
Variational Bayesian Reinforcement Learning with
Regret Bounds

Brendan O’Donoghue
DeepMind, UK

bodonoghue@google.com

Abstract

In reinforcement learning the Q-values summarize the expected future rewards
that the agent will attain. However, they cannot capture the epistemic uncertainty
about those rewards. In this work we derive a new Bellman operator with associ-
ated fixed point we call the ‘knowledge values’. These K-values compress both the
expected future rewards and the epistemic uncertainty into a single value, so that
high uncertainty, high reward, or both, can yield high K-values. The key principle
is to endow the agent with a risk-seeking utility function that is carefully tuned to
balance exploration and exploitation. When the agent follows a Boltzmann policy
over the K-values it yields a Bayes regret bound of Õ(L3/2

√
SAT), where L is

the time horizon, S is the number of states,A is the number of actions, and T is the
total number of elapsed timesteps. We show deep connections of this approach to
the soft-max and maximum-entropy strands of research in reinforcement learning.

1 Introduction and related work

In reinforcement learning (RL) an agent interacts with an environment in an episodic manner and
attempts to maximize its return [54, 45]. In this work the environment is a Markov decision process
(MDP) and we consider the Bayesian case where the agent has some prior information and as it
gathers data it updates its posterior beliefs about the environment. In this setting the agent is faced
with the choice of visiting well understood states or exploring the environment to determine the
value of other states which might lead to a higher return. This trade-off is called the exploration-
exploitation dilemma. One way to measure how well an agent balances this trade-off is a quantity
called regret, which measures how sub-optimal the rewards the agent has received are so far, relative
to the (unknown) optimal policy [12]. In the Bayesian case the natural quantity to consider is the
Bayes regret, which is the expected regret under the agents prior information [17].

The optimal Bayesian policy can be formulated using belief states, but this is believed to be in-
tractable for all but small problems [17]. Approximations to the optimal Bayesian policy exist, one
of the most successful being Thompson sampling [53, 55] wherein the agent samples from the pos-
terior over value functions and acts greedily with respect to that sample [38, 42, 27, 41]. It can be
shown that this strategy yields both Bayesian and frequentist regret bounds under certain assump-
tions [3]. In practice, maintaining a posterior over value functions is intractable, and so instead the
agent maintains the posterior over MDPs, and at each episode an MDP is sampled from this poste-
rior, the value function for that sample is computed, and the policy acts greedily with respect to that
value function. Due to the repeated sampling and computing of value functions this is practical only
for small problems, though attempts have been made to extend it [37, 43].

Bayesian algorithms have the advantage of being able to incorporate prior information about the
problem and, as we show in the numerical experiments, they tend to perform better than non-
Bayesian approaches in practice [17, 51, 49]. Although typically Bayes regret bounds hold for any
prior that satisfies the assumptions, the requirement that the prior over the MDP is known in advance

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

is a disadvantage for Bayesian methods. One common concern is about performance degradation
when the prior is misspecified. In this case it can be shown that the regret increases by a multiplica-
tive factor related to the Radon-Nikodym derivative of the true prior with respect to the assumed
prior [48, §3.1]. In other words, a Bayesian algorithm with sub-linear Bayes regret operating under
a misspecified prior will still have sub-linear regret so long as the true prior is absolutely continu-
ous with respect to the misspecified prior. Moreover, for any algorithm that satisfies a Bayes regret
bound it is straightforward to derive a high-probability regret bound for any family of MDPs that
has support under the prior, in a sense translating Bayes regret into frequentist regret; see [48, §3.1],
[38, Appendix A] for details.

In this work we endow an agent with a particular epistemic risk-seeking utility function, where
‘epistemic risk’ refers to the Bayesian uncertainty that the agent has about the optimal value function
of the MDP. In the context of RL, acting so as to maximize a risk-seeking utility function which
assigns higher values to more uncertain actions is a form of optimism in the face of uncertainty, a
well-known heuristic to encourage exploration [21, 5]. Any increasing convex function could be
used as a risk-seeking utility, however, only the exponential utility function has a decomposition
property which is required to derive a Bellman recursion [1, 44, 20, 46]. We call the fixed point of
this Bellman operator the ‘K-values’ for knowledge since they compress the expected downstream
reward and the downstream epistemic uncertainty at any state-action into a single quantity. A high
K-value captures the fact that the state-action has a high expected Q-value or high uncertainty, or
both. Following a Boltzmann policy over the K-values yields a practical algorithm that we call
‘K-learning’ which attains a Bayes regret upper bounded by Õ(L3/2

√
SAT) where L is the time

horizon, S is the number of states, A is the number of actions per state, and T is the total number of
elapsed timesteps [11]. This regret bound matches the best known bound for Thompson sampling
up to log factors [38] and is within a factor of

√
L of the known information theoretic lower bound

of Ω(L
√
SAT) [23, Appendix D].

The update rule we derive is similar to that used in ‘soft’ Q-learning (so-called since the ‘hard’
max is replaced with a soft-max) [6, 16, 18, 30, 47]. These approaches are very closely related to
maximum entropy reinforcement learning techniques which add an entropy regularization ‘bonus’ to
prevent early convergence to deterministic policies and thereby heuristically encourage exploration
[57, 59, 28, 35, 2, 25]. In our work the soft-max operator and entropy regularization arise naturally
from the view of the agent as maximizing a risk-seeking exponential utility. Furthermore, in contrast
to these other approaches, the entropy regularization is not a fixed hyper-parameter but something
we explicitly control (or optimize for) in order to carefully trade-off exploration and exploitation.

The algorithm we derive in this work is model-based, i.e., requires estimating the full transition
function for each state. There is a parallel strand of work deriving regret and complexity bounds for
model-free algorithms, primarily based on extensions of Q-learning [23, 58, 26]. We do not make
a detailed comparison between the two approaches here other than to highlight the advantage that
model-free algorithms have both in terms of storage and in computational requirements. On the
other hand, in the numerical experiments model-based approaches tend to outperform the model-
free algorithms. We conjecture that an online, model-free version of K-learning with similar regret
guarantees can be derived using tools developed by the model-free community. We leave exploring
this to future work.

1.1 Summary of main results

• We consider an agent endowed an epistemic risk-seeking utility function and derive a new
optimistic Bellman operator that incorporates the ‘value’ from epistemic uncertainty about
the MDP. The new operator replaces the usual max operator with a soft-max and it incor-
porates a ‘bonus’ that depends on state-action visitation. In the limit of zero uncertainty the
new operator reduces to the standard optimal Bellman operator.

• At each episode we solve the optimistic Bellman equation for the ‘K-values’ which repre-
sent the utility of a particular state and action. If the agent follows a Boltzmann policy over
the K-values with a carefully chosen temperature schedule then it will enjoy a sub-linear
Bayes regret bound.

• To the best of our knowledge this is the first work to show that soft-max operators and
maximum entropy policies in RL can provably yield good performance as measured by
Bayes regret. Similarly, we believe this is the first result deriving a Bayes regret bound for

2

a Boltzmann policy in RL. This puts maximum entropy, soft-max operators, and Boltzmann
exploration in a principled Bayesian context and shows that they are naturally derived from
endowing the agent with an exponential utility function.

2 Markov decision processes

In a Markov decision process (MDP) an agent interacts with an environment in a series of episodes
and attempts to maximize the cumulative rewards. A finite horizon, discrete-time, discrete MDP
is given by the tuple M = {S,A, R, P, L, ρ}, where S = {1, . . . , S} is the state-space, A =
{1, . . . , A} is the action-space, Rl(s, a) is a probability distribution over the rewards received by
the agent at state s taking action a at timestep l, Pl(s′ | s, a) ∈ [0, 1] is the probability the agent
will transition to state s′ after taking action a in state s at timestep l, L ∈ N is the episode length,
and ρ is the initial state distribution. Concretely, the initial state s ∈ S of the agent is sampled
from ρ, then for timesteps l = 1, . . . , L the agent is in state s ∈ S, selects action a ∈ A, receives
reward r ∼ Rl(s, a) with mean µl(s, a) ∈ R and transitions to the next state s′ with probability
Pl(s

′ | s, a). After timestep L the episode terminates and the state is reset. We assume that at the
beginning of learning the agent does not know the reward or transition probabilities and must learn
about them by interacting with the environment. We consider the Bayesian case in which the mean
reward µ and the transition probabilities P are sampled from a known prior φ. We assume that the
agent knows S, A, L, and the reward noise distribution.

An agent following policy πl : S × A → [0, 1] at state s ∈ S at time l selects action a with
probability πl(s, a). The Bellman equation relates the value of actions taken at the current timestep
to future returns through the Q-values and the associated value function [8], which for policy π are
denoted Qπl ∈ RS×A and V πl ∈ RS for l = 1, . . . , L+ 1, and satisfy

Qπl = T πl Qπl+1, V πl (s) =
∑
a∈A

πl(s, a)Qπl (s, a), (1)

for l = 1, . . . , L where QL+1 ≡ 0 and where the Bellman operator for policy π at step l is defined
as

(T πl Qπl+1)(s, a) := µl(s, a) +
∑
s′∈S

Pl(s
′ | s, a)

∑
a′∈A

πl(s
′, a′)Qπl+1(s′, a′).

The expected performance of policy π is denoted Jπ = Es∼ρV π1 (s). An optimal policy satisfies
π? ∈ argmaxπ J

π and induces associated optimal Q-values and value function given by
Q?l = T ?l Q?l+1, V ?l (s) = max

a
Q?l (s, a). (2)

for l = 1, . . . , L, where Q?L+1 ≡ 0 and where the optimal Bellman operator is defined at step l as

(T ?l Q?l+1)(s, a) := µl(s, a) +
∑
s′∈S

Pl(s
′ | s, a) max

a′
Q?l+1(s′, a′). (3)

2.1 Regret

If the mean reward µ and transition function P are known exactly then (in principle) we could solve
(2) via dynamic programming [9]. However, in practice these are not known and so the agent must
gather data by interacting with the environment over a series of episodes. The key trade-off is the
exploration-exploitation dilemma, whereby an agent must take possibly suboptimal actions in order
to learn about the MDP. Here we are interested in the regret up to time T , which is how sub-optimal
the agent’s policy has been so far. The regret for an algorithm producing policies πt, t = 1, . . . , N
executing on MDPM is defined as

RM(T) :=

N∑
t=1

Es∼ρ(V ?1 (s)− V π
t

1 (s)),

where N := dT/Le is the number of elapsed episodes. In this manuscript we take the case where
M is sampled from a known prior φ and we want to minimize the expected regret of our algorithm
under that prior distribution. This is referred to as the Bayes regret:

BRφ(T) := EM∼φRM(T) = EM∼φ
N∑
t=1

Es∼ρ(V ?1 (s)− V π
t

1 (s)). (4)

3

In the Bayesian view of the RL problem the quantities µ and P are random variables, and conse-
quently the optimal Q-values Q?, policy π?, and value function V ? are also random variables that
must be learned about by gathering data from the environment. We shall denote by Ft the sigma-
algebra generated by all the history before episode t where F1 = ∅ and we shall use Et to denote
E(· | Ft), the expectation conditioned on Ft. For example, with this notation EtQ? denotes the
expected optimal Q-values under the posterior before the start of episode t.

3 K-learning

Now we present Knowledge Learning (K-learning), a Bayesian RL algorithm that satisfies a sub-
linear Bayes regret guarantee. In standard dynamic programming the Q-values are the unique fixed
point of the Bellman equation, and they summarize the expected future reward when following a
particular policy. However, standard Q-learning is not able to incorporate any of the uncertainty
about future rewards or transitions. In this work we develop a new Bellman operator with associated
fixed point we call the ‘K-values’ which represent both the expected future rewards and the uncer-
tainty about those rewards. These two quantities are compressed into a single value by the use of an
exponential risk-seeking utility function, which is tuned to trade-off exploration and exploitation. In
this section we develop the intuition behind the approach and defer all proofs to the appendix. We
begin with the main assumption that we require for the analysis (this assumption is standard, see,
e.g., [41]).

Assumption 1. The mean rewards are bounded in [0, 1] almost surely with independent priors,
the reward noise is additive σ-sub-Gaussian, and the prior over transition functions is independent
Dirichlet.

3.1 Utility functions and the certainty equivalent value

A utility function u : R → R measures an agents preferences over outcomes [56]. If u(x) > u(y)
for some x, y ∈ R then the agent prefers x to y, since it derives more utility from x than from y.
If u is convex then it is referred to as risk-seeking, since Eu(X) ≥ u(EX) for random variable
X due to Jensen’s inequality. The particular utility function we shall use is the exponential utility
u(x) := τ(exp(x/τ) − 1) for some τ ≥ 0. The certainty equivalent value of a random variable
under utility u measures how much guaranteed payoff is equivalent to a random payoff, and for
Q?l (s, a) under the exponential utility is given by

Qtl(s, a) := u−1(Etu(Q?l (s, a)) = τ logEt exp(Q?l (s, a)/τ). (5)

This is the key quantity we use to summarize the expected value and the epistemic uncertainty
into a single value. As an example, consider a stochastic multi-armed bandit (i.e., an MDP with
L = 1 and S = 1) where the prior over the rewards and the reward noise are independent Gaussian
distributions. At round t the posterior over Q?(a) is given by N (µta, (σ

t
a)2) for some µta and σta

for each action a, due to the conjugacy of the prior and the likelihood. In this case the certainty
equivalent value can be calculated using the Gaussian cumulant generating function, and is given
by Qt(a) = µta + (1/2)(σta)2/τt. Evidently, this value is combining the expected reward and
the epistemic uncertainty into a single quantity with τt controlling the trade-off, and the value is
higher for arms with more epistemic uncertainty. Now consider the policy πt(a) ∝ exp(Qt(a)/τt).
This policy will in general assign greater probability to more uncertain actions, i.e., the policy is
optimistic. We shall show later that for a carefully selected sequence of temperatures τt we can
ensure that this policy enjoys a Õ(

√
AT) Bayes regret bound for this bandit case. In the more general

RL case the posterior over the Q-values is a complicated function of downstream uncertainties and
is not a simple distribution like a Gaussian, but the intuition is the same.

The choice of the exponential utility may seem arbitrary, but in fact it is the unique utility function
that has the property that the certainty equivalent value of the sum of two independent random
variables is equal to the sum of their certainty equivalent values [1, 44, 20, 46]. This property
is crucial for deriving a Bellman recursion, which is necessary for dynamic programming to be
applicable.

4

3.2 Optimistic Bellman operator

A risk-seeking agent would compute the certainty equivalent value of the Q-values under the en-
dowed utility function and then act to maximize this value. However, computing the certainty
equivalent values in a full MDP is challenging. The main result (proved in the appendix) is that
Qt satisfies a Bellman inequality with a particular optimistic (i.e., risk-seeking) Bellman operator,
which for episode t and timestep l is given by

Btl (τ,Kl)(s, a) = Etµl(s, a)+
σ2 + (L− l)2

2τ(ntl(s, a) ∨ 1)
+
∑
s′∈S

EtPl(s′ | s, a)(τ log
∑
a′∈A

exp(Kl(s
′, a′)/τ))

(6)
for inputs τ ≥ 0, Kl ∈ RS×A where ntl(s, a) is the visitation count of the agent to state-action
(s, a) at timestep l before episode t and (· ∨ 1) := max(·, 1). Concretely we have that for any
(s, a) ∈ S ×A

Qtl(s, a) ≤ Btl (τ,Qtl+1)(s, a), l = 1, . . . , L.

From this fact we show that the fixed point of the optimistic Bellman operator yields a guaranteed
upper bound on Qt, i.e.,(

Kt
l = Btl (τ,Kt

l+1), l = 1, . . . , L
)
⇒
(
Kt
l ≥ Qtl , l = 1, . . . , L

)
. (7)

We refer to the fixed point as the ‘K-values’ (for knowledge) and we shall show that they are a
sufficiently faithful approximation of Qt to provide a Bayes regret guarantee when used instead of
the certainty equivalent values in a policy.

Let us compare the optimistic Bellman operator Bt to the optimal Bellman operator T ? defined in
(3). The first difference is that the random variables µ and P are replaced with their expectation
under the posterior; in T ? they are assumed to be known. Secondly, the rewards in the optimistic
Bellman operator have been augmented with a bonus that depends on the visitation counts nt. This
bonus encourages the agent to visit state-actions that have been visited less frequently. Finally, the
hard-max of the optimal Bellman operator has been replaced with a soft-max. Note that in the limit
of zero uncertainty in the MDP (take ntl(s, a) → ∞ for all (s, a)) we have Btl (0, ·) = T ?l and
we recover the optimal Bellman operator, and consequently in that case Kt

l (s, a) = Qtl(s, a) =
Q?l (s, a). In other words, the optimistic Bellman operator and associated K-values generalize the
optimal Bellman operator and optimal Q-values to the epistemically uncertain case, and in the limit
of zero uncertainty we recover the optimal quantities.

3.3 Maximum entropy policy

An agent that acts to maximize its K-values is (approximately) acting to maximize its risk-seeking
utility. In the appendix we show that the policy that maximizes the expected K-values with entropy
regularization is the natural policy to use, which is motivated by the variational description of the
soft-max

max
πl(s)∈∆A

(∑
a∈A

πl(s, a)Kt
l (s, a) + τtH(πl(s))

)
= τt log

∑
a∈A

exp(Kt
l (s, a)/τt) (8)

where ∆A is the probability simplex of dimension A − 1 and H is entropy, i.e., H(πl(s)) =
−
∑
a∈A πl(s, a) log πl(s, a) [13]. The maximum is achieved by the Boltzmann (or Gibbs) dis-

tribution with temperature τt
πtl (s, a) ∝ exp(Kt

l (s, a)/τt). (9)

This variational principle also arises in statistical mechanics where Eq. (8) refers to the negative
Helmholtz free energy and the distribution in Eq. (9) describes the probability that the system at
temperature τt is in a particular ‘state’ [22].

3.4 Choosing the risk-seeking parameter / temperature

The optimistic Bellman operator, K-values, and associated policy depend on the parameter τt. By
carefully controlling this parameter we ensure that the agent balances exploration and exploitation.

5

Algorithm 1 K-learning for episodic MDPs

Input: MDPM = {S,A, R, P, L, ρ},
for episode t = 1, 2, . . . do

calculate τt using (10) or (11)
set Kt

L+1 ≡ 0
compute Kt

l = Btl (τt,Kt
l+1), for l = L, . . . , 1, using (6)

execute policy πtl (s, a) ∝ exp(Kt
l (s, a)/τt), for l = 1, . . . , L

end for

We present two ways to do so, the first of which is to follow the schedule

τt =

√
(σ2 + L2)SA(1 + log t)

4t logA
. (10)

Alternatively, we find the τt that yields the tightest bound in the maximal inequality in (13). This
turns out to be a convex optimization problem

minimize Es∼ρ

(
τ log

∑
a∈A

exp(K1(s, a)/τ)

)
subject to Kl ≥ Btl (τ,Kl+1), l = 1, . . . , L,

KL+1 ≡ 0,

(11)

with variables τ ≥ 0 and Kl ∈ RS×A, l = 1, . . . L + 1. This is convex jointly in τ and K
since the Bellman operator is convex in both arguments and the perspective of the soft-max term
in the objective is convex [10]. This generalizes the linear programming formulation of dynamic
programming to the case where we have uncertainty over the parameters that define the MDP [45, 9].
Problem (11) is an exponential cone program and can be solved efficiently using modern methods
[32, 33, 15, 50, 31].

Both of these schemes for choosing τt yield a Bayes regret bound, though in practice the τt obtained
by solving (11) tends to perform better. Note that since actions are sampled from the stochastic
policy in Eq. (9) we refer to K-learning a randomized strategy. If K-learning is run with the optimal
choice of temperature τ?t then it is additionally a stationary strategy in that the action distribution
depends solely on the posteriors and is otherwise independent of the time period [49].

3.5 Regret analysis

Theorem 1. Under assumption 1 the K-learning algorithm 1 satisfies Bayes regret bound

BRφ(T) ≤ 2
√

(σ2 + L2)LSAT logA(1 + log T/L)

= Õ(L3/2
√
SAT).

(12)

The full proof is included in the appendix. The main challenge is showing that the certainty equiva-
lent values Qt satisfy the Bellman inequality with the optimistic Bellman operator (6). This is used
to show that the K-values upper bound Qt (Eq. (7)) from which we derive the following maximal
inequality

Et max
a

Q?l (s, a) ≤ τt log
∑
a∈A

exp(Qtl(s, a)/τt) ≤ τt log
∑
a∈A

exp(Kt
l (s, a)/τt). (13)

From this and the Bellman recursions that the K-values and the Q-values must satisfy, we can ‘unroll’
the Bayes regret (4) over the MDP. Using the variational description of the soft-max in Eq. (8) we
can cancel out the expected reward terms leaving us with a sum over ‘uncertainty’ terms. Since the
uncertainty is reduced by the agent visiting uncertain states we can bound the remaining terms using
a standard pigeon-hole argument. Finally, the temperature τt is a free-parameter for each episode t,
so we can choose it so as to minimize the upper bound. This yields the final result.

6

...

......

...

...

......

t = 0

t = 1

t = 2

t = L

s = 0 s = 1 s = 2 s = 3 s = L

Figure 1: The DeepSea MDP

The Bayes regret bound in the above theorem matches the best known bound for Thompson sampling
up to log factors (once the regret bound from [38] is translated into the slightly more general case
we consider here where the mean reward and transition function can differ for each timestep l =
1, . . . , L). Moreover, the above regret bound is within a factor of

√
L of the known information

theoretic lower bound ofR(T) ≥ Ω(L
√
SAT) [23, Appendix D].

Intuitively speaking, K-values are higher where the agent has high epistemic uncertainty. Higher
K-values will make the agent more likely to take the actions that lead to those states. Over time
states with high uncertainty will be visited and the uncertainty about them will be resolved. The
temperature parameter τt is controlling the balance between exploration and exploitation.

4 Numerical experiments

In this section we compare the performance of both the temperature scheduled and optimized tem-
perature variants of K-learning against several other methods in the literature. We consider a small
tabular MDP called DeepSea [39] shown in Figure 1, which can be thought of as an unrolled version
of the RiverSwim environment [52]. This MDP can be visualized as an L× L grid where the agent
starts at the top row and leftmost column. At each time-period the agent can move left or right and
descends one row. The only positive reward is at the bottom right cell. In order to reach this cell
the agent must take the ‘right’ action every timestep. After choosing action ‘left’ the agent receives
a random reward with zero mean, and after choosing right the agent receives a random reward with
small negative mean. At the bottom rightmost corner of the grid the agent receives a random reward
with mean one. Although this is a toy example it provides a challenging ‘needle in a haystack’
exploration problem. Any algorithm that does exploration via a simple heuristic like local dithering
will take time exponential in the depth L to reach the goal. Policies that perform deep exploration
can learn much faster [38, 43].

In Figure 2 we show the time required to ‘solve’ the problem as a function of the depth of the
environment, averaged over 5 seeds for each algorithm. We define ‘time to solve’ to be the first
episode at which the agent has reached the rewarding state in at least 10% of the episodes so far. If an
agent fails to solve an instance within 105 episodes we do not plot that point, which is why some of
the traces appear to abruptly stop. We compare two dithering approaches, Q-learning with epsilon-
greedy (ε = 0.1) and soft-Q-learning [18] (τ = 0.05), against principled exploration strategies
RLSVI [39], UCBVI [7], optimistic Q-learning (OQL) [23], BEB [24], Thompson sampling [38]
and two variants of K-learning, one using the τt schedule (10) and the other using the optimal
choice τ?t from solving (11). Soft Q-learning is similar to K-learning with two major differences:
the temperature term is a fixed hyperparameter and there is no optimism bonus added to the rewards.
These differences prevent soft Q-learning from satisfying a regret bound and typically it cannot solve
difficult exploration tasks in general [36]. We also ran comparisons against BOLT [4], UCFH [14],

7

10 20 30 40 50
DeepSea Size

10
1

10
2

10
3

10
4

10
5

E
pi

so
de

s
un

til
 <

90
%

 fa
ilu

re

K-learning, t

K-learning, t

Thompson
UCBVI
-greedy

BEB
RLSVI
OQL
Soft-Q
2^(L-1)

Figure 2: Learning time on DeepSea.

and UCRL2 [21] but they did not perform much better than the dithering approaches and contributed
to the clutter in the figure so we do not show them.

As expected, the two ‘dithering’ approaches are unable to handle the problem as the depth exceeds
a small value; they fail to solve the problem within 105 episodes for problems larger than L = 6 for
epsilon-greedy and L = 14 for soft-Q-learning. These approaches are taking time exponential in
the size of the problem to solve the problem, which is seen by comparing their performance to the
grey dashed line which plots 2L−1. The other approaches scale more gracefully, however clearly
Thompson sampling and K-learning are the most efficient. The optimal choice of K-learning appears
to perform slightly better than the scheduled temperature variant, which is unsurprising since it is
derived from a tighter upper bound on the regret.

In Figures 3 and 4 we show the progress of K-learning using τ?t and Soft Q-learning for a single
seed running on the L = 50 depth DeepSea environment. In the top row of each figure we show the
value of each state over time, defined for K-learning as

Ṽ tl (s) = τt log
∑
a∈A

exp(Kt
l (s, a)/τt), (14)

and analogously for Soft Q-learning. The bottom row shows the log of the visitation counts over
time. Although both approaches start similarly, they quickly diverge in their behavior. If we examine
the K-learning plots, it is clear that the agent is visiting more of the bottom row as the episodes
proceed. This is driven by the fact that the value, which incorporates the epistemic uncertainty, is
high for the unvisited states. Concretely, take the t = 300 case; at this point the K-learning agent has
not yet visited the rewarding bottom right state, but the value is very high for that region of the state
space and shortly after this it reaches the reward for the first time. By the t = 1000 plot the agent
is travelling along the diagonal to gather the reward consistently. Contrast this to Soft Q-learning,
where the agent does not make it even halfway across the grid after t = 1000 episodes. This is
because the soft Q-values do not capture any uncertainty about the environment, so the agent has
no incentive to explore and visit new states. The only exploration that soft Q-learning is performing
is merely the local dithering arising from using a Boltzmann policy with a nonzero temperature.
Indeed, the soft value function barely changes in this case since the agent is consistently gathering
zero-mean rewards; any fluctuation in the value function arises merely from the noise in the random
rewards.

5 Conclusions

In this work we endowed a reinforcement learning agent with a risk-seeking utility, which encour-
ages the agent to take actions that lead to less epistemically certain states. This yields a Bayesian

8

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(a) t = 5.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(b) t = 50.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(c) t = 100.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(d) t = 300.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(e) t = 1000.

Figure 3: Value (as defined in (14)) and log visitation count for each state in DeepSea under K-
learning using τ?t . Darker color indicates larger value.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(a) t = 5.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(b) t = 50.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(c) t = 100.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(d) t = 300.

0 20 40

0

10

20

30

40

Value

0 20 40

0

10

20

30

40

log(Counts)

(e) t = 1000.

Figure 4: Value (as defined in (14)) and log visitation count for each state in DeepSea under soft
Q-learning. Darker color indicates larger value.

algorithm with a bound on regret which matches the best-known regret bound for Thompson sam-
pling up to log factors and is close to the known lower bound. We call the algorithm ‘K-learning’,
since the ‘K-values’ capture something about the epistemic knowledge that the agent can obtain
by visiting each state-action. In the limit of zero uncertainty the K-values reduce to the optimal
Q-values.

Although K-learning and Thompson sampling have similar theoretical and empirical performance,
K-learning has some advantages. For one, it was recently shown that K-learning extends naturally
to the case of two-player games and continues to enjoy a sub-linear regret bound, whereas Thomp-
son sampling can suffer linear regret [34]. Secondly, Thompson sampling requires sampling from
the posterior over MDPs and solving the sampled MDP exactly at each episode. This means that
Thompson sampling does not have a ‘fixed’ policy at any given episode since it is determined by
the posterior information plus a sampling procedure. This is typically a deterministic policy, and it
can vary significantly from episode to episode. By contrast K-learning has a single fixed policy at
each episode, the Boltzmann distribution over the K-values, and it is determined entirely from the
posterior information (i.e., no sampling). Moreover, K-learning requires solving a Bellman equa-
tion that changes slowly as more data is accumulated, so the optimal K-values at one episode are
close to the optimal K-values for the next episode, and similarly for the policies. This suggests the
possibility of approximating K-learning in an online manner and making use of modern deep RL

9

techniques such as representing the K-values using a deep neural network [29]. This is in line with
the purpose of this paper, which is not to get the best theoretical regret bound, but instead to derive
an algorithm that is close to something that is practical to implement in a real RL setting. Soft-max
updates, maximum-entropy RL, and related algorithms are very popular in deep RL. However, they
are not typically well motivated and they cannot perform deep-exploration. This paper tackles both
those problems since the soft-max update, entropy regularization, and deep-exploration all fall out
naturally from a utility maximization point of view. The popularity and success of these other ap-
proaches, despite their evident shortcomings in data efficiency, suggest that incorporating changes
derived from K-learning could yield big performance improvements in real-world settings. We leave
exploring that avenue to future work.

Acknowledgments and Disclosure of Funding

I would like to thank Ian Osband, Remi Munos, Vlad Mnih, Pedro Ortega, Sebastien Bubeck, Csaba
Szepesvári, and Yee Whye Teh for valuable discussions and clear insights. I received no specific
funding for this work.

References
[1] A. E. Abbas. Invariant utility functions and certain equivalent transformations. Decision Anal-

ysis, 4(1):17–31, 2007.

[2] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. M. N. Heess, and M. Riedmiller. Maximum
a posteriori policy optimisation. In International Conference on Learning Representations
(ICLR), 2018.

[3] S. Agrawal and N. Goyal. Near-optimal regret bounds for thompson sampling. Journal of the
ACM (JACM), 64(5):30, 2017.

[4] M. Araya, O. Buffet, and V. Thomas. Near-optimal BRL using optimistic local transitions. In
Proceedings of the 29th International Conference on Machine Learning (ICML), 2012.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-
lem. Machine learning, 47(2-3):235–256, 2002.

[6] M. G. Azar, V. Gómez, and H. J. Kappen. Dynamic policy programming. Journal of Machine
Learning Research, 13(Nov):3207–3245, 2012.

[7] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, pages 263–272, 2017.

[8] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[9] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific,
2005.

[10] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[11] N. Cesa-Bianchi, C. Gentile, G. Neu, and G. Lugosi. Boltzmann exploration done right. In
Advances in Neural Information Processing Systems, pages 6287–6296, 2017.

[12] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge university press,
2006.

[13] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

[14] C. Dann and E. Brunskill. Sample complexity of episodic fixed-horizon reinforcement learn-
ing. In Advances in Neural Information Processing Systems, pages 2818–2826, 2015.

[15] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In
European Control Conference (ECC), pages 3071–3076, 2013.

10

[16] R. Fox, A. Pakman, and N. Tishby. Taming the noise in reinforcement learning via soft updates.
arXiv preprint arXiv:1207.4708, 2015.

[17] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian reinforcement learning: A
survey. Foundations and Trends R© in Machine Learning, 8(5-6):359–483, 2015.

[18] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In Proceedings of the 34th International Conference on Machine Learning
(ICML), 2017.

[19] J. Hadar and W. R. Russell. Rules for ordering uncertain prospects. The American economic
review, 59(1):25–34, 1969.

[20] R. A. Howard. Value of information lotteries. IEEE Transactions on Systems Science and
Cybernetics, 3(1):54–60, 1967.

[21] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[22] E. T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

[23] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? In
Advances in Neural Information Processing Systems, volume 31, 2018.

[24] J. Z. Kolter and A. Y. Ng. Near-Bayesian exploration in polynomial time. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages 513–520. ACM, 2009.

[25] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[26] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen. Sample complexity of asynchronous q-learning:
Sharper analysis and variance reduction. arXiv preprint arXiv:2006.03041, 2020.

[27] Z. C. Lipton, J. Gao, L. Li, X. Li, F. Ahmed, and L. Deng. Efficient exploration for dialogue
policy learning with BBQ networks & replay buffer spiking. arXiv preprint arXiv:1608.05081,
2016.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings
of the 33rd International Conference on Machine Learning (ICML), pages 1928–1937, 2016.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.

[30] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans. Bridging the gap between value and
policy based reinforcement learning. In Advances in Neural Information Processing Systems,
pages 2772–2782, 2017.

[31] B. O’Donoghue. Operator splitting for a homogeneous embedding of the linear complemen-
tarity problem. SIAM Journal on Optimization, 31(3):1999–2023, 2021.

[32] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, June 2016.

[33] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting conic solver, version 2.0.2.
https://github.com/cvxgrp/scs, Nov. 2017.

[34] B. O’Donoghue, T. Lattimore, and I. Osband. Stochastic matrix games with bandit feedback.
arXiv preprint arXiv:2006.05145, 2020.

[35] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih. Combining policy gradient and
Q-learning. In International Conference on Learning Representations (ICLR), 2017.

11

https://github.com/cvxgrp/scs

[36] B. O’Donoghue, I. Osband, and C. Ionescu. Making sense of reinforcement learning and prob-
abilistic inference. In International Conference on Learning Representations (ICLR), 2020.

[37] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN.
In Advances In Neural Information Processing Systems, pages 4026–4034, 2016.

[38] I. Osband, D. Russo, and B. Van Roy. (More) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems, pages 3003–3011, 2013.

[39] I. Osband, D. Russo, Z. Wen, and B. Van Roy. Deep exploration via randomized value func-
tions. arXiv preprint arXiv:1703.07608, 2017.

[40] I. Osband and B. Van Roy. Gaussian-Dirichlet posterior dominance in sequential learning.
arXiv preprint arXiv:1702.04126, 2017.

[41] I. Osband and B. Van Roy. Why is posterior sampling better than optimism for reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning (ICML),
2017.

[42] I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized value
functions. arXiv preprint arXiv:1402.0635, 2014.

[43] B. ODonoghue, I. Osband, R. Munos, and V. Mnih. The uncertainty bellman equation and
exploration. In International Conference on Machine Learning, pages 3836–3845, 2018.

[44] J. Pfanzag. A general theory of measurement applications to utility. Naval Research Logistics
(NRL), 6(4):283–294, 1959.

[45] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[46] H. Raiffa. Decision Analysis: Introductory Lectures on Choices under Uncertainty. Addison
Wesley, 1968.

[47] P. H. Richemond and B. Maginnis. A short variational proof of equivalence between policy
gradients and soft Q learning. arXiv preprint arXiv:1712.08650, 2017.

[48] D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

[49] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. A tutorial on thompson
sampling. Foundations and Trends R© in Machine Learning, 11(1):1–96, 2018.

[50] S. A. Serrano. Algorithms for unsymmetric cone optimization and an implementation for prob-
lems with the exponential cone. PhD thesis, Stanford University, 2015.

[51] J. Sorg, S. Singh, and R. L. Lewis. Variance-based rewards for approximate Bayesian rein-
forcement learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence, page 564571, July 2010.

[52] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[53] M. Strens. A Bayesian framework for reinforcement learning. In ICML, pages 943–950, 2000.

[54] R. Sutton and A. Barto. Reinforcement Learning: an Introduction. MIT Press, 1998.

[55] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[56] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior (commemora-
tive edition). Princeton university press, 2007.

[57] R. J. Williams and J. Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

12

[58] Z. Zhang, Y. Zhou, and X. Ji. Almost optimal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Information Processing Systems, 33, 2020.

[59] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] This paper

is a purely theoretical work with little societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We included a
description of the data generation process for the simulations we ran.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] These experiments involved no training on external data.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] I produced Fig 2 with error bars, but it looked very
cluttered and obscured the message without providing any additional insight.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Included in appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

