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ABSTRACT

Object-centric learning (OCL) extracts the representation of objects with slots, of-
fering an exceptional blend of flexibility and interpretability for abstracting low-
level perceptual features. A widely adopted method within OCL is slot atten-
tion, which utilizes attention mechanisms to iteratively refine slot representations.
However, a major drawback of most object-centric models, including slot atten-
tion, is their reliance on predefining the number of slots. This not only neces-
sitates prior knowledge of the dataset but also overlooks the inherent variability
in the number of objects present. To overcome this fundamental limitation, we
present a novel complexity-aware object auto-encoder framework. Within this
framework, we introduce an adaptive slot attention mechanism that dynamically
determines the optimal number of slots based on the content of the data. This
is achieved by proposing a discrete slot sampling module that is responsible for
selecting an appropriate number of slots from a candidate list. Furthermore, we
introduce a masked slot decoder that suppresses unselected slots during the decod-
ing process. To validate the effectiveness of our framework, we conduct extensive
evaluations on object discovery tasks using diverse datasets. The experimental re-
sults demonstrate that our framework achieves performance that is comparable to
or even surpasses the best-performing fixed-slot models in evaluation. Moreover,
our analysis substantiates that our method exhibits the capability to dynamically
adapt the slot number according to the complexity of each specific instance. The
instance-level adaptability offers potential for further exploration in slot attention
research.

1 INTRODUCTION

Object-centric learning marks a departure from conventional deep learning paradigms, focusing on
the extraction of structured scene representations rather than relying solely on global features. These
structured representations encompass crucial attributes such as spatial information, color, texture,
shape, and size, effectively delineating various regions within a scene. These regions, characterized
by distinct yet cohesive properties, can be likened to objects in the human sense. These object-
centric representations, often referred to as slots, are organized within a set structure that partitions
the global scene information.

Traditionally, object-centric learning adopts unsupervised methods with reconstruction as the pri-
mary training objective. This process clusters distributed scene representations into object-centric
features, with each cluster associated with a specific slot. Decoding these slots independently or in
an auto-regressive manner yields meaningful segmentation masks. This inherent characteristic of
object-centric learning has paved the way for its application across diverse tasks, including unsuper-
vised object discovery (Locatello et al., 2020; Greff et al., 2019), segmentation (Zadaianchuk et al.,
2022), tracking (Kipf et al., 2021a; Elsayed et al., 2022), and manipulation (Singh et al., 2021a).
Among these pioneering algorithms, Slot Attention (Locatello et al., 2020) emerges as the most
prominent and widely recognized method in the field.

However, a significant challenge within the realm of slot attention is its reliance on a predefined
number of slots, which can prove problematic. On one hand, accurately determining the number
of objects in a dataset can be challenging, especially when annotations are absent. On the other
hand, datasets often exhibit varying object counts, rendering a fixed, predefined number impractical.
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Figure 1: Illustration of raw image and three kinds of segmentation masks. Pixels colored the same
are grouped together as the slot. The numbers of slots are very important.

Incorrectly specifying the number of slots can substantially impact the results, as illustrated in Fig. 1,
where an inadequate slot count leads to under-segmentation, while an excessive count results in
over-segmentation.

To address this challenge, we present an approach that adaptively determines the number of slots
for each instance based on its inherent complexity. Our goal is to allocate a larger slot count for
instances with more objects while a smaller number for fewer objects. To achieve this, we propose a
novel complexity-aware object auto-encoder framework. Within this framework, we initially gener-
ate a relatively large number of slots, denoted as Kmax, and dynamically select a subset of slots for
the reconstruction process. Additionally, our framework incorporates a slot sparsity regularization
term into the training objective, explicitly considering the complexity of each instance. This regular-
ization term ensures a balance between reconstruction quality and the utilization of an appropriate
number of slots.

Our framework encompasses two pivotal strategies to accomplish these objectives. Firstly, we lever-
age a lightweight slot selection module to acquire a sampling strategy that identifies the most in-
formative slots while discarding redundant ones before reconstruction. This enables us to sample
a subset with gradients propagated through the network during training. For seamless end-to-end
training, we employ Gumbel-Softmax (Jang et al., 2016) and, for computational efficiency, adopt
the mean-field formulation (Blei et al., 2017). Secondly, we introduce a masked slot decoder that
adeptly removes information associated with the dropped slots.

We summarize our contributions here: 1) Novel Framework: We propose a novel complexity-
aware object auto-encoder framework that dynamically determines the number of slots, addressing
the limitation of fixed slot counts in object-centric learning. 2)Efficient Slot Selection: Our frame-
work incorporates an efficient and differentiable slot selection module, enabling the identification of
informative slots while discarding redundant ones before reconstruction. 3)Effective Slot Decod-
ing: We present a masked slot decoder that efficiently removes information associated with unused
slots. 4)Promising Results: Through extensive empirical experiments, we demonstrate the supe-
riority of our approach, achieving competitive or superior results compared to models relying on
fixed slot counts. Importantly, our method excels in instance-level slot count selection, showcasing
its practical efficacy in various applications.

2 RELATED WORK

Object-Centric Learning. Object-centric learning fundamentally revolves around the idea that
natural scenes can be effectively represented as compositions of distinct objects. Current method-
ologies in this field mainly fall into two categories: 1) Spatial-Attention Models are exemplified
by models like AIR (Eslami et al., 2016), SQAIR (Kosiorek et al., 2018), and SPAIR (Crawford &
Pineau, 2019). These approaches infer bounding boxes for objects, providing explicit information
about an object’s position and size. Typically, such methods employ a discrete latent variable zpres
to determine the presence of an object and infer the number of objects. However, these box-based
priors often lack the flexibility needed to accurately segment objects with widely varying scales and
shapes. 2) Scene-Mixture Models explain a visual scene by a finite mixture of component images.
Methods like MONET (Burgess et al., 2019), IODINE (Greff et al., 2019), and GENESIS (Engelcke
et al., 2019) operate within the Variational Autoencoder (VAE) framework. They involve multiple
encoding and decoding steps to process an image. In contrast, Slot Attention (Locatello et al., 2020)
takes a unique approach by incorporating an iterative procedure within a single encode-decode step.
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One significant advantage of slot attention is its ability to generate a set of output vectors (slots) that
exhibit permutation invariance. These output slots prove valuable for both unsupervised tasks, such
as object discovery, and supervised tasks like set prediction.

Building upon the success of slot attention, various extensions and adaptations have emerged, in-
cluding SAVi (Kipf et al., 2021b), which extends slot attention to video data using a Transformer de-
coder, STEVE (Singh et al., 2022), focusing on compositional video generation, and SLATE (Singh
et al., 2021b), targeting compositional image generation. However, these methods are often evalu-
ated on synthetic datasets and may exhibit limited performance on real-world data. To bridge this
gap, DINOSAUR(Seitzer et al., 2022) proposes an approach that reconstructs deep features in the
decoding phase instead of pixel-level reconstruction, demonstrating superior performance on both
synthetic and real-world datasets—a method we incorporate in our work.

A common limitation among existing methods in this line is the requirement to predefine the number
of slots, often treated as a dataset-dependent hyperparameter. In this context, GENESIS-V2 (Engel-
cke et al., 2021) introduces a novel approach by clustering pixel embeddings in a differentiable
manner using a stochastic stick-breaking process, allowing for the output of a variable number of
objects, serving as a valuable baseline method.

Differentiable Subset Sampling. Several studies have pursued the goal of achieving differentiable
subset selection. Notably, Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016) introduces a
continuous relaxation of the Gumbel-Max trick, enabling the selection of the top-1 element. Build-
ing upon this foundation, Gumbel Top-k (Kool et al., 2019) extends the approach to generalize
top-k sampling. Another innovative approach, proposed by Xie et al. (2020), approximates top-k
sampling by harnessing the Sinkhorn algorithm from Optimal Transport. Furthermore, Cuturi et al.
(2019) employs the perturbed maximum method to achieve differentiable selection.

However, a common focus of these works lies in scenarios where the subset size is fixed at k, con-
straining their adaptability for slot number selection. In contrast, our method employs the common
mean-field formulation to transform the subset selection problem, which does not rely on a prede-
fined number, into a series of top-1 selections that can be efficiently resolved using Gumbel-Softmax.

3 METHOD

Preliminary. Slot Attention stands out as one of the most prominent object-centric methods, re-
lying on a competitive attention mechanism. It encompasses both the object-centric representation
bottleneck and the entire pipeline. In the pipeline, Slot Attention initially extracts image features
using an image encoder F = fenc(x) ∈ RH′×W ′

, where x represents the image. Rather than di-
rectly decoding F into x, the Slot Attention Bottleneck gslot further extracts K slots, denoted as
S1, · · · , SK = SlotAttention(F ). The slot attention pipeline proceeds to reconstruct images from
these slots using a weighted-average decoder. Each slot Si is individually decoded through an ob-
ject decoder gobject and a mask decoder gmask, subsequently integrated through weighted averaging
across the slots.

(xi, αi) = (gobject (Si) , gmask (Si)) , wherexi ∈ RH×W×C , αi ∈ RH×W . (1)

x̂ =

K∑
k=1

mi ⊙ xi, mi =
expαi∑K
l=1 expαi

(2)

We minimize the mean squared error between x and x̂ as Lrecon (x̂, x) = ∥x̂−x∥22. Here we utilize
a fixed K model as our base model. Moreover, we reconstruct the RGB pixels for toy datasets,
while following DINOSAUR to reconstruct feature extracted by self-supervised backbones on more
complicated datasets.

3.1 COMPLEXITY-AWARE OBJECT AUTO-ENCODER

In the original slot attention approach, a notable limitation is the requirement to predefine the slot
number K during training and inference. However, we have observed that the choice of K has a
significant impact on the quality of object segmentation results. Smaller values of K fail to ade-
quately separate visual objects, while larger values tend to result in over-segmentation. Intuitively,
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the ideal slot number should depend on the actual number of objects present in a given scene, but the
number of objects varies across different images in the dataset. To address this issue, we propose a
complexity-aware object auto-encoder framework that leverages differentiable sampling methods to
dynamically determine the appropriate slot number for each instance.

To address the challenge of slot number selection, we adopt a similar approach as clustering num-
ber selection (Blei & Jordan, 2006), where we set an upper bound for the slot number as Kmax.
This represents the maximum number of objects an image may contain in the dataset. During the
decoding phase, instead of decoding from all slots, our objective is to decode from the most infor-
mative slots. To achieve this, we learn a sampling method π for each instance x. The probability
π(z1, · · · , zKmax

) determines whether to keep or drop each slot S1∼Kmax
, with zi = 0 indicating

the slot Si should be dropped, and zi = 1 indicating it should be kept during reconstruction. We
introduce a masked slot decoder x̂ = fdec(S,Z) that effectively suppresses the information of the
dropped slots based on Z. To further control the slot number we retain, we incorporate a complexity-
aware regularization term Lreg(π). This regularization term helps ensure the appropriate number of
slots are retained based on the complexity of instances. The training objective can be formulated as:

min EZ Lrecon (x̂, x) + λ · Lreg (π)

where S1, · · · , SKmax
= gslot (fenc(x))

Z ∼ π (z) , x̂ = fdec (S,Z)

(3)

Naturally, without any regularization, the model tends to greedily keep all the slots, as more slots
generally lead to better reconstruction quality. In contrast, our complexity regularization, as ex-
pressed in Eq. 3, compels the model to achieve the reconstruction objective while utilizing as few
slots as possible. The parameter λ controls the strength of this regularization.

There are two challenges in achieving the complexity-aware object auto-encoder framework. The
first is how to do sampling from a discrete distribution while keeping the module differentiable 3.2.
The second is how to design mask slot decoder that is able to suppress the dropped slots 3.3.

3.2 MEAN-FIELD SLOT SAMPLING WITH GUMBEL SOFTMAX

Formally, given K slots S, there are 2K subsets of Ssub ⊆ S. To sample from these subsets, we
can create a bijection between all Ssub and {1, · · · , 2K}, which converts the problem of sampling
an indeterminate number set to a top-1 selection problem. This approach builds a comprehensive
candidates set and considers the relationship between slots. However, the search space would grow
exponentially with the increasing of slots number, resulting difficulties memory usage and model
optimization. For example, the neural network can be easily get stuck at the local minima. To
address this, we use the mean-field formulation in variational inference (Blei et al., 2017), factoring
π into a product of independent distributions for each slot:

π(z1, · · · , zK) = π1(z1) · · ·πK(zK). (4)

Therefore, the problem of selecting from 2K space is reduced to a K binary selection problem. For
each Si, we decide drop or keep the slot individually. This mean-field slot selection approach is
computational and sampling efficient. Although the relation among slots is ignored in this step, we
postulate this relation can be implicitly modelled by the competition mechanism in slot attention.

To be specific, we denote S ∈ RK×D. A light weight neural network hθ : RD → R2 is used to
predict the keep/drop probability of each slot individually:

π = Softmax(hθ(S)) ∈ RK×2, (5)

where πi,0 denote the soft probability to drop the i-th slot, while πi,1 denote the soft probability to
keep the i-th slot. By applying the Gumbel-Softmax with Straight-Through Estimation (Jang et al.,
2016) on the probability dimension and take the last column, we get the hard decision slot mask Z:

Z = GumbelSoftmax(π):,1. (6)

Here, the colon (:) denotes all rows, and 1 denotes the specific column we want to extract. Since
Gumbel Softmax generate onehot vector, take the column we get K-dimensional zero-one mask
Z = (Z1, · · · , Zk) ∈ {0, 1}K .
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3.3 MASKED SLOT DECODER

As mentioned in Seitzer et al. (2022), the Transformer decoder is biased towards grouping seman-
tically related instances together, while the mixture decoder is able to separate instances better. The
behavior of the mixture-decoder makes it a better choice for exploring dynamic slots since we expect
the model to distinguish instances rather than semantics. In this paper, we focus on mixture decoder.
With the slots representations S and the keep decision vector Z, we introduce several possible design
choices of suppressing less important slots based on Z.

Zero slot strategy directly multiply the zero-one keep decision vector Z with the slots S:

S̃i = ZiSi, (7)

which shrinks the dropped slots to zero while keeps the others as they are.

Learnable slot strategy employs a shared learnable embedding Smask as the prototype of the
dropped slot. The intuition is that a learnable dropped slot would offer the model more flexibil-
ity and stabilize training, and complement the information loss caused by dropping slots. This is
achieved as:

S̃i = ZiSi + (1− Zi)Smask. (8)

We empirically found that both the two strategies would hurt the reconstruction quality as well as the
object grouping. The root cause is that when computing the alpha mask, the zero/learnable-shrinked
slots are still decoded to non-zero masks which matter at the softmax operation as follows:

mi =
expαi(S̃i)∑K
l=1 expαl(S̃l)

. (9)

Therefore, instead of manipulating the slots representations, we propose to shrink the corresponding
alpha masks to zero:

m̃i =
Zimi∑K

l=1 Zlml + δ
, mi =

expαi(Si)∑K
l=1 expαl(Sl)

, (10)

where δ is a small positive value for computation stability. We name this strategy as zero mask
strategy. It is worth noting that neglecting δ, Eq. 10 is equivalent to omitting the slot in the mixture
decoder, except that Gumbel-Softmax is applied to ensure differentiability. The key difference is
that this strategy manipulates the alpha mask directly, fully removes the information of dropped slot
while the other two approaches could not.

For the complexity-aware regularization, we choose to punish the expectation of keeping slots:

Lreg = E

[
K∑
i=1

Zi

]
=

K∑
i=1

E [Zi] . (11)

The smaller expectation, the fewer slot left after selection.

4 EXPERIMENTS

Datasets. To evaluate its performance, we utilize the challenging MOVi dataset collection(Greff
et al., 2022). Specifically, we focus on the MOVi-C and MOVi-E variants, which feature high-
quality objects in realistic backgrounds. MOVi-C has up to 10 objects, while MOVi-E includes
at most 23 objects. We treat the video-based MOVi datasets as image datasets by flattening the
videos. Additionally, we use CLEVR10 (Kabra et al., 2019) as the toy dataset and MS COCO 2017
dataset (Lin et al., 2014) as a real-world dataset, which introduces increased complexity compared
to MOVi-C/E.

Metrics We use pair-counting, matching-based, and information-theoretic methods for evaluation.
The pair-counting metric utilizes a pair confusion matrix to compute precision, recall, F1 score,
and Adjusted Rand Index. In the matching-based metric, we utilize three methods: mBO, CorLoc,
and Purity. Purity assigns clusters to the most frequent class, and compute the accuracy of this as-
signment. mBO calculates the mean intersection-over-union for matched predicted and ground truth
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Table 1: Results on MOVi-C. (P., R. for Precision, and Recall).
Pair-Counting Matching Information

Model K ARI P. R. F1 mBO CorLoc Purity AMI NMI

GENESIS-V2 6 39.65 71.02 52.34 58.23 11.58 1.29 59.83 52.56 52.70
11 26.63 65.36 37.61 45.72 14.44 6.97 49.58 40.16 40.42

DINOSAUR

3 42.98 61.42 79.06 66.87 10.75 4.94 67.88 49.53 49.61
6 73.23 83.06 84.98 82.56 33.85 73.86 83.19 76.44 76.51

9 69.11 87.50 75.53 79.08 35.00 71.26 79.77 75.43 75.50
11 66.42 88.42 71.31 76.73 34.72 68.69 77.43 74.31 74.39

Ours 75.59 84.64 86.67 84.25 35.64 76.80 85.21 78.54 78.60

ours
11-slot

Raw Image Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10 Slot 11

Figure 2: Visualization of per-slot segmentation, comparing the fixed 11-slot model(first row) and
our model(second row). Dropped slot are left empty.

masks, while CorLoc measures the fraction of images with at least one object correctly localized.
The information-theoretic metric employs Normalized Mutual Information (NMI) and Adjusted Mu-
tual Information (AMI). Noting that we utilize COCO’s instance mask instead of semantic mask. All
metrics, except mBO and CorLoc, are computed on the foreground objects. We use ARI to denote
FG-ARI for simplicity.

Implementation Details We employ DINO ViT/B-16 as a frozen feature extractor. We set values
of Kmax to 24 for MOVi-E, 11 for MOVi-C, and 33 for MS COCO 2017. A two-layer MLP is
used for each slot to determine the keeping probability. Feature reconstruction is performed using
MLP mixture decoder as DINOSAUR. We use Adam optimizer, learning rate 4e−4, 10k step linear
warmup, and exponential learning rate decay. We train 500k steps for main experiments and 200k
steps for ablation. Results are averaged over 3 random seeds. More details are in Appendix. We set
λ to 0.1 for MOVi-E/C and 0.5 for COCO, without specifying a particular claim.

4.1 MAIN RESULTS ON EACH DATASET

Toy Dataset. We compare a fixed 11-slot model (Kmax = 11) on the toy dataset CLEVR10 in
Fig. 2, with pixel reconstruction. The ordinary 11-slot model lacks knowledge of the object number
and tends to allocate slots for segmenting the background, resulting in slot duplication. In contrast,
our model accurately groups pixels according to the actual number of ground truth objects. Surpris-
ingly, our model exhibits the ability to determine the object count and resolve slot duplication on the
toy dataset. Please refer to the appendix for detailed results.

Results on MOVi-C/E. Compared to our model, vanilla slot attention in DINOSAUR use a pre-
defined fixed slot number. The selection of slot numbers is subject to the dataset statistics. Note that
for data in the wild, we don’t have access to the ground-truth statistics. Here, we access the number
only for comparison. We established baselines for the MOVi-E dataset with an average of 12 objects
(max 23) using small (3, 6, 9), medium (13), and large (18, 21, 24) slot numbers. For the MOVi-C
dataset with a maximum of 10 objects, we used slot numbers 3, 6, 9, and 11. Besides, GENESIS-V2
is compared. The results are displayed in Tab. 1, Tab. 2 and Fig. 5.

For Object Grouping, our algorithm demonstrates its benefits through three different kinds of met-
rics. Our method outperform GENESIS-V2 by a large margin. When compared to the fixed-slot
DINOSAUR, our complexity-aware model achieves the highest ARI and F1 score, indicating that it
can effectively group sample pairs within the same cluster as defined by the ground truth. In terms
of Purity, our model yields the highest results, showing the greatest overlap between our predictions
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Table 2: Experiments on MOVi-E. (P., R. for Precision, and Recall)
Pair-Counting Matching Information

Model K ARI P. R. F1 mBO CorLoc Purity AMI NMI

GENESIS-V2 9 48.19 61.52 58.86 58.14 11.16 12.38 60.07 65.16 65.35
24 34.27 62.97 34.87 43.32 16.12 21.13 48.34 57.57 58.06

DINOSAUR

3 36.78 41.37 85.27 54.10 6.23 1.67 53.19 50.31 50.42
6 68.68 68.20 88.66 75.66 12.04 27.92 73.81 76.52 76.62
9 76.01 77.29 87.83 81.16 25.41 87.45 79.57 81.17 81.28

13 73.74 83.73 77.35 78.93 29.08 90.02 78.41 81.53 81.67

18 68.89 86.08 68.36 74.46 29.57 86.71 74.60 80.19 80.35
21 66.15 87.15 63.87 71.86 30.01 85.57 72.39 79.33 79.51
24 61.98 88.09 57.82 67.91 30.54 85.15 68.96 77.93 78.14

Ours 76.73 85.21 80.31 81.42 29.83 91.03 81.28 83.08 83.20

Table 3: Experiments on COCO datasets. (P., R. for Precision, and Recall)
Pair-Counting Matching Information

Model K ARI P. R. F1 mBO CorLoc Purity AMI NMI

GENESIS-V2 6 25.39 58.95 40.49 44.60 15.42 7.77 52.39 33.55 34.15
33 9.74 63.61 10.77 15.28 10.19 0.41 21.26 24.08 26.08

DINOSAUR

4 30.85 75.95 61.93 62.86 17.75 17.95 61.09 37.30 37.35
6 41.89 82.00 70.12 70.66 27.46 50.81 69.07 46.11 46.16
7 39.95 82.87 65.69 68.00 27.77 50.09 66.40 45.25 45.31
8 37.60 83.83 59.86 64.38 26.93 45.68 62.93 44.36 44.43

10 35.25 85.29 54.05 60.43 27.19 44.18 59.15 43.66 43.73
12 32.70 86.44 48.63 56.53 27.02 42.42 55.55 42.64 42.71
20 26.55 88.93 36.31 46.00 25.43 35.28 46.18 40.00 40.10
33 20.83 90.96 26.63 36.50 24.09 32.09 37.87 37.10 37.23

Ours 39.00 81.86 66.42 68.37 27.36 47.76 67.28 44.11 44.17

and the foreground in the ground truth. Additionally, the information-based metrics AMI and NMI
indicate that our model shares the most amount of information with the ground truth. Overall, our
model outperforms fixed slot models across all five mentioned metrics. For Localization, our model
have the highest CorLoc and as good as best mBO compared with fixed slot models. Improper slot
number will oversegment or undersegment the objects, and decrease the IoU, leading to poor spatial
localization.

In MOVi-E, 18-24 slots model keeps the precision at a higher level. Our model can decide the slot
number according to the instance and further merge the oversegmented clusters together to improve
the recall rate by a large amount. On MOVi-E, our model keeps the same level precision with 18-slot
model but have around 12 points higher recall. Therefore, our model reach best F1 and ARI scores.

Results on COCO. MS COCO has a problem of extreme imbalance in its validation set: most of
images has less than 10 objects. This makes it difficult to determine the correct number of slots.
To address this, we conducted experiments using a wide range of slot numbers with non-uniform
spacing. The results can be found in Table 3 and Fig 5.

When it comes to object grouping, MS COCO is highly sensitive to the number of slots in the fixed-
slot DINOSAUR. The experiment showed that the best results were achieved with 6 slots. However,
increasing the number of slots led to a rapid decline in performance, especially in object grouping.
For example, just going from 6 to 8 slots resulted in a significant drop of around 4 points in ARI,
which is about a 10% reduction from the maximum score.

Our models, set Kmax = 33 and equipped with complexity-aware regularization, effectively surpass
the performance of the 33-slot model. Specifically, our model achieves approximately 20 points

7



Under review as a conference paper at ICLR 2024

Figure 3: Stratified statistics of four metrics of our models and two fixed slot models, one set the slot
number to the upper bound and another set to slot with both high ARI and mBO. We apply stratified
sampling according to ground truth object number the image have. The first row is MOVi-C while
second row is MOVi-E.

higher in terms of ARI. Although the improvement in localization is comparatively smaller, our
model still outperforms the 33-slot model by three points in terms of mBO.

It is worth noting that on the MS COCO dataset, the best results obtained with fixed slot numbers are
marginally superior to our results. COCO’s nature images present greater challenges than MOVi-
C/E due to incomplete labeling, cluttered compositions without clear backgrounds, and a vast range
of object sizes and varieties. Despite these challenges, our complexity-aware module enables our
model to achieve results comparable to top-performing fixed-slot methods, highlighting its effec-
tiveness.

4.2 REVEALING THE INSIGHTS OF OUR MODEL

Statistical Results Stratified by Ground-truth Object Number. The above sections reflect the
average performance of models on the whole validation datasets. However, the model may over-fit
a specific slot number to improve the final average. To eliminate this possibility, we used stratified
sampling method on MOVi-C/E to display the values of various metrics of images with different
ground truth object number in Fig. 3 . For MOVi-C, we compare our models with fixed 11 slots(the
upper bound of object number) and fixed 6 slots(high ARI and mBO simultaneously). Similarly, for
MOVi-E, compare our models with fixed 13-slot and 24-slot models.

Precision&Recall are inversely related to the number of objects present in an image. As the number
of objects increases, precision decreases while recall increases. In the case of our model, it falls
somewhere in between high-slot and low-slot models in terms of precision. However, regarding the
recall, our model outperforms high-slot models significantly and performs just as well as low-slot
models for image with different objects number.

ARI&mBO. Different advantages can be observed for large and small slot models. Our model’s
curve encompasses the metric curve of the two fixed-slot models for ARI, indicating a wider range
of effectiveness. For mBO, our model achieves a performance comparable to the better-performing
fixed-slot models across the entire range. This demonstrates the efficacy of our dynamic slot selec-
tion approach, as it consistently delivers favorable results.

Analyzing the Slot Selection Process. We reveal the insights of our model by showing some
examples in Fig. 5, and heatmap and slot distribution in Fig. 4. The predictions of fixed-slot models
tend to be concentrated within a narrow range, forming a sharp peak which deviates from ground
truth distribution. In contrast, our models exhibit a smoother prediction distribution that closely
aligns with the ground truth.

On MOVi-C/E, fixed-slot models may generate fewer masks due to the one-hot operation. However,
most of their predictions are concentrated around the predefined slot number, resulting in a heatmap
exhibiting a distinct vertical pattern. Our model instead exhibits an approximately diagonal pattern
on the heatmap. In other words, our model can predict more masks for images with more objects,
and the number of predicted masks roughly matches the ground truth number. Though the diagonal
relationship is imperfect, and the prediction on images with an extremely large or small number of
objects is slightly poorer than other images, our model first achieves the adaptive slot selection.
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Figure 4: Heatmap of confusion matrix and slot distribution of our models and two fixed slot models
on MOVi-C/E. For heatmap, y-axis corresponds to the number of objects of ground truth, and x-
axis is the predicted object number by models. Due to imbalanced ground truth object numbers, we
normalized the row and visualize the percentage. The brighter the grid, the higher the percentage.
The slot distribution graph shows the probability density of grounded and predicted object numbers.
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Figure 5: Visualization of our models and the fixed-slot DINOSAUR on three datasets. For each
dataset, we select two examples and compare our model with a small slot number and a large slot
number.

Figure 5 demonstrated the adaptability of slot numbers at the instance level with illustrative exam-
ples. In particular, on the MOVi-E dataset, our model successfully generates 13 and 6 slots for two
different images, highlighting a significant discrepancy in slot counts. Noteworthy, our results effec-
tively group pixels based on image complexity, resulting in accurate and appropriate segmentation.

More Ablation Study in Appendix. We also conduct extensive ablation to evaluate each compo-
nent of our framework in the appendix. Particularly, we make the comparison of three designs of
masked decoder. Further, we demonstrate the necessity of Gumbel Softmax, and the influence of λ.
Extensive ablation show the efficacy of our model.

5 CONCLUSION

We have introduced a complexity-aware object auto-encoder framework that is able to dynami-
cally determine appropriate slot number according to the content of the data in object-centric learn-
ing. The framework composes of two parts. A slot selection module is first proposed based on
Gumbel-Softmax for differentiable training and mean-field formulation for efficient sampling. Then,
a masked slot decoder is further designed to suppress the information of unselected slots in the de-
coding phase. Extensive studies demonstrate the effectiveness of our framework in two folds. First,
our framework achieves comparable or superior performance to those best-performing fixed-slot
models. Second, our framework is capable of selecting appropriate slot number based on the com-
plexity of the specific image. The instance-level adaptability offers potential for further exploration
in slot attention.
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6 APPENDIX

6.1 MORE IMPLEMENTATION DETAILS FOR MOVI-C/E AND COCO

Vision backbones We utilize the Vision Transformer backbone and leverage the pre-trained DINO
weights available in the timm Wightman (2019) library. Our specific configuration entails using
ViT-B/16, which consists of 12 Transformer blocks. These blocks have a token dimensionality of
768, with a head number of 12 and a patch size of 16. In our pipeline, we take the output of the final
block as the input of slot attention module and the reconstruction target.

Slot Attention We adopt the slot attention bottleneck methodology based on the original work (Lo-
catello et al., 2020) for our implementation. The slot initialization process involves sampling from a
shared learnable normal distribution N (µ,Σ). Throughout all the experiments, we iterate the slot at-
tention mechanism with 3 steps. The slot dimension is set to 128 for MOVi-C/E and 256 for COCO
datasets. For the feedforward network in Slot Attention, we utilize a two-layer MLP (Multi-Layer
Perceptron). The hidden dimension of this MLP is set to 4 times the slot dimension.

Light Weight Network for Probability Prediction We utilize a two-layer MLP for the probability
prediction. The hidden dimension of this MLP is set to 4 times the slot dimension, and the output
dimension is set to 2.

Decoder We utilize a four-layer MLP with ReLU activations in our approach. The output dimen-
sionality of the MLP is Dfeat+1, where Dfeat represents the dimension of the feature, and the last
dimension is specifically allocated for the alpha mask. The MLP’s hidden layer sizes differ based on
the dataset used. For the MOVi datasets, we employ hidden layer sizes of 1024. On the other hand,
for COCO, we utilize hidden layer sizes of 2048.

Optimizer In our main experiments, we train the models for 500k steps. While for the ablations, we
train them for 200k steps. To optimize the model’s parameters, we employ the Adam optimizer with
a learning rate of 4e − 4. The β0 and β1 parameters are set to their default values β0 = 0.9, β1 =
0.999.

To enhance the learning process, we incorporate a learning rate decay schedule with linear learning
rate warm-up of 10k steps. The learning rate follows an exponentially decaying pattern, with a decay
half-life of 100k steps. Furthermore, we apply gradient norm clipping, limiting it to a maximum of
1.0, which aids in stabilizing the training procedure.

The training of the models takes place on 8 NVIDIA T4 GPUs, with a local batch size of 8.

6.2 MORE IMPLEMENTATION DETAILS FOR CLEVR10

For the experiment on toy dataset CLEVR10, we do pixel-level reconstruction instead of feature
reconstruction. We utilized the CNN feature encoder and boardcast decoder in (Locatello et al.,
2020). We set the slot dimension to 64, and set the hidden dimension to 128 for the feed-forward
network in slot attention. The other setting closely follow the experiments on MOVi-C/E and COCO.

6.3 DETAILED RESULTS ON TOY DATASET

In Tab. 4, we quantitatively compare our model with several fixed-slot models on the toy dataset
CLEVR10 under pixel reconstruction setting. Moreover, we provide qualitative comparison among
our model, 6-slot model, and 11-slot model in Fig. 6. The 11-slot model often assign one or more
slots to represent the background, while 6-slot model can not properly segment all objects when the
image have more than 6 objects.

Our model differs significantly from the 11-slot model in terms of handling the background, as
observed from the visualizations. In the case of the 11-slot model, when the number of objects of
an image is small, the 11-slot model tends to divide the background into several slots. However,
this division does not segment the background into several regions. Instead, the segmentation of
background is very even in terms of light and shadow.

On the contrary, our model takes a different approach of not utilizing a fixed background slot. In-
stead, it intelligently merge the background regions to the nearest foreground objects. It is reflected
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Figure 6: Illustration of per-slot segmentation of our model and two fixed-slot models on CLEVR10.

Table 4: Results on CLEVR10 dataset.
Pair-Counting Matching Information

Models ARI P. R. F1 mBO CorLoc Purity AMI NMI

3 59.00 60.85 93.17 72.22 10.33 0.08 70.09 66.36 66.41
6 90.77 89.26 98.13 93.08 19.35 19.45 91.81 92.32 92.34
9 97.59 97.86 98.55 98.14 26.45 45.72 97.81 97.39 97.40
11 98.06 98.77 98.35 98.51 27.39 47.15 98.27 97.90 97.90

Ours 97.65 98.19 98.36 98.21 22.51 37.00 98.03 97.50 97.51

in the visualization that the shadow (which corresponds to background) around the object is much
darker in our proposed model than the fixed slot model. The visualizations demonstrate that our
model consistently outputs an appropriate number of slots for each image. In order to evaluate the
accuracy of our model in determining the number of objects, we illustrate the heatmap of confusion
matrix of segmentation number and the slot distribution of the models in Fig. 7. Our models ex-
hibit a prediction distribution that almost perfectly aligns with the ground truth. Additionally, the
heatmap revealed an excellent diagonal relationship, indicating that our method can roughly resolves
the challenge of unsupervised object counting on CLEVR10. The diagonal of the heatmap reveals
the instance-level adaptability of our model.

As for the metrics, our model achieves comparable object grouping results to both the 11-slot and 9-
slot models. However, when it comes to localization, our model exhibits slightly lower performance.
Nonetheless, we would like to suggest that this discrepancy can be attributed to the distinct approach
we take in handling the background. Our model tends to merge the shadows around objects with the
foreground, which, in turn, results in slightly lower IoU scores for the object masks predicted by our
model. Consequently, this leads to drops in metrics such as mBO and CorLoC.
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Figure 7: Heatmap of confusion matrix and slot distribution of our models and two fixed slot models
on CLEVR10. For heatmap, y-axis corresponds to the number of objects of ground truth, and x-
axis is the predicted object number by models. Due to imbalanced ground truth object numbers, we
normalized the row and visualize the percentage. The brighter the grid, the higher the percentage.
The slot distribution graph shows the probability density of grounded and predicted object numbers.

6.4 MORE ANALYSIS ON COCO

Similarly, we present the heatmap of the confusion matrix of segmentation number and the slot
distribution of the models in Figure 8. However, It is worth noting that the COCO dataset has
incomplete annotations, which means that not all objects have been annotated. In this case, we
make our method solely focus on predictions related to the foreground. In other words, we only
consider slots whose masks intersect with foreground objects. Besides, we limit our analysis to
images that contain no more than 10 objects, since a significant majority of COCO images contain
fewer than 10 objects. These particular images play a crucial role in determining an appropriate
value for the fixed slot number, as 6 slot number reached the best results on COCO. Among the
three models, our model shows better correlation between the ground truth object number and the
predicted slot number. In contrast, the fixed-slot models fail to exhibit this diagonal pattern, further
highlighting the efficacy of our approach.

As for the distribution of total slot number, all three models’ predictions deviate from the ground
truth. However, our model demonstrates the closest approximation to the ground truth distributions.
This is substantiated by the visual examples presented in Figure 13, where our model showcases
its ability to generate semantically coherent and meaningful segmentations. Notably, our model
demonstrates adaptability by adjusting the slot number according to the complexity of the images,
thereby further enhancing the quality of its predictions.

Figure 13 provides valuable insights into the reasons behind the deviations of the distributions from
the ground truth. Let’s consider the last row of Fig. 13, where our model demonstrates success-
ful segmentation of the raw image into distinct regions, including the head of the girl, the T-shirts,
the glove, and the background. The separation of the T-shirt and the head seems to be an over-
segmentation compared to annotation, which may lead to low metric score. However, each seg-
mented region exhibits semantic coherence and is still visually reasonable.

Real-world datasets often encompass complex part-whole hierarchies within objects. Without the
availability of human annotations, accurately segmenting objects into the expected part-whole hi-
erarchy becomes extremely challenging. Since many objects consist of multiple parts, just like the
human body, it is expected that our model’s predictions will slightly surpass the ground truth in
terms of the number of slots. As a result, our model’s prediction will be slightly more than ground
truth.

6.5 ABLATION

We conduct a series of ablation studies on MOVi-E dataset to investigate the components and design
choices of our method.

Comparison of three design choices of masked slot decoder. In our main paper, we proposed
several design choices of the masked slot decoder, and we focused on the zero mask variant. In
Tab. 5 and Fig. 9, we compare the three variants in both quantitative and qualitative ways. The
results show that our zero mask method effectively improves most metrics compared to the original
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Figure 8: Heatmap of confusion matrix and slot distribution of our models and two fixed slot models
on COCO. The sole distinction is that we consider the ground truth masks and predicted masks on
the foreground.

Raw Image Ours Zero/learnable slot 24 slot

Figure 9: Illustration of the segmentation mask of three designs of mask slot decoders and ordinary
24-slot model.

slot attention model with 24 slots. However, in zero slot and learnable slot strategy, simply changing
the manipulation on the mask to the manipulation on the slot makes the model collapse. Both zero
slot and learnable slot strategy tend to group all pixels together instead of making a segmentation.
If we do not explicitly remove the effect of the dropped slot by setting their alpha masks to zero, the
zero/learnable slot will still contribute to the reconstruction. Some instance-irrelated information
will be introduced and may mislead the slot selection. As a result, zero/learnable slot tend to group
all pixels together.

The Necessity of Gumbel Softmax. In the main paper, we utilized the hard zero-one mask:

Z = GumbelSoftmax(π):,1. (12)

To verify the necessity of Gumbel-Softmax, we provide experiments that keep the same masked slot
decoder but replace the hard mask with a soft mask without Gumbel Softmax:

Zsoft = π:,1. (13)

The results are displayed in Fig. 10 and Tab. 6. Notably, without Gumbel Softmax, although the
model provide slightly better mBO, all the other metrics are kept at the same level as original slot
attention model. Moreover, from the visualization, without Gumbel Softmax we can not achieve
adaptive instance-level slot selection but produce segmentation with Kmax = 24 masks. This failure
is due to the landscape of the soft mask. Consider the following case:

π1,1 = π2,1 = · · · = πK,1, and πK,1 → 0. (14)

Table 5: Ablation study on the designs of masked slot decoder.
Pair-Counting Matching Information

Models ARI P. R. F1 mBO CorLoc Purity AMI NMI

24 slots 61.98 88.09 57.82 67.91 30.54 85.15 68.96 77.93 78.14
Zero Mask 75.30 84.74 78.64 80.20 29.47 90.09 80.12 82.32 82.45
Zero Slot† 0.00 21.19 100.00 33.93 2.21 0.08 33.87 0.00 0.00

Leanrnable Slot† 0.00 21.19 100.00 33.93 2.21 0.08 33.87 0.00 0.00
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Table 6: Ablation study on the necessity of Gumbel Softmax.
Pair-Counting Matching Information

Models ARI P. R. F1 mBO CorLoc Purity AMI NMI

24 slot 61.98 88.09 57.82 67.91 30.54 85.15 68.96 77.93 78.14
With Gumbel 75.30 84.74 78.64 80.20 29.47 90.09 80.12 82.32 82.45
wo Gumbel 61.76 87.49 57.88 67.74 31.31 88.85 68.85 77.51 77.73

Raw Image With Gumbel Without Gumbel Slot Distribution

Figure 10: Illustration of the segmentation mask without Gumbel softmax and with Gumbel softmax
respectively.

The regularization term approach zero Lreg → 0, and m̃i ≈ mi. Therefore, our method is reduced
to ordinary slot attention reconstruction. This simple case shows that without Gumbel Softmax, we
can not easily suppress the information of unselected slots, leading to the failure of slot selection.
With Gumbel Softmax, when πi,1 → 0, Zi = 0 and m̃i = 0 happens with higher probability. The
information of Si will be totally removed. This difference leads to our success.

Influence of λ. We test how the regularization strength λ influences the results on MOVi-E. We
compare 7 possible values of λ, ranging from 1e − 2 to 1 in Tab. 7, keeping other parameters
unchanged compared with the main experiments. Generally, larger regularization prefers fewer slots
left and grouping more patches. Recall and λ exhibit a positive correlation, while Precision and λ
exhibit a negative correlation. For foreground grouping, the two metrics reach the balance around
λ = 0.1 and λ = 0.2, which leads to the highest ARI and F1 score. The grouping results have the
best agreement with ground truth, which can also be proven by the highest AMI, NMI and Purity
score. However, if we continue increasing λ, these metrics will decrease and drop to an abysmal
level. When λ = 1, the model simply merges all tokens into a single group, which leads to perfect
Recall but inferior results for all other metrics. For localization, λ = 0.1 have the best CorLoc score
and performs well on mBO.

6.6 RESULTS OF SEMANTIC-LEVEL MASKS ON COCO

In the main paper, we evaluate the metrics on COCO according to the instance mask. Moreover,
we report the results based on semantic-level masks in Tab. 8 for further understanding. Compared
with instance-level results, grouping metrics like ARI and F1 score are lower, indicating that the

Table 7: Ablation on the influence of different λ
Pair-Counting Matching Information

λ ARI P. R. F1 mBO CorLoc Purity AMI NMI

0.01 62.99 87.44 59.50 68.93 30.47 85.54 69.84 78.05 78.26
0.02 63.68 87.49 60.36 69.55 30.16 85.08 70.48 78.35 78.55
0.05 70.95 85.67 71.48 76.32 29.46 86.79 76.67 80.87 81.02
0.1 75.30 84.74 78.64 80.20 29.47 90.09 80.12 82.32 82.45
0.2 76.07 78.79 86.51 81.30 26.28 86.68 80.49 81.50 81.61
0.5 33.52 38.04 89.27 51.74 9.05 13.26 50.40 46.62 46.74
1.00 0.01 21.20 99.96 33.93 2.21 0.08 33.87 0.03 0.03
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Table 8: Experiments of Semantic-level masks on COCO datasets.
Pair-Counting Matching Information

Model K ARI P. R. F1 mBO CorLoc Purity AMI NMI

DINOSAUR

4 20.72 85.02 52.18 61.47 20.61 13.89 59.32 24.93 24.96
6 28.93 89.92 58.04 67.12 30.85 41.00 65.43 32.35 32.38
7 27.43 90.66 54.15 64.17 31.10 39.79 62.48 31.72 31.75
8 25.32 91.29 48.89 59.89 29.93 34.69 58.31 30.74 30.78

10 23.02 92.16 43.58 55.26 29.75 32.47 53.84 29.71 29.75
12 20.99 92.89 38.80 50.79 29.17 30.70 49.68 28.75 28.79
20 15.72 94.12 27.97 39.43 26.44 23.33 39.35 25.77 25.82
33 11.60 95.07 19.99 30.04 24.03 18.87 30.97 23.14 23.21

Ours 26.60 89.71 55.30 64.90 30.53 37.74 63.62 30.56 30.59

Table 9: Comparsion between our model and MaskCut.
Pair-Counting Matching Information

Model Dataset ARI P. R. F1 mBO CorLoc Purity AMI NMI

MaskCut
MOVi-E 54.14 55.59 86.49 65.48 25.28 92.80 65.56 63.87 63.99
MOVi-C 59.05 75.60 88.08 79.19 40.84 88.71 78.36 60.80 60.88
COCO 29.18 73.58 74.47 69.73 33.95 71.88 69.23 32.20 32.25

Ours
MOVi-E 77.48 86.18 80.19 81.83 30.43 93.20 81.67 84.08 84.19
MOVi-C 72.81 86.13 86.08 84.33 37.33 80.16 83.81 75.97 76.03
COCO 40.38 81.26 67.16 68.55 26.94 47.12 67.33 45.53 45.59

model prefers instance-level object discovery to class-level. Overall, the results of semantic-level
and instance-level masks are consistent.

6.7 COMPARISON WITH UNSUPERVISED MULTIPLE INSTANCE SEGMENTATION METHOD

Our work falls in unsupervised object discovery, which aims to locate and distinguish between
different objects in the image without supervision. However, it does not necessarily provide fine-
grained segmentation of each object. In different granularity, unsupervised instance segmentation
aims to get a detailed mask for each localized object, clearly demarcating its boundaries.

Most unsupervised object segmentation methods follow a pipeline: initially creating pseudo masks
using a self-supervised backbone and subsequently training a segmentation model based on these
pseudo masks. In our discussion, we will primarily concentrate on the initial stage of these models.
We compare our model with MaskCut proposed in CutLER (Wang et al., 2023), since it can gener-
ate multiple instance segmentation while other methods either segment only one object from each
image (Caron et al., 2021; Wang et al., 2022b), or generate overlapping masks (Wang et al., 2022a).
However, it’s worth mentioning that MaskCut’s inference speed is notably slow, so we work with a
fixed subset here.

Table. 9 demonstrate that our model is great at distinguishing objects apart, whereas MaskCut is
good at creating masks that closely match objects (thought some masks might cover more than one
object). Unlike our model, MaskCut is based on iterative application of Normalized Cuts, which
assumes images have very clear foreground and background distinctions, with only a few objects
standing out in the foreground. But this assumption does not hold true for MOVi-E/C datasets.
As a result, MaskCut produces high-quality masks that capture object shapes well (higher mBO
on MOVi-C and COCO), but it struggles to tell different objects apart (lower ARI). This happens
because it often groups multiple objects as foreground in each iteration of Normalized Cuts.

Additionally, MaskCut takes around several seconds to handle one image, while our model can do
object grouping in real-time.
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Table 10: Experiments of object property prediction
Slot Accuracy R2 Accuracy with Correction

6 89.55 0.57 61.39
9 89.44 0.60 58.61

11 91.42 0.68 51.71

Ours 94.44 0.75 86.12

6.8 RESULTS ON OBJECT PROPERTY PREDICTION ON CLEVR10

Except for object discovery, we study the usefulness of the adaptive slot attention for downstream
task by object property predicion task. For simplicity, we predict object properties (specifically
object position and color) using the CLEVR10 dataset, since the complexity of objects in MOVi-
C/E poses challenges in establishing a definition for object property like color.

Our experiments employ a one-hidden layer MLP as the downstream model. The model operates
independently on the retained slots. Specifically, a kept slot serves as the model’s input, yielding
a vector containing property predictions for that particular slot. Our loss function comprises the
summation of cross-entropy loss for color classification and MSE loss or coordinate predictions. We
align predictions with targets with the Hungarian algorithm Kuhn (1955), minimizing the total loss
of the assignment. Following Dittadi et al. (2021), we present results in terms of color classification
accuracy and the regression R2 score of position estimation.

To better consider classification correctness and slot count simultaneously, we introduced a classifi-
cation accuracy measure with a correction factor. For a given image, let p, q, m, and n respectively
represent the number of correctly-classified matched predictions, total matched predictions/objects,
unmatched predictions, and unmatched ground truth objects. We define:

Accuracy with Correction =
p

q +m+ n
,

where m,n in the denominator penalizes duplicate prediction and insufficient prediction problems.
Our model demonstrates superior performance in terms of accuracy and R2 score, highlighting the
effectiveness of our adaptive slot mechanism in enhancing feature quality and boosting downstream
tasks. Noting that Accuracy with Correction diminishes alongside the growth of K for the fixed slot
model. This observation implies that the fixed large slot model generates redundant slots. Notably,
our proposed model achieves the highest Accuracy w/wo Correction, affirming the efficacy of the
adaptive slot mechanism we introduced.

6.9 MORE VISUALIZATION

To provide a more comprehensive understanding of our methods, we have included additional vi-
sualizations in Fig. 11, Fig. 12 and Fig. 13. For each dataset, we select five examples and compare
our model with GENESIS-V2 and fixed-slot DINOSAUR. Our model segments the raw image into
regions that are not only semantically coherent but also highly meaningful. Moreover, our model
showcases adaptability by dynamically adjusting the slot number in accordance with the complexity
of the images. It is worth noting that GENESIS-V2 can produce predictions with smaller slot num-
ber than the predefined maximum slot number, or generate masks with negligible area for human.
For example, in the second last row of Fig. 11, only 8 masks can be perceived by the naked eye.

6.10 DISCUSSION AND LIMITATIONS

Our model primarily applies to cases with clearly defined and thoroughly segmented objects. For
situations similar to COCO, with numerous complex objects and incomplete annotations, the learned
objects may not necessarily align with manual annotations. Additionally, due to the characteristics
of the feature reconstruction, the performance on dense small objects is not very outstanding. When
compare our model of Kmax with the fixed slot model of K = Kmax, our model produces fewer
masks, and more small objects will be missed. However, the fixed-slot counterpart will also over-
segment one object into multiple parts. Further, the part-whole hierarchy in real-world scenes brings
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Figure 11: More visualizations on MOVi-E

additional complexity and challenge to unsupervised object discovery. We leave improvements re-
garding this challenge for future works.
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Figure 12: More visualizations on MOVi-C

20



Under review as a conference paper at ICLR 2024

Ours
6 slot

20 slot
Raw

 Im
age

6 slot
33 slot

DINOSAUR
GENESIS-V2

Figure 13: More visualizations on COCO
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