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ABSTRACT
Many people use search engines to find online guidance to solve
computer or mobile device problems. Users frequently encounter
challenges in identifying effective solutions from search results, of-
ten wasting time trying ineffective solutions that seem relevant yet
fail to solve real problems. This paper introduces a novel approach
to improving the accuracy and relevance of online technical support
search results through automated search results verification and
reranking. Taking "How-to" queries specific to on-device execution
as a starting point, we developed the first solution that allows an
AI agent to interpret and execute step-by-step instructions in the
search results in a controlled Android environment. We further
integrated the agent’s findings into a reranking mechanism that
orders search results based on the success indicators of the tested
solutions.

The paper details the architecture of our solution and a compre-
hensive evaluation of the system through a series of tests across
various application domains. The results demonstrate a significant
improvement in the quality and reliability of the top-ranked results.
Our findings suggest a paradigm shift in how search engine rank-
ing for online technical support help can be optimized, offering
a scalable and automated solution to the pervasive challenge of
finding effective and reliable online help.

1 INTRODUCTION
When lacking the knowledge to complete a task, people usually rely
on a search engine to retrieve potential instructions by asking "How-
to" or similar style queries. These requests are "procedural queries"
where the user’s intent is to obtain step-by-step instructions for
performing a specific task or operation. However, instructions ex-
tracted from retrieved results may not be executable, as the search
engine primarily ranks pages based on the similiarty between the
search query and candidate web pages [43]. Furthermore, although
user engagement information, such as search logs and page quality
indicators like PageRank, are utilized for ranking results in modern
search engines, the optimal solution often varies on a user-specific
basis. The use of different operating systems, screen types, and
app versions motivates a personalized reranker. In addition, search
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engines integrated with large language models (LLMs) often un-
avoidably involve the risk of generating inaccurate or fabricated
information, commonly known as hallucinations [26].

How do users solve the problem? Typically, a user could visit
multiple retrieved pages from a search engine triggered by a "How-
to" query, which briefly describes their ultimate goal. If a page that
looks relevant contains some step-by-step instructions, the user
might try to follow the instructions to see whether it solves the
problem. However, the potential issue is that they often experi-
ence frustrations and waste considerable time attempting various
instructions across different pages. Can a search engine further
assist the user more efficiently? Inspired by such time-consuming
manual procedure, we endeavor to substitute it with an automatic
instruction verification process as an additional component of the
search process. Our hypothesis is that search results verification
for technical "How-to" queries can achieve decent accuracy given
the recent research progress on multimodal LLMs, especially with
the help of state-of-the-art GPT.

In particular, we introduce a three-stage solution to verify the
instruction set and rerank the relevant pages accordingly, as illus-
trated in Figure 1: The first stage involves an Instruction Extraction
Model to obtain step-by-step instructions from each retrieved page
for a "How-to" search query. The second stage verifies their quality
by automatically simulating the instruction execution on devices.
The third stage reranks retrieved results based on the execution
information.

As an initiative, we have developed a comprehensive end-to-end
solution to rerank "How-to" search query results on Android sys-
tems, selecting mobile applications from different domains. This
can be enhanced as a platform-agnostic approach with slight adap-
tions to support other similar environments, such as web, iOS and
desktop. Our solution enhances search engine results by reranking
pages based on simulated verification on Android mobile devices,
and our preliminary experimental outcomes have demonstrated the
effectiveness of our methods. Our key contributions are outlined
as follows:

(1) We propose adding search result verification and reranking
into the search process, relieving users from tedious manual
verification.

(2) For technical "How-to" queries, we proposed a three-stage
solution. In the first stage, we propose an information extrac-
tion solution to extract step-by-step instructions from web
pages using generative AI with grounding techniques. In
the second stage, we propose and build out a generic action
agent to take instructions in natural language format and
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Figure 1: Overview of our three-stage system to rerank web pages based on on-device execution verification

execute actions on a client device. In the third stage, we in-
troduce a range of features based on the execution outcomes,
and further utilize them to rerank the retrieved results.

(3) To support future research in this direction, we developed
a new research platform MagicWand, which facilitates the
verification and reranking process for "How-to" queries of
Android mobile applications. On top of it, we collected a new
"How-to" WeWeb dataset with human annotators.

(4) We evaluated the proposed idea and the results show it sig-
nificantly enhances the performance of a leading baseline
search engine (i.e. Google).

2 RELATEDWORK
As far as we know, there is no prior work on search results verifica-
tion for "How-to" queries using simulated execution. Furthermore,
the techniques we choose to use when developing different com-
ponents of the proposed solution are motivated by existing works
from multiple domains. Therefore, we briefly review three impor-
tant domains that influenced the technical choices we made in our
research.

2.1 Information Extraction
Information extraction from web pages [2], as a broader concept
of our extraction task, was studied extensively back in the 1990s
[10]. There are two methodologies: heuristics based approaches and
machine learning based approaches. Heuristics approaches apply
either a single metric or a set of rules along a hierarchy HTML tree
to pinpoint the main content blocks. For instance, [52] considered
"text density" and the DOM tree structure, while [42] segmented the
HTML tree and then used heuristics for classification. In compari-
son, machine learning approaches in early studies involve sequence
labeling methods and deep neural networks: [56] employed a hid-
den Markov model and a convolutional neural network to classify
web regions; [25] used browser-rendered visual features to enhance
model performance.

Recently, researchers also leveraged LLMs to facilitate relevant
downstream tasks. For example, [18] enabled T5-based models for

semantic classification of HTML elements, description generation
for HTML input, and autonomous web navigation. DOM-LM [8],
MarkupLM [28] used transformer-based architecture to represent
the DOM tree and further improve classification accuracy. A new
dataset PLAtE of list-like websites, such as online stores, was de-
veloped by Amazon research team to analyze how LLMs work in
structure extraction [49]. Researchers also endeavored to better uti-
lize pre-trained LLMs to extract target information to avoid training
LLMs. The instruction extraction approach used in our research
is inspired by the prior work that used zero-shot GPT3 to extract
plans from text [19].

2.2 Acting Agent
Enabling intelligent agents to behave according to instructions
involves two main tasks: the first is empowering agents with suffi-
cient knowledge to make decisions and act skillfully. The second is
to execute actions, collect feedback, and recognize environmental
changes caused by these actions. To achieve the first, researchers
often leverage and enhance LLMs’ reasoning and tooling capabili-
ties [36]. For the second, agents should be enabled to interact with
the host system to understand feasible actions and their results.
Recent studies include using pre-trained GPT2 [45] in household
simulations [30], RT1 [3] and RT2 [66] in robot control. This section
will focus on how to adapt these tasks to the Android platform on
which we will carry out our experiments.

Acting Agent on Android: An early work on Android was [32]
using LSTM to predict fixed action and parameter pairs on dataset
RICO [7]. Later, Seq2Act [31] utilized Transformers for more flexi-
ble action execution given instructions. This approach set a strong
baseline on a new dataset UGIF [55], further enhanced by META-
GUI [53] with a proposed multimodal Action Prediction Model
for conversational scenarios. Along this work, Auto-UI [62] built
an "Action Chain" based model using UI representation extracted
from BLIP-2 [27] as visual input, which outperformed two other
competitive approaches (i.e. Behavior Cloning and Simple action
Chain of Thoughts [58]) on the AWIT dataset [46]. However, they
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overlooked the Android UI Control hierarchy, and transformers
trained without such knowledge cannot accurately predict actions
given ambiguous or sparse instructions. [21] demonstrated that
LLMs equipped with domain knowledge could break down high-
level tasks into mid-level plans. Researchers were also starting to
explore multimodal LLM agents in Android automation, as evi-
denced by [59, 61]. Our Action Prediction Model aligns with this
line of research, however, we’ve refined them in a more fine-grained
manner by distilling the UI Control list from runtime metadata and
prompting GPT4-V dynamically based on the context.

Action Execution: Usually, researchers resorted to two tech-
nologies to detect UI Hierarchy and take actions on Android devices:
One is Android Debug Bridge (ADB) [15], such as [54, 61], the other
is Accessibility Service API [16], like [47, 48]. ADB-based solutions,
like AndroidEnv [54], adbutils [1], need additional connection set-
tings for Android devices and the paired computer, which is unreal-
istic for end users during daily usage. In comparison, Accessibility
Service-based solutions can be delivered as standalone mobile appli-
cations due to the general availability in most systems. Considering
this benefit, we decided to utilize the Accessibility Service API to
develop our execution proxy, which laid down a solid foundation
for action execution.

2.3 Reranking
In information retrieval (IR), reranking is the adjustment of docu-
ment rankings based on query-document relevance after the initial
retrieval. An important evolution of reranking began with RankNet
[4] in 2005, applying gradient descent in the process of learning a
ranking function. LambdaRank [5] later refined this approach by
optimizing the gradients of the model scores and addressing issues
caused by discontinuous gradients. And LambdaMART, combin-
ing MART [11] with LambdaRank, achieved victory in the 2010
Yahoo! Learning-to-Rank Challenge. Subsequently, similar neural
ranking models like DRMM [17] and Duet [37] emerged. Recently,
[40] introduced a context-aware neural network for item relevance
calculation, and [44] proposed DASALC, a neural LTR model yield-
ing performance comparable to LambdaMART. This progress in-
spires our adoption of NeuralNDCG [41], which utilizes NeuralSort
[14] for end-to-end, gradient-based stochastic optimization using a
NDCG-based sorting operator.

3 METHODS
The flow chart in Figure 1 outlines the overall process of our pro-
posal primarily by extracting instructions from Web pages and
validating them through the execution on the device. The valida-
tion outcomes are then used to refine the search result rankings.
The system can overcome some limitations of traditional ranking
algorithms by incorporating user-specific information (device, OS
version, application version, etc.) and collecting client-side verifica-
tion results.

This is a three-stage process. Stage 1 is Instruction Extraction:
we take a high-level goal for an Android application as a "How-to"
search query to retrieve results from a search engine. Given the
initial top N retrieved web pages, a generative AI model processes
each document to generate a sequence of instructions. Then, a
grounding module analyzes the structure of the HTML web pages

and further improves the quality of the extracted instructions. Stage
2 is On-device Execution: the Action Prediction Model reads the
instructions extracted from stage 1 and predicts actions to be taken
on the device. Next, an Android agent takes those actions to validate
whether the instructions work, collecting the execution information
simultaneously. This is an iterative process until the agent either
completes the task or can’t proceed further. Stage 3 is Reranking:
representation features of each <page, query> pair are extracted
from execution information and used for reranking pages for each
query. In this stage, search results that help yield better execution
results are assigned with higher priority during the ranking.

For simplification, we have utilized pre-trained GPT models in
our implementations, which enables us to rapidly set up a pipeline
that covers all three necessary components. Now we delve into
the technical details of each component: Open Domain Instruction
Extraction, On-Device Execution, and Reranking.

3.1 Open Domain Instruction Extraction
This stage has been divided into the generation and grounding
phases, as shown in stage 1 of figure 1. Our approach allows us
to extract instructions from any web page without collecting any
training data, i.e. zero-shot learning 1.

Following [42, 52] using LLM for information extraction, we first
prompt a LLM model to extract relevant instructions from a given
web page, otherwise generate "none". In the generation phase, for a
given search query 𝑆 and each candidate website𝑊𝑖 ∈𝑊 , we pass
in the prompt of the generative model the search query 𝑆 , candidate
web page title, and a cleaned HTML document. The cleaned HTML
is generated using a parsing algorithm that removes extraneous
information, such as javascript and header information, from the
web page but still preserves the hierarchical structure of the HTML
snippets.

Since generative models tend to paraphrase instructions or even
generate text content unbounded with the original HTML, we also
introduce a grounding mechanism to guarantee the generated in-
structions match the content in the HTML to minimize hallucina-
tions in the generated content. For grounding, we first extract all
text snippets 𝐶 [𝑖], 𝑖 ∈ [0, ...𝑁 ] from the cleaned HTML with their
corresponding XPaths. The first instruction generated from LLM is
matched with the closest candidate snippet 𝐶 [𝑟 ], using a combina-
tion of Faiss semantic [24] similarity and rouge [33] similarity. A
typical matching criterion has been illustrated in section 4.3.1. For
each subsequent instruction, only snippets having similar XPaths
to the previous grounded steps are considered as matched step can-
didates. This approach maintains the sequential order of extracted
instructions from the original web page. If generated instruction(s)
can be grounded to HTML snippets from the original web page, the
relevant instructions can be used for the next execution stage.

3.2 On-Device Execution
The on-device execution agent is designed to directly execute in-
structions on an end-user device. Simulating the steps on a device
provides more accurate judgements on whether the instructions

1By realizing the non-trivial effects caused by the hallucination issue, we have further
refined the aforementioned strategy, making the side effect to the minimal level. More
details will be covered in the discussion section, as well as our future work
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can be completed using a specific device. In our research, three
components are developed to achieve this goal with the workflow
depicted in figure 2:

• Runtime UI Context Detection Module delivers UI context
information for the current screen state in a JSON format.
It contains instructions, the UI control hierarchy, potential
actions, and necessary runtime metadata. This information
serves as input for the Action Prediction Model and is also
used to extract reranking features [53].

• Multimodal Action Prediction Model predicts the action and
its required parameters (e.g. UI control index for click ac-
tion, direction (up, down) for swipe, etc.) to complete an
instruction with a chain of actions [65].

• Execution Proxy Module takes the predicted action and exe-
cutes it on the client device.

The execution loop continues until either all instructions have
been finished, or the Action Prediction Model can’t determine the
next action, or it reaches the maximum number of steps2.

Runtime UI
context detection

Actionable
controls

Control
hierarchy

UI
Screenshot

UI context
representation

Instructions

Historical
actions

Historical
Screenshots

Action chain

Action & Parameters

Multimodal Action
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UI & Action
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Action
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Event
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Auxillary service
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Figure 2: Components and Workflow of On-device Instruc-
tion Execution Module

3.2.1 Runtime UI Context Detection. This module collects data that
characterizes the device’s current User Interface (UI) context. The
UI context consists of a UI screenshot and metadata of "actionable
regions". An "actionable region" refers to a region on the screen
where actions, such as clicking or scrolling, can be performed. These
regions are hierarchically organized and can be associated with
several control properties, like textual description, coordinate, scrol-
lable, etc. For example, a region could be a navigation bar, with a
back button and title as embedded child regions. To simplify, we
currently focus on leveraging the textual description of the con-
trol directly associated with an "actionable region", like title, text
description, etc.

Sometimes, a region may not directly contain any textual de-
scription, but its child regions often possess meaningful textural
2In our experiment, the maximum number was set to 28 to avoid an endless execution
loop.
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Figure 3: Control distillation for On-Device Execution

information, which is crucial for accurate action prediction but
is unfortunately missing. We designate a control distillation algo-
rithm to fill in this missing information, depicted in figure 3. First,
invisible or non-actionable regions are filtered out. Then, descrip-
tions from the nearest non-actionable child regions are consolidated
hierarchically to represent the missing information.

3.2.2 Multimodal Action Prediction Model. Following [53, 61, 65],
the Action Prediction Model prompts a multimodal LLM, GPT4-V
[38, 60] in our current setting, where the current UI context and
multimodal action chains 3 are passed as input to choose the target
action from a set of candidate actions 4, such as click, swipe, input,
back, etc.

For timestep t 𝜖 [1...𝑇 ], GPT4-V will predict the next action given
a prompt 𝑃𝑡 constructed using the following parameters:

• 𝐼𝑡 : UI context for the current screen.
• 𝑆1:𝑡−1: List of screenshots of UI screens from previous ac-
tions.

• 𝐴1:𝑡−1: Action description for each previous action, including
the action name and the chosen actionable region descrip-
tion.

• 𝐶𝑡 : Set of possible actions based on available properties of
distilled controls in 𝐼𝑡 .

• 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑡 : Information not covered by instructions but re-
quired for agent execution. For instance, a specific username
and password are needed, when the instruction is "enter user
name and password when open WeChat".

3.2.3 Execution Proxy.

On-Device Execution Module: It takes a predicted action and its
parameters returned from the Action Prediction Model, locates the
action to the corresponding region, and finally executes it. Con-
sidering a mobile application context can change dynamically, we
introduce a heuristic to validate the predicted control associated
with the target action and elegantly find a suitable alternative when
mismatched. For flexibility, We also designate a fallback mechanism
for candidate actions, so some of them can adjust slightly given dif-
ferent application settings. For instance, a click action can be tried
with a similar gesture under instant Message application settings.

3That is history of UI screenshots paired with each action taken
4Injecting the UI context into the prompt can help model better determine the next
action based on our primary experiment. We expect more accurate action prediction
results, if we can use this information appropriately as an input to train or finetune
the model.
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Auxiliary Service Module: It synchronizes the execution informa-
tion of the mobile agents to external modules, helping to analyze
and monitor the execution progress. In addition, this module also
implements analysis plugins to integrate with GPT4V and GPT4 to
summarize and evaluate the status of each execution trajectory.

3.3 Reranking
Execution information, both textual and visual information (UI
screenshot and corresponding actionable regions), has been col-
lected as listed in table 1 and converted into a reranking feature
vector.

To avoid unnecessary complexity initially, we now use statistical
measures of execution information, and leave it as future work to
explore more advanced feature generation techniques, such as time
series transformer or feature learning.

Table 1: Collected information for execution

Description
Search query Goal description on Android phone for Apps
Web page Top 20 Pages retrieved from search engine
Instructions Step-by-step instructions from web page
Mobile screens UI screen saved per step
Distilled control list Distilled control list on screen per step
Full control list Full control list on screen per step
Action & Parameter Predicted action and its parameter per step
Action attributing Which instruction drives model to take action
Runtime information More runtime information (issue, start time, etc.)

3.3.1 Feature Design. All textual and visual features are normalized
to a float value between 0 and 1. Below is a brief description of
them.

Table 2: Reranking features

Id
Textual Features
Query term ratio in instructions 1
Relevance between page and search query 2
Keyword ratio 3
Visual Features
Instructions completion degree 4
Action term ratio in instructions (avg, min, max, var) 5-8
UI term matching ratio in instructions (avg, min, max, var) 9-12
Matched UI term frequency on UI (avg, min, max, var) 13-16
Relative position of the last matched instruction term 17
Moving distancing of instruction terms 18

Textual Features. 𝐹1: Query term frequency ratio in instruc-
tions measures the relative frequency of "How-to" search query
terms in the extracted instructions I, refer to Equation 1.

𝐹1 =

∑
𝑞𝑖 ∈𝑄 𝑡 𝑓 (𝑞𝑖 , 𝐼 )
𝑙𝑒𝑛𝑔𝑡ℎ(𝐼 ) (1)

Q is the set of tokens from the search query without stopword,
where 𝑡 𝑓 (𝑞𝑖 , 𝐼 ) is the term frequency of token 𝑞𝑖 in the extracted
instructions I.

𝐹2: Relevance between page and search query measures the
degree of relevance between a web page and the corresponding
"How-to" search query. We prompt GPT to generate a relevance
score ranging from [0, 1] using the search query, extracted instruc-
tions from the page, and the page title.
𝐹3: Average term frequency of common keywords in in-

structions: This feature measures the average frequency of com-
mon keywords found in the extracted instructions. We have used
instructions from about 1000 web pages from Google Android Help
Website and identified a set of𝐾 most common keywords, excluding
stopwords.

Visual Features. 𝐹4: "Instructions completion degree" mea-
sures the degree to which the extracted instructions have been
completed. GPT4-V is prompted to return a completion score of [0,
1], using the history of UI screenshots for each action taken during
execution and extracted instructions as input.
𝐹5, 𝐹6, 𝐹7, 𝐹8: average, min, max, variance of Action term ra-

tio in instructions measures the average, minimal, maximum,
standard deviation of the percentage of instruction’s keyword that
appears in each action description during the entire execution.
𝐹9, 𝐹10, 𝐹11, 𝐹12: average, min, max, variance of Visible UI Term

Ratio in instructions measures the average, minimal, maximum,
standard deviation of the percentage of the current screen UI con-
trol’s visible texts appeared in the instructions during the entire
execution. This metric indicates the alignment between the cur-
rent UI screen and the instructions. For example, for user regis-
tration, instructions often contain reference fields like username,
password, and gender. A higher correspondence of these terms with
UI elements suggests that the agent is more likely to move forward
along the instructions.
𝐹13, 𝐹14, 𝐹15, 𝐹16: average, min, max, variance of Distilled UI

ratio in instructions describes the average, minimal, maximum,
standard deviation of the occurrence of distilled UI control text in
instructions during the entire execution. These metrics reflect the
likelihood of our execution model accurately selecting the appro-
priate UI control from all distilled options.
𝐹17 to 𝐹18: These capture how much of each extracted step is

executed by comparing the list of actions taken for a given step5 to
its step text.
𝐹17: Relative Position of Last Matched Instruction Term

identifies all matched positions of Action Description in instruc-
tions and uses the maximum value to quantify how far our execu-
tion can move from the starting position of extracted instructions.
𝐹18: The moving distancing of instruction terms measures

the moving length from the first matched instruction term to the
last matched one, indicating the action coverage in instructions.

Due to the page limit, we leave the exact equations for calculating
the heuristic features 𝐹5 to 𝐹18 in our open-source website (TBA).

3.3.2 Reranking Models. In this section, we will illustrate which
candidate pages have to be processed for reranking features and
the details of reranking models.

Verified Pages. When the system fails to extract instructions or
those pages do not contain any instruction, a candidate page does

5One step in a plan may require multiple actions to complete

https://support.google.com/
https://support.google.com/
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not advance to the on-device execution stage. After that, our rerank-
ing modules prioritize all verified pages using a heuristic. In our
experiments, a page is considered as verified only if it progresses
to stage 2 and satisfies the following criteria: the execution proxy
must successfully execute at least one step and the predicted in-
struction completion rate is non-zero. All other Pages are kept in
their original relative order (i.e., not reranked) and put after the
verified pages.

Models. Without losing the generality, three different learning-
to-rank(LTR) models have been trained to rerank the verified pages
using the aforementioned features.

The first model is a simple pairwise LTR logistic regression
model, which optimizes the relative order of each pair of pages.
Another two types of models are multilayer perception (MLP) trans-
former models, short for TMLP, using two different loss functions.
One is LambdaLoss [57], a pairwise loss function. For each pair
of items, the lambda value represents the change in the overall
ranking metric, if the order of the two items were swapped. The
lambda values are used to weight the errors in the pairwise compar-
isons, thus this loss function will penalize misorderings more if they
have a higher lambda value. Another is NeuralNDCG loss [44], a
method directly optimizing NDCG metric. This method introduces
a NeuralSort operator based on a differentiable function (softmax)
to approximate the non-differentiable ground-truth sort operator.

𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝐷𝐶𝐺𝑘 (𝜏) (𝒔,𝒚) = 𝑵 −1
𝑘

𝑘∑︁
𝑗=1

[𝑠𝑐𝑎𝑙𝑒 (𝑃) · 𝑔(𝒚)] 𝑗 · 𝑑 ( 𝑗) (2)

where 𝑵 −1
𝑘

is the maxDCG at k-th rank, scale(·) is Sinkhorn
scaling, g(·) and d(·) are their gain and discount functions.

4 EXPERIMENTS
Experiments have been designed to assess whether the proposed
method enhances the retrieval performance of state-of-the-art search
engines. We used Google as our original search engine throughout
the whole process. Our experiments are hosted on MagicWand, a
web platform that standardizes the training, execution, and evalu-
ation pipeline for intelligent agents running on Android devices.
It can spin up multiple Android emulators or connect with real
devices on the server, which can be controlled by the user on a web
interface or ADB-equivalent command interface.

4.1 Test Data: "How-to" WeWeb dataset
A new "How-to" WeWeb dataset has been collected using Mag-
icWand, which covers instruction extraction, on-device execution,
and data annotation for reranking. This dataset is used to measure
the end-to-end reranking accuracy.

Its finalized version contains queries and instructions for 17
different apps spanning 9 categories of the Google Play Store and
an additional "System" domain for the default system app 6. We
selected a single "How-to" search query in the System domain. For
other domains, we recruit 6 students to propose about ten "How-to"

6Based on Google result, the default system app category has higher proportion of
web pages with instructions in top 20 result. In comparison, other categories vary for
instruction proportion and therefore deserve more attention

search queries per app. Using these queries, we retrieved valid web
pages from the top 20 Google search results7.

Table 3: Statistics of "How-to" WeWeb dataset

Domain Application Queries Pages Instructions
System Settings 1 20 12
Entertainment Pluto TV 11 202 9

YouTube 12 240 26
Education Coursera 10 200 2

Quizlet 10 200 9
Food & Drinks DoorDash 10 200 4

McDonalds 10 200 2
Communication Google Chat 10 200 9

Messenger 12 240 27
Shopping Target 10 200 1

eBay 10 200 4
News FlipBoard 10 199 11

BBC News 10 200 1
Maps&Navigation Google Maps 10 200 45

Here WeGo 11 220 2
Travel Trip Advisor 10 200 4

Expedia 10 200 0
Total 167 3321 168

We hired Amazon Mechanical Turk workers to extract relevant
instructions from candidate web pages for "How-to" queries. Multi-
ple workers analyzed each page to ensure data quality, requiring
consensus on the extraction results to be labeled as positive. The
resulting data, detailed in Table 3, includes statistics on the number
of search queries, result pages, and pages with valid instructions
for each domain.

Human Verification Information: With search queries and in-
structions extracted (firstly by humans and further verified by the
extraction module) from pages, tasks were set up on MagicWand
to record and access the execution of instructions on Android de-
vices. 16 workers read each instruction, executed the instructions
manually, and labeled whether the assigned "How-to" queries could
be completed. Out of all pages evaluated, 168 pages are labeled
as successful (i.e. positive) and 64 queries were associated with
at least one positively labeled page. These human labels are used
as the ground truth 𝒚: it is assigned with a value of 1 if a human
annotator can follow the instructions on the page and complete the
task, otherwise 0.

We captured the actions performed by the workers, along with
their annotations, and saved them into documents with a pre-
defined format. These documents included screenshots, JSON files
that detailed the history of actions taken, and screen recordings
capturing the entire interaction sequence. Additionally, a special-
ized plugin integrated with the platform was employed to extract
the UI context.

7For the "Entertainment" domain, there are 18 search results that didn’t have any
valid web page, but linked to YouTube videos; For the "News" category, 1 search result
wasn’t a valid web page.

https://support.google.com/googleplay/android-developer/answer/9859673?hl=en#zippy=%2Capps
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4.2 Evaluation Metrics
Common reranking metrics are used: mean reciprocal rank (MRR)
of the top one retrieved documents(MRR@1), precision of the top
one and five retrieved documents (P@1 and P@5) and normalized
discounted cumulative gain (NDCG) of the top five retrieved docu-
ments (NDCG@5).

4.3 System Configurations
4.3.1 Extraction.

Generative model: The state-of-the-art LLM, GPT4 [38], is used
to extract instructions from a candidate web page in our experi-
ment, following [50, 51]. We set the temperature parameter as 0 to
encourage direct extraction with minimizing generative content.
We also design a prompt containing a list of valid and relevant in-
struction descriptions. For comparison, we have also tested cohere
[9] using the same prompt, which could output accurate citations
from the input web page, and found no noticeable performance
difference compared with GPT4.

Grounding: A rouge score of above 0.7 or faiss similarity [24]
score of under 0.25 is used to match a HTML text snippet of a
webpage to a generated step.

4.3.2 On-Device Execution.

Device setup. OnMagicWand, we have reserved an Android emu-
lator to run tasks given instructions and collect execution statistics
8. For efficiency, a batch-supported execution engine based on ad-
butils [1] is also prepared to run multiple tasks on different devices
simultaneously.

Multimodal action prediction model. To avoid invalid action pa-
rameters and keep exploring capacity, GPT4-V parameter "temper-
ature" is set to 0.3 together with "max_tokens" of 300. We specify
instructions, historical actions and UI screenshots in the prompt
and adjust the prompt according to distilled UI controls.

Execution proxy. The UI context representation data with the
execution status are saved into the central storagewith a JSON index
file describing the execution and associated resources. A GPT4V
python plugin was developed to evaluate the execution information
and generate the task completion rate for each execution.

4.3.3 Pre-training Reranking Models.

Synthetic dataset for pre-training. As the "How-to"WeWeb dataset
is small, we decided to use it for testing; thus, the reranking is a
zero-shot learning problem. We created another synthetic data to
pre-train pairwise LTR models. The synthetic pre-training data -
"How-to" META-GUI dataset was created based on META-GUI [53],
a multimodal dataset for task-oriented conversational agents run-
ning on Android. The original data set includes 1125 conversations,
4684 dialogue turns, and 18337 Android execution trajectories. It
covers six apps: weather, calendar, search, taxi, restaurant, and hotel
mobile apps. This dataset has been used to generate a new "How-to"
Meta-GUI dataset by the following process:

8Realistically, multiple emulators with various settings better simulate realistic cases.
However, one device can help simplify our initial work and device maintenance.

(1) Given 62 few-shot samples(the paired instruction, execu-
tion, search query), GPT3.5 is prompted to summarize an
execution trajectory with its dialog turn to generate a list
of step-by-step instructions and a relevant "How-to" search
query. These are positive examples.

(2) Additional positive examples are created by swapping similar
search queries in the same app domain from the generated
samples of step one.

(3) Negative examples are created by identifying trajectories
that fail to complete.

(4) We randomly modify or delete actions in a given trajectory
from examples of step one to create further negative samples.

Table 4 summarizes the number of queries, executions, and instruc-
tions of our "How-to" META-GUI dataset.

Table 4: Statistics of "How-to" META-GUI dataset used for
LTR pre-training

Query Executions Instructions
Positive examples 7884 13516 4684
Negative examples 944 25764 4684
Total 8828 39280 4684

This synthetic dataset significantly differs from real data and
the testing set. However, we expect possessing some form of pre-
training material, even if not ideal, is preferable to having none at
all, particularly in the zero-shot learning settings. We split "How-to"
META-GUI dataset into training, validation, and test sets, then train
the LTR models with the most suitable hyperparameters. Next, the
trained models are applied to "How-to" WeWeb dataset.

Reranking model setting. Regarding the model details, TMLP is
a fully connected layer of 96-dimensional input without normal-
ization, followed by two transformer blocks with 384-dimensional
features and a dropout rate of 0.1. A post-processing model takes
the output of the transformer blocks and uses a linear layer to out-
put the reranking score. For NeuralNDCG loss, its temperature is
set as 1.0 and we use a "powered relevancies" gain function 2𝑥 − 1,
where x is the relevance score. For LambdaRank loss, we set its
parameters 𝜇 = 10, and 𝜎 = 1.0. They are all optimized in the same
training setting: an Adam optimizer with an initial learning rate
of 0.001 is applied with a learning rate scheduler of size 50 and a
decreasing Γ rate = 0.1. Both training epochs and early stopping
patience parameters are set to 20 with NDCG@5 as the validation
metric.

4.4 Methods compared
To verify the model performance, we compared the following meth-
ods and calculated each query’s MRR, P@1, P@5 and NDCG@5,
using 𝒚 as the relevance score.

• Oracle: This method consistently ranks the correct pages be-
fore the incorrect pages, which gives the theoretical optimal
performance.

• Baseline Google: We order pages with/without extracted
instructions by their Google rank and put the group with
relevant instructions ahead of those without.
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• 𝐹4-based rank: A single feature 𝐹4 (i.e. instructions comple-
tion degree predicted by GPT4-V) is used to rerank pages
with extracted instructions.

• LR: This method uses a logistic regression-based LTR model,
pre-trained on the synthetic dataset.

• NeuralNDCG + TMLP: This method uses a transformer
with multilayer perception for LTR, pre-trained using Neu-
ralNDCG loss [44] on the synthetic dataset.

• LambdaLoss + TMLP: This method uses a transformer with
multilayer perception for LTR, pre-trained using Lambda
loss [57] on the synthetic dataset.

5 EXPERIMENTAL RESULTS
5.1 Comparison with Baselines
The performance metrics of different models are shown in Table 5.
The "Oracle" model has the highest performance across all metrics,
which is expected as the ideal benchmark. The baseline (i.e. Google)
has the lowest performance, showing that all other models have
improved the original Google ranking when taking execution status
into consideration. The improvements over the baseline are statis-
tically significant on LR, NeuralNDCG + TMLP, and LambdaLoss +
TMLP models. Despite their zero-shot learning nature, the results
demonstrate adding verification and reranking into the retrieval
process can significantly enhance the performance of a leading
baseline search engine.

In comparison, 𝐹4-based rank performsworse than other rerank-
ing models. This shows reranking using a strong yet single fea-
ture is feasible but not good enough. Two neural rankingmodels
(TMLP) are better than LR probably because they can capture fea-
ture interrelationships. However, the difference is not very big,
possibly due to the low quality of the synthetic data used for pre-
training.

Table 5: Performance on Test Data

Results are performance on "How-to" WeWeb dataset using zero-shot
learning. 𝐿𝑅, 𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝐷𝐶𝐺 +𝑇𝑀𝐿𝑃 and 𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑜𝑠𝑠 +𝑇𝑀𝐿𝑃 are

statistically significantly better than the baseline for 𝑃@1.
Model MRR P@1 P@5 NDCG@5

Oracle 0.3353 0.3353 0.1365 0.3353
Baseline: Google 0.1782 0.1138 0.0850 0.1692
𝐹4-based rank(𝐹4) 0.2107 0.1737 0.0946 0.1971

LR 0.2406 0.1976 0.1006 0.2227
NeuralNDCG + TMLP 0.2566 0.2275 0.1006 0.2275
LambdaLoss + TMLP 0.2594 0.2335 0.1030 0.2350

5.2 Further Analysis and Ablation Studies
Despite the promising performance on the zero-shot setting, we
want to further explore the correctness based on our data setting
and in which cases the system stumbled. In this section, we conduct
a further analysis to answer several critical questions.

Q1. When do our proposed methods work and fail? Why? To
answer it, success and failure cases have been analyzed to measure
the failure rate at each stage. After the instruction extraction stage,

Table 6: Instruction completion degree analysis

Pages Mean Std Min 25% 50% 75% Max

With instructions 0.8647 0.2438 0 0.75 1 1 1
No/Partial instructions 0.3697 0.3218 0 0 0.5 0.5 1

398 pages (11.98%) have extracted instructions from the total 3321
pages, with 117 queries (about 70.05%) out of the total 167 queries.
Among the 398 pages, 75 pages (18.8%) with 39 queries(33.33%) con-
tain relevant instructions, while the remaining 323 pages with 108
queries are negative samples. At this stage, LLMs’ hallucination
issue is a major factor: generative content unaligned with original
page content induces noises, which decreases the percentage of
true positive pages. We will further analyze how HTML grounding
has impacted extraction performance in Q2.

At the execution stage, the execution engine filters 119(29.90%)
pages from 68(58.12%) queries, and only 279 pages from 91 queries
are left. For the remaining pages, if the execution engine can com-
plete more than one instruction or the instruction completion
degree 𝐹4 of the corresponding execution is greater than 0, the
extracted instructions are considered executable and are advanced
to the next stage. Among those dropped, 18(15.12%) pages have no
action taken by the execution proxy, and 101 (84.88%)pages have a
𝐹4 score of 0. Considering the result of the former is promising,
we focus on an analysis based on 𝐹4: clearly shown in table 6, about
25% of pages with no or partial instructions are set with 𝐹4 = 0 and
about 70% makes the execution engine struck at the first instruc-
tion (the engine can’t move forward due to the missing necessary
information). Another good indicator is that about 75% pages with
instructions can support the execution engine to finish more than
75% instructions, which is aligned with human verification. How-
ever, top 25% pages with no or partial instructions are mistakenly
marked as 𝐹4 = 1, introducing significant noise to reranking. This
highlights the need to incorporate more robust, execution-derived
signals in future work.

In the re-ranking stage, we analyze the relationship between
features and reranking scores for the best-performed models. Most
successful cases occur when models identify strong signals among
input features, such as 𝐹4 and 𝐹2, and accurately learn non-linear
weights to reflect on their interrelationship. However, current mod-
els tend to minimize negative signals even those with abnormal
values: for instance, a feature vector containing several very low
values, like 2.8e-05, will still receive a higher score just if it includes
multiple features with higher values. We attribute this to insuffi-
cient negative examples of training and validation sets or limited
features incorporated in reranking.

Q2. What’s the performance of the extraction module? Does
grounding matter for extraction? How instruction extract
works and how it impacts the final results (failed due to ex-
traction failure): We use page URLs collected in the "How-to"
WeWeb dataset to fetch the corresponding web pages and apply
instruction extraction on individual pages to compare whether the
extracted content matches the ground-truth steps. Accuracy is used
to evaluate the instruction extraction performance, which measures
whether the model appropriately extracts steps or outputs "none"
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Table 7: Extraction Results Grounding vs None

Extracted Steps Has relevant instruction With grounding Without grounding

Full Extraction True 78 100
Partial Extraction True 18 42
Full Extraction False 303 953
No Extraction True 73 27
No Extraction False 2849 2199
Total Pages 3321 3321

under different cases. Extraction accuracy is listed with and with-
out step grounding (Table 7). The results show that instruction
extraction without grounding (full or partial) is 100 + 42 = 142 out
of 169 web pages with relevant instructions. 42 pages with instruc-
tions were partially extracted. However, it also falsely extracted
instructions from 953 pages that don’t contain relevant instruc-
tions. This happens because the model can hallucinate, extract the
wrong instructions from a web page with relevant and irrelevant
instructions, or significantly paraphrase the instructions.

With grounding, many partially extracted instructions are cor-
rected by adding missing steps on the same XPaths on the HTML
DOM tree, removing hallucinated instructions. As a result, it greatly
reduced the number of false positives (i.e., extracted instructions
from pages without relevant instructions) from 953 to 303, mean-
while reducing the number of true positives (i.e., extracted in-
structions from pages with relevant instructions) from 100 + 42
to 78 + 18 = 96.

Q3. Does the zero-shot LTR for reranking help? We expect
LTR will work better if we have training data with a similar distri-
bution as the test data. However, considering the huge difference
between the pre-training and testing data, is it still valid to have an
LTR component? To clarify this question, we tried to rerank using a
simple rule: promoting pages with 𝐹4 = 1 (i.e. GPT4-V predicts the
instructions are 100% completed) to the top without changing their
related rankings. This rule-based reranking reaches 𝑃@1 = 0.1317,
much worse than our proposed LTR approaches while not signifi-
cantly better than the baseline. This suggests LTR models are more
useful than a simple rule based on one strong feature.

Q4. Which features contribute more to the overall perfor-
mance? During the reranking performance analysis, we found
that 𝐹4 significantly influenced the final ranking: LTR models tend
to assign a higher ranking score when 𝐹4 values are higher. This
tendency is more obvious when 𝐹4 and 𝐹2 are aligned. We attribute
it to the limited diversity of our synthetic training data, leading
to ranking decisions being dominated by strong features. Another
interesting observation is that the remaining features, which fo-
cus on instruction, UI, and action alignments, fail to address some
common but tricky circumstances in agent execution, resulting in
incorrect ranking decisions. For instance, agents may get trapped
in "execution cycles" where robots revert to a previous state due to
ambiguous instructions. Despite this, the visual features and LTR
models still tend to assign higher scores to these instructions. This
underscores the necessity of incorporating more diverse training
data and improving feature representation.

Q5. How sensitive the model performance is for different
LTR model settings? We tried Sigmoid, Tanh activation functions
in the TMLP models to observe whether a non-linear function
will impact the final result. Despite a little improvement, there is
nothing statistically significant. We expect the small size of our
test dataset and the big gap between training and testing data to
make the results less sensitive to the structural perturbations on
TMLP. The LTR models we trained are far from optimal, and better
training data could improve the performance.

5.3 Discussion and Future Work
Our study represents a novel approach for search reranking. How-
ever, it is still preliminary and comes with several limitations. There-
fore, it is necessary to examine those limitations and highlight our
future directions.

Sample size, scope and experimental constraints: One limita-
tion is that it has been mainly covered on the Android platform, and
other platforms, such as iOS, desktop and web 9, should be studied
in the future, considering their potential difference with Android,
especially Accessibility API. Although we test diverse mobile ap-
plication domains, the coverage is not exhaustive. Our study also
shows that the exact performance (P@1, etc.) is domain-specific.
This may affect the generalization of our findings, and the reader
should consider this when interpreting the results. When applying
similar techniques to other platforms or domains, the exact number
(P@1 etc.) would differ.

Extension of instruction extraction: Although generative LLMs
offer a quick start, the hallucination issue has heavily hindered the
instruction extraction model, as noted by Ji et al. [23]. However,
during further analysis, we have found that such issue heavily relies
on howwe represent HTML data to LLMs and how data verification
has been organized. In our recent experiment, we have improved
the algorithm for extracting cleaned HTML and including it in the
prompt with a clear XML tag, making LLMs recognize it as a code
snippet instead of unstructured text. Together with the long context
support of gpt4-turbo [12], gpt4-o [13], a majority of instructions
can be extracted successfully in the generative phase. In the ground-
ing phase, we have reorganized the context in which the extracted
instructions have been verified by the gpt4 models. We split the
grounding phase into two subphases: the first phase focuses on the
relevance between instructions and the given goal, and the next
phase reexamizes whether the visual representation of instructions
in HTML page is aligned with the goal. Through these refinements,
we achieved a better result on our current dataset, which can serve
as a more promising baseline in our future work. Looking forward,
we would like to replace those two-phase solutions with a single
LLM-extraction model: to be specific, we want to integrate gener-
ative LMs with multimodal document models such as XDoc [6],
MarkupLM [29], LayoutLMv3 [22], and LayoutLLM [35], aiming to
enhance in-model extracting and grounding efficacy.

9We’re now attempting to build a cross-platform execution proxy, following the design
mentioned in the section 3.2.3. The key idea is to leverage platform-native API to
capture accurate control hierarchies and expose UI-level interactions so that the
technical concept in this paper can be naturally extended.
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Refinement of execution module: A more tightly coupled in-
tegration of the UI context and the Action Prediction Model can
further enhance the execution performance. Moreover, our cur-
rent prompt-based method, which used the actionable regions as
input, does not effectively represent semantic groups on the UI
layer. For example, an input box and its accompanying label, in-
tended for entering a username, should be semantically grouped
as a single region. Another follow-up is to enhance the previous
work [20], [34] to improve the UI contextual information passed
to the Action Prediction Model. In our recent work, by using Dino
v1 [63] to understand UI segmentation and injecting into the UI
contextual information, the execution module performs slightly
better as knowing UI semantic groups. However, in the long term,
a more promising direction is to follow the line of Ferret v2 [64]
by embracing the fine-grained UI representation learnt by Dino v2
[39] into the vision part of the vision language model.

Reranking model: Our current reranking model relies on sim-
ple feature engineering and does not use real-world training data.
At the next step, we expect to acquire more real-world training
data through strategic sampling. Rather than relying on manually
engineered features, we could represent verification information,
particularly the sequence of action screens and instructions, using
more SOTA representation learning techniques. Using more realis-
tic data and more advanced representation learning, we anticipate a
substantial increase in the effectiveness of our proposed approach.

Safety issues: Although verification agents help users avoid
tedious manual verification, they might accidentally take harm-
ful actions due to some misleading online content. In practice, we
need to provide safeguards to prevent these risky actions from
being taken by the execution agent. Ideally, a client environment
that doesn’t impact the user’s real environment should be used.
If not, we might allow each user to review and approve extracted
instructions or at-risk actions before the automated execution. An-
other approach is to run server-side verification offline and display
metadata about verification in the search results (e.g., "verified for
app1 v3 on android v11"), which allows personalized search results
without realtime verification on the client side.

6 CONCLUSION
We propose reranking top retrieved results for "How-to" search
queries by promoting candidate web pages with verified executable
instructions, which adds an additional layer of usefulness to a tradi-
tional search engine workflow. It ranks search results based on the
actual completeness of candidate instructions, besides traditional
metrics such as textual relevance and authority scores. The experi-
mental results demonstrate our approach could further improve a
very strong baseline search engine(i.e. Google).

This paper is a pioneer work in improving the reliability and
usefulness of search results of online help resources for "How-to"
queries about software tasks. Along this direction, several promis-
ing future research and applications are on the horizon, like adapt-
ing the proposed workflow in figure 1 to support verification of
other platforms (web, macOS, Windows, iPhone, etc.), or collecting
user feedback to improve the reranking models and also improving

the software agent’s ability to interpret and execute a wider range
of instructions.
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