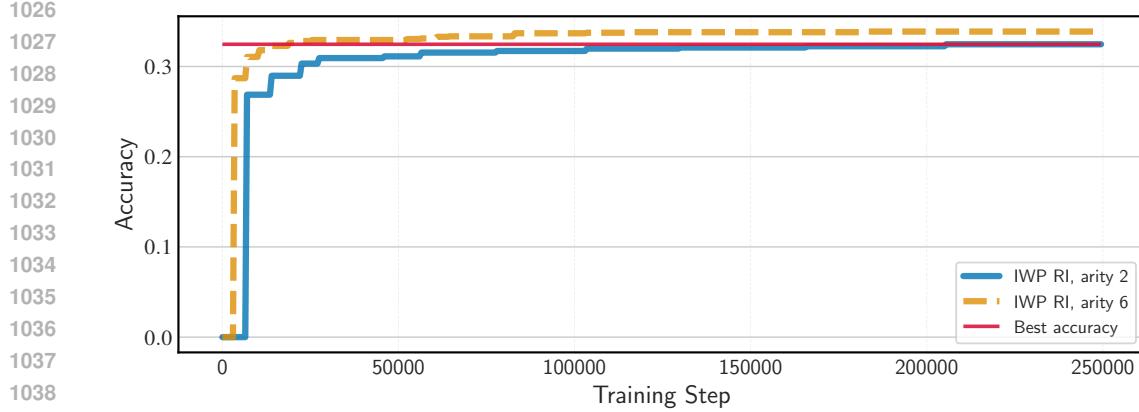


Figure 15: Increasing the gate arity from 2 to 6 yields another 8.4x convergence speedup. We still consider the CIFAR DLGN with 3-fold depth. We juxtapose the best discretized accuracy that has been achieved so far during training for both arities. The best test accuracy of the arity 2 DLGN is indicated by the red roofline.

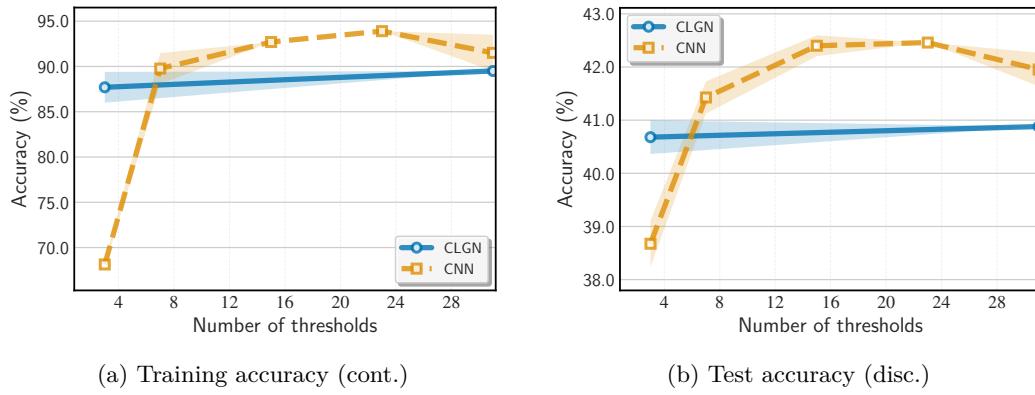


Figure 16: Approximation improvement for increased resolution in the thermometer encoding for the CDLGN and a standard CNN architecture.

### B.7.2 EXTRACTING CHROMATIC INFORMATION FROM COLOR SPACE ENCODING

The randomized connection topology not only hinders from exploiting the structure in the binary encoding of each real-valued channel, but also to mix information from different channels. This might explain why switching from the standard RGB color space encoding used in Petersen et al. (2022; 2024) to a HSV color space improves performance on ImageNet32 (cf. Table 3). While the hue channel in HSV solely encodes the chromatic information, all channels in RGB need to be combined to obtain a proper estimate of the chromatic value.

## C IMPLEMENTATION DETAILS FOR REPARAMETRIZATION

### C.1 ESTIMATION FUNCTION OF LOGIC GATE OUTPUTS

While the OP slightly benefited from weight decay (Petersen et al., 2024), we have to disable it for our IWP. The reason is that for both the sigmoid and sinusoidal estimators, a weight  $w$  close to 0 corresponds to an undecisive gate output  $\omega \simeq 0.5$ . Weight decay hence actively encourages a high discretization error and entails weaker performance at inference.

| 1080 | Layer # | Description                                                       |
|------|---------|-------------------------------------------------------------------|
| 1081 | 1       | Conv2D (in_channels=..., out_channels=256, kernel=3x3, padding=1) |
| 1082 | 2       | ReLU                                                              |
| 1083 | 3       | Conv2D (in_channels=256, out_channels=512, kernel=3x3, padding=1) |
| 1084 | 4       | ReLU                                                              |
| 1085 | 5       | MaxPool2D (kernel=2x2, stride=2)                                  |
| 1086 | 6       | AdaptiveAvgPool2D (output_size=1x1)                               |
| 1087 | 7       | Flatten                                                           |
| 1088 | 8       | Linear (in_features=512, out_features=256)                        |
| 1089 | 9       | ReLU                                                              |
| 1090 | 10      | Linear (in_features=256, out_features=100)                        |

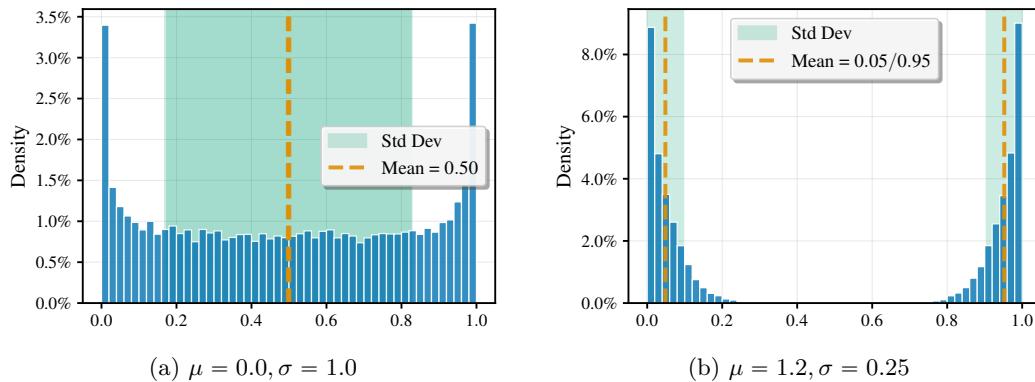
Figure 17: CNN Architecture built via `torch.nn` for CIFAR-100 classification in Figure 16.

| 1094 | Color space | Test accuracy (cont.) | Test accuracy (disc.) |
|------|-------------|-----------------------|-----------------------|
| 1095 | RGB         | $5.25 \pm 0.05$       | $5.11 \pm 0.03$       |
| 1096 | HSV         | $6.25 \pm 0.05$       | $6.15 \pm 0.06$       |

Table 3: Test accuracies (continuous and discretized) for CIFAR DLGNs with 3-fold depths on ImageNet32 for different color space encodings. Mean and standard deviation are computed from two seeds. We juxtapose the default RGB to the HSV color space, which isolates chromatic information in a single channel.

### 1104 C.1.1 SINUSOIDAL ESTIMATOR

1106 Heavy-tail initializations as motivated in Section 3.3 can be adjusted by adjusting shift and  
 1107 variance of the normal initialization. We choose  $\mu = 1.2$  and  $\sigma = 0.25$ , which results in a  
 1108 distribution like Figure 18b.

Figure 18: Initial distribution of coefficients  $\omega_{ij}$  when initialized with and without a RI for the sinusoidal output estimator, i.e.  $\omega_{ij} = 0.5 + 0.5 \cdot \sin(\Omega_{ij})$ ,  $\Omega_{ij} \sim \mathcal{N}(\mu, \sigma)$ .

### 1125 C.1.2 SIGMOID ESTIMATOR

1127 For the sigmoid estimator that is more commonly used in logistic regression, we can similarly  
 1128 adopt heavy-tail initializations by shifting the weights  $\Omega_{ij}$  by 3.0 (cf. Figure 19).  
 1129

### 1130 C.1.3 PERFORMANCE AND GRADIENT STABILITY

1132 Although the sigmoid function has been widely adopted for its theoretically desirable prop-  
 1133 erties, its gradients vanish faster for large input values. At the same time, the periodicity  
 of the sinusoidal estimator avoids such a dead end. But for a heavy-tail initialization as in

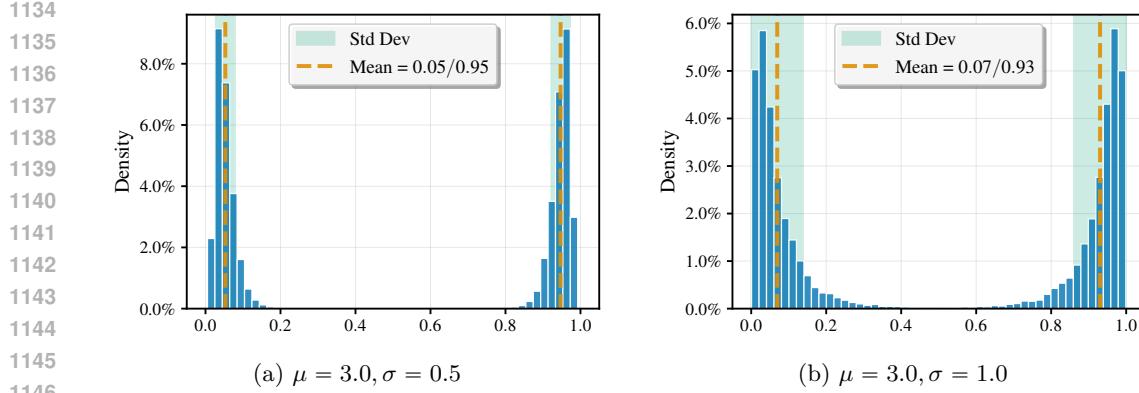


Figure 19: Initial distribution of coefficients  $\omega_{ij}$  when initialized with and without a RI for the sigmoid output estimator, i.e.  $\omega_{ij} = (1 + \exp(\Omega_{ij}))^{-1}$ ,  $\Omega_{ij} \sim \mathcal{N}(\mu, \sigma)$ .

Figure 19a that does not shift the weights too strongly into this flat region, the gradient is still sufficiently high to allow deviation from the initialization region. Although the gradient norm is initially smaller across layers compared to the sinusoidal (cf. Figure 20b), we observe that the gradient norm recovers quickly after a few batches only and approaches the curve of the sinusoidal. However, logic gate networks with a sinusoidal estimator still achieve slightly superior accuracies (cf. Figure 20a), which is why we eventually stuck with them.

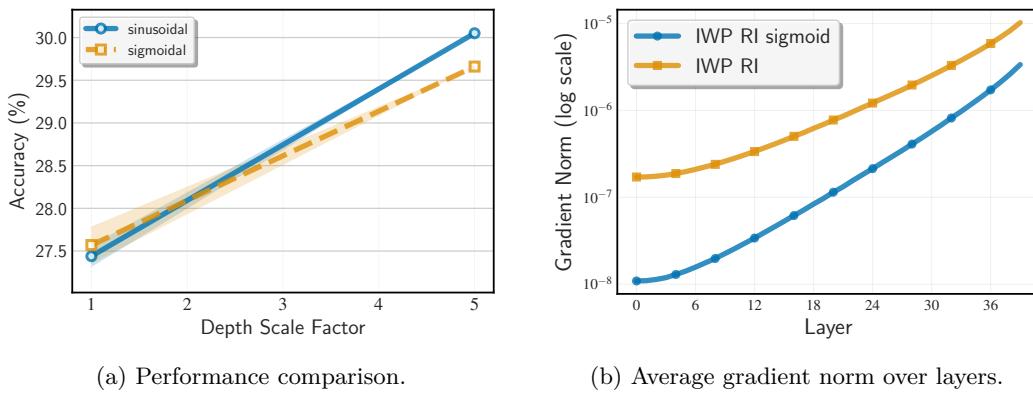


Figure 20: Performance and gradient stability comparison for the sigmoid and the sinusoidal gate output estimator.

## D EXPERIMENTAL SETUP

### D.1 SCALING DLGNs IN DEPTH

As the original DLGN uses a uniform width for all logic layers, we can simply scale the DLGN in depth by placing  $D$  logic layers everywhere a logic layer was placed in the original architecture.

For the CDLGN architecture, we place a block of  $D$  convolutional logic layers instead of one, but apply the max pooling layer only once at the end. Because the kernel size, padding, and stride in the original architecture (Petersen et al., 2024, Sec. 3.4) preserve the spatial dimensions of the data tensors, no further adjustments are needed. As for the original DLGN, channel increases and decreases are only performed once at the initial and final convolutional logic layer of the block. Finally, we do not restrict the CDLGN architecture to

partition the range of channels into separate, independent streams as motivated by Petersen et al. (2024, Sec. 3.4) for more efficient hardware embeddings and data movement during training, but allow connections to be formed between any combination of channels.

## D.2 DEVIATIONS FROM ORIGINAL EXPERIMENTAL SETUP

Scaling DLGNs in depth increases the overall computational cost for training. To ensure that gradient descent converges even for deep models, we increase the number of training iterations from 200,000 to 250,000. Furthermore, when training sufficiently deep CDLGNs, GPU memory limitations hinder us from loading batches of original size 100. To ensure comparable optimization conditions for these models, we hence employ batch accumulation for depths  $D \geq 4$ . In particular, we accumulate four batches of size 25 in one backward pass for depths  $D = 4, 5$ , and tested that it behaves identically to training on the original batch size 100.

### D.2.1 10-FOLD CLASS INCREASE FOR CIFAR-100

The 10-fold class increase can be encountered in two different ways: On the one hand, one could keep the final logic layer unchanged and accumulate 10 times fewer gate outputs per class in the GroupSum layer. Petersen et al. (2024) proposed the heuristic to shrink the softmax temperature by the square root of the class increase  $\sqrt{10}$  in such a case for optimal performance. On the other hand, one could increase the final logic layer to 10-fold width, which does not change the number of gate outputs per class and hence does not require any temperature adjustment.

For both the DLGN and CDLGN, increasing the width 10-fold further improves performance (cf. Figure 21). At the same time, decreasing the temperature as proposed by Petersen et al. (2024) indeed maintained optimal performance, with only minor changes when decreasing the temperature further by  $\sqrt{10}$  (cf. Figure 21b).

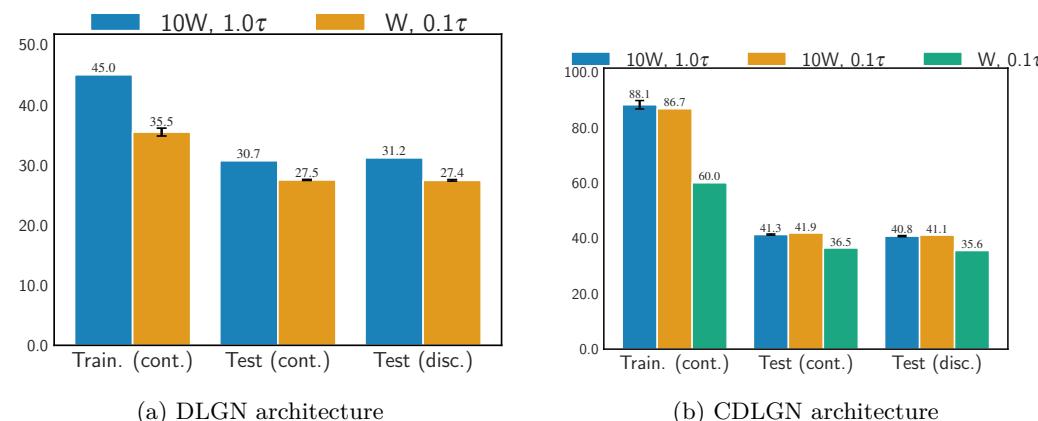


Figure 21: Performance comparison for different final logic layer widths and temperatures in class score accumulation.

But for our experiments, we do not consider the choice between keeping the width and decreasing the temperature or increasing the width to keep the absolute temperature a crucial one. The reason is that we merely focus on different parametrizations of each neuron that leave their functional characteristics unchanged. We hence do not expect the trends that we observe when scaling these networks in depth to alter across these slightly varying widths of the final logic layer. To cover both options, we choose to keep the width and decrease the temperature for the DLGN, and keep the temperature and increase the width for the CDLGN.

1242 D.3 RUNTIME MEASUREMENTS  
1243

1244 Our objective is to assess the runtime performance of both parametrizations in a comparable  
1245 way. To rule out possible discrepancies that are unrelated to the IWP, we build a Python  
1246 subclass of the original classes for logic layers that can execute both our IWP and the  
1247 OP. At runtime, a Boolean variable determines which parametrization is chosen. Apart  
1248 from the different weight initialization and the invocation of the custom autograd function,  
1249 the footprint of this algorithm on the machine is hence identical. We measure the past  
1250 nanoseconds for an entire forward and backward pass each, and enforce synchronization at  
1251 both time points to ensure that the total computation of all streams on the GPU is captured  
1252 in the time measurements.

1253 To quantify uncertainty, we take measurements for 20 different, randomly sampled batches.  
1254

1255 D.4 DLGN ARCHITECTURES FOR OTHER DATASETS  
12561257 D.4.1 IMAGENET32  
1258

1259 For ImageNet, we use the same DLGN architecture and the same data augmentations as for  
1260 CIFAR-100. To accomodate the 10-fold increase in classes, we downscale the temperature by  
1261 10 as proposed in Petersen et al. (2022). For both the CNN and DLGNs, the RGB channel  
1262 values are quantized with a 7-threshold thermometer encoding. Note that we only used 3  
1263 thresholds for CIFAR-100. However, Figure 16 demonstrates that increasing the number of  
1264 thresholds benefits the CNN more than the DLGN architecture.

1265 D.4.2 CIFAR-10  
1266

1267 For CIFAR-10, we use the baseline CIFAR-10 M LGN architecture from Petersen et al.  
1268 (2022) with 4 layers of 128,000 neurons each, just as we have done for CIFAR-100.  
1269

1270 D.4.3 CIFAR-100  
1271

1272 For CIFAR-100, we presented the results for the DLGNs with 3-fold depth.  
1273

1274 D.4.4 MNIST AND FASHION-MNIST  
1275

1276 For the simpler gray-scale datasets, we use 1-threshold thermometer encoding and a smaller  
1277 width of 32,000 neurons, as was done in Petersen et al. (2022). The resulting model is  
1278 shown in Figure 22.  
1279

| 1280 Layer # | 1281 Description                                           |
|--------------|------------------------------------------------------------|
| 1282 1       | 1283 Encoding (type=thermometer, resolution=1)             |
| 1283 2       | 1284 LogicLayerIWP (in_features=784, out_features=32000)   |
| 1284 3       | 1285 LogicLayerIWP (in_features=32000, out_features=32000) |
| 1285 4       | 1286 LogicLayerIWP (in_features=32000, out_features=32000) |
| 1286 5       | 1287 LogicLayerIWP (in_features=32000, out_features=32000) |
| 1287 6       | GroupSum (k=10, $\tau = 100.0$ )                           |

1288 Figure 22: DLGN architecture for MNIST and Fashion MNIST.  
1289

1290 D.4.5 WMT’14  
1291

1292 For the WMT’14 DLGNs, we use the architectures used by Bührer et al. (2025). The only  
1293 changes we make are: 1) We make the model use our IWP rather than the original OP. 2  
1294 and 3) We vary the vocabulary and context sizes. See complete results in Section E.  
1295

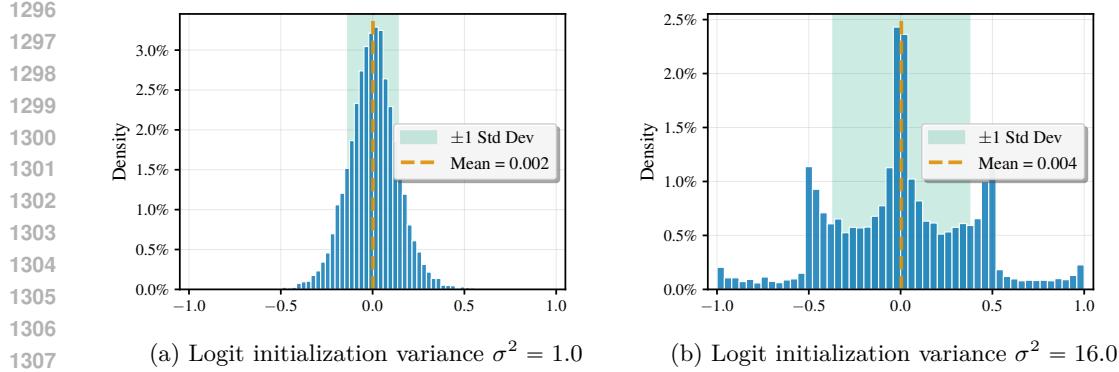


Figure 23: Self-cancellations in the sign-symmetric sum  $\sum_{i=1}^8 (\omega_i - \omega_{-i})$  concentrates the gradients around zero (cf. 23a), as long as the initialization variance  $\sigma$  of the logits is not overly high (cf. 23b). Empirical distribution for  $N = 10^4$  gradient samples  $\frac{\partial g(p,q)}{\partial p}$  with  $q = 0.5$ .

## E NLP TASK: ENGLISH TO GERMAN WMT’14

We show in Table 4 the corpus BLEU scores for discretized and relaxed DLGNs under OP and IWP for the English to German translation task from WMT’14 (Bojar et al., 2014a). See the experimental setup in Section D.4. We see that for almost all the parameters, IWP significantly outperforms OP. It is only for vocabulary and context sizes of 16,000 and 32, respectively, that the difference is not significant. Notably, we see that IWP decreases less when going from the relaxed to the discretized setup.

| Vocabulary size | Context size | Parameterization | BLEU             |                  |
|-----------------|--------------|------------------|------------------|------------------|
|                 |              |                  | Discretized      | Relaxed          |
| 8,000           | 16           | OP               | $15.11 \pm 0.64$ | $17.91 \pm 0.27$ |
|                 |              | IWP              | $17.38 \pm 0.04$ | $19.09 \pm 0.53$ |
|                 | 32           | OP               | $13.61 \pm 3.21$ | $16.71 \pm 0.54$ |
|                 |              | IWP              | $17.36 \pm 0.52$ | $17.77 \pm 0.06$ |
| 16,000          | 16           | OP               | $10.65 \pm 0.20$ | $15.17 \pm 0.12$ |
|                 |              | IWP              | $14.40 \pm 0.60$ | $15.63 \pm 0.11$ |
|                 | 32           | OP               | $10.22 \pm 0.28$ | $14.61 \pm 0.82$ |
|                 |              | IWP              | $13.50 \pm 0.41$ | $14.91 \pm 0.21$ |

Table 4: Performance (corpus BLEU  $\uparrow$ ) of DLGNs with OP or IWP on the WMT’14 English to German translation task. We use the LGNs from Bührer et al. (2025). We measure the BLEU score using the `sacrebleu` Python library. We measure the metrics across two different seeds and report the mean and standard deviation.

## F THEORETICAL ANALYSIS OF PARAMETRIZATION

### F.1 VANISHING GRADIENTS IN OP

Although RIs successfully suppress vanishing gradients, the symmetric parametrization still traps them in a dichotomy between gradient stability and stalling optimization towards other gate functions. On the one hand, Petersen et al. (2024)’s choice of  $z = 5$  will sufficiently preserve the gradient norm, as it will decrease by at most  $\frac{e^z - 1}{e^z + 15} \approx 0.9$ . On the other hand, already slightly decreasing to  $z = 3$  would again elicit vanishing gradients after only a few layers, as  $\frac{e^z - 1}{e^z + 15} < 0.55$ .

1350  
1351

## F.2 ALGEBRAIC INTERPRETATION OF THE IWP

1352  
1353  
1354  
1355  
1356  
1357

To understand the redundancies from an algebraic viewpoint, we can regard the space of binary functions  $\mathcal{G}_2 := \{G : \{0, 1\}^2 \rightarrow \{0, 1\}\}$  as a vector space over the field  $\mathbb{Z}_2$ . Firstly, seven of the eight aforementioned negation symmetries correspond to linear dependencies  $0 = G_i + G_{-i} + 1$  between elements in  $\mathcal{G}_2$ . Secondly, the redundancy that led to the suboptimal rounding in the example on the discretization error can be captured in the linear dependency  $0 = G_3 + G_6 + G_8 + 1$ .

1358

## F.3 MINIMAL ROUNDING ERROR OF THE IWP

1360  
1361  
1362

When rounding the gate estimator  $g_\omega$  to a logic gate  $g_\alpha$ , we round each output estimator  $\omega_{ij}$  to its closest binary number  $\alpha_{ij} := \arg \min_{b \in \{0, 1\}} |\omega_{ij} - b|$ .

1363  
1364  
1365  
1366  
1367

This achieves a minimal discretization error  $\|g_\omega - g_\alpha\|$  in terms of any Minkowski norm  $\|f - g\|_p := \sqrt[p]{\sum_{x \in \{0, 1\}^2} |f(x) - g(x)|^p}$ , because for any binary input  $x = (i, j)$ , the term  $|g_\omega(x) - g_\alpha(x)| = |\omega_{ij} - \alpha_{ij}| = \min_{b \in \{0, 1\}} |\omega_{ij} - b|$  by definition.

1368  
1369

## F.4 REMAINING CAUSES OF VANISHING GRADIENTS IN IWP

1370  
1371  
1372  
1373

Even with heavy-tail initializations that concentrate the  $\omega_{ij}$  close to 0, 1, destructive interference between gradient signals can still arise for precisely three reasons. Still, all of them are out of the control of the parametrization.

1374  
1375  
1376  
1377

The first reason is destructive interferences that arise from the probabilistic relaxation of the Boolean functions. For example, for binary inputs  $(1, 1)$ , the gradient of the OR function  $g_8(p, q) = p + q - pq$  will be 0 for both inputs. We obtain a symmetric case with input  $(0, 0)$  and the AND function  $g_2(p, q) = pq$ .

1378  
1379  
1380

Opposed to that, the remaining two reasons both relate to the parameter initialization of the DLGN architecture. We divide them into cancellations inside a neuron and between neurons.

1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393

Inside a neuron, cancellations can arise if the two terms in 12 have different signs. This happens precisely if  $\omega_{11} > \omega_{10}$  and  $\omega_{01} < \omega_{00}$ , or vice versa, which holds only if the relaxation is close to the XOR function  $g_7(p, q) = p + q - 2pq$  or its negated counterpart NXOR. Similar to the first reason, this behaviour is not problematic and even intended as long as the inputs carry information about the desired output. If the gate outputs  $\omega_{ij}$  are close to 0, 1, the gradient norm will remain close to 1. But in the case of low information, where both inputs  $p, q \simeq 0.5$  are highly uncertain, the gradients of the probabilistic surrogate of XOR and NXOR will both collapse to 0 and annihilate the gradient signal. Depending on the logic gate distribution, this undesirable scenario will, however, inevitably occur as we scale logic gate networks in depth (cf. Figure 27). A heavy-tailed initialization of the logic gate distribution alone does not suffice to prevent this. In particular, we will observe later that even RIs suffer from this information collapse. But in theory, this is only problematic if XOR functions are present in the network, which is not the case for RIs.

1394  
1395  
1396  
1397  
1398  
1399  
1400

Finally, even if we can avoid cancellations inside a neuron, gradients from different neurons might still cancel when they pass the same neuron. Because of the negation symmetry in Boolean functions, a parameter initialization that treats each function and its negated counterpart independently will result in sign-symmetric gradients across different neurons during backpropagation. If the gate output of a neuron is used as the input of multiple subsequent neurons, this gate will receive a sum of sign-symmetric partial derivatives. The more gates this neuron is connected to, the more this sum will concentrate at 0.

1401  
1402

## F.4.1 HEAVY-TAIL, NEGATION-ASYMMETRIC INITIALIZATIONS

1403

We maintain that an ideal initialization scheme should satisfy three properties to scale logic gate networks in depth: heavy tail, information preservation, and negation asymmetry.

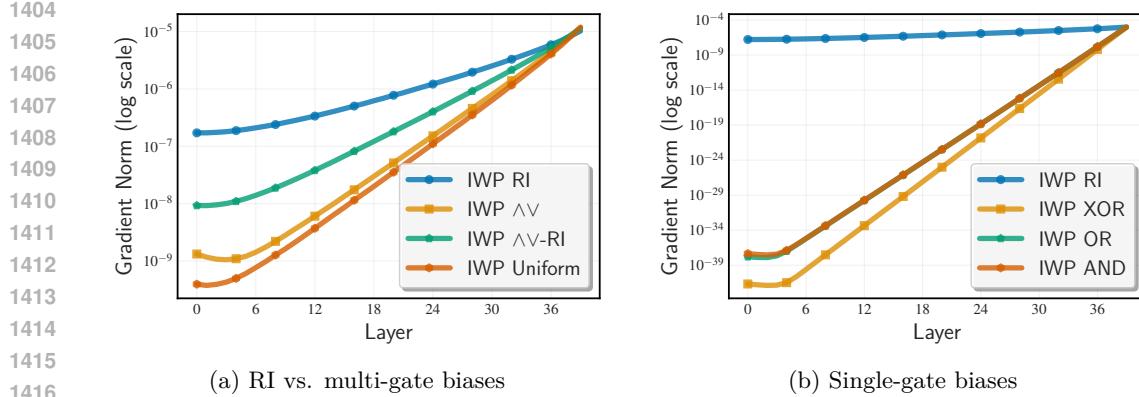


Figure 24: Gradient norm decrease for different heavy-tail initializations of an IWP DLGN with 40 layers. While RIIs stand out as the only stable single-gate bias, other multi-gate biases also retain stable gradients.

The normal initialization  $\Omega_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$  violates all of these properties. The resulting coefficients  $\omega_{ij}$  will concentrate symmetrically around 0.5 and evoke vanishing gradients, as Figure 24a illustrates.

First of all, one could ensure a heavy-tail distribution of the coefficients  $\omega_{ij}$  at 0 and 1 by shifting the normal distribution in a negative or positive direction. The overall sign combination in  $\Omega_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(\pm \mu_{ij}, 1)$  hence attributes a high initial bias towards one of the sixteen logic gate functions. Choosing the pass-through gate  $G_4(A, B) = A$  for all neurons recovers the idea of RIIs.

Indeed, if we restrict ourselves to choosing only a single function for all neurons, RIIs are the only viable approach. While the constant functions have no gradient anyway, the AND, OR, and XOR functions alone rapidly concentrate the intermediate feature distribution to 1, 0, and 0.5, as Figure 27 exemplifies. At that point, their gradients collapse to 0 and stifle any information in the input. In terms of our three necessary properties, these initializations fall short of information preservation.

On the other hand, the pass-through gate  $G_4$  does not change the input value  $p$ , and maintains a gradient of 1 with respect to that input  $p$ , independent of what value  $p$  takes. However, as we increase the model depth, the intermediate feature distribution will also collapse to 0.5 with RIIs (cf. Figure 3). This is because even small initial uncertainties in the coefficients, i.e.  $|\alpha_{ij} - \omega_{ij}| \simeq 0.05$ , will accumulate over the layers. But because no gate is initially close to the XOR functions when employing RIIs, this high uncertainty in later layers is harmless. On the contrary, we will discuss in the following subsection F.4.2 why this increasing uncertainty can even benefit the optimization of deep logic gate circuits.

For heavy-tail initializations that bias towards a single function in all neurons, RIIs are hence indeed the unique scalable choice. But we might also combine multiple logic gate functions into a heavy-tail initialization. In the extreme case, each logic gate could bias towards one of all sixteen functions with uniform probability 1/16. But this brings us back to the third and last property, namely, negation asymmetry.

Allowing both a Boolean function and its negated counterpart will provoke cancellations if sign-symmetric partial derivatives merge during backpropagation. Fortunately, this condition only holds for architectures with drastically increasing width between layers. For the architecture of Petersen et al. (2022) with uniform width, even negation-symmetric initializations such as the uniform initialization will retain sufficiently stable gradients (cf. Figure 24a).

But this might not hold in general. Formally speaking, any subset of the binary functions  $G \subseteq \mathcal{G}_2$  that does not contain a function and its negated counterpart is a feasible negation-asymmetric subset. In particular, such a subset can be obtained by fixing one output to 0 or

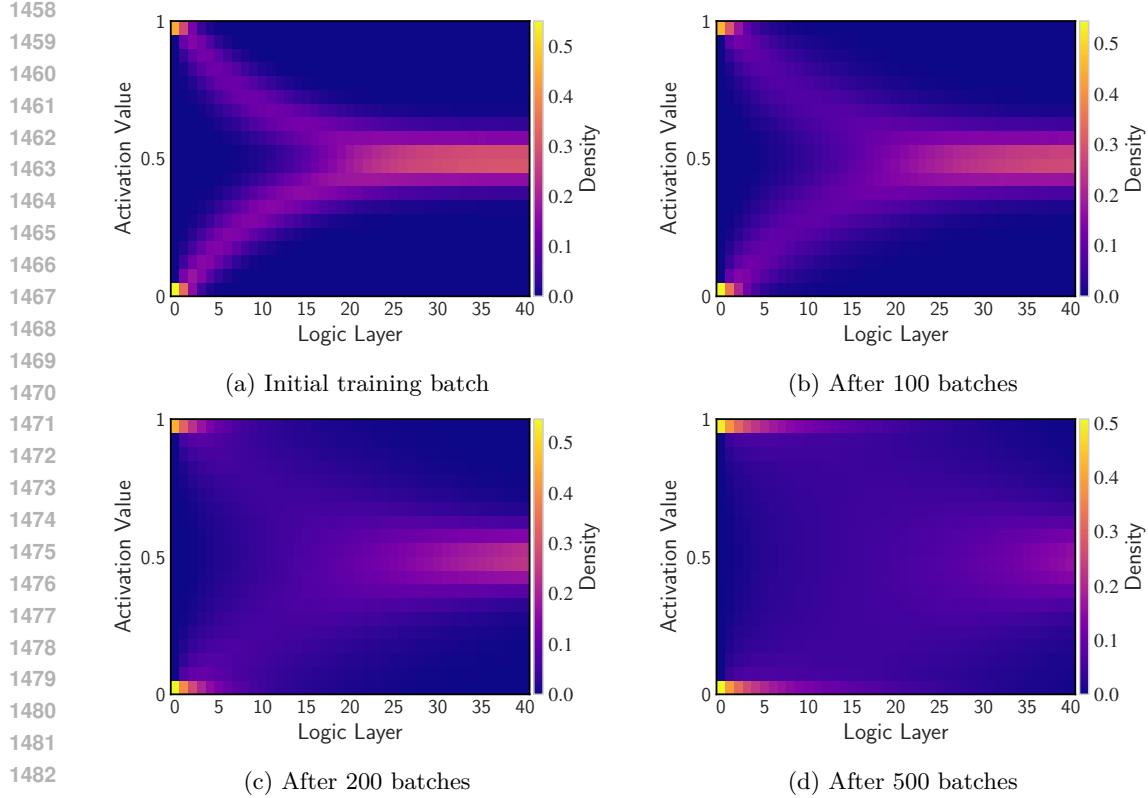


Figure 25: Distribution of intermediate gate outputs of an IWP DLGN with RIs. Measurements were taken at different timesteps over the course of training, where each batch comprises 100 CIFAR-100 images.

1 and taking half of the binary functions that coincide with this mapping. For example, by enforcing  $00 \rightarrow 0$ , we admit the constant 0, the two pass-through gates, three AND functions, one OR function, and the XOR function. Therefore, an alternative to the RI is to combine the AND and OR functions into an AND-OR initialization. Indeed, the complementary concentration behaviour of the AND and OR functions avoids the information collapse at 0.5 that RIs inevitably entail. Instead, Figure 27e depicts how the feature distribution balances at values close to 0 and 1, and hence reduces the uncertainty in the signal in later layers. However, this alone does not render the AND-OR initialization more desirable than RIs. Conversely, while a collapse at 0.5 might be harmful in general, we explain in the next section why it actually benefits the optimization process in the case of RIs.

#### F.4.2 RESIDUAL INITIALIZATIONS DELAY FEATURE LEARNING AT LATER LAYERS

When initializing all neurons with a pass-through gate, Figure 3 displays how the features eventually concentrate at 0.5 at later layers. At those layers, it holds that  $1 - p \simeq p \simeq q \simeq 1 - q$ , hence the gradient update  $\frac{\partial \mathcal{L}}{\partial \omega_{ij}} = \frac{\partial \mathcal{L}}{\partial g_\omega} \frac{\partial g_\omega}{\partial \omega_{ij}}$  is roughly equal for all  $i, j$ . Because of that, the neurons in the later layers will maintain their pass-through function until the uncertainty reduces sufficiently. This pass-through enforcement at the later layers allows the network to begin with optimizing the earlier layers first. The more the earlier neurons approach specific gates, the more declines the uncertainty of their outputs, allowing the later layers to refine their functionality. Practically, the model first optimizes a shallow logic gate circuit and increasingly advances this circuit in depth over time. Figure 25 showcases this consecutive gate collapse at earlier layers and uncertainty decrease at later layers over the course of training. This implicit organization of feature learning not only tames the overall discretization error but will also lead to faster convergence. On the contrary, the initial feature distribution of the AND-OR initialization will allow neurons at all layers to update

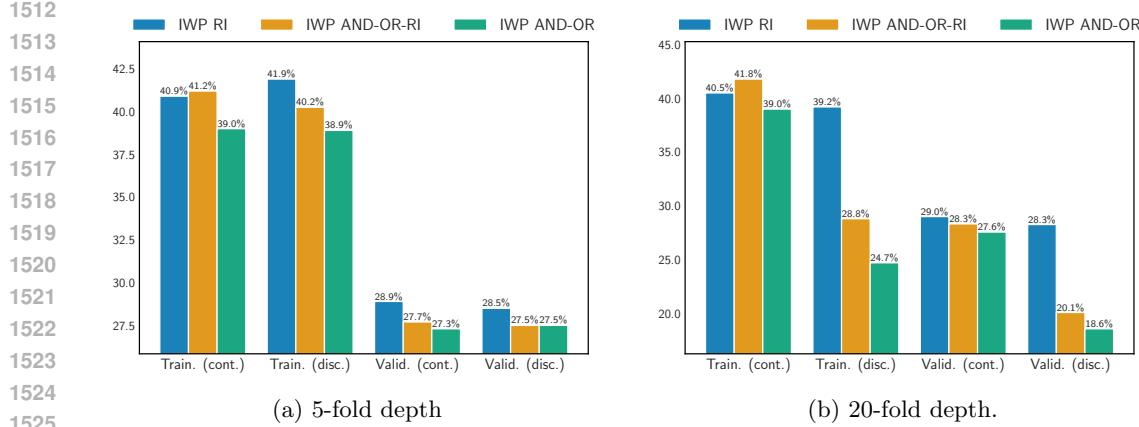


Figure 26: In contrast to the structured layer optimization of DLGNs with RIs that steadily maintains a low discretization error, the simultaneous layer optimization for AND-OR initialization drastically increases the discretization error and harms overall performance.

their coefficients in a non-uniform fashion at the same time. The drawbacks of such a more chaotic optimization process become noticeable as we scale those networks in depth.

While the discretized accuracy of both initializations remains similar for shallower logic gate networks with 4 or 20 layers, scaling these networks to 80 layers exposes a clear discretization gap for the AND-OR initialization. At the same time, the RI maintains a low rounding error over the course of training and exhibits slightly superior predictive performance (cf. Figure 26). Similar drawbacks also hold for a uniform initialization or an initialization that combines AND, OR, and pass-through gates (cf. Figure 27).

To conclude, pairing our exact IWP with RIs results in logic gate networks that are scalable in depth and can harness the associated expressive benefits.

## G REGULARIZING LOGIC GATE NETWORKS

To mitigate the generalization error, we try to impose several constraints on the DLGN architecture that have benefited standard neural network architectures. Unfortunately, the methods that we have tried did not raise the test accuracies further, leaving the generalization gap an open problem. In the following, we present the measures we have taken, how we implemented them for logic gate networks, and how they impacted performance.

### G.1 DROPOUT

When applied in standard feed-forward neural networks, dropout (Srivastava et al., 2014) typically randomly zeroes neurons. For the logic gate network, the zeroing operation is, however, only a neutral operation in the algebraic sense when we apply it in the summation in the GroupSum layer. For logic gates, the zero is not a neutral element, but on equal terms with its binary complement 1. We hence decide to realise dropout by randomly masking logic gate outputs at the final logic layer. To determine which outputs are affected, we randomly select channels of the input tensor and mask the outputs of all gates that are path-connected to inputs from at least one of these channels. For all affected gates, we ensure that they receive no gradient update. Each channel or feature dimension is selected independently with a probability  $p_{dropout} > 0$ . This selection is repeated for every single batch in training. For  $p_{dropout} = 0.02$ , roughly 30,000 of the 120,000 logic gates in the final layer are masked. For  $p_{dropout} = 0.05$ , this number increases to 70,000, and culminates in 100,000 for  $p_{dropout} = 0.1$ .

However, Figure 28a shows that the test accuracies degrade with increasing dropout probability. This regularization strategy does not, hence, seem beneficial.

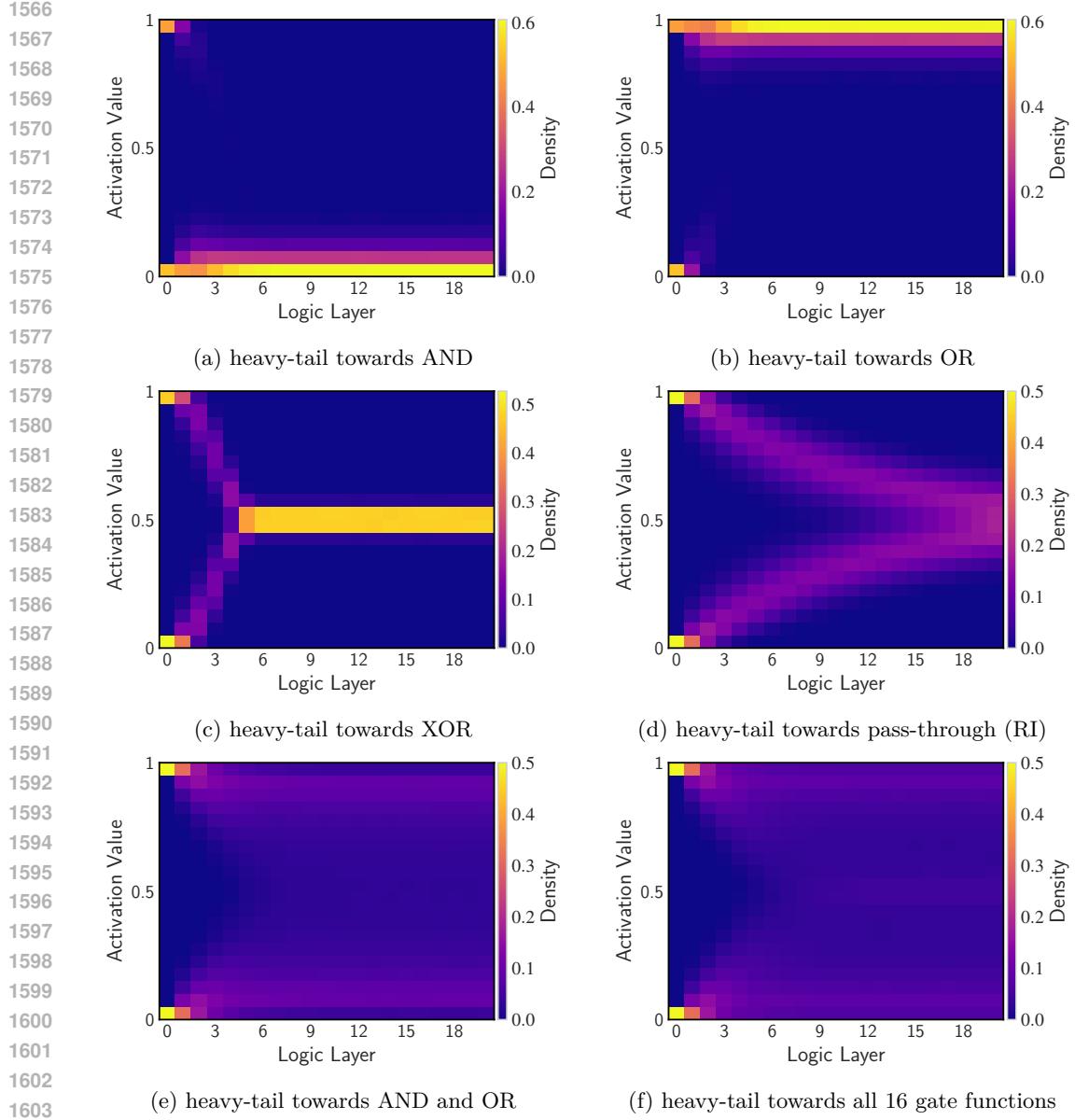
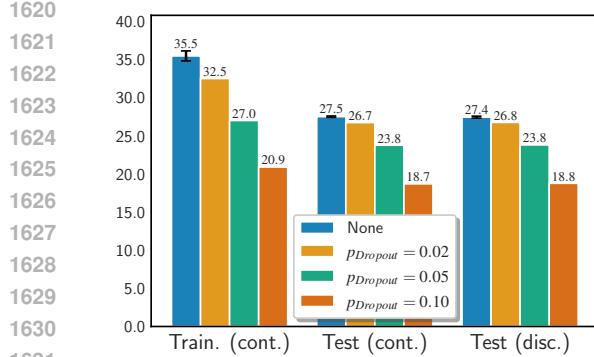


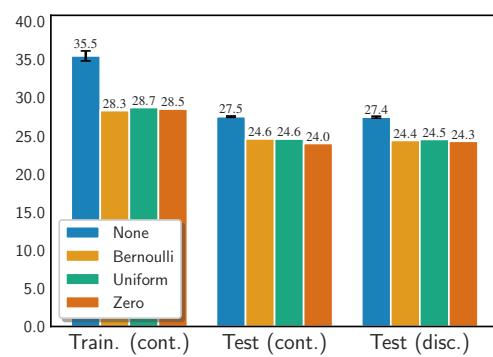
Figure 27: Initial distribution of intermediate gate outputs, averaged over 100 CIFAR-100 images, when initialized with different heavy-tail initializations.

## G.2 RANDOMIZED GATE INTERVENTIONS

Similarly, we try to randomly intervene in the output of each gates in the network with a probability  $p_{intervene} > 0$ . We explore several strategies to replace the actual gate output: from a simple replacement by a constant value to replacement by a random uniform  $b \sim U([0, 1])$  or a symmetric Bernoulli  $b \sim B(0.5)$ . We explore the impact of magnitude for the intervention probability  $p_{intervene}$  and find  $p_{intervene} = 0.05$  to yield the best results in the end. Indeed, the generalization gap narrows substantially, but the test accuracies still trail the unregularized DLGN for all intervention strategies (cf. Figure 28b).

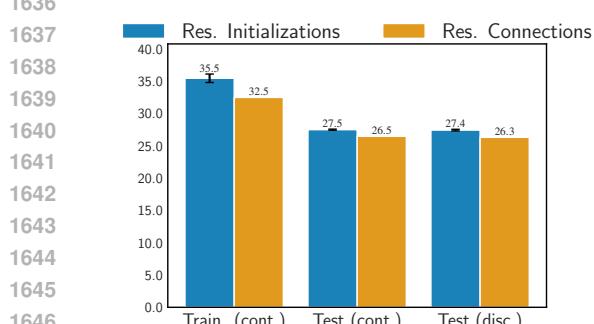


(a) Dropout

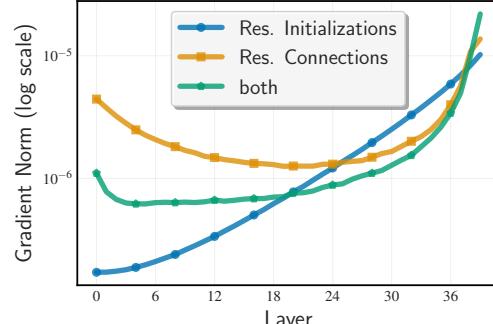


(b) Random gate interventions

Figure 28: Accuracies of the DLGN with dropout and random gate interventions.



(a) Accuracy



(b) Gradient stability

Figure 29: Accuracies and gradient norms of the DLGN with residual connections compared to RIs.

### G.3 RESIDUAL CONNECTIONS

Finally, we explore if the network benefits from enforcing explicit residual connections (He et al., 2016) between layers instead of RIs. From the first to the last layer, a linearly increasing fraction of gates are fixed to directly pass their output to a unique neuron in the subsequent layer. We ensure that incoming residual streams from earlier layers are continued until the last layer. That way, each layer is guaranteed to receive a fraction of unreduced gradient signals, even when the remaining weights are not initialized with a heavy tail, but a standard Gaussian. Unsurprisingly, the gradient norms of DLGNs with residual connections are even more stable than for RIs, which still include some uncertainty in the weights  $\omega_{ij}$  (cf. Figure 29b). However, Figure 29a indicates that both the training and test accuracies suffer slightly from this functional constraint. Although they halve the number of learnable parameters and allow to retain gradients norms without heavy-tail initializations, residual connections do not seem to play a beneficial role for generalization.

## H RELATED WORK

### H.1 LEARNING SINGLE LOGIC GATES

Several works have exploited that learning circuits of logic gates with more than two inputs allows to embed more functional expressivity on the same hardware (Umuroglu et al., 2020; Bacellar et al., 2024).

1674 The reason is that a single logic gate with  $n$  inputs has a VC dimension of  $2^n$  (Vapnik &  
 1675 Chervonenkis, 1971). On the contrary, a circuit of binary logic gates with  $n$  inputs has a  
 1676 strictly smaller discriminative power, as the VC dimension of subcircuits merely accumulates  
 1677 additively and not multiplicatively (Andronic & Constantinides, 2025).

1678 On the contrary, DLGNs were practically limited to learn logic gates with very few inputs,  
 1679 as processing  $2^{2^n}$  parameters per logic gate with  $n$  inputs quickly becomes intractable. With  
 1680 our IWP that reduces the number of parameters to  $2^n$ , advancing DLGNs to process more  
 1681 than two inputs per gate becomes a viable option.

1682 In contrast to our IWP, these works do not directly estimate the outputs of the logic gates.  
 1683 Instead, they use a different representation class and quantize this class to logic gates after  
 1684 training. However, these indirect representations either fall short of exploiting the expres-  
 1685 sivity of logic gates (Umuroglu et al., 2020) or are costlier to parametrize (Andronic &  
 1686 Constantinides, 2023; 2025). To begin with, Bacellar et al. (2024) do not relax the logic  
 1687 gate at all and approximate gradients via a finite difference method that accumulates all  $2^n$   
 1688 function values in a weighted sum. Most other works relax each logic gate to a continuous  
 1689 function class during training and quantize it back afterwards (Umuroglu et al., 2020; An-  
 1690 dronic & Constantinides, 2023; 2025). Our IWP also falls within this category. However,  
 1691 these works differ from our IWP in that these function classes either do not completely  
 1692 exploit the expressivity of logic gates or require more parameters to train. On the one hand,  
 1693 Umuroglu et al. (2020) merely regress an affine transformation  $w^T x + b$  that is fed through  
 1694 an activation function after batch normalization. Here,  $x$  is the input vector, and  $w, b$  are  
 1695 learnable weights and bias. Although the parameter size of each neuron grows only linearly  
 1696 in the number of logic gate inputs, this relaxation can also express only a small subset  
 1697 of Boolean functions. Andronic & Constantinides (2023) hence extends this relaxation to  
 1698 kernelized regression  $w^T \phi(x) + b$  with a polynomial kernel  $\phi$  that maps  $x$  to all monomials  
 1699 of degree at most  $D$ , where  $D$  is a configurable parameter. The size of  $w$  hence scales to  
 1700  $n^D$ , where  $n = \dim(x)$  is the number of inputs. To completely cover the class of Boolean  
 1701 functions, one needed to scale  $D$  to  $n$  in order to incorporate the conjunction of all  $n$  inputs.  
 1702 The resulting weights would then have dimension  $n^n$ , which is larger than our  $2^n$ . Finally,  
 1703 Andronic & Constantinides (2025) learn even larger neural networks within each logic gate  
 1704 relaxation.

## 1705 H.2 UNRELATED ADVANCEMENTS

1706 Finally, these works contributed several advancements that do not relate to the parametriza-  
 1707 tion, such as learning and simplifying the connection topology or regularization.

### 1709 H.2.1 LEARNING CONNECTIONS

1710 Petersen et al. (2024) maintained that randomly initializing the connections between logic  
 1711 gate functions ab initio and leaving them fixed during training does not degrade perfor-  
 1712 mance. Instead, Bacellar et al. (2024) learn these connections via a softmax relaxation.  
 1713 This degree of freedom however comes at the cost of learnable weight matrixes whose di-  
 1714 mensions correspond to the widths of contiguous layers.

### 1716 H.2.2 REGULARIZATION

1718 While Andronic et al. (2025) employ pruning strategies that incorporate the connection  
 1719 topology of the hardware, Bacellar et al. (2024) exert regularization on the Fourier transform  
 1720 of each logic gate (O’Donnell, 2014).

### 1722 H.2.3 CLASSIFICATION HEAD

1724 To convert the logic gate outputs into a classification, DLGNs counts the bits for each  
 1725 class and outputs the class index with the highest sum. To avoid the additional overhead  
 1726 of embedding these operations in FPGA hardware, Bacellar et al. (2024) replace them by  
 1727 learnable lookup tables.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

Table 5: All binary logic functions with real-valued relaxations and gradients

| id | $G_i$                   | $G_i(0, 0)$ | $G_i(0, 1)$ | $G_i(1, 0)$ | $G_i(1, 1)$ | $g_i$             | $\frac{\partial g_i}{\partial A}$ | $\frac{\partial g_i}{\partial B}$ |
|----|-------------------------|-------------|-------------|-------------|-------------|-------------------|-----------------------------------|-----------------------------------|
| 1  | 0                       | 0           | 0           | 0           | 0           | 0                 | 0                                 | 0                                 |
| 2  | $A \wedge B$            | 0           | 0           | 0           | 1           | $AB$              | $B$                               | $A$                               |
| 3  | $\neg(A \rightarrow B)$ | 0           | 0           | 1           | 0           | $A(1 - B)$        | $1 - B$                           | $-A$                              |
| 4  | $\neg A$                | 0           | 0           | 1           | 1           | $A$               | 1                                 | 0                                 |
| 5  | $\neg(B \rightarrow A)$ | 0           | 1           | 0           | 0           | $B(1 - A)$        | $-B$                              | $1 - A$                           |
| 6  | $\neg B$                | 0           | 1           | 0           | 1           | $B$               | 0                                 | 1                                 |
| 7  | $A \oplus B$            | 0           | 1           | 1           | 0           | $A + B - 2AB$     | $1 - 2B$                          | $1 - 2A$                          |
| 8  | $A \vee B$              | 0           | 1           | 1           | 1           | $A + B - AB$      | $1 - B$                           | $1 - A$                           |
| 9  | $\neg(A \vee B)$        | 1           | 0           | 0           | 0           | $1 - A - B + AB$  | $-1 + B$                          | $-1 + A$                          |
| 10 | $\neg(A \oplus B)$      | 1           | 0           | 0           | 1           | $1 - A - B + 2AB$ | $-1 + 2B$                         | $-1 + 2A$                         |
| 11 | $\neg B$                | 1           | 0           | 1           | 0           | $1 - B$           | 0                                 | -1                                |
| 12 | $B \rightarrow A$       | 1           | 0           | 1           | 1           | $1 - B + AB$      | $B$                               | $-1 + A$                          |
| 13 | $\neg A$                | 1           | 1           | 0           | 0           | $1 - A$           | -1                                | 0                                 |
| 14 | $A \rightarrow B$       | 1           | 1           | 0           | 1           | $1 - A + AB$      | $-1 + B$                          | $A$                               |
| 15 | $\neg(A \wedge B)$      | 1           | 1           | 1           | 0           | $1 - AB$          | $-B$                              | $-A$                              |
| 16 | 1                       | 1           | 1           | 1           | 1           | 1                 | 0                                 | 0                                 |

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781