
Causal Discovery in Probabilistic Networks with an
Identifiable Causal Effect

Anonymous Author(s)
Affiliation
Address
email

Abstract

Causal identification is at the core of the causal inference literature, where complete1

algorithms have been proposed to identify causal queries of interest. The validity2

of these algorithms hinges on the restrictive assumption of having access to a3

correctly specified causal structure. In this work, we study the setting where a4

probabilistic model of the causal structure is available. Specifically, the edges in a5

causal graph are assigned probabilities which may, for example, represent degree6

of belief from domain experts. Alternatively, the uncertainly about an edge may7

reflect the confidence of a particular statistical test. The question that naturally8

arises in this setting is: Given such a probabilistic graph and a specific causal9

effect of interest, what is the subgraph which has the highest plausibility and for10

which the causal effect is identifiable? We show that answering this question11

reduces to solving an NP-hard combinatorial optimization problem which we call12

the edge ID problem. We propose efficient algorithms to approximate this problem,13

and evaluate our proposed algorithms against real-world networks and randomly14

generated graphs.15

1 Introduction16

A large proportion of questions of interest in various fields including but not limited to psychology,17

social sciences, behavioural sciences, medical research, epidemiology, economy, etc. are causal in18

nature [21, 13, 2]. In order to estimate causal effects, the gold standard is performing controlled19

interventions and experiments. Unfortunately, such experiments can be prohibitively expensive,20

unethical, or impractical (consider, for example, an experiment in which participants are required21

to smoke in order to understand the links to cancer) [3, 5]. In contrast, non-experimental data are22

comparatively abundant, and no expensive interventions are required to generate such data. This23

has motivated the development of numerous techniques for understanding whether a causal query24

can be answered using observational data. Specifically, if a particular causal query is identifiable, it25

means it can be expressed as a function of the observational distribution, and thus estimated from26

observational data (at least in principle).27

A significant body of the causal inference literature is dedicated to the identification problem [18,28

13, 16, 7, 12]. In particular, Huang and Valtora presented a complete algorithmic approach to decide29

the identifiability of a specific query, and proved that Pearl’s do calculus is complete, in the sense30

that if a causal query is identifiable, a sequence of do calculus rules can be applied to derive an31

identification expression for that query [6]. Furthermore, Shpitser and Pearl provided a graphical32

criteria to decide the identifiability, based on the hedge criterion [16]. However, all of these results33

hinge on full specification of the causal structure, i.e., access to a correctly specified Acyclic Directed34

Mixed Graph (ADMG) that models the causal dynamics of the system. This requirement is restrictive35

in a number of ways. Firstly, the causal identification problem is concerned with inference from36

the observational data, but the ADMG cannot be inferred from the observational distribution alone.37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Secondly, structure learning methods rely heavily on statistical tests, which are prone to errors arising38

from lack of sufficient data and method-specific limitations [15] which can result in misspecification39

of the causal structure.40

As opposed to full specification of the causal structure, we propose the setting in which we only have41

access to a probabilistic model of the causal structure. For instance, an ADMG G is given along with42

probabilities assigned to each edge of G. An example is shown in Figure 1a. These probabilities43

could represent uncertainties arising from statistical tests, or the strength of belief of domain experts44

concerning the plausibility of the existence of an edge. Under this setting, each ADMG on the set45

of vertices of G is assigned its own plausibility score. Since the causal structure is not deterministic46

anymore, answering questions such as “is the causal effect P (Y |do(X)) identifiable?” also becomes47

probabilistic in nature. One can compare the overall plausibility of different subgraphs in which48

the causal effect is identifiable, and then select the graph which maximises the plausibility. Indeed,49

identification is often assumed on the basis of ignorability (i.e., no unobserved confounders exist)50

[8, 14], thus the use of probabilistic models enables us to quantify the strength of such an assumption.51

In this work, for a specific causal query P (Y |do(X)), we first answer the question “which graph52

has the highest plausibility among those compliant with the probabilistic ADMG model that renders53

P (Y |do(X)) identifiable?” The answer to this question then shows us with what confidence we can54

carry out the causal identification task using the combination of the data at hand and the corresponding55

probabilistic model.56

Noting that the causal identification task is carried out through an identification formula which is57

based on the causal structure, our second focus is on deriving an identification formula for a given58

causal query that holds with the highest probability. This problem is different from the former in59

the sense that a single identification formula can be valid with respect to a set of different graphs.60

Therefore, the probability that a given identification formula is valid for a causal query would be the61

aggregate probability of all graphs on which this formula is valid. We shall illustrate this point in62

more detail through Example 1 in Section 2. To identify the most probable identification formula,63

we first show that if an identification formula is valid w.r.t. a causal graph, it is also valid w.r.t. all64

its edge-induced subgraphs. Afterwards, we propose a surrogate problem (see Problem 2 in Section65

2.1) that recovers a causal graph with highest aggregated probability of its subgraphs. Both problems66

discussed in this work are aimed at evaluating the plausibility of performing causal identification for67

a specific query given a dataset and a non-deterministic model describing the causal structure.68

To sum up, our main contributions are as follows.69

1. We study the problem of causal identifiability in probabilistic causal models, where there are70

uncertainties about the existence of edges and whether a given causal effect is identifiable. More71

precisely, we consider two problems: 1) finding the most probable graph that renders a desired72

causal query identifiable, and 2) finding the graph with the highest aggregate probability over its73

edge-induced subgraphs that renders a desired causal query identifiable.74

2. We show that both aforementioned problems reduce to a special combinatorial optimization75

problem which we call the edge ID problem. We prove that the edge ID problem is NP-hard, and76

thus, so are both of the problems we discussed.77

3. We propose several exact and heuristic algorithms for the aforementioned problems.78

In Section 2, we introduce the terminology and formally define the two problems we are considering79

in this work. In Section 3, we show that both of these problems are equivalent to the edge ID problem.80

Furthermore, we show that the edge ID problem is NP-hard. We discuss algorithmic approaches (both81

exact and heuristic) in Section 4. Empirical evaluations of our algorithms are presented in Section82

5. Proofs and accompanying code are provided in the appendices and in supplementary material,83

respectively.84

2 Preliminaries85

We utilize small letters for variables, and capital letters for sets of variables. Calligraphic letters are86

used to denote graphs. An acyclic directed mixed graph (ADMG) G = (V G , EG
d , E

G
b) is defined as an87

acyclic graph on the vertices V G , where EG
d ⊆ V G × V G and EG

b ⊆
(
V G

2

)
are the set of directed and88

bidirected edges among the vertices, respectively. With slight abuse of notation, if e ∈ EG
d ∪ EG

b , we89

2

x

z t

y

1.01.0

1.0

0.7

0.9

0.7

1.0

(a) ADMG G.

x

z t

y

1.01.0

1.0

0.7 0.7

1.0

(b) G1 ⊆ G.

x

z t

y

1.01.0

1.00.9

1.0

(c) G2 ⊆ G.

Figure 1: (a) An example of a probabilistic ADMG G with corresponding edge probabilities. (b) and
(c) are two different subgraphs of G in which Q[y] is identifiable.

write e ∈ G. We use G′ ⊆ G when G′ is an edge-induced subgraph of G, i.e., G′ = (V G′
, EG′

d , EG′

b),90

where V G′
= V G and EG′

i ⊆ EG
i for i ∈ {b, d}. We denote by G[X] the vertex-induced subgraph91

of G over the subset of vertices X ⊆ V G . For a set of vertices X , we denote by AncG(X) the set of92

vertices in G that have a directed path to X . Note that X ⊆ AncG(X). Let PX(Y) be a shorthand for93

P (Y |do(X)), and PM (·) denote the distribution of variables described by the causal model M .94

Definition 1 (Identifiability [13]). Given a causal ADMG G = (V G , EG
d , E

G
b), and two disjoint95

subsets of variables X,Y ⊆ V G , the causal effect of X on Y , denoted by PX(Y), is identifiable in G if96

PM1

X (Y) = PM2

X (Y) for any two models M1 and M2 that induce G and PM1(V G) = PM2(V G) >0.97

Definition 2 (Valid identification formula). For a causal ADMG G over variables V G and a causal98

query PX(Y), we say a functional F defined on the probability space over V G is a valid identification99

formula for PX(Y) in G if PM1

X (Y) = PM2

X (Y) = F(PM1(V G)) = F(PM2(V G)) for any two100

models M1 and M2 that induce G and PM1(V G) = PM2(V G) > 0.101

For any query PX(Y), let [G]Id(PX(Y)) denote the set of subgraphs of G in which PX(Y) is iden-102

tifiable (note that if G is complete graph, [G]Id(PX(Y)) is the set of all graphs in which PX(Y) is103

identifiable.) We denote by Q[Y] the causal effect of V \Y on Y , i.e., Q[Y]=P (Y |do(V \Y)).104

Definition 3 (District [4]). For ADMG G = (V G , EG
d , E

G
b), let G↔ denote the edge-induced subgraph105

of G over its bidirected edges. X ⊆ V G is a district (aka c-component) in G if G↔[X] is connected.106

Definition 4 (Hedge [16]). Let G be an ADMG, and Y ⊊ X be two subsets of its vertices, where Y is107

a district in G[Y]. Vertices X form a hedge for Q[Y] if X is a district in G[X] and AncG[X](Y) = X1.108

Definition 5 (Maximal hedge [1]). For ADMG G and a set of its vertices Y , let X be the union of all109

hedges formed for Q[Y]. Graph G[X], denoted by MH(G, Y), is called the maximal hedge for Q[Y].110

As an example, both sets {t, x} and {z, x} form a hedge for Q[x] in G in Figure 1a, and G[{x, z, t}]111

is the maximal hedge for Q[x].112

2.1 Problem setup113

Let G = (V G , EG
d , E

G
b) be an ADMG, where V G is the set of vertices each representing an observed114

variable of the system, EG
d is the set of directed edges, and EG

b is the set of bidirected edges among115

V G . We know a priori that the true ADMG describing the system is an edge-induced subgraph of116

G,2 and we are given a probability map that indicates for each subgraph of G such as Gs, with what117

probability Gs is the true causal ADMG of the system. We denote this probability as P (Gs). For118

instance, if edge probabilities pe are assumed to be mutually independent, P (Gs) takes the form:119

P (Gs) =
∏
e∈Gs

pe
∏
e/∈Gs

(1− pe). (1)

In what follows, we will refer to P (Gs) simply as the probability of the ADMG Gs. The first problem120

of our interest is formally defined as follows.121

Problem 1. We consider the problem of finding the most probable edge-induced subgraph of G, in122

which the causal effect Q[Y] is identifiable. That is, the goal is to find the ADMG G∗ defined by123

G∗ := argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs). (2)

1Akbari et al. [1] showed that this intuitive definition is equivalent to the standard definition of hedge in [16].
2Note that G can be a complete graph over both its directed and bidirected edges.

3

z
t

y

z
t

y

z
t

y

Figure 2: Three different graphs that share the same set AncG({y}) = {z, t}.

We will prove in Proposition 1 that if Q[Y] is identifiable in G, then it is also identifiable in every124

edge-induced subgraph of G. In other words, if G is a feasible solution to the above optimization125

problem, so are all its edge-induced subgraphs. Furthermore, the same identification functional that126

is valid w.r.t. G, is also valid w.r.t. every subgraph of G. Let us illustrate this first on an example.127

Example 1. Consider the ADMG in Figure 1a. With the given edge probabilities and assuming128

independence among the edge probabilities, the subgraph of G illustrated in Figure 1b has probability129

0.7× 0.7× 0.1 = 0.049, whereas the subgraph of Figure 1c has probability 0.3× 0.3× 0.9 = 0.081130

(see Eq. (1)). If we were to solve Problem 1, we would choose G2 over G1, as it has a higher131

probability. Now consider identification formulas in G1 and G2, respectively:132

F1 : Q[Y] = P (Y |X), F2 : Q[Y] =
∑
Z,T

P (Y |X,Z, T)P (Z, T).

F1 is a valid identification formula for any edge-induced subgraph of G1 (see Proposition 1).133

Analogously, F2 is valid for all edge-induced subgraphs of G2. If we consider the aggregate134

probability of the subgraphs of G1 and G2, i.e.,135 ∑
Ĝ⊆G1

P (Ĝ) = 1− 0.9 = 0.1, versus
∑
Ĝ⊆G2

P (Ĝ) = (1− 0.7)× (1− 0.7) = 0.09,

then we should prefer choosing G1 over G2, as its identification formula F1 is more likely to be valid136

than F2 considering the fact that for all its subgraphs, the identification functional F1 is still valid.137

Plausibility of a certain identification functional F is the sum of the probabilities of all graphs in138

which F is valid given the query of interest. Finding the most plausible identification formula for139

a given query requires computing the plausibility of all formulae. Since the space of all formulae140

is intractable, an alternative approach to solve this problem is enumerating all valid formulae for a141

given graph. This changes the search space of the problem to the space of all graphs. However, this is142

yet another challenging and to the best of our knowledge open problem. Therefore, we propose the143

following problem as a surrogate that maximizes a lower bound of the most plausible identification144

formula. To do so, we use the result of Proposition 1 that shows when an identification functional is145

valid in a causal graph, it is also valid in all its edge-induced subgraphs.146

Problem 2. Consider the problem of finding the edge-induced subgraph H∗ of G with maximum147

aggregate probability of its subgraphs, in which Q[Y] is identifiable. Formally,148

H∗ := argmax
Gs⊆G, Gs∈[G]Id(Q[Y])

∑
Ĝ⊆Gs

P (Ĝ). (3)

In other words, we are looking for a graph H∗ with the maximum aggregate probability of its149

subgraphs, among the graphs in [G]Id(Q[Y]), i.e., the graphs in which Q[Y] is identifiable. Running150

an identification algorithm (such as the ID function of [16]) onH∗ yields an identification formula151

for Q[Y] which is valid at least with the aggregate probability of the subgraphs of H∗. Therefore,152

Problem 2 is a surrogate to recovering the identification formula with the highest plausibility.153

In the sequel, for simplicity, we study Problems 1 and 2 under the following assumption. However,154

as proved in Appendix C, our results are valid in a more general setting where we allow only for155

perfect negative or positive correlations among the edges. An example of perfect negative correlation156

between two edges is that both of them cannot exist simultaneously. Appendix C.1 discusses the157

significance of this generalization.158

Assumption 1. The edges of G are mutually independent. That is, the probability of a subgraph Gs159

of G is of the form in (1).160

Remark 1. It is noteworthy that our results are not limited to causal queries of the form161

Q[Y] = P (Y |do(V G \ Y)). They can be applied to general causal queries of the form PX(Y)162

if the set AncG\X(Y) is known. This is because the causal query PX(Y) can be expressed as163

4

∑
AncG\X(Y)\Y Q[AncG\X(Y)], where AncG\X(Y) is the set of ancestors of Y in G after removing164

the vertices of X . Furthermore, PX(Y) is identifiable in G if and only if Q[AncG\X(Y)] is iden-165

tifiable in G [19, 16, 9]. Note that the assumption that AncG\X(Y) is known is not equivalent to166

precluding uncertainty on the directed edges (as in the case of fixing the edge probabilities to 0 or 1),167

but it rather imposes a perfect correlation type of constraint. Consider for instance the three graphs168

of Figure 2, where all of them share the same set AncG\X(Y) = {z, t}. In fact, knowing this set169

forces a constraint of the type that if the edge z → y does not exist, the path z → t→ y must.170

3 Reduction to Edge ID problem and establishing complexity171

We begin this section with the following proposition, to which we referred before. Thereafter, we172

discuss the hardness of the two problems considered in this work.173

Proposition 1. For any causal query PX(Y) and ADMG G, if F is a valid identification formula for174

PX(Y) in G (Def. 2), then F is a valid identification formula for PX(Y) in any G′ ⊆ G.175

All proofs are presented in Appendix A. In what follows, we first formally define the edge ID problem,176

and then show the equivalence of Problems 1 and 2 to the edge ID problem under Assumption 1.177

Definition 6 (Edge ID problem). For ADMG G = (V G , EG
d , E

G
b), a set of non-negative edge weights178

WG = {we ≥ 0|e ∈ G}, and a causal query Q[Y] for a subset of variables Y ⊆ V G , the objective179

of the edge ID problem is to find the set of edges E∗ ⊆ EG
d ∪EG

b with minimum aggregated weight180

(cost), such that Q[Y] is identifiable in the graph resulting from removing E∗ from G. Formally,181

E∗ := argmin
E⊆EG

d ∪EG
b

∑
e∈E

we,

s.t. G′ = (V G , EG
d \ E,EG

b \ E) ∈ [G]Id(Q[Y]).

(4)

We implicitly assume that the cost of removing a set of edges from G is the sum of the weights of each182

individual edge.183

The following result unifies the two problems considered in this work by establishing their equivalence184

to the edge ID problem. This is done by transforming Problems 1 and 2 with multiplicative objectives185

into the edge ID problem that has an additive objective.186

Lemma 1. Under Assumption 1, Problem 1 is equivalent to the edge ID problem with the edge187

weights chosen to be the log propensity ratios, i.e., we = max{0, log(pe

1−pe
)}, ∀e ∈ G. Moreover,188

Problem 2 is equivalent to the edge ID problem with the choice of weights we = − log(1 − pe),189

∀e ∈ G. That is, an instance of Problems 1 and 2 can be reduced to an instance of the edge ID190

problem in polynomial time, and vice versa.191

As we mentioned earlier, the equivalence of these three problems can be established in more general192

settings than what is described under Assumption 1. We refer the interested reader to Appendix C for193

a discussion on one such setting. The following result shows that no polynomial-time algorithm for194

solving any of these three problems exists unless P = NP.195

Theorem 1. The edge ID problem is NP-hard.196

Theorem 1 is established through a reduction from the minimum vertex cover problem, which is197

known to be NP-hard [11]. Theorem 1 is a key result which shows the hardness of recovering the198

most plausible graph in which a specified causal effect of interest is identifiable.199

Corollary 1. Problems 1 and 2 are NP-hard under Assumption 1.200

It is noteworthy that the size of the problem depends on the number of vertices of G, i.e., |V G |, and201

the number of edges of G with finite weight, i.e., |EG | = |EG
d | + |E

G
b |. Since the ID algorithm202

(function ID of [16]) runs in time O(|V G |2), the brute-force algorithm that tests the identifiability of203

Q[Y] in every edge-induced subgraph of G and chooses the one with the minimum weight of deleted204

edges runs in time O(2|EG ||V G |2). In the next Section, we present various algorithmic approaches205

for solving or approximating the solutions to these problems.206

5

Algorithm 1 Recursive Algorithm for edge ID.

1: function EDGEID(G, Y,WG , ω
ub, ωth)

2: H ←MH(G, Y)
3: ifH = G[Y] then return (True, ∅)
4: ID← False, Emin ← ∅
5: while True do
6: e← The edge ofH with minimum weight
7: if we =∞ or we > ωub then return (ID, Emin)
8: (id, E)← EDGEID(H \ e, Y,WG \ {we}, ωub − we, ω

th − we)
9: if id = True then

10: ID← True, ωE ← we +
∑

ej∈E wej

11: ωub ← ωE , Emin ← E ∪ {e}
12: if ωub ≤ ωth then return (ID, Emin)

13: Update we ←∞ in WG

4 Algorithmic approaches207

We first present a recursive approach for solving the edge ID problem in Section 4.1, described208

in Algorithm 1. Since the problem itself is NP-hard, Algorithm 1 runs in exponential time in the209

worst case. In Section 4.2, we present heuristic approximations of the edge ID problem which run210

in cubic time in the worst case. These heuristics can also be used as a pre-process to reduce the211

runtime of Alg. 1 by providing an upper bound which can be fed into Alg. 1 to prune the search space.212

Finally, in Section 4.3, we present a reduction of edge ID to yet another NP-hard problem, namely213

minimum-cost intervention problem [1], which allows us to use the algorithms designed for that214

problem to solve edge ID. Our simulations in Section 5 evaluate these approaches against each other.215

4.1 Recursive exact algorithm216

This approach is described in Algorithm 1. The inputs to the algorithm are an ADMG G along with217

edge weights WG , a set of vertices Y corresponding to the causal query Q[Y], an upper bound ωub218

on the aggregate weight (cost) of the optimal solution, and a threshold ωth, an upper bound on the219

acceptable cost of a solution. The closer ωub is to the optimal cost, the quicker Algorithm 1 will find220

the solution. If no upper bound is known, the algorithm can be initiated with ωub =∞. However,221

we shall discuss a few approaches to find a good upper bound ωub in the following Section. Note222

that when ωth = 0, Algorithm 1 will output the optimal solution. Otherwise, as soon as a feasible223

solution with weight less than ωth is found, the algorithm terminates (line 12).224

The algorithm begins with calling subroutine MH in line 2, which constructs the maximal hedge for225

Q[Y], denoted byH. We discuss this subroutine in detail in Appendix B. Throughout the rest of the226

algorithm, we only consider the edges inH, as the other edges do not alter the identifiability. If there227

is no hedge formed for Q[Y], i.e.,H = G[Y], there is no need to remove any edges from G and the228

effect is already identified. Otherwise, we remove the edge with the lowest weight (e) fromH and229

recursively call the algorithm to find the solution after removing the edge e, unless the weight of e is230

already higher than the upper bound ωub, which means no feasible solutions exist for the provided231

upper bound (line 7). Whenever a feasible solution is found, the upper bound ωub is updated to the232

lowest weight among all the solutions weights discovered so far (line 11). This in turn helps the233

algorithm prune the exponential search space during the next iterations to reduce the runtime. As234

soon as a solution with a weight less than the acceptable threshold, i.e., ωth, is found, the algorithm235

returns the solution. Otherwise, we is updated to infinity so that it never gets removed (line 13). This236

is due to the fact that we have already explored all the solutions involving e.237

4.2 Heuristic algorithms238

In this Section, we present two heuristic algorithms for approximating the solution to the edge ID239

problem. These algorithms can also be used to find the upper bound ωub efficiently, which could be240

fed as an input to Algorithm 1.241

Let Z = {z ∈ V G |∃y ∈ Y : {z, y} ∈ EG
b } \ Y denote the set of vertices that have at least one242

common bidirected edge with a vertex in Y . Any hedge formed for Q[Y] contains at least one vertex243

6

Algorithm 2 Heuristic algorithm for Edge ID.

1: function HEID(G, Y,WG)
2: G′ ←MH(G, Y) , Z ← {z ∈ V G′ |∃y ∈ Y : {z, y} ∈ EG′

b } \ Y
3: H ← The induced subgraph of G′ on its directed edges.
4: WH ← {we ∈WG |e ∈ H}, V H ← V H ∪ {y∗, z∗}
5: for z ∈ Z do EH ← EH ∪ (z∗, z), WH ←WH ∪ {w(z∗,z) =

∑
y w{z,y}}

6: for y ∈ Y do EH ← EH ∪ (y, y∗), WH ←WH ∪ {w(y,y∗) =∞}
7: E ←MinCut(H,WH, z∗, y∗)
8: return (E,

∑
e∈E we)

x1

x2

y1

y2

wd
x2x1

wd
x1y1

wb
x1x2

wb
x2y2

wb
y1y2

(a) ADMG G, Y = {y1, y2}.

x1

x2

y1

y2

xd
21wd

x2x1

y121∞

y122 ∞

xb
12

wb
x1x2

zb22 wb
x2y2

yb12wb
y1y2

y1212
∞

zd11wd
x1y1

(b) ADMG H, Y mcip={y1, y2 , y12
2 }.

Figure 3: Reduction from edge ID to MCIP.

of Z. As a result, in order to eliminate all the hedges formed for Q[Y], it suffices to make sure that244

none of the vertices in Z appear in such a hedge. To this end, for any z ∈ Z, it suffices to either245

remove all the bidirected edges between z and Y , or eliminate all the directed paths from z to Y .246

The problem of eliminating all directed paths from Z to Y can be cast as a minimum cut problem247

between Z and Y in the edge-induced subgraph of G over its directed edges. To add the possibility of248

removing the bidirected edges between Z and Y , we add an auxiliary vertex z∗ to the graph, and249

draw a directed edge from z∗ to every z ∈ Z with weight w =
∑

y∈Y w{z,y}, i.e., the sum of the250

weights of all bidirected edges between z and Y . Note that z can have bidirected edges to multiple251

vertices in Y . We then solve the minimum cut problem for z∗ and Y . If an edge between z∗ and252

z ∈ Z is included in the solution to this minimum cut problem, it is mapped to removing all the253

bidirected edges between z and Y in the main problem. Note that we can run the algorithm on the254

maximal hedge formed for Q[Y] in G rather than G itself. This heuristic is presented as Algorithm 2.255

An analogous approach which goes through solving an undirected minimum cut on the edge induced256

subgraph of G over its bidirected edges is presented in Algorithm 4 in Appendix D. As mentioned257

earlier, these algorithms can be used either as standalone algorithms to approximate the solution to258

the edge ID problem, or as a pre-processing step to find an upper bound ωub for Algorithm 1. As we259

shall see in our simulations, both algorithms achieve near-optimal results on random graphs.260

4.3 Alternative approach: reduction to MCIP261

As an alternative approach to the algorithms discussed so far, we present a reduction of the edge ID262

problem to another NP-hard problem, i.e., the minimum-cost intervention problem (MCIP) introduced263

in [1]. This reduction allows us to exploit algorithms designed for MCIP to solve our problems. The264

formal definition of MCIP is as follows.265

Definition 7 (MCIP). Suppose G = (V G , EG
d , E

G
b) is an ADMG, C : V G → R≥0 is a cost function266

mapping each vertex of G to a non-negative cost, and Y ⊆ V G . The objective of the minimum-cost267

intervention problem for identifying the causal effect Q[Y] is to find the subset A ⊆ V G with the268

minimum aggregate cost such that Q[Y] is identifiable after intervening on the set A.269

The reduction from edge ID to MCIP is based on a transformation from ADMG G to another ADMG270

H, where each edge in G is represented by a vertex inH. This transformation is based on the causal271

7

query Q[Y], and it maps the identifiability of Q[Y] in G to identifiability of Q[Y mcip] inH, where272

Y mcip is a set of vertices inH. This transformation satisfies the following property; removing a set273

of edges E∗ in G makes Q[Y] identifiable if and only if intervening on the corresponding vertices of274

E∗ in H makes Q[Y mcip] identifiable. More precisely, after this transformation, solving the edge275

ID problem for Q[Y] in G is equivalent to solving MCIP for Q[Y mcip] inH. The complete details276

of this transformation can be found in Appendix A.2. An example of this reduction is shown in277

Figure 3, where Q[{y1, y2}] in G (Figure 3a) is mapped to Q[{y1, y2, y122 }] inH (Figure 3b), where278

{y1, y2, y122 } is a district, and the set of all vertices of H forms a hedge for it. The vertices of H279

corresponding to each edge in G are indicated with the same color and have the same weight (cost). To280

avoid intervening on the remaining vertices inH, we assign infinity cost to them. It is straightforward281

to see that the solution to the edge ID problem in G with the query Q[Y = {y1, y2}] would be to282

remove the edge with the lowest weight. This is because after removing any edge in G, no hedge283

remains for Q[Y]. Similarly, inH, the solution to MCIP with the query Q[Y mcip = {y1, y2, y122 }] is284

to intervene on the vertex with the lowest cost among Z = {zd11, xd
21, x

b
12, y

b
12, z

b
22}. This is because285

after intervening on any vertex in Z, no hedge remains for Q[Y mcip]. The following result formally286

establishes the link between the edge ID problem in G and MCIP inH.287

Proposition 2. There exists a polynomial-time reduction from edge ID to MCIP and vice versa.288

5 Experiments289

We evaluate the proposed heuristic algorithms 2 (HEID-1) and 4 (HEID-2), as well as the exact290

algorithm 1 (EDGEID), where the upper-bound ωub for EDGEID is set to be the minimum cost found291

by HEID-1 or -2. Furthermore, given the reduction of the edge ID problem to the MCIP problem292

described in Section 4.3, we also evaluate the two approximation and one exact algorithms from [1]293

(MCIP-H1, MCIP-H2, and MCIP-exact, respectively). Experimental results are provided for Problem294

1, and analogous results for Problem 2 are provided in Appendix E.3. All experiments were carried295

out on an Intel i9-9900K CPU running at 3.6GHz.296

Simulations: The algorithms are evaluated for graphs with between 5 and 250 vertices. For a given297

number of vertices, we uniformly sample 50 ADMG structures from a library of graphs which are298

non-isomorphic to each other. Edges for each of these 100 graphs are sampled with probability of299

log(n)/n, where n is the number of (observable) vertices, to impose sparsity (thus pragmatically300

reducing the search space). For each graph we sample directed and bidirected edge probabilities pe301

uniformly between 0.51 and 1.03. The problem is then converted into edge ID according to Lemma 1.302

The vertices in the graphs are topologically sorted and the outcome Y is selected to be the last vertex303

in the topological ordering. We then check whether a solution exists in principle by removing all304

finite cost edges and checking for identifiability. If not, a new graph is sampled to avoid evaluating305

the algorithms on graphs with no solution. For each of these 50 probabilistic ADMGs, we run the306

algorithms and record the resulting runtime and the associated cost of the solution. If the runtime307

exceeds 3 minutes, we abort and log that the algorithm has failed to find a solution.308

Results are presented in Figure 4. Runtimes and costs are shown for the subset of graphs for which309

all algorithms found a solution (to facilitate comparison). Runtimes for each algorithm are shown310

in Fig. 4a, where it can be seen that our proposed HEID-1 and HEID-2 heuristic algorithms have311

negligible runtime, followed by the MCIP variants. Interestingly, the exact algorithm EDGEID312

outperformed the MCIP algorithms on larger graphs, for which the transformation time from the313

edge ID problem to the MCIP increases with the size of the graph. In contrast, EDGEID had large314

runtime variance which depended heavily on the specifics of the graph under evaluation, particularly315

for graphs with fewer vertices. The costs for each graph are shown in Fig. 4b, and here we see,316

as expected, the lowest cost is achieved by the two exact algorithms, EDGEID and MCIP-exact,317

followed closely by the heuristic algorithms. Figure 4c shows the fraction of evaluations for which the318

runtime exceeded 3 minutes (applicable to the exact algorithms). In general, and owing to the sparsity319

penalty in our graph generation mechanism, the cost of identified solutions falls with the number320

of vertices. However, among the exact algorithms, EDGEID, exceeds the 3 minute runtime more321

often than the MCIP-Exact, regardless of the number of vertices and despite the fact that EDGEID is322

quicker at finding a solution when it does so. Overall, HEID-1 was both the most consistent in terms323

of finding a solution, having a short runtime, and achieving a close to optimal cost.324

3Note that we do not consider edge probabilities less than 0.5 as from Lemma 1, such edges would be mapped
to edges with 0 weight in the equivalent edge ID problem, which can always be removed at the beginning.

8

(a) Runtimes. (b) Solution costs. (c) Fraction runtime exceeded 3 min.

Figure 4: Experimental results for runtime, solution costs, fraction of graphs for which no solution
was found, and fraction of graphs for which runtime limit of 3 minutes was exceeded. Error bars for
runtime and cost graphs indicate 5th and 95th percentiles. Best viewed in color.

Real-World Graphs: We also apply the algorithms to four real-world datasets. The first ‘Psych’325

(22 nodes & 70 directed edges) concerns the putative structure from a causal discovery algorithm326

Structural Agnostic Model [10] using data collected as part of the Health and Relationships Project327

[20]. The other three ‘Barley’ (48 nodes & 84 directed edges), ‘Water’ (32 nodes & 66 directed328

edges), and ‘Alarm’ (37 nodes & 46 directed edges) come from the bnlearn python package [17]. For329

all four graphs, and as with the simulations described above, we introduce bidirected edges with a330

sparsity constraint of log(n)/n, and simulate expert domain knowledge by random assigning directed331

and bidirected edge probabilities between 0.51 and 1. The outcome Y is selected to be the last vertex332

in the topological ordering. For these results, we provide the runtime (limited to 500 seconds) and333

cost, as well as the ratio of graph plausibility before and after selecting a subgraph in which the effect334

is identifiable P (Ĝ∗)/P (G). This ratio is 1.0 if the effect is identifiable in the original graph, and335

decreases according to the plausibility of an identified subgraph.336

Results are shown in Table 1. In cases where MCIP-exact and/or EDGEID did not exceed the337

runtime limit, it can be seen that HEID-2 and MCIP-H2 achieved equivalent to optimal cost and338

ratio. Runtimes for MCIP variants exceeded the HEID variants owing to the required transformation.339

EDGEID timed out on all but the Alarm structure, whereas MCIP-exact only timed out on the Psych340

structure, indicating that the MCIP-exact is more consistent (this also corroborates Figure 4c).341

Table 1: Time (seconds), cost, and ratio P (Ĝ∗)/P (G) for seven algorithms over four real-world
datasets. A dash - indicates maximum runtime (500 seconds) exceeded.

Algorithm Psych Barley Alarm Water
Time Cost Ratio Time Cost Ratio Time Cost Ratio Time Cost Ratio

HEID-1 0.0019 2.648 0.07 0.0026 0.081 0.92 0.0004 0.0 1.0 0.0019 1.02 0.36
HEID-2 0.0019 1.806 0.16 0.0026 0.081 0.92 0.0003 0.0 1.0 0.0017 0.42 0.66
MCIP-H1 0.0136 2.648 0.07 0.0140 0.081 0.92 0.0027 0.0 1.0 0.0124 1.02 0.36
MCIP-H2 0.0133 1.806 0.16 0.0131 0.081 0.92 0.0029 0.0 1.0 0.0113 0.42 0.66
MCIP-exact - - - 0.0099 0.081 0.92 0.0028 0.0 1.0 0.0221 0.42 0.66
EDGEID - - - - - - 0.0005 0.0 1.0 - - -

6 Conclusion342

Researchers in causal inference are often faced with graphs for which the effect of interest is not343

identifiable. It is common to identify a target effect by assuming ignorability. A less drastic and more344

reasonable approach would be to relax this assumption by identifying the most plausible subgraph,345

given uncertainty about the structure as we suggested in this work. We presented a number of346

algorithms for finding the most probable/plausible probabilistic ADMG in which the target causal347

effect is identifiable. We provided an analysis of the complexity of the problem, and an experimental348

comparison of runtimes, solution costs, and failure rates. We noted that our heuristic algorithms,349

Alg. 2 and Alg. 4 performed remarkably well across all metrics. In terms of limitations, we made the350

assumption that the edges in G are mutually independent (Assumption 1). Future work should explore351

the case where this assumption does not hold. Finally, it is worth noting that the external validity352

of the derived subgraph (i.e., whether or not the subgraph is correctly specified with respect to the353

corresponding real-world process) is not guaranteed. As such, practitioners that use such approaches354

are encouraged to do so with caution, in particular for research involving human participants.355

9

References356

[1] S. Akbari, J. Etesami, and N. Kiyavash. Minimum cost intervention design for causal effect357

identification. arXiv preprint, arXiv:2205.02232, 2022.358

[2] E. Bareinboim, J.D. Correa, D. Ibeling, and T. Icard. On Pearl’s hierarchy and the foundations359

of causal inference. ACM Special Reports, 2020.360

[3] A. Deaton and N. Cartwright. Understanding and misundertstanding randomized controlled361

trials. Social Science and Medicine, 210:2–21, 2018. doi: 10.1016/j.socscimed.2017.12.005.362

[4] Robin J Evans and Thomas S Richardson. Markovian acyclic directed mixed graphs for discrete363

data. The Annals of Statistics, 42(4):1452–1482, 2014.364

[5] C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods based on graphical365

models. Frontiers in Genetics, 10, 2019.366

[6] Y. Huang and M. Valtorta. Pearl’s calculus of intervention is complete. Proceedings of367

the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI), 2006. doi:368

10.5555/3020419.3020446.369

[7] G.W. Imbens and J.D. Angrist. Identification and estimation of local average treatment effects.370

Econometrica, 62(2):467–475, 1994. doi: 10.2307/2951620.371

[8] G.W. Imbens and D.B. Rubin. Causal inference for statistics, social, and biomedical sciences.372

An Introduction. Cambridge University Press, New York, 2015.373

[9] Amin Jaber, Jiji Zhang, and Elias Bareinboim. Causal identification under Markov equivalence:374

Completeness results. In International Conference on Machine Learning, pages 2981–2989.375

PMLR, 2019.376

[10] D. Kalainathan, O. Goudet, I. Guyon, D. Lopez-Paz, and M. Sebag. Structural agnostic377

modeling: Adversarial learning of causal graphs. arXiv:1803.04929v3, 2020.378

[11] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer379

computations, pages 85–103. Springer, 1972.380

[12] J. Pearl. Aspects of graphical models connceted with causality. Proceedings of the 49th Session381

of the International Statistical Institute, pages 399–401, 1993.382

[13] J. Pearl. Causality. Cambridge University Press, Cambridge, 2009.383

[14] D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions.384

Journal of the American Statistical Association, 100(469):322–331, 2005. doi: 10.1198/385

016214504000001880.386

[15] R. D. Shah and J. Peters. The hardness of conditional independence testing and the generalised387

covariance measure. The Annals of Statistics, 48(3), 2020.388

[16] Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-389

Markovian causal models. In Proceedings of the National Conference on Artificial Intelligence,390

volume 21, page 1219. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;391

1999, 2006.392

[17] E. Taskesen. bnlearn - Library for Bayesian network learning and inference. Python Library,393

2020. URL https://erdogant.github.io/bnlearn.394

[18] J. Tian and J. Pearl. A general identification condition for causal effects. AAAI, 2002.395

[19] Jin Tian and Judea Pearl. On the testable implications of causal models with hidden variables.396

In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages397

519–527, 2002.398

[20] D. Umberson. Health and relationships project. Inter-university consortium for political and399

social research, 2014-2015. doi: 10.3886/ICPSR37404.v2.400

[21] M. J. van der Laan and S. Rose. Targeted Learning - Causal Inference for Observational and401

Experimental Data. Springer International, New York, 2011.402

10

https://erdogant.github.io/bnlearn

Checklist403

1. For all authors...404

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s405

contributions and scope? [Yes]406

(b) Did you describe the limitations of your work? [Yes]407

(c) Did you discuss any potential negative societal impacts of your work? [Yes]408

(d) Have you read the ethics review guidelines and ensured that your paper conforms to409

them? [Yes]410

2. If you are including theoretical results...411

(a) Did you state the full set of assumptions of all theoretical results? [Yes]412

(b) Did you include complete proofs of all theoretical results? [Yes]413

3. If you ran experiments...414

(a) Did you include the code, data, and instructions needed to reproduce the main experi-415

mental results (either in the supplemental material or as a URL)? [Yes]416

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they417

were chosen)? [Yes] ...418

(c) Did you report error bars (e.g., with respect to the random seed after running experi-419

ments multiple times)? [Yes]420

(d) Did you include the total amount of compute and the type of resources used (e.g., type421

of GPUs, internal cluster, or cloud provider)? [Yes]422

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...423

(a) If your work uses existing assets, did you cite the creators? [Yes]424

(b) Did you mention the license of the assets? [Yes]425

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]426

(d) Did you discuss whether and how consent was obtained from people whose data you’re427

using/curating? [N/A]428

(e) Did you discuss whether the data you are using/curating contains personally identifiable429

information or offensive content? [N/A]430

5. If you used crowdsourcing or conducted research with human subjects...431

(a) Did you include the full text of instructions given to participants and screenshots, if432

applicable? [N/A]433

(b) Did you describe any potential participant risks, with links to Institutional Review434

Board (IRB) approvals, if applicable? [N/A]435

(c) Did you include the estimated hourly wage paid to participants and the total amount436

spent on participant compensation? [N/A]437

11

Appendix438

The appendices are organized as follows. Formal proofs of the results stated in the main text are439

presented in Section A. In Section B, we describe the algorithm to recover the maximal hedge440

formed for a certain query (Def. 5), which is used as a subroutine of Algorithm 1. A generalization441

of Assumption 1 is discussed in Section C. Section D provides further details of the heuristic442

algorithms discussed in the main text. Further evaluations and experimental conditions for our443

proposed algorithms are presented in Section E.444

Table 2: Table of notations
Symbol Description
V G Vertices of G
EG

b The set of bidirected edges of G
EG

d The set of directed edges of G
AncG(X) Ancestors of X in G
M(G) The set of the all compatible models with G
pe Probability of edge e
we Weight of edge e

PX(Y) Causal effect of X on Y

A Formal Proofs445

We begin with presenting the proofs of Proposition 1 and Lemma 1. Proofs of Theorem 1 and446

Proposition 2 appear at the end of Sections A.1 and A.2, respectively.447

Proposition 1. For any causal query PX(Y) and ADMG G, if F is a valid identification formula for448

PX(Y) in G (Def. 2), then F is a valid identification formula for PX(Y) in any G′ ⊆ G.449

Proof. LetH ⊆ G be an arbitrary edge-induced subgraph of G. Let F be an identification formula450

for PX(Y) in G, i.e., for any model M that induces G,451

PM
X (Y) = F(PM (V G)). (5)

By definition, PX(Y) is identifiable in G. As a result, there exists and identification formula such as452

F ′ that can be derived for PX(Y) in G, using a sequence of do calculus rules and basic probability453

manipulations. Note that this means for any model M that induces G,454

PM
X (Y) = F ′(PM (V G)). (6)

Note that an immediate corollary of Equations 5 and 6 is that for any model M that induces G,455

F(PM (V G)) = F ′(PM (V G)). (7)

Now, we first show that this sequence of actions (combination of do calculus rules and probability456

manipulations) is valid inH. Note that the basic probability manipulations are graph-independent.457

It only suffices to show that any applied do calculus rule w.r.t. G can also be applied w.r.t. H. The458

validity conditions of all three do calculus rules are based on certain d-separations. As a result, it459

suffices to show that if a d-separation relation is valid in G, it is also valid inH. To do so, it suffices460

to show that if all paths between Z1 and Z2 are blocked in G given W , they are blocked inH too, for461

arbitrary disjoint sets of vertices Z1, Z2,W ⊆ V G . Take an arbitrary path, p, between Z1 and Z2 in462

H. Since H ⊆ G, this path exists in G. Since Z1 and Z2 are d-separated given W in G, the path p463

is blocked by W . As a result, any path between Z1 and Z2 in H is blocked by W . Therefore, any464

do-calculus rule applied in G, can also be applied inH. Hence, F ′ is a valid identification formula465

for PX(Y). That is, for any model M that inducesH,466

PM
X (Y) = F ′(PM (V H)). (8)

Now note that any model M that induces H, i.e., is compatible with H, is also compatible with G.467

Also, V G = V H. As a result, from Equations 7 and 8, we know that for any model M that induces468

H,469

PM
X (Y) = F(PM (V H)).

By definition, F is a valid identification formula for PX(Y) inH.470

12

Lemma 1. Under Assumption 1, Problem 1 is equivalent to the edge ID problem with the edge471

weights chosen to be the log propensity ratios, i.e., we = max{0, log(pe

1−pe
)}, ∀e ∈ G. Moreover,472

Problem 2 is equivalent to the edge ID problem with the choice of weights we = − log(1 − pe),473

∀e ∈ G. That is, an instance of Problems 1 and 2 can be reduced to an instance of the edge ID474

problem in polynomial time, and vice versa.475

Proof. Problem 1. First consider an arbitrary graph G1 ∈ [G]Id(Q[Y]) such that G1 has an edge e with476

pe < 1/2. Let G2 denote the graph G1 after removing e. Proposition 1 implies that G2 ∈ [G]Id(Q[Y]).477

According to Equation 1, we have P (G2) = 1−pe

pe
P (G1) > P (G1) (since pe < 1/2). As a result,478

the solution G∗ to Problem 1 (Eq. 2) has no edges with probability less than 1/2. We can therefore479

rewrite Problem 1 as:480

G∗ := argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs) = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs) s.t. ∀e ∈ Gs : pe ≥
1

2
.

Or equivalently, we can always assume that we start with a graph G that has no edges with probability481

less than 1/2, as otherwise we can remove all of those edges and the problem does not change. This482

indeed is equivalent to choosing weight (cost) 0 for those edges in the equivalent edge ID problem.483

Now assuming that the edges have probability at least 1/2,484

G∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

log(P (Gs))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

log(
∏
e∈Gs

pe
∏
e/∈Gs

(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(pe) +
∑
e/∈Gs

log(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(pe) +
∑
e/∈Gs

log(1− pe)) +
∑
e∈Gs

log(1− pe))−
∑
e∈Gs

log(1− pe))

Since
∑

e/∈Gs
log(1− pe)) +

∑
e∈Gs

log(1− pe)) is a constant value that does not depend on Gs, it485

can be ignored in the maximization and we have:486

G∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(pe)−
∑
e∈Gs

log(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(
pe

1− pe)
)

= argmin
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e/∈Gs

log(
pe

1− pe)
).

From the formulation above, it is clear that if we assign the weight we = log(pe

1−pe
) to each edge487

e ∈ EG , we will have an instance of the edge ID problem. Note that for edges with probability higher488

than 1/2, log(pe

1−pe
) ≥ 0, and this assignment of edge weights satisfies the positivity requirement.489

For the opposite direction, note that the procedure explained above is reversible by the choice of490

probabilities pe =
exp (we)

1+exp (we)
, which is a value between 1/2 and 1.491

Problem 2. First note that under Assumption 1, for any graph Gs,492 ∑
Ĝ⊆Gs

P (Ĝ) =
∏
e/∈Gs

(1− pe)[
∑

Ê⊆EGs

∏
e∈Ê

pe
∏
e/∈Ê

(1− pe)] =
∏
e/∈Gs

(1− pe).

13

This is because the inner summation goes over all the possible subsets of EGs , and the summation493

adds up to 1. Therefore, we can rewrite Problem 2 (Eq. 3)as494

H∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
Ĝ⊆Gs

P (Ĝ)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∏
e/∈Gs

(1− pe)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

log(
∏
e/∈Gs

(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e/∈Gs

log(1− pe)

= argmin
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e/∈Gs

− log(1− pe).

With the same reasoning as before, assigning the weights we = − log(1− pe) to each edge e ∈ EG ,495

we end up with an instance of the edge ID problem. Note that again 0 ≤ − log(1 − pe) ≤ ∞.496

It is noteworthy that this procedure is also reversible with the choice of edge probabilities pe =497

1 − exp (−we), which reduces the edge ID problem to an instance of Problem 2. Again note that498

0 ≤ 1− exp (−we) ≤ 1 for any non-negative we.499

A.1 Reduction from MCIP to edge ID500

Theorem 1. The edge ID problem is NP-hard.501

To prove Theorem 1, we first present a polynomial-time reduction from MCIP to the edge ID problem.502

It has been shown that the minimum vertex cover problem can be reduced to MCIP in polynomial503

time [1]. Combining the two reductions, we show that there exists a polynomial-time redcution from504

the minimum vertex cover problem to the edge ID problem. Since the minimum vertex cover problem505

is known to be NP-hard [11], it follows that the edge ID problem is also NP-hard.506

We propose the following reduction from MCIP to the edge ID problem. Assume we want to solve507

MCIP given ADMG G = (V G , EG
d , E

G
b), query Q[Y], and the intervention costs C(v) for v ∈ V G .508

We construct a graph, denoted byH = T1(G, Y), through the following steps.509

a. For every vertex x ∈ V G \ Y , add two vertices x1, x2 to V H.510

b. For any bidirected edge {x, z} ∈ EG
b where x ∈ V G \ Y and z ∈ V G , add the bidirected edge511

{x2, z2} to EH
b .512

c. For any directed edge (x, z) ∈ EG
d where x ∈ V G \Y and z ∈ V G , add the directed edge (x1, z1)513

to EH
d .514

d. For any bidirected edge {y1, y2} ∈ EG
b where y1, y2 ∈ Y , add the bidirected edge {y1, y2} to515

EH
b .516

e. For every x1, x2 ∈ V G \Y , draw the two edges {x1, x2} ∈ EH
b and (x2, x1) ∈ EH

d . Furthermore,517

the weight of {x1, x2} is C(x).518

f. The costs of the all other edges inH are assigned to be infinite.519

With abuse of notation, for any vertex x ∈ V G \ Y , we define T1(x) = {x2, x1} ∈ EH
b , where520

{x2, x1} is the bidirected edge inH that corresponds to x in G, and inherits the same weight (cost).521

Example 2. Consider graph G in Figure 5a. Vertices x and z are mapped to x1, x2, and z1, z2,522

respectively. Both a directed and a bidirected edge are drawn between these pairs. The bidirected523

edge {x1, x2} is assigned the weight C(x) = cx, and the bidirected edge {z1, z2} is assigned the524

weight C(z) = cz . Infinite weights are assigned to the rest of the edges inH (Figure 5b).525

14

x
cx

z cz

y1 y2

(a) The model G with costs
on each vertex

x1

z1

y1 y2

x2

z2

∞
∞

∞

cx

cz
∞

∞∞

∞

(b) The model G with costs
on each edge

Figure 5: Reduction of MCIP to edge ID

Proposition 3. Suppose G′ is an ADMG, Y ⊆ V G′
is a set of its vertices such that Y is a district526

in G′[Y], andH′ = T1(G′, Y). Consider X ⊆ V G′ \ Y as an arbitrary subset of vertices of G′, and527

define G = G′[V G′ \X]. Let E′′
b = {e ∈ EH′

b |∃v ∈ X, e = T1(v)} and define EH
b = EH′

b \E′′
b . Let528

H be the edge-induced subgraph ofH′ defined asH = (V H′
, EH

d , EH
b). Q[Y] is identifiable in G if529

and only if Q[Y] is identifiable inH.530

Proof. We prove the contrapositive, i.e., Q[Y] is not identifiable in G iff Q[Y] is not identifiable in531

H. Note that by construction, Y is a district in both G[Y] andH[Y]. That is, it suffices to show that532

there exists a hedge formed for Q[Y] in G iff there exists a hedge formed for Q[Y] inH.533

To this end, we first prove the following claim. Let W ∈ V H form a hedge for Q[Y]. If x1 ∈W for534

some x ∈ V G′
, then x2 ∈W and vice versa. That is, the two vertices x1 and x2 corresponding to the535

same vertex x in V G′
appear only simultaneously in any hedge. To see this, note that by construction,536

x1 is the only child of x2. By definition of hedge, if x2 ∈W , then it has a directed path to Y within537

H[W], and this path can only go through x1. For the other direction, note that x1 has only one538

bidirected edge, which is with x2. Again, by definition of hedge, if x1 ∈W , then it has a bidirected539

path to Y withinH[W], and this path can only go through x2. Hence, in the sequel, when there is a540

hedge W formed for Q[Y] inH, we will without loss of generality assume that there exists a set of541

variables Z ⊆ V G′
such that W = Z1 ∪ Z2 ∪ Y , where Z1 = {z1|z ∈ Z} and Z2 = {z2|z ∈ Z}.542

If part. Let W = Z1 ∪ Z2 ∪ Y form a hedge for Q[Y] in H. First note that since none of the543

bidirected edges between Z1 and Z2 are removed inH, by construction, all vertices Z are present544

in G, i.e., Z ⊆ V G . Now we show that Z ∪ Y forms a hedge for Q[Y] in G. To this end, we prove545

G[Z ∪ Y] is a district and Z ∪ Y = AncG[Z∪Y](Y). First note that any vertex in Z1 has only one546

bidirected edge to a vertex in Z2. That is, if we consider the edge-induced subgraph ofH[W] over547

its bidirected edges, vertices of Z1 are leaf nodes. As a result, Z2 ∪ Y must be connected in this548

graph. That is, Z2 ∪ Y is a district inH[Z2 ∪ Y]. This implies by construction ofH that G[Z ∪ Y]549

is a single district. With a similar reasoning, note that vertices in Z2 have no parents. As result,550

Z1 ∪ Y = AncH[Z1∪Y](Y) (since the directed paths cannot go through Z2). Again, by construction,551

the edge-induced subgraph of G[Z ∪ Y] over its directed edges is a copy ofH[Z1 ∪ Y]. As a result,552

Z ∪ Y = AncG[Z∪Y](Y).553

Only if part. Let Z ∪ Y form a hedge for Q[Y] in G, where Z ⊆ V G \ Y . Define Z1 = {z1|z ∈ Z}554

and Z2 = {z2|z ∈ Z}. We show that Z1 ∪Z2 ∪ Y forms a hedge for Q[Y] inH. First, by definition555

of hedge, AncG[Z∪Y](Y) = Z ∪ Y . Since the edge-induced subgraph of H[Z1 ∪ Y] is a copy of556

G[Z ∪ Y] by construction, we know AncG[Z1∪Y](Y) = Z1 ∪ Y . Further, each vertex z2 ∈ Z2 is a557

parent of z1 ∈ Z1. As a result, AncG[Z1∪Z2∪Y](Y) = Z1 ∪ Z2 ∪ Y . Now it suffices to show that558

Z1 ∪Z2 ∪ Y is a district inH[Z1 ∪Z2 ∪ Y]. By definition of hedge, Z ∪ Y is a district in G[Z ∪ Y].559

By construction of H, exactly the same bidirected edges (and therefore bidirected paths) exist in560

H[Z2 ∪ Y]. Therefore, Z2 ∪ Y is a district in H[Z2 ∪ Y]. Now note that by construction of H′,561

each vertex z1 ∈ Z1 has a bidirected edge to z2 ∈ Z2. And by definition of G and H, since the562

vertices Z exist in G, none of these edges are removed inH. As a result, Z1 ∪ Z2 ∪ Y is a district in563

H[Z1 ∪ Z2 ∪ Y], which completes the proof.564

565

15

Proof of Theorem 1. A polynomial-time reduction from MCIP to the edge ID problem follows566

immediately from Proposition 3. MCIP is shown to be NP-hard [1]. As a result, the edge ID problem567

is Np-hard.568

A.2 Reduction from edge ID to MCIP569

Proposition 2. There exists a polynomial-time reduction from edge ID to MCIP and vice versa.570

To prove Proposition 2, we begin with presenting a transformation T2(G, Y) which is in the core of571

reduction from edge ID to MCIP.572

Suppose we want to solve the edge ID problem given ADMG G = (V G , EG
d , E

G
b), query Q[Y], and573

edge weights WG = {we|e ∈ G}. Let X = V G \ Y denote the set of vertices of G excluding Y .574

We define the transformation (H, Y mcip) = T2(G, Y) whereH = (V H, EH
d , EH

b) is an ADMG and575

Y mcip ⊆ V H as follows. Note that V H will consist of two disjoint set of vertices, namely V H
top and576

V H
bot, i.e., V H = V H

top ∪ V H
bot.577

a. Begin with V H
top = V H

bot = ∅, Y mcip = ∅. For any vertex v ∈ V G , add a vertex v to V H
top with578

cost C(v) =∞. If v ∈ Y , add v to Y mcip.579

b. For any directed edge (vi, vj) ∈ EG
d with weight wd

ij in G, add a new vertex vdij to V H
top, with cost580

C(vdij) = wd
ij , where581

vdij =

xd
ij if vi, vj ∈ X,

zdij if vi ∈ Y or vj ∈ Y,

ydij if both vi, vj ∈ Y.

Draw directed edges (vi, vdij) and (vdij , vj). Further, draw a bidirected edge between vi and vdij .582

c. For any bidirected edge {xi, xj} ∈ EG
b with weight wb

ij , add a new vertex, xb
ij to V H

top with cost583

C(xb
ij) = wb

ij . Add two bidirected edges {xi, x
b
ij} and {xj , x

b
ij}. Further, draw two directed584

edges (xb
ij , xi) and (xb

ij , xj) inH.585

d. For any bidirected edge {xi, yj} with weight wb
ij , add a new vertex zbij to V H

top with cost C(zbij) =586

wb
ij . Draw bidirected edges {zbij , xi} and {zbij , yj}. Then draw a directed edge from zbij to xi.587

e. For any bidirected edge between {yi, yj} ∈ EG
b with weight wb

ij in G, add a new vertex, ybij to588

V H
top with cost C(ybij) = wb

ij . Draw bidirected edges {ybij , yi} and {ybij , yj}. Further, for any589

x ∈ X , draw a directed edge from ybij to x.590

f. Let y1 ≺ ... ≺ yk denote a topological ordering among vertices of Y . For every pair {yi, yj}591

of vertices of Y , where i < j, add vertices yiji , yiji+1, . . . , y
ij
j to V H

bot. Add yijj to Y mcip. Draw592

the directed edges (yk, y
ij
k) for every i ≤ k ≤ j. Draw the directed edges (yijk , yiji) for every593

i < k < j, and the directed edge (yiji , yijj). Draw a bidirected edge between yj and yiji . Further,594

for any bidirected edge {yk, yl} ∈ EG
b where i ≤ k, l ≤ j, add a new vertex yijkl to V H

bot, draw595

two bidirected edges {yijkl, y
ij
k } and {yijkl, y

ij
l }, and a directed edge (yijkl, y

b
ij). The costs of the all596

of the vertices in V H
bot are infinite.597

With abuse of notation, for any bidirected edge ebij = {vi, vj} ∈ EG
b and any directed edge edij =598

(vi, vj) ∈ EG
d , we define T2(ebij) = vbij and T2(edij) = vdij , respectively, where vbij , v

d
ij ∈ V H are the599

vertices representing their corresponding edges.600

We will utilize the following results to prove Proposition 2. More precisely, Lemmas 2 through 9 are601

used to prove Proposition 4, which in turn is used to prove Proposition 2.602

Lemma 2. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T (G, Y). Each603

vertex y ∈ Y mcip is a district inH.604

Proof. It suffices to show that for every pair of v1, v2 ∈ Y mcip there is no bidirected edge between605

them inH. Suppose first that v1, v2 ∈ Y . Any bidirected edge between v1 and v2 in G (if it exists)606

16

is removed in step (e) of the transformation, and none of the steps (a) through (f) add a bidirected607

edge between them. Otherwise, at least one of v1, v2, w.l.o.g. v1, is in Y mcip \ Y . Suppose w.l.o.g.608

that v1 = yijj . From step (f) of the transformation T , we know that v1 has bidirected edges only to609

vertices yijkj , where none of them is a member of Y mcip.610

Lemma 3. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T2(G, Y). Suppose611

there is a hedge formed for Q[y] inH, where y ∈ Y . Let H denote the set of vertices of this hedge. H612

does not include any of the vertices added in the step (f) of the transformation. That is, H ∩ V H
bot = ∅.613

Proof. Define V1 = {yijkl ∈ V H
bot,∀i, j, k, l}, and V2 = V H

bot \ V1. By construction ofH, the vertices614

of V2 have directed edges only to vertices in V2. Therefore, for each vertex v ∈ V2, we have615

v /∈ AncH[H](y). As a result, V2 ∩ H = ∅, since by definition of hedge, any vertex of H is an616

ancestor of y in H[H]. Now, consider an arbitrary vertex v ∈ V1. By construction of H, if there617

exists a bidirected edge {v, v′} ∈ EH
b , we must have that v′ ∈ V2. Therefore, if v ∈ H , there must618

be at least one vertex v′ ∈ V2 ∩H . Since we proved V2 ∩H = ∅, v cannot be in H . Consequently,619

V1 ∩H = ∅.620

621

Lemma 4. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T (G, Y). Suppose622

there is a hedge formed for Q[yijj] inH, where yi, yj ∈ Y and yijj is the vertex corresponding to the623

pair (yi, yj) added in step (f) of the transform T . Let H denote the set of vertices of this hedge. If624

v ∈ H ∩ V H
bot, then v has the superscript ij, that is, v is either one of the vertices yijk , or one of the625

vertices yijkl, where i ≤ k, l ≤ j. In the latter case, ybkl ∈ H .626

Proof. Define V1 = {ymn
kl ∈ V H

bot,∀m,n, k, l}, and V2 = V H
bot \ V1. Suppose V ∗

1 = {vijkl ∈627

V H
bot,∀k, l} and V ∗

2 = {vijk ∈ V H
bot,∀k}. Also define V ′

1 = V1 \ V ∗
1 , V ′

2 = V2 \ V ∗
2 . For the first628

part of the claim, it suffices to show that V ′
1 ∩ H = ∅, V ′

2 ∩ H = ∅. By construction of H, the629

vertices of V
′

2 do not have any child out of V
′

2 . Therefore, V ′
2 ∩ AncH[H](y

ij
j) = ∅. This implies that630

V
′

2 ∩H = ∅. Now let vi
′
j
′

1 be an arbitrary vertex in V
′

1 . By construction ofH, vi
′
j
′

1 has bidirected631

edges only to vertices of V ′
2 . This implies that if vi

′
j
′

1 ∈ H , there must be at least one vertex of V ′
2632

in H which is in contradiction with V ′
2 ∩H = ∅. Therefore, vi

′
j
′

1 /∈ H . Since vi
′
j
′

1 is an arbitrary633

vertex in V ′
1 , we conclude V ′

1 ∩H = ∅.634

Now, we prove that if v ∈ H is one of the vertices yijkl, we have ybkl ∈ H . Since yijkl ∈ H , there exists635

a directed path from yijkl to yijj inH[H]. Since ybkl is the only child of yijkl, the aforementioned path636

passes through ybkl. Therefore, ybkl ∈ H .637

638

Lemma 5. Suppose G′ = (V G′
, EG′

d , EG′

b) is an ADMG, Y ⊆ V G′
is a set of its vertices, and639

(H′, Y mcip) = T (G′, Y). Let E′′
d ⊆ EG′

d and E′′
b ⊆ EG′

b be arbitrary edges of G, and define640

EG
d = EG′

d \ E′′
d , EG

b = EG′

b \ E′′
b . Define G = (V G , EG

d , E
G
b) and H = H′[V H′ \ V ′], where641

V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪ E′′
d , v = T2(e)}. Suppose there is a hedge formed642

for Q[yijj] in H for some i, j. Let H denote the set of vertices of this hedge in H. The set of643

vertices Y ∗ = {yk|yijk ∈ H} is a district in G[Y]. Moreover, Htop = AncH[Htop](Y
∗), where644

Htop = H ∩ V H
top.645

Proof. First we prove that Y ∗ is a district in G[Y]. Consider an arbitrary vertex yijk in H . By definition646

of hedge, there exists a bidirected path, p1, between yijk and yijj inH[H]. Let Y ij denotes the set of647

vertices in H such that their superscript is ij. Lemma 4 implies that H ⊆ V H
top ∪ Y ij . Furthermore,648

by construction ofH, there is only one bidirected edge between Y ij and H \ Y ij , which is {yj , yiji }.649

Therefore, all of the vertices on the path p1 are in Y ij . Now, we define Y
′

1 = {yk|yijk ∈ p1} and650

17

Y ′
2 = {ybkl|y

ij
kl ∈ p1}, i.e., the V H

top counterparts of the vertices in p1. Since the vertices on p1651

are in H , Y ′
1 ⊆ Y ∗. From Lemma 4, we know that if yijkl ∈ H , then, ybkl ∈ H . It implies that652

Y
′

2 ⊆ H . As a result, Y ′
1 and Y ′

2 are both vertices ofH. Now if we replace all the vertices in p1 with653

their corresponding counterpart in Y ′
1 ∪ Y ′

2 , we arrive at a bidirected path p2 between yk and yj in654

H[Y ′
1 ∪ Y ′

2] (as by construction the same edges exist in V H
top). By definition of G andH, if a vertex655

ybkl exists inH, the corresponding edge {yk, yl} exists in G. As a result, a bidirected path between yk656

and yl exists in G[Y ′
1]. Noting that yk is an arbitrary vertex in Y ∗ and Y ′

1 ⊆ Y ∗, this implies that all657

of the vertices of Y ∗ are in the same district as yj in G[Y ∗], which completes the proof.658

Next, we prove that Htop = AncH[Htop](Y
∗). To this end, it suffices to show that there is a directed659

path form an arbitrary vertex v ∈ Htop to Y ∗ in H[Htop]. Since H forms a hedge for Q[yijj] in H,660

there exists a directed path from v to yijj inH[H]. This path must go through the only parent of yijj ,661

which is yiji . Then, the last vertex on the path is one of the parents of yiji . If this parent is yi, we are662

done as we have a directed path from v to yi, where yi ∈ Y ∗ and it has no ancestors in H \Htop.663

Otherwise, let this parent be yijk for some i < k < j. Now the last vertex on the path before yijk must664

be yk, which is the only parent of yijk . Note that by definition of Y ∗, yk ∈ Y ∗. Therefore, v has a665

directed path to Y ∗ inH[Htop].666

Lemma 6. Suppose G = (V G , EG
d , E

G
b) is an ADMG, Y is a set of its vertices, and (H, Y mcip) =667

T2(G, Y). Suppose there is a hedge formed for Q[y] inH for some y ∈ Y mcip. Let H denote the set668

of vertices of this hedge. Then H ∩X ̸= ∅, where X = V G \ Y .669

Proof. Since H forms a hedge for Q[y] in H, there exists a vertex h ∈ H such that {y, h} ∈ EH
b .670

There are two possibilities for y ∈ Y mcip:671

• y = yi ∈ Y . From Lemma 4 we have h /∈ V H
bot. Therefore, by construction ofH, h = ybij672

for some j.673

• y = yijj ∈ V H
bot. By construction ofH, h = yijkj for some k. Vertex h must have a directed674

path to y in H by definition of hedge, which must go through the only child of h, i.e., ybkl.675

In both cases, we showed that there exists a vertex v = ybij ∈ H for some i, j. By definition of hedge,676

there is a bidirected path, p, from v to y inH because v ∈ AncH(y). Since all of the children of v are677

in X , there is at least one vertex in X on path p. Therefore, H includes at least one vertex of X .678

679

Lemma 7. [Inverse transform preserves hedges.] Suppose G′ = (V G′
, EG′

d , EG′

b) is an ADMG,680

Y ⊆ V G′
is a set of its vertices, and (H′, Y mcip) = T2(G′, Y). Let E′′

d ⊆ EG′

d and E′′
b ⊆ EG′

b be681

arbitrary edges of G, and define EG
d = EG′

d \ E′′
d , EG

b = EG′

b \ E′′
b . Define G = (V G , EG

d , E
G
b)682

and H = H′[V H′ \ V ′], where V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪ E′′
d , v = T2(e)}. Let683

W ⊆ V H
top be a set of vertices ofH. Let Ws ⊆W ∩ V G be a subset of W such that Ws are vertices684

of G as well. Consider the inverse transform of H[W] in the ADMG G, i.e., for any v = vbij ∈ W ,685

delete v and all edges incident to it and draw a bidirected edge between vi and vj , and for any686

v = vdij , delete v and all edges incident to it and draw a directed edge from vi to vj . Let the resulting687

subgraph (which is a subgraph of G) be denoted by G[W−1] with the set of vertices W−1 ⊆ V G . If688

AncH[W](Ws) = W , then AncG[W−1](Ws) = W−1. Moreover, if W is a district in H[W], then689

W−1 is a district in G[W−1].690

Proof. First, we show that if AncH[W](Ws) = W , then AncG[W−1](Ws) = W−1. Let v be an691

arbitrary vertex in W−1. Vertex v is in W because W−1 ⊆W . Since v ∈W and v ∈ AncH[W](Ws),692

v has a directed path v → . . . vi → vdij → vj · · · → w, denoted by l, to a vertex w ∈ Ws in H[W].693

For each vertex vdij on path l, we have vi, vj ∈ G[W−1] and since vdij ∈ V H, by definition of G694

and H, there exists (vi, vj) ∈ EG
d s.t. i ≺ j, and consequently, (vi, vj) ∈ E

G[W−1]
d . Therefore,695

18

there exists a directed path from v to w in G[W−1]. Noting that v is an arbitrary vertex in W−1, we696

conclude that AncG[W−1](Ws) = W−1.697

Now, we prove that if W is a district in H[W], then W−1 is a district in G[W−1]. Consider two698

vertices v1, v2 ∈ W−1. Since v1, v2 ∈ W and W is a district, there exists a bidirected path699

v1 ↔ . . . vi ↔ vbij ↔ vj · · · ↔ v2, denoted by p, between v1 and v2 in H[W]. Each vertex vbij on700

path p is in H and vi, vj ∈ G[W−1]. By definition of G and H, we have {vi, vj} ∈ EG
b . Therefore,701

{vi, vj} ∈ E
G[W−1]
b . Then, there is a bidirected path between v1 and v2 in G[W−1]. Since v1 and v2702

are two arbitrary vertices in W−1, it implies that W−1 is a district in G[W−1].703

Lemma 8. [Transform preserves hedges.] Suppose G′ = (V G′
, EG′

d , EG′

b) is an ADMG, Y ⊆ V G′
is704

a set of its vertices, and (H′, Y mcip) = T2(G′, Y). Let E′′
d ⊆ EG′

d and E′′
b ⊆ EG′

b be arbitrary edges705

of G, and define EG
d = EG′

d \E′′
d , EG

b = EG′

b \E′′
b . Define G = (V G , EG

d , E
G
b) andH = H′[V H′ \V ′],706

where V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪E′′
d , v = T2(e)}. Let W ⊆ V G be a set of vertices707

of G such that W \ Y ̸= ∅. Let Ws ⊆ W be a subset of W . Let the transformed graph of G[W]708

under T2 be denoted by H′′, where H′′ ⊆ H. Define W ∗ = V H′′

top . If AncG[W](Ws) = W , then709

AncH[W∗](Ws) = W ∗. Moreover, if W is a district in G[W], then W ∗ is a district inH[W ∗].710

Proof. First, we prove that if AncG[W](Ws) = W , then AncH[W∗](Ws) = W ∗. Take an arbitrary711

vertex v ∈W ∗. There are two possibilities for v:712

• v ∈W . That is, vertex v is in G[W].713

• v /∈ W . This implies that v represents an edge e between two vertices vi and vj in G[W].714

There are three possibilities for e:715

– e = (vi, vj). By construction ofH, v is parent of vj inH[W ∗], where vj is a vertex of716

G[W].717

– e = {vi, vj} and vi ∈ X or vj ∈ X . In this case, v is parent of at least one of vi and718

vj inH[W ∗], w.l.o.g. vi, where vi is a vertex of G[W].719

– e = {vi, vj} and vi, vj ∈ Y . By construction ofH, v is parent of all vertices in V G \Y .720

Since W \ Y ̸= ∅, there exists a vertex x in G[W] such that v is a parent of x.721

In all three cases above, we proved that there exists a vertex x ∈W such that v is a parent722

of x.723

Therefore, we showed that any vertex v ∈W ∗ either is itself a vertex in W or is a parent of a vertex724

in W . As a result, it suffices to show that every w ∈ W has a directed path to Ws in H[W ∗]. We725

know that w has a directed path to Ws in G[W] such as p. Take an arbitrary pair of consecutive726

vertices on this path, such as v1 and v2. The directed edge (v1, v2) exists in G[W]. As a result, the727

directed path v1 → vd12 → v2 exists inH[W ∗]. Starting at w and repeating this argument for every728

pair of consecutive vertices on p, we conclude that there exists a directed path from w to Ws, which729

completes the proof.730

Now, we show that if W is a district in G[W], then W ∗ is a district in H[W ∗]. Take an arbitrary731

vertex v ∈W ∗. There are two possibilities for v:732

• v ∈W . That is, v is a vertex in G[W].733

• v /∈W . In this case, at least one of the vertices v represents an edge e between two vertices734

vi and vj in G[W]. By construction ofH, v is connected to at least one of vi or vj , w.l.o.g.735

vi, by a bidirected edge, where vi ∈W .736

We showed that any vertex v ∈ W ∗ either is in W , or is connected to a vertex in W through a737

bidirected edge. Therefore, it suffices to show that for any two vertices w1, w2 ∈ W there exists738

a bidirected path between w1 and w2 in H[W ∗]. Since w1, w2 ∈ W , there is a bidirected path, p,739

between w1 and w2 in G[W]. Take an arbitrary pair of consecutive vertices on this path, such as v1740

and v2. The bidirected edge {v1, v2} exists in G[W]. As a result, the bidirected path v1 ↔ vb12 ↔ v2741

19

exists inH[W ∗]. Starting at w and repeating this argument for every pair of consecutive vertices on742

p, we conclude that there exists a bidirected path from w1 to w2, which completes the proof.743

Lemma 9. Suppose G is an ADMG, and Y is a subset of its vertices. Also let Y ∗ be a district in744

G[Y]. If the set of vertices H form a hedge for Q[Y ∗], then H \ Y ̸= ∅.745

Proof. Assume by contradiction H \ Y = ∅, i.e., H ⊆ Y . By definition of hedge, we know746

H \ Y ∗ ̸= ∅. Take an arbitrary vertex v ∈ H \ Y ∗. Furthermore, v ∈ Y \ Y ∗ because H ⊆ Y . Since747

H forms a hedge for Q[Y ∗], H is a district in G[H]. Therefore, there exists a bidirected path between748

v and a vertex y∗ ∈ Y ∗ in Q[Y] which is in contradiction with the assumption that Y ∗ is a district in749

G[Y].750

Proposition 4. Suppose G′ = (V G′
, EG′

d , EG′

b) is an ADMG, Y ⊆ V G′
is a set of its vertices, and751

(H′, Y mcip) = T2(G′, Y). Let E′′
d ⊆ EG′

d and E′′
b ⊆ EG′

b be arbitrary edges of G, and define752

EG
d = EG′

d \E′′
d , EG

b = EG′

b \E′′
b . Q[Y] is identifiable in G = (V G , EG

d , E
G
b) if and only if Q[Y mcip]753

is identifiable in H = H′[V H′ \ V ′], where V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪ E′′
d , v =754

T2(e)}.755

Proof. We prove the contrapositive, i.e., Q[Y] is not identifiable in G iff Q[Y mcip] is not identifiable756

inH.757

If part. Suppose Q[Y mcip] is not identifiable inH. That is, there exists a hedge formed for Q[Y mcip]758

inH. From Lemma 2, this hedge is formed for Q[y′] for some y′ ∈ Y mcip. Denote the set of vertices759

of this hedge by H . We consider two possibilities separately:760

• y′ = yi, where yi ∈ Y . From Lemma 3, H ⊆ V H
top. Taking W = H in Lemma 7, W−1 is a761

set of vertices in G such that AncG[W−1](y) = W−1, and W−1 is a district in G. Now take762

Y ∗ to be the district of G[Y] that includes yi. By definition of hedge, G[W−1 ∪ Y ∗] forms a763

hedge for Q[Y ∗] in G. Note that from Lemma 6, W−1 \ Y ̸= ∅. As a result, Q[Y] is not764

identifiable in G.765

• y′ = yijj , where yi, yj ∈ Y and y′ is one of the vertices added to H in the last step of the766

transformation T (step (f)). Define the set Y ∗ = {yk|yijk ∈ H}. From Lemma 5, Y ∗ is a767

district in G, and therefore a district in G[Y]. As a result, it suffices to show that there exists768

a hedge formed for Q[Y ∗] in G. Now define Htop = H ∩ V H
top. By definition of hedge,769

H is a district in H[H], i.e., it is connected over its bidirected edges. By construction of770

H, there is only one bidirected edge between the vertices in Htop and H \Htop, which is771

the bidirected edge between yj and yiji . Therefore, this edge is a cut set that partitions the772

graphH[H] into two connected componentsH[Htop] andH[H \Htop]. That is,H[Htop]773

is connected over its bidirected edges and therefore Htop is a district inH[Htop]. Further,774

from Lemma 5, Htop = AncH[Htop](Y
∗). Noting that Htop ⊆ V H

top, taking W = Htop in775

Lemma 7, W−1 is a district in G and AncG[W−1](Y
∗) = W−1. Note that from Lemma 6,776

W−1 \ Y ̸= ∅. Therefore, the set of vertices W−1 form a hedge for Q[Y ∗] in G. Hence,777

Q[Y] is not identifiable in G.778

Only if part. Suppose Q[Y] is not identifiable in G. It implies that there exists a district of G[Y] such779

as Y ∗ such that there is a hedge formed for Q[Y ∗] in G. Let H denote the set of vertices of this hedge.780

From Lemma 9, H \ Y ̸= ∅. Define W ∗ as in Lemma 8, that is the transform T (G[H], Y ∗) without781

step (f) (only on the vertices of V H
top). Note that Y ∗ ⊆ W ∗. We consider the following two cases782

separately:783

• Y ∗ = {y}, that is, Y ∗ is a single vertex. From Lemma 8, W ∗ is a district in H[W ∗], and784

AncH[W∗](y) = W ∗. By definition of hedge, the vertices W ∗ form a hedge for Q[y] inH.785

Note that y ∈ Y mcip, and from Lemma 2 it is a district ofH[Y mcip]. As a result, Q[Y mcip]786

is not identifiable inH.787

20

• |Y ∗| ≥ 2. Let yi and yj be the first and the last vertices of Y ∗ in the topological order. Define788

Y ij∗ = {yijk |yk ∈ Y ∗} ∪ {yijkl|yk, yl ∈ Y ∗}. Y ij∗ are the vertices in V H
bot with superscript789

ij corresponding to the vertices in Y ∗. Note that yiji , yijj ∈ Y ij∗, since yi, yj ∈ Y ∗. Since790

yijj ∈ Y mcip and from Lemma 2 yijj is a district inH[Y mcip], it suffices to show that there791

is a hedge formed for yijj inH. We show that the vertices W = W ∗ ∪ Y ij∗ form a hedge792

for yijj inH. From Lemma 8, AncH[W∗](Y
∗) = W ∗, that is, all of the vertices in W ∗ are793

ancestors of Y ∗ in H[W ∗], and therefore in H[W]. Also, the vertices yijkl in Y ij∗ have a794

direct edge to their corresponding vertex in W ∗, i.e., ybkl, and therefore are ancestors of795

Y ∗ in H[W] as well. Further, each vertex in Y ∗ such as yk is a parent of yijk , which is796

in turn a parent of yiji (or is yiji itself if k = i.) Finally, yiji has a directed edge to yijj by797

construction. As a result, all of the vertices W have a direct path to yijj in H[W]. That is,798

AncH[W](y
ij
j) = W . It now remains to show that W is a district inH[W]. From Lemma 8,799

W ∗ is a district in H[W ∗]. As a result, the vertices W ∗ are connected through bidirected800

edges in H[W]. There is a bidirected edge between yj and yiji by construction of H. It801

suffices to show that for any v ∈ Y ij∗, there exists a bidirected path between v and yiji in802

H[W]. A vertex yijkl ∈ Y ij∗ (with double subscript, which are due to the bidirected edges803

among Y ∗) has bidirected edges to yijk and yijl , which are both in Y ij∗ by definition. Now804

take an arbitrary vertex yijk ∈ Y ij∗ (with single subscript, due to vertices in Y ∗). We know805

yk ∈ Y ∗, as yijk ∈ Y ij∗, by definition of Y ij∗. Y ∗ is a district in G[Y ∗]. That is, there exists806

a bidirected path from yk to yi in G[Y ∗]. From Lemma 8 by taking W = Y ∗, there is a807

bidirected path p from yk to yi inH[Y ∗ ∪ {ylm|yl, ym ∈ Y ∗}]. By construction ofH, if we808

replace each vertex v on p by vij , we achieve a bidirected path p′ with vertices in Y ij∗ from809

yijk to yiji , which completes the proof.810

811

Proof of Proposition 2. The reduction from the edge ID problem to MCIP was shown through the812

proof of Proposition 4. The opposite direction is an immediate corollary of Proposition 3.813

Corollary 2. The edge ID problem and MCIP are equivalent.814

B Maximal Hedge815

Algorithm 3 Maximal Hedge.

1: function MH(G, Y)
2: Initialize M ← ∅
3: for Yi in districts of G[Y] do
4: M ←M ∪HHull(G, Yi)

5: return G[M]

1: function HHULL(G, Yi)
2: Initialize H ← V G

3: while True do
4: C ← connected component (district) of Yi via bidirected edges in G[H]
5: A← ancestors of Yi in G[C]
6: if C ̸= A then
7: H ← A
8: else
9: break

10: return H

Herein, we present the algorithm for recovering the maximal hedge formed for Q[Y] in a given816

ADMG G (see Definition 5). Maximal hedge was initially defined in [1] under the name hedge hull.817

21

xz yp q

Figure 6: An example where the expert is aware that there is no causal path from z to y, e.g., because
z ⊥⊥ y with high confidence.

We adopt the same definition, and when G[Y] comprises several districts, we define the maximal818

hedge as the union of the hedge hulls formed for each district of G[Y]. As a result, the complete819

procedure of recovering the maximal hedge for a query Q[Y], summarized in Algorithm 3, finds the820

maximal hedge formed for each district Yi of G[Y] and returns the union of them. This procedure is821

used as a subroutine MH in Algorithm 1. The function HHull is in fact Algorithm 1 borrowed from822

[1]. This function is proven to recover the union of all hedges formed for Yi, where Yi is one of the823

districts of G[Y] (see Lemma 6 of [1]).824

C Generalizing Assumption 1825

Lemma 1 states the equivalence of Problems 1 and 2 with the edge ID problem under Assumption 1.826

However, as mentioned in the main text, this equivalence holds in the more general setting where we827

allow for perfect negative correlations among edges. As an example, consider the graph of Figure828

6. Suppose that the performed statistical independence tests show that the two variables z and y are829

independent of each other with high confidence. As a result, the expert believes that the edges (z, x)830

and (x, y) must not exist simultaneously, as otherwise the causal path from z to y would make them831

dependent. In such cases, the belief of the expert can be modeled as probabilities p and q assigned832

to the existence of the edges (z, x) and (x, y), respectively, as well as a perfect negative correlation833

between them.834

Note that the aforementioned constraint, i.e., that the edges do not exist simultaneously, can be835

specified for any number of edges, not limited to two edges only. For instance, the expert might836

believe at least one of the edges along a causal path of length n must not exist in the true ADMG837

describing the system. This belief can be modeled as an extra constraint in the optimization of838

Equations 2 and 3. We show that with the specification of such negative correlations, Problems 1 and839

2 can still be cast as an instance of the edge ID problem. Therefore, the results presented in this work840

are valid in this setting as well.841

Assumption 2. The edges in G are assigned probabilities pe,∀e ∈ G, and perfect negative corre-842

lations are defined among subsets of edges. More precisely, for any subset E ⊆ EG
d ∪ EG

b , there is843

either 1) no constraint (mutually independent), or 2) the constraint that at least one of the edges in E844

must not exist in the true ADMG (perfect negative correlation).845

Proposition 5. Under Assumption 2, there exists a reduction from Problems 1 and 2 to the edge ID846

problem and vice versa with the time complexity in the order of O(|C| · |V G |+ |EG
d ∪ EG

b |), where847

C is the set of perfect correlation constraints.848

Proof. First note that we proved the equivalence of Problems 1 and 2 with the edge ID problem849

without the perfect correlation constraints in Lemma 1. As a result, under assumption 2, i.e., by adding850

the perfect correlation constraints, Problems 1 and 2 are equivalent to a modified edge ID problem851

with those constraints. But we claim that there exists and instance of the original unconstrained edge852

ID problem which is equivalent to these problems. To see this, first note that we know from Corollary853

2 that the edge ID problem is equivalent to MCIP. Therefore, it suffices to show that there exists854

an instance of MCIP which is equivalent to the constrained edge ID mentioned above. To this end,855

consider the transform T2(G, Y) introduced in Section A.2. This transformation maps an instance of856

the edge ID problem to an instance of MCIP. Applying this transformation to the constrained edge ID857

problem, we can map the constrained edge ID to an instance of MCIP with extra constraints, with858

transforming the constraints as well. That is, if for instance, there is a perfect negative correlation859

among the edges e1, e2 in G, this constraint is mapped to a negative perfect correlation on the860

corresponding vertices inH, namely T2(e1), T2(e2). In words, this constraint would be that at least861

one of T2(e1) and T2(e2) must be intervened upon. We show that such constraints can be integrated862

into the original definition of MCIP.863

Suppose we have an MCIP problem in ADMG G with query Q[Y], with the extra constraint that864

at least one of the vertices X ⊆ V G must be intervened upon. Consider the example of X =865

22

x1 x2 x3

x′
1 x′

2 x′
3

ŷ

Figure 7: Integrating the perfect negative correlation constraint into MCIP.

{x1, x2, x3} in Figure 7. We build a new ADMG G′ by adding vertices {x′|x ∈ X}, i.e., a new vertex866

corresponding to each vertex in X , along with an auxiliary vertex ŷ to G. We fix a random ordering867

over the vertices of X , and denote the set of vertices of X as x1, ..., xm. We add the directed edges868

(xi, x
′
i) to G′, as well as the bidirected edges {xi, x

′
i}. Further, we draw directed edges (x′

i, x
′
i+1) for869

every 1 ≤ i < m. Finally, we draw the directed edge (x′
m, ŷ) and the bidirected edge {x1, ŷ}. Refer870

to the graph in Figure 7 for an example with X = {x1, x2, x3}. Note that the set X ∪X ′∪{ŷ} forms871

a hedge for Q[ŷ], where X ′ = {x′|x ∈ X} Now it suffices to set the cost of intervention on vertices872

of X ′ to infinity, and consider MCIP for the query Q[Y ∪ {ŷ}] in G′. It is straightforward to see that873

the objective of this problem would be to find the minimum cost intervention for identification of874

Q[Y], with the constraint that at least one of the vertices in X must be intervened on. Note that as875

soon as one vertex in X gets intervened upon, there is no hedge left for Q[ŷ]. Also it is noteworthy876

that adding this structure does not add any new hedges formed for Q[Y], since the structure only877

includes new descendants for X which have no directed paths to Y . Also note that the vertices X ′878

and ŷ are specific to the very constraint corresponding to the set of vertices X . For any constraint, we879

add such a structure to G. The number of vertices (and therefore the time complexity) is at most in880

the order O(|C| · |V G |), where C is the set of constraints.881

882

C.1 Further applications883

The relaxation provided in this Appendix allows the approaches proposed in this work to be applicable884

to a more general set of problems. Herein, we discuss one such application.885

Let us assume we run our algorithm which returns the subgraph with the highest probability, G1.886

However, the probability that G1 is the true causal structure describing the system might be too low.887

In such a case, the researcher might be interested in having a ranking of most probable graphs (for888

instance, the 10 most probable graphs), rather than only one most probable graph. This could be889

helpful for instance, when a unique identification formula is valid in a few of these graphs, or the890

researcher is interested in identifying more than one causal query. The methods discussed in this891

work along with the relaxation proposed in this appendix provide the tools to recover such a ranking892

(of the most probable graphs in which a query is identifiable). To see this, note that based on what893

we proposed in this Appendix, perfect negative correlation constraints can be added to the edge894

ID problem without additional computational cost. So we begin by solving the original problem,895

which yields a graph G1. We then solve it for a second time (i.e., re-run the algorithm), with the only896

difference that we add the perfect negative correlation constraint over the set of all edges of G1 (i.e.,897

we force the algorithm to exclude at least one of the edges of G1.) The solution to this problem (let us898

call it G2) is the highest probability graph among all subgraphs except G1, i.e., it is the second highest899

probability graph in which the query is identifiable. Continuing in this manner, running the algorithm900

n times would give us a ranking of the n highest probability graphs.901

D Heuristic Algorithms902

Algorithm 2 was devised considering the fact that every hedge formed for Q[Y] must include a vertex903

that has a bidirected edge to Y . As mentioned in Section 4.2, an analogous approach, summarized in904

Algorithm 4, uses the fact that any hedge formed for Q[Y] must include a parent of Y .905

23

Let Y ⊆ V G be a set of vertices of G such that G[Y] comprises of only one district. Let Z := {z ∈906

V G |∃ y ∈ Y : (z, y) ∈ EG
d } \ Y denote the set of vertices that have at least one directed edge to a907

vertex in Y , i.e., the parents of Y excluding Y . Any hedge formed for Q[Y] contains at least one908

vertex of Z. As a result, in order to eliminate all the hedges formed for Q[Y], it suffices to ensure that909

none of the vertices in Z appear in the final hedge. To this end, for any z ∈ Z, it suffices to either910

remove all the directed edges between z and Y , or eliminate all the bidirected paths from z to Y .911

The problem of eliminating all bidirected paths from Z to Y can be cast as a minimum cut problem912

between Z and Y in the edge-induced subgraph of G over its bidirected edges. To add the possibility913

of removing the directed edges between Z and Y , we add an auxiliary vertex z∗ to the graph and914

draw a bidirected edge between z∗ and every z ∈ Z with weight w =
∑

y∈Y w(z,y), i.e., the sum of915

the weights of all directed edges between z and Y . Note that z can have directed edges to multiple916

vertices in Y . We then solve the minimum cut problem for z∗ and Y . If an edge between z∗ and917

z ∈ Z is in the solution to this min-cut problem, it translates to removing all the directed edges from918

z to Y in the original problem. Note that we can run the algorithm on the maximal hedge formed for919

Q[Y] in G rather than G itself.920

Algorithm 4 Heuristic algorithm 2.

1: function HEID2(G, Y,WG)
2: G′ ←MH(G, Y)

3: Z ← {z ∈ V G′ |∃y ∈ Y : (z, y) ∈ EG′

d } \ Y
4: H ← The induced subgraph of G′ on its bidirected edges.
5: WH ← {we ∈WG |e ∈ H}
6: V H ← V H ∪ {y∗, z∗}
7: for z ∈ Z do
8: EH ← EH ∪ {z∗, z}
9: WH ←WH ∪ {w{z∗,z} =

∑
y w(z,y)}

10: for y ∈ Y do
11: EH ← EH ∪ {y, y∗}
12: WH ←WH ∪ {w{y,y∗} =∞}
13: E ←MinCut(H,WH, z∗, y∗)
14: return (E,

∑
e∈E we)

E Experiments921

Noting that the synthetic/simulation results in the main paper were for graphs with a log(n)/n sparsity922

constraint, we begin this section by providing a set a results on the simulated graphs without the923

sparsity penalty for comparison. Then, we provide information about the causal discovery algorithm924

used to derive the psychology ‘Psych’ real-world graph. We also provide experimental results for925

Problem 2 formulation in Section E.3926

E.1 Additional Simulation Results without Sparsity Constraint927

The simulation results for graphs generated without the sparsity constraint are shown in Figure 8.928

These results illustrate monotonic increases in runtime and cost as the number of nodes increases. Our929

proposed heuristic algorithms (HEID-1 and HEID-2) maintain runtimes less than 0.5 seconds even930

for 250 nodes. In contrast, the two exact algorithms (MCIP-exact and EDGEID) exceed the three931

minute runtime limit at only 20 nodes, and the MCIP heuristic variants (MCIP-H1 and MCIP-H2)932

have runtimes which increase exponentially with the number of nodes. These results highlight the933

efficiency of our proposed heuristic algorithms to find solutions with equivalent cost with significantly934

faster runtimes.935

E.2 Psychology Graph Discovery936

The settings for deriving the putative structure used on the psychology real-world graph are provided937

in Table 3.938

24

(a) Runtimes. (b) Solution costs.

(c) Fraction for which runtime of 3 minutes exceeded.

Figure 8: Experimental results (for graphs generated without the sparsity constraint) for runtime,
solution costs, fraction of graphs for which no solution was found, and fraction of graphs for which
runtime limit of 3 minutes was exceeded. Error bars for runtime and cost graphs indicate 5th and
95th percentiles. Best viewed in color.

Table 3: Hyperparameter settings for the Structural Agnostic Model used to generate the putative
(directed) structure for the ‘Psych’ real-world dataset.

Parameter Value
Learning Rate 0.01
DAG Penalty True
DAG Penalty Weight 0.05
Number of Runs 50
Train Epochs 3000
Test Epochs 800
Mixed Data True
hlayers 2
dhlayers 2
lambda1 10
lambda2 0.001
dlr 0.001
linear False
nh 20
dnh 200

E.3 Simulation Results for Problem 2 Formulation939

The experimental setup is exactly as in the main text (the results depicted in Figure 4), except that the940

probabilities are chosen in the range [0.01, 1] instead of [0.51, 1], and we use the weight mapping941

corresponding to Problem 2 as described in Lemma 1. That is, we map each probability pe to the942

weight − log(1− pe) in the corresponding edge ID problem.943

The simulation results are presented in Figure 9. Runtimes and costs are shown for the subset of944

graphs for which all algorithms found a solution (to facilitate comparison). Runtimes for each945

algorithm are shown in Fig. 9a, where it can be seen that our proposed HEID-1 and HEID-2 heuristic946

algorithms have negligible runtime. In contrast, EDGEID had large runtime variance which depended947

heavily on the specifics of the graph under evaluation, particularly for graphs with fewer vertices.948

25

(a) Runtimes. (b) Solution costs.

(c) Fraction runtime exceeded 3 min.

Figure 9: Experimental results for runtime, solution costs, fraction of graphs for which no solution
was found, and fraction of graphs for which runtime limit of 3 minutes was exceeded. Error bars for
runtime and cost graphs indicate 5th and 95th percentiles. Best viewed in color.

The costs for each graph are shown in Fig. 9b. Figure 9c shows the fraction of evaluations for which949

the runtime exceeded 3 minutes (applicable to the exact algorithms). In general, and owing to the950

sparsity penalty in our graph generation mechanism, the cost of identified solutions falls with the951

number of vertices. Overall, HEID-1 was both the most consistent in terms of finding a solution,952

having a short runtime, and achieving a close to optimal cost.953

26

	Introduction
	Preliminaries
	Problem setup

	Reduction to Edge ID problem and establishing complexity
	Algorithmic approaches
	Recursive exact algorithm
	Heuristic algorithms
	Alternative approach: reduction to MCIP

	Experiments
	Conclusion
	Formal Proofs
	Reduction from MCIP to edge ID
	Reduction from edge ID to MCIP

	Maximal Hedge
	Generalizing Assumption 1
	Further applications

	Heuristic Algorithms
	Experiments
	Additional Simulation Results without Sparsity Constraint
	Psychology Graph Discovery
	Simulation Results for Problem 2 Formulation

