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Abstract

Despite the importance of aligning language models with human preferences,
crowd-sourced human feedback is often noisy—for example, preferring less de-
sirable responses—posing a fundamental challenge to alignment. A truly robust
alignment objective should yield identical model parameters even under severe
label noise, a property known as redescending. We prove that no existing align-
ment methods satisfy this property. To address this, we propose Hölder-DPO, the
first principled alignment loss with a provable redescending property, enabling
estimation of the clean data distribution from noisy feedback. The aligned model
estimates the likelihood of clean data, providing a theoretically grounded metric
for dataset valuation that identifies the location and fraction of mislabels. This
metric is gradient-free, enabling scalable and automated human feedback valua-
tion without costly manual verification or clean validation dataset. Hölder-DPO
achieves state-of-the-art robust alignment performance while accurately detecting
mislabels in controlled datasets. Finally, applied to Anthropic HH-RLHF dataset, it
reveals substantial noise levels and removing these mislabels significantly improves
alignment performance across methods. The code is available1.

1 Introduction
Aligning large language models (LLMs; [1, 95, 92]) with human preferences is essential for value
alignment and mitigating safety risks [65, 9]. Direct Preference Optimization (DPO; [84]) has
emerged as a key method, fine-tuning LLMs using pairwise comparisons—e.g., between preferred
and rejected responses [25, 18]. This framework supports alignment with a broad range of rankable
values, such as helpfulness [8, 51], and summarization quality [90, 97]. Human feedback is typically
gathered via crowdsourcing (e.g., ChatGPT [1]), but is often noisy—e.g., preferring undesirable re-
sponses—which can significantly deteriorate model performance [105, 24, 29]. In fact, the Anthropic
HH-RLHF dataset [34] reportedly contain over 25% inconsistent feedback [88, 20, 105]. Plus, recent
work [107, 42, 15] shows that models trained on smaller, high-quality datasets can outperform those
trained on larger, noisier ones. However, maintaining data quality often requires costly manual review
(e.g., inter-annotator agreement), highlighting the need for scalable, automated assessment methods.

To mitigate the impact of noisy human feedback, researchers have proposed robustifed DPO variants.
Among various heuristics [76, 6, 100], two methods claim provable guarantees: Provably Robust
DPO (R-DPO) [24] and Distributionally Robust DPO (Dr. DPO) [105]. However, their notion of
robustness is limited to bounding the parameter estimation error—bounds that degrade as the fraction
of mislabelled data ϵ increases. In contrast, truly robust methods should estimate the clean data
distribution precisely under heavy contamination. This stronger form of robustness corresponds to

1https://github.com/ma921/HolderDPO
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Figure 1: While existing DPO variants are vulnerable to ϵ-contamination, Hölder-DPO is provably robust. It
also ranks data points by clean-data likelihood, enabling mislabel identification.

the redescending property [74]—the influence of extreme outliers diminishes to zero—a concept in
robust statistics defined via the influence function (IF; [45, 27]). We analyze existing DPO variants
through IFs and prove that none satisfy the redescending property. If this property holds, the aligned
model approximates the clean data distribution—enabling principled mislabel detection, as mislabels
naturally exhibit lower likelihoods being clean data points. Crucially, identifying mislabelled data
has benefits beyond robustness: it supports annotator evaluation, incentivises higher-quality feedback,
and enables scalable dataset cleaning, reducing reliance on costly manual verification.

To address this challenge, we propose Hölder-DPO, the first alignment loss with a provable redescend-
ing property, stably learning clean data distribution even under heavy contamination (e.g., ϵ = 0.4).
Furthermore, our loss also enables the aligned model itself to serve as a mislabel valuation metric
(see Figure 1). Ours is a first-of-its-kind principled metric that provides a theoretically grounded
estimator of both the likelihood and fraction of (mis-)labelled data. Furthermore, our method is
highly scalable—it avoids costly gradient-based computations required by prior work [60, 22] and
eliminates the need for manual verification [58], thereby enabling fully automated feedback cleaning.
Applied to the Anthropic HH dataset [34], it reveals substantial noise (ϵ ≈ 0.25), and removing the
identified mislabels significantly improves alignment performance across methods.

2 Preliminaries
2.1 Language Model Alignment by Direct Preferential Optimization

Human feedback and Bradley-Terry model. Let x ∈ X be a prompt sampled from a distribution
p(x) over a finite context space X . The policy model π(y | x) generates a pair of responses (y1, y2).
A human annotator then provides a preference between them, identifying the preferred response as
ywin, and the rejected response as ylose, i.e., ywin ≻ ylose. Although the underlying reward function
r∗(x, y), which ranks responses, is unobservable, Bradley–Terry (BT) model [12] provides a standard
framework for modelling pairwise comparisons based solely on observed preferences:

p∗(y1 ≻ y2 | x, y1, y2) := σ [exp(r∗(x, y1))− exp(r∗(x, y2))] , (1)
where σ(a) := 1/(1 + exp(−a)) is the logistic function. We define a pairwise data point as
s := {x, ywin, ylose}, and denote the preference dataset as D := {s(i)}Ni=1. Each data point s(i) is
sampled independently from pD(s), where pD(s) ∝ p∗(ywin ≻ ylose | x, y1, y2) · π(y1, y2 | x) · p(x).
Direct Preference Optimization (DPO). The goal of preference-based model alignment is to find
parameters θ such that the policy πθ accurately approximates either the latent reward function r∗ or
the preference distribution p∗. To achieve this, Rafailov et al. [84] proposed DPO, which efficiently
solves the alignment task by minimizing the following optimization problem L(s, πθ):

argmin
θ

EpD(s)[− log σ(gθ(s))], where gθ(s) = β log
πθ(ywin | x)
πref(ywin | x)

− β log
πθ(ylose | x)
πref(ylose | x)

, (2)

where πref is the reference model, and β > 0 is a hyperparameter controlling alignment strength.
The reference model is typically obtained by supervised fine-tuning (SFT) on the prompts x with the
preferred response ywin only [84, 86]. The corresponding gradient is given by:

∇θL(s, πθ) := σ(−gθ(s)) · (∇θ log πθ(ywin | x)−∇θ log πθ(ylose | x)) , (3)
where gθ(s) := r̂θ(x, ywin)− r̂θ(x, ylose) and r̂θ(x, y) = β log(πθ(y|x)/πref (y|x)) denotes the implicit
reward function induced by πθ.
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2.2 Data Contamination Model for Label Flips and Redescending Property
Data contamination model. Noise in human preference datasets [35, 105, 99] can arise from two
sources: noise in the responses (y1, y2) [43, 105], such as irrelevant or incoherent samples, and noise
in preference feedback ywin ≻ ylose [35, 87, 28, 23, 105], due to incorrect preference annotations
(also known as label flips). As Wu et al. [105] proved that vanilla DPO is robust against noise
in responses, we focuses on robustness to label flips. We model the label flip process as follows:
We denote a flipped data point as sflip := {x, yflip

win, y
flip
lose}, where yflip

win = ylose and yflip
lose = ywin

represent a flipped preference label pair. Such a flipped point sflip is sampled from the distribution
p(sflip) ∝ pflip(y

flip
win ≻ yflip

lose | x, y1, y2) · π(y1, y2 | x) · p(x). Contaminated dataset D̃ is given by:
Definition 1 (ϵ-contamination model). Let 0 ≤ ϵ < 1/2 be contamination ratio. The generative
distribution of D̃ under the ϵ-contamination model is defined as p(ϵ)

D̃
(s̃) = (1− ϵ)pD(s) + ϵp(sflip),

and denote s̃ as a contaminated data point, which can be either clean s or flipped sflip.

Definition 1 is widely adopted in robust statistics [48, 44, 49] and in the machine learning commu-
nity [38, 33, 75]. We assume access only to the contaminated dataset p(ϵ)

D̃
(s̃), without access to a clean

validation set pD(s)—a prerequisite in many existing methods [24, 58]. As such, the contamination
problem cannot be reduced to a standard classification or distribution shift task. Instead, we leverage
a tail contamination assumption to enable estimation of the contamination ratio ϵ:
Assumption 1 (Tail contamination [32]). Suppose that pD = σ(gθ∗(s)) for some θ∗ ∈ Θ, meaning
that the true data distribution is exactly recovered by the model. Let γ > 0. Then, in a neighborhood
of θ = θ∗, Ep(sflip)[σ(gθ(sflip))

γ ] is sufficiently small, i.e., Ep(sflip)[σ(gθ(sflip))
γ ] ≈ 0 when θ ≈ θ∗.

Intuitively, if we had access to the ground-truth clean-data likelihood σ(gθ∗(s)), it would assign
high values to clean data points and negligibly small values to flipped ones. This principle is
well-established in robust statistics [32, 53], and implicitly adapted in prior work [57, 13, 4, 109].
Moreover, this assumption unlocks heavy contamination scenarios, in contrast to typical assumptions
that consider only infinitesimally small perturbations, i.e., ϵ ≈ 0 [41, 61, 22]. This distinction is
particularly important for noisy human preference datasets (e.g., ϵ ≈ 0.25 for HH-RLHF [88, 20]).

Redescending property. We evaluate robustness to the data contamination through the learned LLM
parameters. Let θ∗ denote the optimal parameters learned from the clean dataset pD, and θ∗(ϵ) denote
those learned from the ϵ-contaminated dataset p(ϵ)

D̃
. Intuitively, the impact of contamination can be

measured by θ∗(ϵ)− θ∗, and its first-order approximation, known as IF [44], is commonly used:

IF(sflip, θ, pD) :=
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

. (4)

See Appendix C for further details. Using the IF, we define the robustness condition as follows:

Definition 2 (Redescending property [74]). Let sflip = (x, yflip
win, y

flip
lose) be a preference pair. An

objective is said to be robust to ϵ-contamination if the following condition is satisfied:

lim
r̂θ(x,y

flip
lose)→∞

∥IF(sflip, θ, pD)∥ = 0,

where ∥ · ∥ denotes the Euclidean norm.
The limit r̂θ(x, y

flip
lose) → ∞ occurs when the data point sflip attains the lowest reward, i.e., gθ(sflip) →

−∞. Yet, the label flip forces the model to learn this least preferable sample as best, representing
the most adversarial data-poisoning scenario that a single label flip can induce. Intuitively, if the IF
remains zero even under this adversarial condition, the learning objective can be considered robust:
the effect of the worst possible data point on the model parameters vanishes, i.e., θ∗(ϵ) ≈ θ∗2.

2.3 Related work
Robust DPOs and RLHFs. A broad range of DPO variants have been proposed to improve the
robustness of the alignment objective [76, 6, 100, 24, 105]. Reinforcement-learning-based approaches
also constitute a popular family of alignment methods [26, 8, 78, 55], with several recent works
introducing robustified objectives [72, 14, 82]. However, none provides theoretical guarantees for the
redescending property or for detecting mislabelled data. We prove their limitations in Section 3.

2Up to higher-order approximation error O(ϵ2)
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Dataset valuation and cleaning. Dataset valuation has been studied using IFs [41, 61, 22, 64, 63,
108, 52], Shapley values [102], and unrolling [7]. Various heuristic methods have also been proposed
for identifying and filtering mislabelled data, including prompt-based filtering [77, 91, 68, 103, 70],
attribution-based approaches [101, 36, 11, 79], and perplexity-based filtering [58]. In contrast, our
method is the first to provide theoretical guarantees for dataset filtering under heavy contamination.

3 Existing DPO Variants Are Neither Robust Nor Able to Identify Mislabels
We first derive the IFs of existing DPO variants and show that none satisfy the redescending property.

Theorem 2 (IF for DPO variants). Let θ∗ be the optimum learnt from the clean dataset pD, and
θ∗(ϵ) learnt from the ϵ-contaminated dataset p(ϵ)

D̃
. Let Lgen(πθ;πref) be a generic DPO loss function

corresponding to a specific DPO variant. Assume that the Hessian ∇2
θLgen(s, πθ)|θ=θ∗ is positive

definite.3 Then, the sflip-dependent component of the IF for this DPO variants is given by:

IF(sflip, θ, pD) ∝ Ep(sflip)[∇θLgen(sflip, πθ∗)], (5)

where ∇θLgen(sflip, πθ∗) corresponds, for example, to Eq. (3) when Lgen(sflip, πθ∗) = L(sflip, πθ∗).

Theorem 3 (informal). The following objectives do not satisfy the redescending property:

algorithm objective Lgen(πθ;πref) bounded ? redescending? can detect sflip?

DPO [84] E
p
(ϵ)

D̃
[− log σ(gθ(s̃))] ✓ ✗ ✗

IPO [6] E
p
(ϵ)

D̃

[(
gθ(s̃)
β − 1

2β

)2]
✗ ✗ ✗

C-DPO [76] (1− c)E
p
(ϵ)

D̃
[− log σ(gθ(s̃))]− cE

p
(ϵ)

D̃
[− log σ(−gθ(s̃))] ✓ ✗ ✗

R-DPO [24] 1−c
1−2cEp

(ϵ)

D̃
[− log σ(gθ(s̃))]− c

1−2cEp
(ϵ)

D̃
[− log σ(−gθ(s̃))] ✓ ✗ ✗

Dr. DPO [105] −β′ logE
p
(ϵ)

D̃

[
exp

(
log σ(gθ(s̃))

β′

)]
✓ ✗ ✗

DPO R-DPO Dr. DPO

IF
 w

ei
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s
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Hölder-DPO (Ours)
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rθ → ∞

Only Hölder-DPO
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Figure 2: IF analysis reveals only Hölder-DPO
satisfies the redescending property.

See Appendices E and G for full proofs and detailed
expressions of the IFs for each DPO variant. We now
provide an intuitive interpretation of Theorem 3. The
IF can be viewed as the gradient of the generic objec-
tive Lgen (see Eq. (5)), which can be decomposed into
two components. For example, in the vanilla DPO
case (Eq. (3)), we have:

∇θL(s, πθ) = σ(−gθ(s))︸ ︷︷ ︸
IF weights.

ggrad(s)︸ ︷︷ ︸
direction

.

Here, the gradient term ggrad(s) determines the direc-
tion of the update, while the IF weight σ(−gθ(s))
acts as a scaling factor that controls the strength of
the update for each data point. If the IF weight tends
to zero in the worst-case scenario (i.e., gθ(sflip) → −∞), the method is robust, as it effectively ignores
highly confident but misaligned (flipped) samples. Figure 2 visualises the behavior of IF weights
across different objectives under extreme reward perturbations. Both DPO and Dr. DPO exhibit
the same asymptotic trend, with limrθ(x,y

flip
lose)→∞ IF = a, where a is a non-zero constant. R-DPO

shifts this limit upward with a constant c, while C-DPO pushes it downward, but neither approaches
zero. In contrast, our proposed Hölder-DPO, introduced in the next section, completely nullifies the
influence of outliers, demonstrating strong robustness (redescending), not merely boundedness.

4 Proposed method: Hölder-DPO
In response to the issues identified in §3, we introduce our robust DPO framework, Hölder-DPO, the
first algorithm that has a provable redescending property and can identify mislabels sflip.

3This is a local assumption around the optimal parameters θ∗. Such local assumptions are standard in IF
analysis for non-convex deep learning models, as global convexity rarely holds (e.g., [56, 22]).
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4.1 Hölder-DPO Is Provably Robust

The objective of vanilla DPO in Eq. (2) can be rewritten with KL divergence:

argmin
θ

E
p
(ϵ)

D̃
(s̃)

[log p
(ϵ)

D̃
(s̃)]︸ ︷︷ ︸

ignorable const.

+E
p
(ϵ)

D̃
(s̃)

[− log σ(gθ(s̃))]︸ ︷︷ ︸
Original DPO loss

= argmin
θ

DKL[p
(ϵ)

D̃
(s̃) ∥σ(gθ(s̃))]. (6)

Thus, vanilla DPO can be understood as matching σ(gθ(s̃)) ≈ p
(ϵ)

D̃
(s̃) in terms of KL divergence.

However, the KL divergence is well-known to be highly sensitive to data contamination [10, 32], and
accordingly, DPO is not robust (Theorem 3). This fact motivates replacing the KL divergence with a
more robust alternative. In this paper, we employ the Hölder divergence [53], a generalization of the
KL divergence that encompasses several robust divergences, defined as follows:

Definition 3 (Hölder divergence [53]). Let ϕ : R+ → R be a continuous function such that
ϕ(h) ≥ −h1+γ for all h ≥ 0 and γ > 0, and ϕ(1) = −1. Then, the Hölder divergence is defined as

DH[p(ω) ∥ q(ω)] :=
{
Sγ(p ∥ q)− Sγ(p ∥ p) (γ > 0),

DKL[p(ω) ∥ q(ω)] (γ = 0),
(7)

where Sγ(p ∥ q) := ϕ
(

Ep[q
γ(ω)]

Eq [qγ(ω)]

)
· Eq[q

γ(ω)], Sγ(p ∥ p) := −Ep[p
γ(ω)], and p, q are non-negative,

non-zero functions.

We then propose to perform LLM alignment by solving the following optimization problem:

argmin
θ

DH[p
(ϵ)

D̃
(s̃)) ∥σ(gθ(s̃))]. (8)

Remark 1. Prob. (8) generalises the KL divergence and encompasses two robust divergences.

γ ϕ(h) = divergence equivalence

γ = 0 N/A KL vanilla DPO (Eq. (6))
γ > 0 γ − (1 + γ)h density-powered (DP; [10]) N/A
γ > 0 −h1+γ pseudo-spherical (PS) score [40, 39] γ-divergence [32, 53]

When γ > 0, Sγ(p
(ϵ)

D̃
∥ p(ϵ)

D̃
) is a negligible constant, Prob. (8) can be further reformulated as

argmin
θ

Sγ(p
(ϵ)

D̃
(s̃) ∥σ(gθ(s̃))). (9)

We refer to the new objective, Prob. (9), as Hölder-DPO. We now analyze its robustness via IF:

Theorem 4 (IF for Hölder-DPO). Suppose that θ∗(ϵ) = argminθ Sγ(p̃
(ϵ)
D ∥σ(gθ)) and θ∗ =

argminθ Sγ(pD ∥σ(gθ)). Let ϕ(h) be twice-differentiable, and let 0 < σ(gθ(s)) and 0 < γ < ∞.
Assume that ϕ(h) satisfies ϕ′(h) ̸= 0 for h > 0 and ϕ(h) ̸= c · h for any constant c4 and the Hessian
∇2

θL(s, πθ)|θ=θ∗ is positive definite. Then, the IF of the Hölder-DPO, excluding terms independent
of sflip, is given by:

IFH−DPO(sflip, θ, pD) ∝ Ep(sflip)[F
(γ)
θ∗ (sflip)], (10)

where F
(γ)
θ∗ (sflip) := σ(gθ∗(sflip))

γ ∇θL(sflip, πθ∗).

Corollary 1 (Hölder-DPO is robust). Suppose that the policy gradient ∇θ log πθ(y | x) is bounded
by C and satisfies L-Lipchitz in θ, where 0 < C < ∞ and 0 < L < ∞. Then, under Theorem 4, the
IF of Hölder-DPO satisfies the redescending property in Definition 2.

The full proof and the complete form of Eq. (10) are summarised in Appendices E.3 and E.4. This
robustness result is expected, as both the DP divergence and the γ-divergence are well known to be
robust to data contamination across various settings [10, 32, 38, 33]. The key difference between the
IFs of DPO variants (Theorem 2) and our method (Theorem 4) lies in the term σ(gθ∗(sflip))

γ . This
subtle change induces diminishing IF weights, as shown in Figure 2, and ensures the redescending.

4These assumptions are satisfied by the DP divergence and the PS score, as formally shown in Lemma 2.
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4.2 Hölder-DPO Can Estimate Contamination Ratio ϵ and Detect Contaminated Data sflip

We now move to the most novel part of our algorithm: contaminated data detection, which is the
primary motivation for employing Hölder divergence in addition to its robustness and generality
across three divergences. Specifically, we show that our Hölder-DPO inherits the contamination ratio
(ϵ) estimation capability of the Hölder divergence [54].

Model Extension. Estimating the contamination ratio ϵ without access to clean validation dataset
may sound surprising—how is it possible? The key enabler is the idea of model extension [54].
Due to space limitations, we present only the high-level intuition here and defer technical details to
Appendix F.2. The crucial insight is that if the learning objective satisfies redescending property—that
is, it nullifies the effect of contamination—the divergence can be approximated as:

argmin
θ

Sγ [p̃
(ϵ)
D ∥σ(gθ(s))] = argmin

θ
Sγ [(1− ϵ)pD(s) + ϵp(sflip) ∥σ(gθ(s))], (Definition 1)

≈ argmin
θ

Sγ [(1− ϵ)pD(s) ∥σ(gθ(s))]. (Corollary 1)

Thus, our Hölder-DPO objective can be interpreted as matching (1− ϵ)pD(s) ≈ σ(gθ(s)). However,
the scaling factor (1− ϵ) remains on the target distribution side. The model extension idea [54]
addresses this issue by introducing an additional scaling parameter ξ into the model:

{θ∗(ϵ), ξ∗} ≈ argmin
θ, ξ

Sγ [(1− ϵ)pD(s) ∥ ξσ(gθ(s))].

Intuitively, if ξ ≈ 1− ϵ, the objective approximately reduces to the clean form: Sγ(pD(s) ∥σ(gθ(s))).
In other words, the aligned model σ(gθ∗(ϵ)(s)) approximates the distribution of the clean dataset, i.e.,
pD(s) ≈ σ(gθ∗(ϵ)(s)). Furthermore, the optimised scaling parameter ξ provides an estimate of the
contamination ratio ϵ, using ϵ ≈ 1− ξ.

Estimator of ϵ. The contamination ratio estimate ϵ̂ has the following closed-form:
Proposition 1 (Contamination ratio estimator). For any fixed θ, the optimal solution to
the inner optimization problem argminξ Sγ(p

(ϵ)

D̃
∥ ξσ(gθ(s))) is given in closed form by ξ∗ =

E
p̃
(ϵ)
D
[σ(gθ(s̃))

γ ] /
∫
σ(gθ(s̃))

1+γds̃. Then, the contamination ratio ϵ can be estimated by:

ϵ̂ = min{0, 1− ξ̂∗}, where ξ̂∗ :=
1
N

∑N
i=1 σ̄(gθ(s̃

(i)))γ∑N
i=1 σ̄(gθ(s̃

(i)))1+γ
, σ̄(gθ(s̃

(i))) :=
σ(gθ(s̃

(i)))∑N
i=1 σ(gθ(s̃

(i)))
. (11)

Surprisingly, the contamination ratio ϵ̂ can be estimated using the closed-form solution. As a result,
Hölder-DPO enables contamination estimation without solving a complex optimization problem. A
full derivation and proof are provided in Appendix F.2.

Choice of ϕ. Given two divergence options, DP or PS (see Remark 1), which should we choose?
Kanamori and Fujisawa [54] addressed this question in the classical setting and showed that only
DP—i.e., ϕ(h) = γ − (1 + γ)h—satisfies both the redescending property (Corollary 1) and contami-
nation ratio estimation (Proposition 1). We proved that the same theoretical result holds in the model
alignment context: neither the PS score nor KL divergence satisfies both properties, while DP does.
(see Appendix F.4). Thus, our final objective reduces to the following empirical estimator:

argmin
θ

ŜDP

(
p
(ϵ)

D̃
∥ ξσ(gθ(s̃))

)
:= argmin

θ
− (1 + γ)

N

N∑
i=1

[
σ(gθ(s̃

(i)))γ
]
+

γ

N

N∑
i=1

σ(gθ(s̃
(i)))1+γ . (12)

The details of the derivation of the DP divergence estimator are provided in Appendix D.

4.3 Algorithm to Detect Data Contamination

Algorithm 1 summarises the overall procedure for de-
tecting contaminated data points. As shown in Line 1,
our proposed Hölder-DPO serves as a plug-and-play
replacement for the standard DPO loss. Simply train-
ing with the objective in Eq. (12) yields a robust
model alignment algorithm. For further analysis,
Line 2 estimates the contamination ratio ϵ̂ without

Algorithm 1 Contamination detection

Require: D̃, πθ , πref , γ
1: Fine-tune via Prob. (12) → θ∗(ϵ).
2: Estimate contamination ratio ϵ̂ via Eq. (11).
3: Identify mislabels in D̃ by sorting the esti-

mated clean-data likelihood σ(gθ∗(ϵ)(s̃
(i)))

and take least ⌊Nϵ̂⌋ samples.
4: return θ∗(ϵ), ϵ̂, Dz

requiring access to a clean validation dataset—unlike prior work that depends on one [24, 58]. We
then perform dataset valuation using the estimated clean-data likelihood σ(gθ∗(ϵ)(s̃

(i))), identifying
the estimated mislabelled subset.
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Figure 3: Controlled sentiment generation task using GPT2-large. Error bars indicate the standard
deviation over 10 trials with different random seeds. Hölder-DPO consistently outperforms all
baselines in average reward under varying (a) contamination ratios ϵ, (b) generation temperatures,
and (c) training steps. In addition, only Hölder-DPO offers reliable (d) contamination ratio estimation
ϵ̂ and (e) precision of mislabel identification, measured by precision as a binary classifier.

5 Experiments

We benchmarked Hölder-DPO against two robust DPO variants: R-DPO [24] and Dr. DPO [105].
We also compared to several heuristic baselines, including cDPO [76] and vanilla DPO [84]. As
shown in Theorem 3, none of these baselines satisfy the redescending property, though they may offer
empirical improvements in some settings. All experiments are conducted on a single NVIDIA A100
GPU (40 GB VRAM, 83.48 GB RAM). For SFT of the reference model, we train for one epoch using
context–response pairs (x, ywin). Each DPO variant is then trained for five epochs. We implement all
methods using the Transformers [96, 104], TRL [98], and PyTorch [80] libraries. We set β = 0.1 and
γ = 2.0, and all other hyperparameters follow the TRL defaults. Complete implementation details,
including Hugging Face URLs to models and datasets used, are provided in Appendix H.

5.1 Controlled Sentiment Generation: Robustness Evaluation

Setup. We evaluate alignment robustness on a sentiment-controlled text generation task using the
IMDb dataset [71], which contains 25,000 polarised movie reviews. Following Chowdhury et al.
[24], we extract the first 20 tokens from each review as a context prompt. For each prompt, we
generate four responses using the SFT-ed GPT2-large [83]. These responses are used to construct
six preference pairs per prompt. To provide sentiment rankings, we employ SiEBERT [69, 46] as
the latent (ground-truth) reward model r∗(y, x). To ensure clean dataset, we filter out preference
pairs that do not satisfy r∗(ywin, x) − r∗(ylose, x) > 0.1, yielding 12,000 clean pairs. Of these,
10,000 are used for training and 2,000 for evaluation. To simulate label noise, we randomly flipped
(ywin, ylose) in the training set with contamination ratio ϵ ∈ {0., 0.1, 0.2, 0.3, 0.4}. We then fine-tuned
GPT2-large using various DPO variants. Alignment quality is measured by the average reward
assigned by SiEBERT to responses generated by the aligned model on the 2,000 evaluation prompts.

Alignment quality. Figure 3(a) shows that Hölder-DPO consistently outperforms all baselines
in average reward, with only a minor drop as the contamination level ϵ increases. This supports
our theoretical claim: Hölder-DPO, uniquely characterised by the redescending property, achieves
robustness even under severe noise (e.g., when ϵ ≥ 0.3). A mild linear decay remains, likely due to
the reduced proportion of effectively clean data points, which limits estimation accuracy. Figures 3(b)
and 3(c) further demonstrate Hölder-DPO’s robustness across generation temperatures and training
steps. Notably, while the baseline methods plateau early during training, Hölder-DPO continues to
improve, suggesting stronger resistance to overfitting on noisy preferences.

Table 1: Effect of γ on Hölder-DPO
under ϵ = 0.4 contamination.

γ
average
reward ϵ̂ precision

1 0.8975 0.2503 0.6433
2 0.9420 0.2373 0.9286
4 0.9446 0.3083 0.8902
6 0.9561 0.4123 0.8328
8 0.9470 0.4380 0.7860

Valuation quality. Figures 3(d) and 3(e) evaluate misla-
bel valuation. As shown in Proposition 1, this estimation
capability is unique to Hölder-DPO and is not supported
by other baselines (see Theorem 3). The detection task
is entirely unsupervised—no ground-truth labels indicate
whether a preference pair is clean or flipped. Remark-
ably, Hölder-DPO accurately estimates the contamination
ratio up to ϵ = 0.2, after which the estimates begin to
saturate. This is expected, given that contamination ra-
tio estimation relies on the optimised σ(gθ∗(ϵ)), and the
average reward slightly deteriorates as ϵ increases (see
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Figure 4: Helpful assistant dialogue generation on the Golden HH dataset. Error bars denote standard
deviation over 10 trials with different random seeds. Hölder-DPO consistently achieves the highest
GPT-4 win rate across both base models: (a)Qwen-2.5-1.5B and (b)Phi-2. Notably, Hölder-
DPO is the only method that outperforms GPT-4-generated prompts even when using the smaller
2.8B Phi-2 model. It also delivers near-perfect (d) contamination ratio estimation ϵ̂ and (e) precision
in mislabelled data detection, regardless of the base model.

Figure 3(a)). Nonetheless, it reliably ranks datasets by relative noise levels. For mislabel detection,
precision—i.e., the proportion of true mislabels among those predicted as mislabelled—increases
with higher ϵ, which we attribute to underestimation of ϵ, reducing false positives and improving
detection precision.
Impact of γ choice. We vary the key hyperparameter γ to assess its effect. As shown in Table 1,
there is a trade-off: increasing γ leads to a more accurate contamination ratio estimate ϵ̂ but lowers
mislabel detection precision. Intuitively, γ controls how strongly potential outliers are down-weighted.
While the optimal γ is task-dependent and relates to the true (yet unknown) ϵ, Hölder-DPO consis-
tently outperforms all baselines with a fixed default of γ = 2, suggesting that it is effective without
extensive tuning. See Appendix H for further ablation studies on hyperparameters, e.g., batch size.

5.2 Single-turn Dialogue: Generated Responce Quality Evaluation

Given a user prompt, the task is to generate responses that are more helpful and less harmful. In this
setting, we do not have access to ground-truth rewards (e.g., from a sentiment model like SiEBERT).
Instead, we adopt the GPT-4 win rate [84, 105], the standard metric for evaluating alignment when
ground truth is unavailable. This metric follows three steps: (A) generate a response ygen using the
aligned model for a given prompt x; (B) retrieve the preferred response ywin from the test dataset
for the same prompt x; (C) ask GPT-4 to compare (ywin, ygen) and determine which is better. The
win rate is defined as the fraction of prompts where ygen is preferred. For dataset, we evaluate on the
Golden HH [15], a manually curated version of Anthropic HH [34], in which low-quality responses
have been replaced with GPT-4-generated outputs. Since ywin corresponds to GPT-4 generations,
the benchmark is both cleaner and more challenging than the original Anthropic HH. The dataset
contains 42,500 training and 2,310 test examples. To evaluate robustness, we randomly flipped
preference labels with varying noise levels ϵ ∈ {0., 0.1, 0.2, 0.3, 0.4}. We tested two base models:
Qwen-2.5-1.5B [106] and Phi-2 [50], and fine-tuned using DeepSpeed Stage 3 [3] for memory
efficiency, with an effective batch size of 325. As shown in Figures 4(a) and 4(b), Hölder-DPO
consistently outperforms all baselines across both base models. Notably, Hölder-DPO with Phi-2
is the only method to exceed a 50% win rate, slightly outperforming GPT-4-generated responses.
Figures 4(c) and 4(d) further show that mislabel detection is nearly perfect. Remarkably, these results
are achieved in a fully unsupervised setting, underscoring the effectiveness of our approach.

Table 2: GPT-4 win rate on OASST1 (ϵ = 0.4).

loss Ministral-8B NeMo-12B

DPO 0.5801 0.6021
R-DPO 0.5737 0.5992
Dr. DPO 0.6058 0.6196
Hölder-DPO 0.6314 0.6473

Can Hölder-DPO scale to larger models?
We further evaluated Hölder-DPO on larger
language models—Mistral-8B [93] and
NeMo-12B [94]—both capable of multilingual
interaction. Experiments were conducted on the
OASST1 dataset [89, 59], which contains 18,000
multilingual messages across 35 languages in a

5Batch size of 4 with gradient accumulation of 8.
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Figure 5: Dataset valuation using Phi-2. (a) Hölder-DPO estimates substantial contamination
(ϵ̂ ≈ 0.25) in popular Anthropic HH dataset. (b) Distribution of log-likelihoods of clean data points in
the dataset. (c) Improvement in GPT-4 win rate across methods after removing detected noisy data
points from the training set—surpassing even Hölder-DPO trained on the original (noisy) dataset.

multi-turn dialogue format. Preference labels in the training set were flipped with a contamination
ratio of ϵ = 0.4. To accommodate limited GPU resources, we apply low-rank adaptation (LoRA;
[47]) via the PEFT library [73], along with model quantization using bitsandbytes [30, 31]. Despite
these constraints, Hölder-DPO consistently outperforms all baselines, as shown in Table 2.

5.3 Real-world Noisy Datasets: Dataset Valuation and Cleaning

To go beyond controlled settings with synthetic noise, we next applied Hölder-DPO to real-world
datasets where the true contamination ratio ϵ is unknown. Using our contamination ratio estimator ϵ̂
in Eq. (11), we performed dataset valuation and cleaning on the Anthropic HH dataset [34], which is
widely used but known to contain significant label noise [88, 20, 105]. We adopted Phi-2 as the
base model and apply Hölder-DPO directly to the raw dataset.

Dataset valuation. Figure 5(a) shows the estimated contamination levels for three datasets without
synthetic label flipping, reflecting inherent label noise. As expected, the Anthropic HH dataset
exhibits the highest estimated contamination, with ϵ̂ ≈ 0.25. This aligns with prior findings reporting
substantial noise in Anthropic HH [88, 20, 105, 24]. Figure 5(b) displays the distribution of log-
likelihoods, with illustrative examples provided in Appendix H.3. Manual inspection reveals a
consistent pattern: for prompts that LLMs are expected to refuse (e.g., harmful or unethical requests),
both responses in the removed examples often provide information, leading to inconsistent rankings.
These findings show that Hölder-DPO not only serves as a robust alignment objective but also offers
interpretable and actionable insights for dataset valuation.

Data cleaning. We also evaluated the effectiveness of Hölder-DPO for data cleaning. Here, Hölder-
DPO was used as a pre-processing step to identify and remove noisy preference labels, yielding
a filtered training dataset. We then compared the GPT-4 win rates before and after cleaning. As
shown in Figure 5(c), removing samples identified as mislabelled consistently improves performance
across all methods. Notably, both DPO and Dr. DPO trained on the cleaned dataset outperform
Hölder-DPO trained on the original (noisy) dataset. This is expected: while Hölder-DPO is designed
to be robust under label noise (ϵ > 0), once the data is cleaned (ϵ ≈ 0), robust objectives can be
overly conservative, thus KL-based methods like DPO can align more effectively. These results
suggest that Hölder-DPO can serve not only as a robust training objective, but also as a valuable
pre-filtering tool for noisy preference datasets.

6 Discussion

Role of Hölder-DPO; pre-filtering or new objective? Hölder-DPO is a versatile framework
whose optimal role depends on the application context. When maximising final performance is
prioritised over training cost, a two-stage pipeline—first filtering with Hölder-DPO and then fine-
tuning using a vanilla DPO objective—yields superior results (see Figure 5(c)). Conversely, when
computational efficiency is the priority, a single-stage approach—directly fine-tuning with the Hölder-
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DPO objective—offers a cost-effective solution while maintaining strong alignment quality. This
flexibility enables practitioners to choose the two strategies according to their constraints.

How to set γ? As shown in Table 1, the value of γ has a strong influence on performance. Its
optimal setting is likely task- and dataset-dependent. Ideally, dynamically tuning γ during training
would yield the best results. Nevertheless, our experiments show that a default value of 2.0 performs
robustly across diverse settings, and we recommend using it as the default choice. When fine-tuning
γ is desired, a promising approach is to employ a human-in-the-loop process. As illustrated in
Figure 5(b), the Hölder-DPO model can rank data points. This ranking can serve as a diagnostic tool
to guide manual inspection: for instance, increasing γ if clear mislabels are still being tolerated, or
decreasing it if correct preferences are penalised as mislabels.

What if ϵ > 0.5? When the noise ratio becomes extreme (e.g., ϵ = 0.9), Hölder-DPO can still
identify the 10% of clean samples by isolating them as outliers. In such cases, the roles can be
reversed—the identified minority can be treated as the clean subset, while the majority is discarded.
This reversal can be validated with minimal human effort by inspecting a few of the top-ranked
samples flagged by our method. Hence, Hölder-DPO remains applicable even in highly noisy
settings (e.g., ϵ > 0.6). However, detecting mislabeled data becomes fundamentally difficult when
ϵ ≈ 0.5. We argue that this challenge is not a limitation of our method per se, but rather a theoretical
identifiability barrier: when clean and noisy data are equally represented, distinguishing between
them is statistically impossible without access to a clean reference set. Our approach inherently
assumes a bimodal distribution, where one mode—typically the majority—corresponds to clean data.

What kind of label noise does the tail assumption cover? While our tail-contamination assump-
tion formally presumes i.i.d. noise, it is in fact more general than it may appear. Hölder-DPO
is effective against a wide range of label noise types—symmetric, asymmetric, and even certain
systematic annotator biases—so long as the resulting noisy preference pairs are recognized by the
learned model as low-likelihood events (i.e., outliers). This generality represents a clear advantage
over prior methods that can only handle symmetric label flips (e.g., [67]). The main limitation arises
when the noise is too structured to be identified as an outlier by the model. For instance, if all
preference labels associated with a single prompt or narrow topic are consistently flipped, such errors
cease to form a distinct “tail” in the data distribution. Instead, they produce a coherent but incorrect
signal within that subdomain—one the model may interpret as a genuine, domain-specific preference.
Addressing such structured noise requires modeling dependencies across samples rather than treating
each observation as independently corrupted. Exploring this direction is a key avenue for future work.
Concurrent research has begun tackling these challenges using latent-variable formulations [16].

7 Conclusion and Limitation

Conclusion. We analyzed the robustness of DPO variants through the lens of the redescending
property and showed that none of the existing methods satisfy it. We then introduced Hölder-DPO—
the first algorithm with a provable redescending property—alongside a principled data valuation
method for estimating contamination and identifying mislabelled data. Our experiments demonstrate
that Hölder-DPO improves alignment quality and accurately detects mislabels without access to a
clean validation set. Notably, it offers the first theoretically grounded approach to dataset valuation,
revealing significant noise in the widely used Anthropic HH dataset. Moreover, filtering out the
detected noisy examples further improves performance across alignment methods, positioning Hölder-
DPO as an effective pre-training filter. Taken together, our theoretical and empirical results advance
scalable, automatable alignment without relying on clean validation data.

Limitations. A key limitation lies in the selection of the hyperparameter γ and see Section 6
for the potential solutions. Another limitation is that our theoretical guarantees are also based on
an i.i.d. label flip model and see also Section 6 for the details. Furthermore, our objective relies
on a coarse approximation of the DP divergence (see Appendix D), and exploring more precise
approximation methods is another important avenue. Finally, we implicitly assume that majority
opinion represents the clean data; see Appendix A for the broader implications.
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided the code on GitHub https://github.com/ma921/
HolderDPO. All data we used are already open-sourced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detals, a list of hyperparameters, and training detals in Ap-
pendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures 3 and 4 report the standard deviation of 10 run with different random
seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5, we provide the information on the computer resources (single
A100 GPU 40GB).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work focuses solely on advancing machine learning algorithms and uses
only publicly available datasets from peer-reviewed publications.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Impacts are stated in Appendix A. There are many potential societal conse-
quences of our work, none which we feel must be specifically highlighted here.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We release the code on anonymised GitHub but not the model nor data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explained and cited the library we used in Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code and new tasks are provided on anonymised GitHub with explanation
alognside with its implementation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
We used the publicly available dataset with human subjects, but it is already reviewed by the
journal board (PNAS) and the authors of the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We derived theories and algorithms by pen-and-paper. Experiments uses the
LLM as the model to train, evaluate, but do not use them beyond the experimental purpose.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Broader impact statement

Robust model alignment and reliable human feedback valuation are critical for the safe deployment
of large language models (LLMs). While our work may have various societal implications, we do not
identify any specific risks that require immediate attention.

Conceptually, our definition of “robustness” aligns with a utilitarian perspective: we assume that
the majority opinion in the training dataset represents the true target distribution, and that minority
opinions deviating from this majority are noise to be filtered out. This assumption is often reasonable
in applications like toxicity removal or instruction following, where the normative standard tends to
be implicitly shared by the majority.

However, we acknowledge that this framework does not universally apply. In contexts such as
opinion formation or deliberative dialogue, disregarding minority voices is inappropriate and po-
tentially harmful. In such cases, distributionally robust methods (e.g., [85, 21]) that account for
underrepresented groups are more suitable. Fundamentally, these challenges relate to the broader
problem of aggregating heterogeneous preferences into a single model—a problem well-known in
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social choice theory. According to the impossibility theorem [5], no aggregation rule (or "social
welfare functional") can simultaneously satisfy all desirable rationality axioms. As such, there is no
universally optimal solution, and algorithmic choices must be guided by task-specific priorities (see,
e.g., [2]).

B Additional Discussion of Related Work

Theoretical Role of Influence Functions. While influence functions (IFs) have been widely used
for dataset valuation and model interpretation [41, 61], their use in deriving robustness guarantees
remains less explored. Classical works in robust statistics [49, 44] provide foundational tools for
analyzing model behavior under infinitesimal contamination. Our work draws a conceptual bridge
between these classical formulations and the practical challenges in LLM alignment, utilizing IFs to
derive sufficient conditions for redescending robustness and contamination detection.

Limitations of Prior Robust DPOs. Recent works propose various robust DPO formulations,
including DRO-based [105], noise-aware [23], and filtering-enhanced methods [66]. However, many
of these approaches either break the connection to reward learning or rely on strong assumptions or
additional supervision. Our Hölder-DPO maintains a clean theoretical formulation with a robustness
guarantee, while being computationally efficient and easy to implement.

Empirical Noise Levels and Filtering Limitations. Empirical studies report that preference
datasets often contain 20–40% noise [35, 62], with performance degrading sharply under modest
increases in noise. Common mitigation strategies, such as regularization [35] and teacher-based
filtering [35, 17], suffer from limited generalization and inefficiency against symmetric noise. Our
approach requires neither external LLMs nor manual heuristics, offering a lightweight alternative
grounded in divergence-based theory.

Broader Applicability. Our framework naturally extends to settings like:

• Group-specific Alignment: Supporting heterogeneous user preferences [85, 19].

• Personalized Objectives: Aligning LLMs to individual user intents [81].

• DPO with Divergence Constraints: Leveraging f -divergences to balance alignment and
diversity [100].

C Influence Function to Measure the Impact of the data contamination for
DPO

Given the application of DPO and under the first-order optimality conditions, the model alignment
results for pD(s) and p

(ϵ)

D̃
(s̃) are expressed as:

θ∗ = argmin
θ

EpD(s)[− log σ(gθ(s))] and θ∗(ϵ) = argmin
θ

E
p
(ϵ)

D̃
(s̃)

[− log σ(gθ(s̃))]. (13)

From our definition of contamination data in Section 2.2, its influence on model alignment can
be quantified by measuring the deviation in the optimized parameters, given by ∥θ∗(ϵ) − θ∗∥. To
evaluate this quantity, we apply a Taylor expansion with respect to ϵ around ϵ = 0 for θ∗(ϵ), yielding:

θ∗(ϵ) = θ∗ + ϵ · ∂θ
∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

+O(ϵ2) ⇒ θ∗(ϵ)− θ∗ = ϵ · ∂θ
∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

+O(ϵ2).

From this result, we can approximately evaluate the influence of sflip as follows:

IF(z, θ, pD) :=
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

, (14)

which is called as the influence function (IF) in the robust statistic context [44]. In the next section,
we provide a detailed discussion on the robustness of DPO to contamination data through an analysis
of this IF.
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D Computation of Hölder-DPO Objective

Here, we describe the computation of the Hölder-DPO objective introduced in Eq. (8). Given the
dataset D = {s(i)}Ni=1 with s(i) ∼ pD, our optimization objective is:

argmin
θ

Sγ(pD∥σ(gθ)) ⇒ argmin
θ

ϕ

(
EpD [σ(gθ(s))

γ ]∫
σ(gθ(s))1+γds

)
·
(∫

σ(gθ(s))
1+γds

)
.

The numerator EpD [σ(gθ(s))
γ ] is directly estimated from the empirical distribution. However, the

integral in the denominator is generally intractable. To address this, we approximate it using the
empirical measure dĝ(s) := 1

N

∑N
i=1 δ(s− s(i)), yielding:∫

σ(gθ(s))
1+γdĝ(s) =

1

N

N∑
i=1

σ(gθ(s
(i)))1+γ ,

where δ is the Dirac’s delta function.

Thus, our estimator can be expressed as:

Ŝγ(pD∥σ(gθ)) = ϕ

(
1
N

∑N
i=1 σ(gθ(s

(i)))γ

1
N

∑N
i=1 σ(gθ(s

(i)))1+γ

)
·

(
1

N

N∑
i=1

σ(gθ(s
(i)))1+γ

)
.

For the special case where ϕ(h) = γ−(1+γ)h, corresponding to the scaled density power divergence,
the objective simplifies to:

ŜDP(pD∥σ(gθ)) = − (1 + γ)

N

N∑
i=1

σ(gθ(s
(i)))γ +

γ

N

N∑
i=1

σ(gθ(s
(i)))1+γ .

An alternative approach for constructing a more precise estimator is to employ importance sampling.
However, in the context of LLM fine-tuning, selecting an appropriate proposal distribution is nontrivial.
While this issue lies beyond the scope of the present work, it constitutes an important direction for
future research. Importantly, our empirical results confirm that this objective still retains the key
robustness properties of DP divergence: it remains resistant to label-flipped dataset and enables
accurate estimation of the contamination ratio in practice (see Section 5).

E Proofs

E.1 Proof for Theorem 2 (The Case of DPO)

Theorem 5 (IF for DPO). Suppose θ∗ denotes the optimal parameters learned from clean dataset
pD, and θ∗(ϵ) denotes those learned from ϵ-contaminated dataset p(ϵ)

D̃
. Assume that the Hessian

∇2
θL(s, πθ)|θ=θ∗ is positive definite. Then, the sflip-dependent component of the IF for DPO is given

by:

IFDPO(x, θ, pD) ∝ Ep(sflip)[∇θL(sflip, πθ∗)], (15)

where ∇θL(sflip, πθ∗) is in Eq. (3).

Proof. The gradient of Eq. (2) under p(ϵ)
D̃

is given by

∇θL̃(s̃, πθ) = −βE
p
(ϵ)

D̃

[
σ(−gθ(s̃))

(
∇θ log πθ(ỹwin | x̃)−∇θ log πθ(ỹlose | x̃)

)]
,

where s̃ = {x̃, ỹwin, ỹlose} ∼ p
(ϵ)

D̃
.
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From the definition of θ∗(ϵ), we have 0 = ∇θL̃(s̃, πθ)|θ=θ∗(ϵ). By taking the derivation of this term
w.r.t. ϵ, we obtain

0 =
∂

∂ϵ
∇θL̃(s̃, πθ)

∣∣∣∣
θ=θ∗(ϵ)

= −β
∂

∂ϵ
E
p
(ϵ)

D̃

[
σ(−gθ∗(ϵ)(s̃))

(
∇θ log πθ∗(ϵ)(ỹwin | x̃)−∇θ log πθ∗(ϵ)(ỹlose | x̃)

)
︸ ︷︷ ︸

=:Fθ∗(ϵ)(s̃)

]

= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
Fθ∗(ϵ)(s̃)ds̃+ E

p
(ϵ)

D̃

[
∂

∂ϵ
Fθ∗(ϵ)(s̃)

]}
= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
Fθ∗(ϵ)(s̃)ds̃+ E

p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ

∂Fθ∗(ϵ)(s̃)

∂θ∗(ϵ)

]}
= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
Fθ∗(ϵ)(s̃)ds̃+ E

p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ
Hθ∗(ϵ)(s̃)

]}
, (16)

where Hθ∗(ϵ)(s̃) :=
∂Fθ∗(ϵ)(s̃)

∂θ∗(ϵ) .

From the definition of p(ϵ)
D̃

(s̃), we obtain∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
Fθ∗(ϵ)(s̃)ds̃ = Ep(sflip)

[
Fθ∗(ϵ)(sflip)

]
− EpD

[
Fθ∗(ϵ)(s)

]
,

since ∂
∂ϵp

(ϵ)

D̃
(s̃) = p(sflip) − pD(s), where Fθ∗(sflip) := σ(−gθ∗(sflip))(∇θ log πθ∗(yflip

win | z) −
∇θ log πθ∗(yflip

lose | z)). By taking ϵ → 0, we have(∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
Fθ∗(ϵ)(s̃)ds̃

)∣∣∣∣
ϵ=0

= Ep(sflip)

[
Fθ∗(sflip)

]
,

since θ(∗)(ϵ) → θ(∗) and thus EpD [Fθ∗(s)] = ∇θL(πθ;πref)|θ=θ∗ = 0 from the first-order optimal
condition in Eq. (13).

Furthermore, we also obtain

E
p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ
Hθ∗(ϵ)(s̃)

]∣∣∣∣
ϵ=0

= EpD

[
∂θ∗(ϵ)

∂ϵ
Hθ∗(s)

]
,

where Hθ∗(s) := ∂Fθ∗ (s)
∂θ∗ .

Then, Eq. (16) under ϵ → 0 can be rewritten as

0 =

(
∂

∂ϵ
∇θL̃(πθ;πref)

∣∣∣∣
θ=θ∗(ϵ)

)∣∣∣∣
ϵ=0

= −β

{
Ep(sflip)

[
Fθ∗(sflip)

]
+ EpD

[
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

Hθ∗(s)

]}
.

By solving the above equality w.r.t. ∂θ∗(ϵ)
∂ϵ , we obtain

∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

= −
(
EpD [Hθ∗(s)]

)−1

Ep(sflip)

[
Fθ∗(sflip)

]
.

This completes the proof.

E.2 Proof for Theorem 3 (The Case of DPO)

Corollary 2 (DPO is not robust). Suppose that the policy gradient ∇θ log πθ(y | x) is bounded
by C and satisfies L-Lipchitz in θ, where 0 < C < ∞ and 0 < L < ∞. Then, un-
der Theorem 2, the IF of DPO does not satisfy the redescending property in Definition 2, i.e.,
limr̂θ∗ (x,y

flip
lose)→∞ ∥IFDPO(x, θ, pD)∥ ≠ 0.
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Proof. From the positive definite assumption on the Hessian in Theorem 5 and the L-Lipschitz
assumption on the gradient, it follows that EpD [Hθ∗(s)] is a positive definite matrix. Let L′ =
λmin(EpD [Hθ∗(s)]) > 0 be its minimum eigenvalue. Then the norm of its inverse is bounded:
∥(EpD [Hθ∗(s)])−1∥ = 1/L′. Furthermore, from the assumption that ∥∇θ log πθ(y | x)∥ ≤ C
(0 < C < ∞), we have ∥∇θ log πθ(ywin | x) − ∇θ log πθ(ylose | x)∥ ≤ 2C from the triangle
inequality. Taking the limit and applying Jensen’s inequality and the bounded convergence theorem,
we have:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFDPO(x, θ, pD)∥

≤ lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥(EpD [Hθ∗(s)]

)−1∥∥∥∥ · lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥Ep(sflip)

[
Fθ∗(sflip)

]∥∥∥∥
≤ (1/L′) · lim

r̂θ∗ (x,y
flip
lose)→∞

Ep(sflip)[σ(−gθ∗(sflip))] · 2C

= (1/L′) · 1 · 2C = 2C/L′.

The fact 0 < 2C/L′ < ∞ according to 0 < C < ∞ and 0 < L′ < ∞ completes the proof.

E.3 Proof for Theorem 4

Before showing Theorem 4, we introduce the following proposition regarding the gradient of
Sγ(pD∥σ(gθ)).
Proposition 2. Suppose that ∇θgθ(s) is bounded. Then, under pD, the gradient of Sγ(pD∥σ(gθ))
w.r.t. θ is obtained as

∇θSγ(pD∥σ(gθ)) = γϕ′(hθ)EpD [σ(gθ(s))
γ(1− σ(gθ(s)))∇θgθ(s)]

+ (1 + γ) ·
(
ϕ(hθ)− hθ · ϕ′(hθ)

)
·
(∫

σ(gθ(s))
1+γ(1− σ(gθ(s)))∇θgθ(s)ds

)
,

where ϕ′(hθ) := ∇hθ
ϕ(hθ) and hθ :=

EpD [σ(gθ(s))
γ ]∫

σ(gθ(s))1+γds
.

Proof. We start by introducing the following shorthand notation:

A(θ) := EpD [σ(gθ(s))
γ ], B(θ) :=

∫
σ(gθ(s))

1+γds,

and hθ := A(θ)
B(θ) . Then, Sγ(pD∥σ(gθ)) can be expressed as Sγ(pD∥σ(gθ)) = ϕ(hθ) ·B(θ). Taking

the derivative with respect to θ using the product rule, we have

∇θSγ(pD∥σ(gθ)) = ∇θ

(
ϕ
(
hθ

)
·B(θ)

)
= ϕ′(hθ) · ∇θhθ ·B(θ) + ϕ(hθ) · ∇θB(θ). (17)

We first evaluate ∇θhθ, which can be calculated as

∇θhθ =
B(θ)∇θA(θ)−A(θ)∇θB(θ)

B(θ)2
.

By substituting this into Eq. (17), we obtain

∇θSγ(pD∥σ(gθ)) = ϕ′(hθ) ·
B(θ)∇θA(θ)−A(θ)∇θB(θ)

B(θ)
+ ϕ(hθ) · ∇θB(θ)

= ϕ′(hθ) ·
(
∇θA(θ)− hθ∇θB(θ)

)
+ ϕ(hθ) · ∇θB(θ)

= ϕ′(hθ) · ∇θA(θ) +

(
ϕ(hθ)− hθ · ϕ′(hθ)

)
· ∇θB(θ).
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We next evaluate ∇θA(θ) = ∇θEpD [σ(gθ(s))
γ ]. Since pD does not depend on θ, from the chain

rule, we can see ∇θEpD [σ(gθ(s))
γ ] = EpD [∇θσ(gθ(s))

γ ], where

∇θσ(gθ(s))
γ = γσ(gθ(s))

γ−1∇θσ(gθ(s))

= γσ(gθ(s))
γ−1 ·

(
σ(gθ(s))(1− σ(gθ(s)))∇θgθ(s)

)
= γσ(gθ(s))

γ(1− σ(gθ(s)))∇θgθ(s).

As for ∇θB(θ), we obtain

∇θB(θ) = ∇θ

∫
σ(gθ(s))

1+γds =

∫
∇θσ(gθ(s))

1+γds

= (1 + γ)

∫
σ(gθ(s))

1+γ(1− σ(gθ(s)))∇θgθ(s)ds,

where the second equality comes from the dominated convergence theorem due to the fact that the
derivative of σ(gθ) is bounded and continuous under the bounded ∇θg(s).

By substituting the results of ∇θA(θ) and ∇θB(θ) into Eq. (17), we have

∇θSγ(pD∥σ(gθ)) = γϕ′(hθ)EpD [σ(gθ(s))
γ(1− σ(gθ(s)))∇θgθ(s)]

+ (1 + γ) ·
(
ϕ(hθ)− hθ · ϕ′(hθ)

)
·
(∫

σ(gθ(s))
1+γ(1− σ(gθ(s)))∇θgθ(s)ds

)
.

This completes the proof.

Furthermore, we show the following lemma to precisely derive the IF for Hölder-DPO.
Lemma 1. Suppose that θ∗ = argminθ Sγ(pD∥σ(gθ)). Let 0 < γ < ∞, and let 0 < σ(gθ(s)).
Assume that ϕ(h) satisfies ϕ′(h) ̸= 0 for h > 0 and ϕ(h) ̸= c · h for any constant c. Then, the
first-order optimal condition of Hölder-DPO, 0 = ∇θSγ(pD∥σ(gθ))|θ=θ∗ , holds if and only if
EpD [F

(γ)
θ∗ (s)] = 0 and

∫
F

(1+γ)
θ∗ (s)ds = 0, where F

(γ)
θ∗ (s) := σ(gθ(s))

γ(1− σ(gθ(s)))∇θgθ(s).

Proof. From Proposition 2, the first-order optimal condition is given by:

0 = ∇θSγ(pD∥σ(gθ))
∣∣∣∣
θ=θ∗

= γϕ′(hθ)︸ ︷︷ ︸
C1

EpD[F (γ)
θ (s)]︸ ︷︷ ︸
X

+(1 + γ) (ϕ(hθ)− ϕ′(hθ )hθ )︸ ︷︷ ︸
C2

(∫
F (1+γ)θ(s)ds

)
︸ ︷︷ ︸

Y

.

This is a linear combination C1X + C2Y = 0. The “if and only if” statement holds if we can show
that both coefficients C1 and C2 are non-zero.

First, we show hθ∗ > 0. By definition, hθ∗ = A(θ∗)/B(θ∗), where A(θ∗) = EpD [σ(gθ∗(s))γ ] and
B(θ∗) =

∫
σ(gθ∗(s))1+γds. From the premise 0 < σ(gθ(s)) and γ > 0, we have σ(gθ∗(s))γ > 0

and σ(gθ∗(s))1+γ > 0. Therefore, A(θ∗) > 0 and B(θ∗) > 0, which implies hθ∗ > 0. Given γ > 0,
hθ∗ > 0, and our assumption ϕ′(h) ̸= 0 for h > 0, the first coefficient C1 = γϕ′(hθ∗) ̸= 0.

The second coefficient C2 is zero if and only if ϕ(hθ∗)− hθ∗ϕ′(hθ∗) = 0. This condition holds if
ϕ(h) is a homogeneous function of degree 1, i.e., ϕ(h) = c · h. By our assumption ϕ(h) ̸= c · h,
this implies ϕ(hθ∗) − hθ∗ϕ′(hθ∗) ̸= 0, and thus C2 ̸= 0. Since both coefficients C1 and C2 are
non-zero, the optimality condition C1X +C2Y = 0 holds if and only if X = EpD [F

(γ)
θ∗ (s)] = 0 and

Y =
∫
F

(1+γ)
θ∗ (s)ds = 0. This completes the proof.

We remark that the conditions of ϕ(h), ϕ′(h) ̸= 0 for h > 0 and ϕ(h) ̸= c · h for any constant c.,
introduced in Lemma 1, are satisfied by the DP divergence and the PS score (which is closely related
to the γ-divergence). The following lemma formally verifies this. This fact indicates that constructing
ϕ so as to satisfy the above condition is one of keys to guarantee robustness.
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Lemma 2. Let γ > 0. The ϕ(h) functions for the DP-divergence and the PS-divergence (Remark
1) satisfy the assumptions required in Lemma 1, namely ϕ′(h) ̸= 0 and ϕ(h)− hϕ′(h) ̸= 0 for all
h > 0.

Proof. For DP-divergence: Let ϕ(h) = γ − (1 + γ)h.

(i) The derivative is ϕ′(h) = −(1 + γ). Since γ > 0, ϕ′(h) is a non-zero constant, thus
ϕ′(h) ̸= 0 for all h > 0.

(ii) We check the second coefficient term from Lemma 1:

ϕ(h)− hϕ′(h) =
(
γ − (1 + γ)h

)
− h
(
−(1 + γ)

)
= γ − (1 + γ)h+ (1 + γ)h

= γ

Since γ > 0, we have ϕ(h)− hϕ′(h) ̸= 0.

For PS score: Let ϕ(h) = −h1+γ .

(i) The derivative is ϕ′(h) = −(1 + γ)hγ . Since γ > 0 and we evaluate for h > 0, hγ > 0.
Thus, ϕ′(h) is strictly negative, and ϕ′(h) ̸= 0.

(ii) We check the second coefficient term:

ϕ(h)− hϕ′(h) =
(
−h1+γ

)
− h
(
−(1 + γ)hγ

)
= −h1+γ + (1 + γ)h1+γ

= (−1 + 1 + γ)h1+γ

= γh1+γ

Since γ > 0 and h > 0, we have γh1+γ > 0, which implies ϕ(h)− hϕ′(h) ̸= 0.

In both cases, the assumptions hold. This completes the proof.

Now we show the full proof of Theorem 4.

Theorem 4 (IF for Hölder-DPO). Suppose that θ∗(ϵ) = argminθ Sγ(p̃
(ϵ)
D ∥σ(gθ)) and θ∗ =

argminθ Sγ(pD ∥σ(gθ)). Let ϕ(h) be twice-differentiable, and let 0 < σ(gθ(s)) and 0 < γ < ∞.
Assume that ϕ(h) satisfies ϕ′(h) ̸= 0 for h > 0 and ϕ(h) ̸= c · h for any constant c6 and the Hessian
∇2

θL(s, πθ)|θ=θ∗ is positive definite. Then, the IF of the Hölder-DPO, excluding terms independent
of sflip, is given by:

IFH−DPO(sflip, θ, pD) ∝ Ep(sflip)[F
(γ)
θ∗ (sflip)], (10)

where F
(γ)
θ∗ (sflip) := σ(gθ∗(sflip))

γ ∇θL(sflip, πθ∗).

Proof. From Proposition 2, the gradient of Sγ(p̃
(ϵ)
D ∥σ(gθ)) w.r.t. θ is

∇θSγ(p̃
(ϵ)
D ∥σ(gθ)) = γϕ′(h̃θ)Ep

(ϵ)

D̃
[F

(γ)
θ (s̃)] + (1 + γ) ·

(
ϕ(h̃θ)− h̃θ · ϕ′(h̃θ)

)
·
(∫

F
(1+γ)
θ (s̃)ds̃

)
,

where F
(γ)
θ (s̃) := σγ(gθ(s̃)) (1− σ(gθ(s̃)))∇θgθ(s̃) = σγ∇θL(s̃, πθ), F

(1+γ)
θ (s̃) := σ(gθ(s̃)) ·

F
(γ)
θ (s̃), h̃θ := E

p
(ϵ)

D̃
[σ(gθ(s̃))

γ ]/(
∫
σ(gθ(s̃))

1+γds̃), and s̃ = {x̃, ỹwin, ỹlose} ∼ p̃
(ϵ)
D .

From the definition of θ∗(ϵ), we have

0 = ∇θSγ(p̃
(ϵ)
D ∥σ(gθ))

∣∣∣∣
θ=θ∗(ϵ)

= γϕ′(h̃θ∗(ϵ))Ep̃
(ϵ)
D
[F

(γ)
θ∗(ϵ)(s̃)] + (1 + γ)

(
ϕ(h̃θ∗(ϵ))− ϕ′(h̃θ∗(ϵ))h̃θ∗(ϵ)

)(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
,

6These assumptions are satisfied by the DP divergence and the PS score, as formally shown in Lemma 2.
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where F
(γ)
θ∗(ϵ)(s̃) := σ(gθ∗(ϵ)(s̃))

γ
(
1− σ(gθ∗(ϵ)(s̃))

)
{∇θgθ(s̃)|θ=θ∗(ϵ)} and F

(1+γ)
θ∗(ϵ) (s̃) :=

σ(gθ∗(ϵ)(s̃)) · F
(γ)
θ∗(ϵ)(s̃).

By taking the derivation of this term w.r.t. ϵ in the above, we obtain

0 = γ

{
∂

∂ϵ
ϕ′(h̃θ∗(ϵ))Ep̃

(ϵ)
D
[F

(γ)
θ∗(ϵ)(s̃)]︸ ︷︷ ︸

(I)

}

+ (1 + γ)

{
∂

∂ϵ

(
ϕ(h̃θ∗(ϵ))− ϕ′(h̃θ∗(ϵ))h̃θ∗(ϵ)

)(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
︸ ︷︷ ︸

(II)

}
. (18)

For the term (I), we have

∂

∂ϵ
ϕ′(hθ∗(ϵ))Ep

(ϵ)

D̃
[F

(γ)
θ∗(ϵ)(s̃)]

= ϕ′′(hθ∗(ϵ)) ·
∂hθ∗(ϵ)

∂ϵ
E
p
(ϵ)

D̃
[F

(γ)
θ∗(ϵ)(s̃)]

+ ϕ′(hθ∗(ϵ))

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(γ)
θ∗(ϵ)(s̃)ds̃+ E

p̃
(ϵ)
D

[
∂

∂ϵ
F

(γ)
θ∗(ϵ)(s̃)

]}
= ϕ′′(hθ∗(ϵ)) ·

∂hθ∗(ϵ)

∂ϵ
· E

p̃
(ϵ)
D
[F

(γ)
θ∗(ϵ)(s̃)]

+ ϕ′(hθ∗(ϵ))

{
Ep(sflip)[F

(γ)
θ∗(ϵ)(sflip)]− EpD [F

(γ)
θ∗(ϵ)(s)] + E

p̃
(ϵ)
D

[
∂θ∗(ϵ)

∂ϵ
·
∂F

(γ)
θ∗(ϵ)(s̃)

∂θ∗(ϵ)

]}
= ϕ′′(hθ∗(ϵ)) ·

∂θ∗(ϵ)

∂ϵ
·
∂hθ∗(ϵ)

∂θ∗(ϵ)
· E

p̃
(ϵ)
D
[F

(γ)
θ∗(ϵ)(s̃)]

+ ϕ′(hθ∗(ϵ))

{
Ep(sflip)[F

(γ)
θ∗(ϵ)(sflip)]− EpD [F

(γ)
θ∗(ϵ)(s)] + E

p̃
(ϵ)
D

[
∂θ∗(ϵ)

∂ϵ
·H(γ)

θ∗(ϵ)(s̃)

]}
=

∂θ∗(ϵ)

∂ϵ

{
ϕ′′(hθ∗(ϵ)) ·

∂hθ∗(ϵ)

∂θ∗(ϵ)
· E

p̃
(ϵ)
D
[F

(γ)
θ∗(ϵ)(s̃)] + ϕ′(hθ∗(ϵ)) · Ep̃

(ϵ)
D

[
H

(γ)
θ∗(ϵ)(s̃)

]}
+ ϕ′(hθ∗(ϵ))

{
Ep(sflip)[F

(γ)
θ∗(ϵ)(sflip)]− EpD [F

(γ)
θ∗(ϵ)(s)]

}
,

where H
(γ)
θ∗(ϵ)(s̃) := ∂F

(γ)
θ∗(ϵ)/∂θ

∗(ϵ). By taking ϵ → 0, we have

∂

∂ϵ
ϕ′(hθ∗(ϵ))Ep̃

(ϵ)
D
[F

(γ)
θ∗(ϵ)(s̃)]

∣∣∣∣
ϵ=0

=
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

·
{
ϕ′′(hθ∗) · ∂hθ∗

∂θ∗
· EpD [F

(γ)
θ∗ (s)] + ϕ′(hθ∗) · EpD

[
H

(γ)
θ∗ (s)

]}
+ ϕ′(hθ∗)

{
Ep(sflip)[F

(γ)
θ∗(ϵ)(sflip)]− EpD [F

(γ)
θ∗ (s)]

}
. (19)
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For the term (II), we obtain

∂

∂ϵ

(
ϕ(hθ∗(ϵ))− ϕ′(hθ∗(ϵ))hθ∗(ϵ)

)(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
=

{
∂

∂ϵ

(
ϕ(hθ∗(ϵ))− ϕ′(hθ∗(ϵ))hθ∗(ϵ)

)}(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
+
(
ϕ(hθ∗(ϵ))− ϕ′(hθ∗(ϵ))hθ∗(ϵ)

)(∫ ∂

∂ϵ
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
=

(
−ϕ′′(hθ∗(ϵ)) ·

∂hθ∗(ϵ)

∂ϵ
· hθ∗(ϵ)

)(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
+
(
ϕ(hθ∗(ϵ))− ϕ′(hθ∗(ϵ))hθ∗(ϵ)

)(∫ ∂θ∗(ϵ)

∂ϵ
H

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
=

∂θ∗(ϵ)

∂ϵ

{(
−ϕ′′(hθ∗(ϵ)) ·

∂hθ∗(ϵ)

∂θ∗(ϵ)
· hθ∗(ϵ)

)(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)
+
(
ϕ(hθ∗(ϵ))− ϕ′(hθ∗(ϵ))hθ∗(ϵ)

)(∫
H

(1+γ)
θ∗(ϵ) (s̃)ds̃

)}
,

where we use the dominated convergence theorem to exchange the integral and derivative in the
second equality and H

(1+γ)
θ∗(ϵ) (s̃) := ∂F

(1+γ)
θ∗(ϵ) /∂θ∗(ϵ). By taking ϵ → 0, we obtain

∂

∂ϵ

(
ϕ(hθ∗(ϵ))− ϕ′(hθ∗(ϵ))hθ∗(ϵ)

)(∫
F

(1+γ)
θ∗(ϵ) (s̃)ds̃

)∣∣∣∣
ϵ=0

=
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

·
{(

−ϕ′′(hθ∗) · ∂hθ∗

∂θ∗
· hθ∗

)(∫
F

(1+γ)
θ∗ (s)ds

)
+ (ϕ(hθ∗)− ϕ′(hθ∗)hθ∗)

(∫
H

(1+γ)
θ∗ (s)ds

)}
. (20)

Substituting Eqs. (19) and (20) into Eq. (18) gives us:

− γϕ′(hθ∗)

{
Ep(sflip)[F

(γ)
θ∗ (sflip)]− EpD [F

(γ)
θ∗ (s)]

}
=

∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

·
{
γϕ′′(hθ∗) · ∂hθ∗

∂θ∗
· EpD [F

(γ)
θ∗ (s)] + γϕ′(hθ∗) · EpD

[
H

(γ)
θ∗ (s)

]
+ (1 + γ)

(
−ϕ′′(hθ∗) · ∂hθ∗

∂θ∗
· hθ∗

)(∫
F

(1+γ)
θ∗ (s)ds

)
+ (1 + γ) (ϕ(hθ∗)− ϕ′(hθ∗)hθ∗)

(∫
H

(1+γ)
θ∗ (s)ds

)}
.

From Lemma 1, we further obtain

−γϕ′(hθ∗)Ep(sflip)[F
(γ)
θ∗ (sflip)] =

∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

· C(γ)
θ∗ (s),

where C
(γ)
θ∗ (s) is the constant term w.r.t. the contaminated input sflip defined as

C
(γ)
θ∗ (s) := γϕ′(hθ∗) · EpD

[
H

(γ)
θ∗ (s)

]
+ (1 + γ) (ϕ(hθ∗)− ϕ′(hθ∗)hθ∗)

(∫
H

(1+γ)
θ∗ (s)ds

)
.

We finally obtain

∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

= −
(
C

(γ)
θ∗ (s)

)−1

· γϕ′(hθ∗)Ep(sflip)[F
(γ)
θ∗ (sflip)]. (21)

From the assumption, (C(γ)
θ∗ (s))−1 exists because H

(γ)
θ∗ (s) is positive definite from the fact that the

gradient of Hölder-DPO is σ(gθ∗(sflip))
γ ∇θL(sflip, πθ∗), where ∇θL(sflip, πθ∗) is the gradient of

DPO loss whose Hessian is assumed as positive definite. This completes the proof.
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E.4 Proof for Corollary 1

Corollary 1 (Hölder-DPO is robust). Suppose that the policy gradient ∇θ log πθ(y | x) is bounded
by C and satisfies L-Lipchitz in θ, where 0 < C < ∞ and 0 < L < ∞. Then, under Theorem 4, the
IF of Hölder-DPO satisfies the redescending property in Definition 2.

Proof. From Theorem 4, the IF for Hölder-DPO is given by:

IFH−DPO = −
(
C

(γ)
θ∗ (s)

)−1

· γϕ′(hθ∗)Ep(sflip)[F
(γ)
θ∗ (sflip)].

First, we analyze the denominator C(γ)
θ∗ (s). Following Theorem 5, we can see that the Hessian-related

term C
(γ)
θ∗ (s) is positive definite. Let L′ = λmin(C

(γ)
θ∗ (s)) > 0 be its minimum eigenvalue. Then the

norm of its inverse is bounded: ∥(C(γ)
θ∗ (s))−1∥ ≤ 1/L′.

Next, we analyze the numerator, Ep(sflip)[F
(γ)
θ∗ (sflip)], where F

(γ)
θ∗ (sflip) := σ(gθ∗(sflip))

γ(1 −
σ(gθ∗(sflip)))∇θgθ∗(sflip). From the assumption that ∥∇θ log πθ∥ ≤ C, the term ∥∇θgθ∗∥ is also
bounded by C ′ = 2βC.

We now take the limit required by Definition 2:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFH−DPO∥

≤ lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥(C(γ)
θ∗ (s)

)−1

· γϕ′(hθ∗)

∥∥∥∥ · lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥Ep(sflip)[F
(γ)
θ∗ (sflip)]

∥∥∥∥
≤ K · lim

r̂θ∗ (x,y
flip
lose)→∞

Ep(sflip)

[
σ(gθ∗(sflip))

γ︸ ︷︷ ︸
→0

· (1− σ(gθ∗(sflip)))︸ ︷︷ ︸
→1

· ∥∇θgθ∗∥︸ ︷︷ ︸
≤C′

]
,

where K = (1/L′) · |γϕ′(hθ∗)| is a finite non-zero constant.

By the bounded convergence theorem, we can move the limit inside the expectation:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFH−DPO∥ ≤ K · Ep(sflip)

[
lim

r̂θ∗ (x,y
flip
lose)→∞

(
σ(gθ∗)γ · (1− σ(gθ∗)) · ∥∇θgθ∗∥

)]
≤ K · Ep(sflip) [0 · 1 · C

′]

= 0.

The IF of Hölder-DPO converges to 0, satisfying the redescending property. This completes the
proof.

F Contamination ratio estimation and outlier detection

Estimating the contamination ratio ϵ and identifying the contamination data based on this are crucial
for achieving appropriate model alignment. In this section, we show that our Hölder-DPO can be
extended to incorporate Enlarged models, enabling these objectives to be realized.

F.1 Model extension approach to both parameter estimation and contamination rate
estimation

Here, we reorganize the framework using model extension proposed by Kanamori and Fujisawa [54]
for simultaneously estimating model parameters and contamination rates in the context of the DPO.

According to Eq. (6), the essence of DPO-based approaches, including our Hölder-DPO, lies in
minimizing a divergence D between pD(s) and σ(gθ(s)) with respect to θ, i.e., estimating pD(s)
through the model parameters θ. When pD(s) is contaminated as defined in Definition 1, this
optimization problem can be reformulated as:

θ∗(ϵ) = argmin
θ

D[p̃
(ϵ)
D ∥σ(gθ(s))] = argmin

θ
D[(1− ϵ)pD(s) + ϵδsflip∥σ(gθ(s))].
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If a divergence that automatically mitigates the impact of δsflip is chosen, the optimization reduces to:

θ∗(ϵ) = argmin
θ

D[p̃
(ϵ)
D ∥σ(gθ(s))] ≈ argmin

θ
D[(1− ϵ)pD(s)∥σ(gθ(s))],

indicating that σ(gθ(s)) estimates (1− ϵ)pD(s), rather than the original target pD(s).

To address this gap, we consider the following extended model: mη(s) = ξσ(gθ(s)), where η =
(ξ, θ). In this case, the DPO-based model alignment under the robust divergence can be formulated
as:

θ∗(ϵ) = argmin
θ

min
ξ

D[p̃
(ϵ)
D ∥mη(s)] ≈ argmin

θ
min
ξ

D[(1− ϵ)pD(s)∥ξσ(gθ(s))].

With this formulation, ξ is expected to play the role of determining the ratio of clean data 1− ϵ and
σ(gθ(s)) is expected to serve as an estimator of the clean data distribution pD(s).

F.2 Contamination ratio estimation

F.2.1 Model extension to estimate θ and ϵ:

Recall from Eq. (6) that DPO-based methods, including our Hölder-DPO, estimate the preference
data distribution pD by minimizing D[pD∥σ(gθ)], where D denotes a generic divergence measuring
the discrepancy between pD and the model output σ(gθ). When the data is contaminated as p(ϵ)

D̃
(s̃) =

(1 − ϵ)pD(s) + ϵp(sflip), the objective becomes minimizing D[p
(ϵ)

D̃
∥σ(gθ)]. If D approximately

nullifies the contribution of the contamination term p(sflip), i.e., D[p(sflip)∥σ(gθ(sflip))] ≈ 0 7,
then minimizing D[p

(ϵ)

D̃
∥σ(gθ)] aligns σ(gθ) with (1 − ϵ)pD. This results in a mismatch in scale

relative to pD (see Appendix F.1 for details). To correct for this mismatch, we extend the model to
mη = ξ · σ(gθ) with η = (ξ, θ), introducing a scaling parameter ξ > 0 to explicitly account for the
clean-data proportion (1− ϵ). The revised objective argminη D[p

(ϵ)

D̃
∥mη] enables σ(gθ) to serve as

an estimator of pD(s), while ξ absorbs the (1− ϵ) scaling.

F.2.2 Extended model for estimating the contamination ratio

In this section, we discuss the case when we conduct our Hölder-DPO under the extended model mη .
According to the discussion in Section 4.1, the optimization problem of Hölder-DPO with mη can be
formulated as

argmin
θ

min
ξ

DH [p̃
(ϵ)
D ∥mη(s̃)] = argmin

θ
min
ξ

Sγ(p̃
(ϵ)
D ∥mη(s̃)). (22)

Recalling Definition 3 and the discrete probabilistic nature of σ, we can see that

Sγ(p̃
(ϵ)
D ∥mη(s̃)) = ϕ

( E
p̃
(ϵ)
D
[mγ

η(s̃)]∫
m1+γ

η (s̃)ds̃

)(∫
m1+γ

η (s̃)ds̃

)

= ϕ

( E
p̃
(ϵ)
D
[σ(gθ(s̃))

γ ]

ξ ·
∫
σ(gθ(s̃))1+γds̃

)(
ξ1+γ ·

∫
σ(gθ(s̃))

1+γds̃

)
≥ −

( E
p̃
(ϵ)
D
[σ(gθ(s̃))

γ ]

ξ ·
∫
σ(gθ(s̃))1+γds̃

)1+γ(
ξ1+γ ·

∫
σ(gθ(s̃))

1+γds̃

)
= −

E
p̃
(ϵ)
D
[σ(gθ(s̃))

γ ](∫
σ(gθ(s̃))1+γds̃

) γ
1+γ

︸ ︷︷ ︸
=:SPS(p̃

(ϵ)
D ∥σ(gθ(s̃)))

= SPS(p̃
(ϵ)
D ∥σ(gθ(s̃))) = − exp

{
− γ(1 + γ) · Slog(p̃

(ϵ)
D ∥σ(gθ(s̃)))

}
, (23)

7DP- and γ-divergences satisfy this property under Assumption 1 (see Appendix F.4).
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where the third inequality comes from the fact that ϕ(h) ≥ −h1+γ for all h ≥ 0, the
term SPS(p̃

(ϵ)
D ∥σ(gθ(s̃))) in the forth line is called as the pseudo-spherical (PS) score, and

Slog(p̃
(ϵ)
D ∥σ(gθ(s̃))) is the γ-score associated with γ-divergence defined as

Slog(p̃
(ϵ)
D ∥σ(gθ(s̃))) := − 1

γ
log

(
E
p̃
(ϵ)
D
[σ(gθ(s̃))

γ ]

)
+

1

1 + γ
log

∫
σ(gθ(s̃))

1+γds̃. (24)

From the Eq. (23), we can see that the lower bound of Sγ(p̃
(ϵ)
D ∥mη(s̃)) is independent of ξ. Therefore,

the optimal solution of ξ∗ = minξ Sγ(p̃
(ϵ)
D ∥mη(s̃)) is obtained as the equality condition of Eq. (23),

that is,

ξ∗ =
E
p̃
(ϵ)
D
[σ(gθ(s̃))

γ ]∫
σ(gθ(s̃))1+γds̃

(∀θ), (25)

where we used the fact that ϕ(1) = −1.

At the end of this section, we verify that ξ∗ in Eq. (25) serves as an estimate of the contamination rate.
When robust model alignment using Hölder-DPO effectively reduce the effects of contamination and
the value of σθ(gθ(s̃)) closely approximates the target distribution pD(s), i.e., σθ(gθ(s̃)) ≈ pD(s),
we have:

ξ∗ ≈
E
p̃
(ϵ)
D
[pD(s)

γ ]

EpD [pD(s)
γ ]

=
(1− ϵ)EpD [pD(s)

γ ] + ϵEp(sflip)[pD(sflip)
γ ]

EpD [pD(s)
γ ]

= (1− ϵ) +
ϵ

EpD [pD(s)
γ ]

· Ep(sflip)[pD(sflip)
γ ].

When the contamination distribution δsflip is located at the tail of the target distribution pD(s),
meaning that the probability of a sample drawn from δsflip under pD(s) is sufficiently small, we
can see Eδz(s)[pD(s)

γ ] ≈ 0. Then, we have ξ∗ ≈ (1 − ϵ) and thus the contamination rate can be
estimated by min{0, 1− ξ∗}.

F.3 Estimator of ξ∗

Since the exact form of p(ϵ)
D̃

is unknown and computing the integral with respect to σ(gθ) in Eq. (22)
is intractable, following the same strategy in our objective, we estimate ξ empirically as:

ξ̂ =
1
N

∑N
i=1 σ(gθ(s̃

(i)))γ

1
N

∑N
i=1 σ(gθ(s̃

(i)))1+γ
=

∑N
i=1 σ(gθ(s̃

(i)))γ∑N
i=1 σ(gθ(s̃

(i)))1+γ
, (26)

where the final expression is derived via empirical approximation.

While ξ∗ can be estimated via Eq. (26), the resulting estimator ξ̂∗ is not necessarily guaranteed to lie
within the valid range [0, 1]. In fact, the following lemma demonstrates that the estimator ξ̂∗ is not
operate properly within the valid interval [0, 1].

Lemma 3. Suppose that 0 < σ(gθ(s̃
(i))) ≤ 1 for all i = 1, . . . , N . Let 0 < γ < ∞. Then, the

estimator ξ̂∗ defined in Eq. (26) satisfies ξ̂∗ > 1.

Proof. If ξ̂∗ ≤ 1, we have
N∑
i=1

σ(gθ(s̃
(i)))γ ≤

N∑
i=1

σ(gθ(s̃
(i)))1+γ .

However, since 0 < σ(gθ(s̃
(i))) ≤ 1 for all i, we have

N∑
i=1

σ(gθ(s̃
(i)))γ ≥

N∑
i=1

σ(gθ(s̃
(i)))1+γ ⇒ ξ̂ ≥ 1,

which is contradicted by the above condition. This completes the proof.
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One possible approach to mitigate this issue is to introduce a scaling parameter v and define ξ̄ := vξ
as the scaling term in the extended model mη , where η = (ξ, θ). Note that v is not optimized; rather,
it serves solely as a hyperparameter for scaling the estimated rate ξ∗. In this case, by following the
same discussion on Section F.2.2, we obtain, for any v and θ,

ξ̂∗ = v−1 ·
∑N

i=1 σ(gθ(s̃
(i)))γ∑N

i=1 σ(gθ(s̃
(i)))1+γ

.

Since the above expression holds for any v, one can select v to ensure that ξ̂ ∈ [0, 1]. However,
manually tuning v introduces arbitrariness and risks biasing the contamination estimate. Given that
the original ξ̂ is derived from model likelihoods σ(gθ(s̃(i))), it is desirable for the scaling factor to be
informed by model-based quantities. The following lemma shows that scaling by the mean model
likelihood yields a principled correction to ξ̂.

Lemma 4. Suppose that 0 < σ(gθ(s̃
(i))) ≤ 1 for all i = 1, . . . , N . Let 0 < γ < ∞. Then, we have

0 < v · ξ̂ ≤ 1 when we set v−1 = 1
N

∑N
i=1 σ(gθ(s̃

(i))).

Proof. Because of 0 < σ(gθ(s̃
(i))) ≤ 1 for all i, we have v · ξ̂ > 0. We can reorganize

{σ(gθ(s̃(i)))}Ni=1 and {σ(gθ(s̃(i)))γ}Ni=1 so as to be the similarly-ordered-sequences (both are
increasing functions of σ(gθ(s̃

(i)))). Then, for two similarly ordered, non-negative sequences
{σ(gθ(s̃(i)))}Ni=1 and {σ(gθ(s̃(i)))γ}Ni=1, we obtain

1

N

N∑
i=1

σ(gθ(s̃
(i)))1+γ =

1

N

N∑
i=1

σ(gθ(s̃
(i))) · σ(gθ(s̃(i)))γ

≥
(

1

N

N∑
i=1

σ(gθ(s̃
(i)))

)(
1

N

N∑
i=1

σ(gθ(s̃
(i)))γ

)
,

where the final inequality comes from Chebyshev’s sum inequality. Dividing both sides by
1
N

∑N
i=1 σ(gθ(s̃

(i)))1+γ completes the proof.

From this lemma, we adopt the following estimator for the clean data proportion:

ξ̂∗ =

(
1

N

N∑
i=1

σ(gθ(s̃
(i)))

)
·
∑N

i=1 σ(gθ(s̃
(i)))γ∑N

i=1 σ(gθ(s̃
(i)))1+γ

=
1
N

∑N
i=1 σ̄(gθ(s̃

(i)))γ∑N
i=1 σ̄(gθ(s̃

(i)))1+γ
, (27)

where the normalized likelihood is defined as

σ̄(gθ(s̃
(i))) :=

σ(gθ(s̃
(i)))∑N

i=1 σ(gθ(s̃
(i)))

.

Recalling that ξ̂ estimates the clean data ratio, Eq. (27) behaves as desired. Consider a simple
case where the model σ(gθ) perfectly distinguishes between clean and contaminated data, i.e.,
σ(gθ(sflip)) = 1 for clean samples and σ(gθ(sflip)) = 0 for flipped (noisy) ones. Suppose that M
out of N total samples are contaminated. Then:∑N

i=1 σ(gθ(s̃
(i)))γ∑N

i=1 σ(gθ(s̃
(i)))1+γ

=
N −M

N −M
= 1,

1

N

N∑
i=1

σ(gθ(s̃
(i))) =

N −M

N
.

Multiplying these two terms yields ξ̂∗ = N−M
N , which exactly recovers the true clean-data proportion.

F.4 Choice of ϕ

To implement Hölder-DPO in practice, one must specify a concrete choice of the function ϕ. For
robust LM alignment, a natural choice is the DP divergence with ϕ(h) = γ−(1+γ)h, or alternatively,
the PS score (equivalently, the γ-score) with ϕ(h) = −h1+γ . The following lemma shows that, when
the goal is to achieve both robustness and contamination ratio estimation simultaneously, the DP
divergence is the preferable choice among these two options.
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Lemma 5. Under Assumption 1 and Definition 1. Then, under the extended model mη , the objective
Sγ(p

(ϵ)

D̃
∥mη(s̃)) can be approximated around θ = θ∗ as

Sγ(p
(ϵ)

D̃
∥mη(s̃)) ≈

{
(1− ϵ)SPS(pD(s)∥σ(gθ(s))) if ϕ(h) = −h1+γ ,

SDP((1− ϵ)pD∥mη(s)) if ϕ(h) = γ − (1 + γ)h,

where SDP and SPS denote the DP divergence and the PS score, respectively, as defined in Ap-
pendix F.4.

Under Lemma 5, the DPO objective based on the PS score reduces to (1− ϵ)SPS(pD∥σ(gθ)) in a
neighborhood of θ∗. Consequently, provided that the optimized parameter θ lies within this neighbor-
hood, minη Sγ(p

(ϵ)

D̃
∥mη) recovers minθ SPS(pD∥σ(gθ)), independently of the contamination ratio ϵ.

Because the scale parameter ξ disappears from this reduced objective, the contamination proportion
cannot be identified in the PS-score variant. By contrast, with the DP-divergence-based DPO, the
reduced objective SDP((1− ϵ)pD∥mη) retains ξ, enabling the optimization to jointly recover both the
target parameter θ∗ and the clean-data proportion 1− ϵ. In summary, once a robust solution near θ∗ is
obtained, the optimized model σ(gθ) closely approximates pD, while the scaling parameter ξ serves
as an accurate estimator of 1− ϵ. For further details, see Appendix F.4. Whether this property holds
in practice depends on the ability to estimate θ robustly under p(ϵ)

D̃
; hence, the theoretical robustness

guarantee of Hölder-DPO presented in Section 4.1 plays a crucial role.

When applying Hölder-DPO, it is necessary to select an appropriate function ϕ. For the purpose of
performing robust DPO, one may consider using the DP divergence with ϕ(h) = γ − (1 + γ)h, or
the γ-score obtained by setting ϕ(h) = −h1+γ . However, if the goal is to simultaneously achieve
robustness and estimate the contamination ratio, the following discussion shows that using the DP
divergence is preferable.

When we set ϕ(h) = −h1+γ , the Hölder-DPO objective function can be decomposed as:

Sγ(p̃
(ϵ)
D ∥mη(s̃)) = −

E
p
(ϵ)

D̃
[mη(s̃)

γ ](
Emη

[mη(s̃)γ ]
) γ

1+γ︸ ︷︷ ︸
=:SPS(p̃

(ϵ)
D ∥mη(s̃))

= −(1− ϵ)
EpD [mη(s)

γ ](
Emη

[mη(s)γ ]
) γ

1+γ

− ϵ
Ep(sflip)[mη(sflip)

γ ](
Emη

[mη(sflip)γ ]
) γ

1+γ

= −(1− ϵ)
EpD [σ(gθ(s))

γ ](
Eσ(gθ)[σ(gθ(s))

γ ]
) γ

1+γ

− ϵ
Ep(sflip)[σ(gθ(sflip))

γ ](
Eσ(gθ)[σ(gθ(sflip))γ ]

) γ
1+γ

= (1− ϵ)SPS(pD(s)∥σ(gθ(s)))− ϵ
Ep(sflip)[σ(gθ(sflip))

γ ](
Eσ(gθ)[σ(gθ(sflip))γ ]

) γ
1+γ

.

Under Assumption 1, the optimal solution of argminθ Sγ(p̃
(ϵ)
D ∥mη(s̃)) will be close to that of

argminθ SPS(pD(s)∥σ(gθ(s))). This implies that Hölder-DPO with ϕ(h) = −h1+γ is robust to
heavy contamination, since it does not require the contamination ratio ϵ to be small.

However, this objective function ignores the parameter ξ, which was introduced in the extended
model to estimate the contamination ratio. This is because

SPS(p̃
(ϵ)
D ∥mη(s̃)) = −

E
p
(ϵ)

D̃
[mη(s̃)

γ ](
Emη

[mη(s̃)γ ]
) γ

1+γ

= −
E
p
(ϵ)

D̃
[σ(gθ(s̃))

γ ](∫
σ(gθ(s̃))1+γds̃

) γ
1+γ

= SPS(p̃
(ϵ)
D ∥σ(gθ(s̃))),

which implies that the parameter ξ in Eq. (25) does not influence the optimization, and therefore
cannot serve as an estimator of (1− ϵ). In fact, even when using the enlarged model mη, we have,
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for all ξ > 0,

argmin
η={ξ,θ}

SPS(p̃
(ϵ)
D ∥mη(s̃)) = argmin

θ
SPS(p̃

(ϵ)
D ∥σ(gθ(s̃))),

which confirms that ξ has no effect on the solution.

On the other hand, the enlarged model becomes effective when we use the DP divergence. When we
set ϕ(h) = γ − (1 + γ)h, the Hölder-DPO objective becomes:

Sγ(p̃
(ϵ)
D ∥mη(s̃)) = γEmη

[mη(s̃)
γ ]− (1 + γ)E

p
(ϵ)

D̃
[mη(s̃)

γ ]︸ ︷︷ ︸
=:SDP(p̃

(ϵ)
D ∥mη(s̃))

= γEmη [mη(s)
γ ]− (1− ϵ)(1 + γ)EpD [mη(s)

γ ]− ϵ(1 + γ)Ep(sflip)[mη(sflip)
γ ]

= SDP((1− ϵ)pD∥mη(s))− ϵ(1 + γ)ξEp(sflip)[σ(gθ(s̃))
γ ].

If Ep(sflip)[σ(gθ(sflip))
γ ] ≈ 0 around θ = θ∗, then the optimal solution of argminη Sγ(p̃

(ϵ)
D ∥mη(s̃)) is

close to that of argminη SDP((1− ϵ)pD∥mη(s)). Recalling that the DP divergence is strictly proper
over the set of non-negative functions [53], this implies that minimizing the DP divergence with the
extended model allows for estimation of both the target parameter θ∗ and the clean-data ratio 1− ϵ.

G IF Analysis for the DPO variants (summarized in Theorem 3)

G.1 rDPO do not satisfy the redescending property

The objective of rDPO [23] is as follows:

L̃rDPO(πθ;πref) :=
(1− c)E

p
(ϵ)

D̃
[− log σ(gθ(s̃))]− cE

p
(ϵ)

D̃
[− log σ(−gθ(s̃))]

1− 2c
, (28)

where 0 ≤ c < 1/2.

We first show the IF for the rDPO.

Theorem 6. Suppose θ∗ denotes the optimal parameters learned from the clean dataset pD, and
θ∗(ϵ) denotes those learned from the ϵ-contaminated dataset p(ϵ)

D̃
. Let the Hessian H

(rDPO)
θ∗ (s) :=

∇2
θLrDPO(s, πθ)|θ=θ∗ is positive definite. Then, the IF for the rDPO is given by:

IFrDPO(x, θ, pD) = −
(
EpD

[
H

(rDPO)
θ∗ (s)

])−1

Ep(sflip)[F
(rDPO)
θ∗ (sflip)], (29)

where F
(rDPO)
θ∗ (sflip) := ξθ∗(sflip)

(
∇θ log πθ∗(yflip

win | x) − ∇θ log πθ∗(yflip
lose | x)

)
and ξθ∗(sflip) :=

1−c
1−2cσ(−gθ∗(sflip)) +

c
1−2cσ(gθ∗(sflip)).

Proof. The gradient of Eq. (28) under p(ϵ)
D̃

is given by

∇θL̃rDPO(πθ;πref) = −βE
p
(ϵ)

D̃

[
ξθ∗(ϵ)(s̃)

(
∇θ log πθ(ỹwin | x̃)−∇θ log πθ(ỹlose | x̃)

)]
,

where

ξθ∗(ϵ)(s̃) :=
1− c

1− 2c
σ(−gθ∗(ϵ)(s̃)) +

c

1− 2c
σ(gθ∗(ϵ)(s̃)).
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From the definition of θ∗(ϵ), we have 0 = ∇θL̃rDPO(πθ;πref)|θ=θ∗(ϵ). By taking the derivation of
this term w.r.t. ϵ, we obtain

0 =
∂

∂ϵ
∇θL̃rDPO(πθ;πref)

∣∣∣∣
θ=θ∗(ϵ)

= −β
∂

∂ϵ
E
p
(ϵ)

D̃

[
ξθ∗(ϵ)(s̃)

(
∇θ log πθ(ỹwin | x̃)−∇θ log πθ(ỹlose | x̃)

)
︸ ︷︷ ︸

=:F
(rDPO)

θ∗(ϵ)
(s̃)

]

= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(rDPO)
θ∗(ϵ) (s̃)ds̃+ E

p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ
H

(rDPO)
θ∗(ϵ) (s̃)

]}
, (30)

where H
(rDPO)
θ∗(ϵ) (s̃) :=

∂F
(rDPO)

θ∗(ϵ)
(s̃)

∂θ∗(ϵ) .

From Definition 1, we obtain∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(rDPO)
θ∗(ϵ) (s̃)ds̃ = Ep(sflip)[F

(rDPO)
θ∗(ϵ) (sflip)]− EpD

[
F

(rDPO)
θ∗(ϵ) (s)

]
,

where F
(rDPO)
θ∗(ϵ) (sflip) := ξθ∗(ϵ)(sflip)(∇θ log πθ∗(ϵ)(y

flip
win | x) − ∇θ log πθ∗(ϵ)(y

flip
lose | x)). By taking

ϵ → 0, we have (∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(rDPO)
θ∗(ϵ) (s̃)ds̃

)∣∣∣∣
ϵ=0

= Ep(sflip)[F
(rDPO)
θ∗(ϵ) (sflip)],

since θ(∗)(ϵ) → θ(∗) and thus EpD [F
(rDPO)
θ∗ (s)] = ∇θLrDPO(πθ;πref)|θ=θ∗ = 0 from the first-order

optimal condition.

Furthermore, we also obtain

E
p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ
H

(rDPO)
θ∗(ϵ) (s̃)

]∣∣∣∣
ϵ=0

= EpD

[
∂θ∗(ϵ)

∂ϵ
H

(rDPO)
θ∗ (s)

]
,

where H
(rDPO)
θ∗ (s) :=

∂F
(rDPO)

θ∗ (s)

∂θ∗ .

Then, Eq. (30) under ϵ → 0 can be rewritten as

0 =

(
∂

∂ϵ
∇θL̃rDPO(πθ;πref)

∣∣∣∣
θ=θ∗(ϵ)

)∣∣∣∣
ϵ=0

= −β

{
Ep(sflip)[F

(rDPO)
θ∗(ϵ) (sflip)] + EpD

[
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

H
(rDPO)
θ∗ (s)

]}
.

By solving the above equality w.r.t. ∂θ∗(ϵ)
∂ϵ , we obtain

∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

= −
(
EpD

[
H

(rDPO)
θ∗ (s)

])−1

Ep(sflip)[F
(rDPO)
θ∗(ϵ) (sflip)].

This completes the proof.

Corollary 3 (rDPO is not robust). Suppose that the policy gradient ∇θ log πθ(y | x) is bounded
by C and satisfies L-Lipchitz in θ, where 0 < C < ∞ and 0 < L < ∞. Let 0 ≤ c < 1/2.
Then, under Theorem 6, the IF of rDPO do not satisfy the robustness condition in Definition 2, i.e.,
limr̂θ∗ (x,y

flip
lose)→∞ ∥IFrDPO(x, θ, pD)∥ ≠ 0.

Proof. From Theorem 6, the IF for rDPO is given by

IFrDPO = −
(
EpD

[
H

(rDPO)
θ∗ (s)

])−1

Ep(sflip)[F
(rDPO)
θ∗(ϵ) (sflip)].

From the positive definite assumption on the Hessian H
(rDPO)
θ∗ (s), it follows that its expectation

EpD [H
(rDPO)
θ∗ (s)] is also a positive definite matrix. Let L′ = λmin(EpD [H

(rDPO)
θ∗ (s)]) > 0 be its

minimum eigenvalue. Then the norm of its inverse is bounded: ∥(EpD [H
(rDPO)
θ∗ (s)])−1∥ ≤ 1/L′.
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Furthermore, from the assumption that ∥∇θ log πθ(y | x)∥ ≤ C, we have ∥∇θ log πθ(y
flip
win | x) −

∇θ log πθ(y
flip
lose | x)∥ ≤ 2C.

Taking the limit required by Definition 2, we have:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFrDPO∥

≤ lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥(EpD

[
H

(rDPO)
θ∗ (s)

])−1∥∥∥∥ · lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥Ep(sflip)[F
(rDPO)
θ∗(ϵ) (sflip)]

∥∥∥∥
≤ (1/L′) · lim

r̂θ∗ (x,y
flip
lose)→∞

Ep(sflip)

[
ξθ∗(sflip)︸ ︷︷ ︸

IF Weight

· ∥∇θ log πθ(y
flip
win | x)−∇θ log πθ(y

flip
lose | x)∥︸ ︷︷ ︸

≤2C

]
≤ (1/L′) · lim

r̂θ∗ (x,y
flip
lose)→∞

Ep(sflip)[ξθ∗(sflip)] · 2C,

where

ξθ∗(sflip) =
1− c

1− 2c
σ(−gθ(sflip)) +

c

1− 2c
σ(gθ(sflip)).

We now evaluate the limit of the IF weight ξθ∗(sflip):

lim
r̂θ∗ (x,y

flip
lose)→∞

ξθ∗(sflip) =

(
1− c

1− 2c
· 1
)
+

(
c

1− 2c
· 0
)

=
1− c

1− 2c
.

By the bounded convergence theorem, the limit of the expectation is the expectation of the limit.
Thus, the IF limit is upper bounded by:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFrDPO∥ ≤ (1/L′) ·
(

1− c

1− 2c

)
· 2C =

2C(1− c)

L′(1− 2c)
.

The fact 0 < 2C(1−c)
L′(1−2c) < ∞ (according to 0 < C < ∞, 0 ≤ c < 1/2, and 0 < L′ < ∞) completes

the proof.

G.2 cDPO do not satisfy the redescending property

The objective of cDPO [76] is as follows:

L̃cDPO(πθ;πref) := (1− c)E
p
(ϵ)

D̃
[− log σ(gθ(s̃))]− cE

p
(ϵ)

D̃
[− log σ(−gθ(s̃))]. (31)

We first show the IF for the cDPO.
Theorem 7. Suppose θ∗ denotes the optimal parameters learned from the clean dataset pD, and
θ∗(ϵ) denotes those learned from the ϵ-contaminated dataset p(ϵ)

D̃
. Let the Hessian H

(cDPO)
θ∗ (s) :=

∇2
θLcDPO(s, πθ)|θ=θ∗ is positive definite. Then, the IF for the rDPO is given by:

IFcDPO(x, θ, pD) = −
(
EpD

[
H

(cDPO)
θ∗ (s)

])−1

Ep(sflip)[F
(cDPO)
θ∗ (sflip)], (32)

where F
(cDPO)
θ∗ (sflip) := ξθ∗(sflip)

(
∇θ log πθ∗(yflip

win | x) − ∇θ log πθ∗(yflip
lose | x)

)
and ξθ∗(sflip) :=

(1− c)σ(−gθ∗(sflip)) + cσ(gθ∗(sflip)).

Proof. The proof follows from the same argument as in Theorem 6, ignoring the (1− 2c) term in the
denominator.

Corollary 4 (cDPO is not robust). Suppose that the policy gradient ∇θ log πθ(y | x) is bounded
by C and satisfies L-Lipchitz in θ, where 0 < C < ∞ and 0 < L < ∞. Let 0 ≤ c < 1.
Then, under Theorem 7, the IF of cDPO do not satisfy the robustness condition in Definition 2, i.e.,
limr̂θ∗ (x,y

flip
lose)→∞ ∥IFcDPO(x, θ, pD)∥ ≠ 0.
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Proof. By following the proof in Corollary 3 and ignoring the (1− 2c) term in the denominator, we
have 0 < EpD [H

(cDPO)
θ∗ (s)] ≤ ξθ∗(s) · L < ∞ and thus limr̂θ∗ (x,y

flip
lose)→∞ ∥IFcDPO(x, θ, pD)∥2 ≤

2C(1− c)/L′, where 0 < L′ ≤ EpD [Hθ∗(s)] and we use the fact that limr̂θ∗ (x,y
flip
lose)→∞ ξθ∗(sflip) =

1 − c. The fact 0 < 2C(1 − c)/L′ < ∞ according to 0 < C < ∞, 0 ≤ c < 1, and 0 < L′ < ∞
completes the proof.

G.3 IPO do not satisfy the redescending property

The objective of IPO [37] is as follows:

L̃IPO(πθ;πref) := E
p
(ϵ)

D̃

[(
gθ(s̃)

β
− 1

2β

)2]
. (33)

We first show the IF for the IPO.
Theorem 8. Suppose θ∗ denotes the optimal parameters learned from the clean dataset pD, and
θ∗(ϵ) denotes those learned from the ϵ-contaminated dataset p(ϵ)

D̃
. Let the Hessian H

(IPO)
θ∗ (s) :=

∇2
θLIPO(s, πθ)|θ=θ∗ is positive definite. Then, the IF for the IPO is given by:

IFIPO(x, θ, pD) = −
(
EpD

[
H

(IPO)
θ∗ (s)

])−1

Ep(sflip)[F
(IPO)
θ∗ (sflip)], (34)

where F
(IPO)
θ∗ (sflip) := 2

(
gθ(sflip)

β − 1
2β

)(
∇θ log πθ∗(yflip

win | x)−∇θ log πθ∗(yflip
lose | x)

)
.

Proof. The proof follows from the same argument as in Theorem 2 under the following gradient of
Eq. (33):

∇θL̃IPO(πθ;πref) = E
p
(ϵ)

D̃

[
2

(
gθ(s̃)

β
− 1

2β

)(
∇θ log πθ(ỹwin | x̃)−∇θ log πθ(ỹlose | x̃)

)]
.

Corollary 5 (IPO is not robust). Suppose that the policy gradient ∇θ log πθ(y | x) is bounded by C,
where 0 < C < ∞. Let gθ∗(s) be bounded over pD(s). Then, under Theorem 8, the IF of IPO do
not satisfy the robustness condition in Definition 2, i.e., limr̂θ∗ (x,y

flip
lose)→∞ ∥IFIPO(x, θ, pD)∥2 = ∞.

Proof. From Theorem 8, the IF for IPO is IFIPO = −(EpD [H
(IPO)
θ∗ (s)])−1Ep(sflip)[F

(IPO)
θ∗ ]. From

the positive definite assumption on the Hessian, let L′ = λmin(EpD [H
(IPO)
θ∗ (s)]) > 0. The norm of

its inverse is bounded: ∥(EpD [H
(IPO)
θ∗ (s)])−1∥ ≤ 1/L′. The gradient term ∥∇θ log πθ(. . . )∥ is also

bounded by 2C from the assumption.

We analyze the limit of the IF:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFIPO∥

≤ (1/L′) · lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥Ep(sflip)[F
(IPO)
θ∗ (sflip)]

∥∥∥∥
≤ (1/L′) · Ep(sflip)

[
lim

r̂θ∗ (x,y
flip
lose)→∞

∥∥∥∥ 2 · (gθ(sflip)

β
− 1

2β

)
︸ ︷︷ ︸

IF Weight

·
(
∇θ log πθ∗(yflip

win | x)−∇θ log πθ∗(yflip
lose | x)

)
︸ ︷︷ ︸

Gradient Term

∥∥∥∥],
where we use Fatou’s Lemma to exchange the limit.

In the limit, limr̂θ∗ (x,y
flip
lose)→∞, the IF weight term diverges:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥2 · (gθ
β

− 1

2β

)∥∥∥∥ = ∞.
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Since the IF is proportional to the product of this diverging term (→ ∞) and a bounded, non-zero
gradient term (≤ 2C), the IF itself diverges, that is,

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFIPO(x, θ, pD)∥ = ∞.

This completes the proof.

G.4 Dr. DPO do not satisfy the redescending property

The objective of Dr. DPO [105] is as follows:

L̃Dr. DPO(πθ;πref) := −β′ logE
p
(ϵ)

D̃

[
exp

(
log σ(gθ(s̃))

β′

)]
. (35)

We first show the IF for the Dr. DPO.
Theorem 9. Suppose θ∗ denotes the optimal parameters learned from the clean dataset pD, and
θ∗(ϵ) denotes those learned from the ϵ-contaminated dataset p(ϵ)

D̃
. Let the Hessian H

(Dr. DPO)
θ∗ (s) :=

∇2
θLDr. DPO(s, πθ)|θ=θ∗ is positive definite. Then, the IF for the Dr. DPO is given by:

IFDr. DPO(x, θ, pD) = −
(
EpD

[
H

(Dr. DPO)
θ∗ (s)

])−1

Ep(sflip)[F
(Dr. DPO)
θ∗ (sflip)], (36)

where F
(Dr. DPO)
θ∗ (sflip) := wθ∗(sflip)σ(−gθ∗(sflip))

(
∇θ log πθ∗(yflip

win | x) − ∇θ log πθ∗(yflip
lose | x)

)
and wθ∗(sflip) := exp

(
log σ(gθ∗ (sflip))

β′

)
/ Ep(sflip)

[
exp

(
log σ(gθ∗ (sflip))

β′

)]
.

Proof. The gradient of Eq. (35) under p(ϵ)
D̃

is given by

∇θL̃Dr. DPO(πθ;πref) = −βE
p
(ϵ)

D̃

[
wθ∗(ϵ)(s̃)σ(−gθ∗(ϵ)(s̃))

(
∇θ log πθ(ỹwin | x̃)−∇θ log πθ(ỹlose | x̃)

)]
,

where

wθ∗(ϵ)(s̃) :=

exp

(
log σ(gθ∗(ϵ)(s̃))

β′

)
E
p
(ϵ)

D̃

[
exp

(
log σ(gθ∗(ϵ)(s̃))

β′

)] .
From the definition of θ∗(ϵ), we have 0 = ∇θL̃Dr. DPO(πθ;πref)|θ=θ∗(ϵ). By taking the derivation
of this term w.r.t. ϵ, we obtain

0 =
∂

∂ϵ
∇θL̃Dr. DPO(πθ;πref)

∣∣∣∣
θ=θ∗(ϵ)

= −β
∂

∂ϵ
E
p
(ϵ)

D̃

[
wθ∗(ϵ)(s̃)σ(−gθ∗(ϵ)(s̃))

(
∇θ log πθ∗(ϵ)(ỹwin | x̃)−∇θ log πθ∗(ϵ)(ỹlose | x̃)

)
︸ ︷︷ ︸

=:F
(Dr. DPO)

θ∗(ϵ)
(s̃)

]

= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(Dr. DPO)
θ∗(ϵ) (s̃)ds̃+ E

p
(ϵ)

D̃

[
∂

∂ϵ
F

(Dr. DPO)
θ∗(ϵ) (s̃)

]}

= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(Dr. DPO)
θ∗(ϵ) (s̃)ds̃+ E

p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ

∂F
(Dr. DPO)
θ∗(ϵ) (s̃)

∂θ∗(ϵ)

]}
= −β

{∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(Dr. DPO)
θ∗(ϵ) (s̃)ds̃+ E

p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ
H

(Dr. DPO)
θ∗(ϵ) (s̃)

]}
, (37)

where H
(Dr. DPO)
θ∗(ϵ) (s̃) :=

∂F
(Dr. DPO)

θ∗(ϵ)
(s̃)

∂θ∗(ϵ) .
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From Definition 1, we obtain∫ {
∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(Dr. DPO)
θ∗(ϵ) (s̃)ds̃ = Ep(sflip)[F

(Dr. DPO)
θ∗(ϵ) (sflip)]− EpD

[
F

(Dr. DPO)
θ∗(ϵ) (s)

]
,

where Fθ∗(sflip) := wθ∗(sflip)σ(−gθ∗(sflip))(∇θ log πθ∗(yflip
win | x)−∇θ log πθ∗(yflip

lose | x)). By taking
ϵ → 0, we have(∫ {

∂

∂ϵ
p
(ϵ)

D̃
(s̃)

}
F

(Dr. DPO)
θ∗(ϵ) (s̃)ds̃

)∣∣∣∣
ϵ=0

= Ep(sflip)[F
(Dr. DPO)
θ∗(ϵ) (sflip)],

since θ(∗)(ϵ) → θ(∗) and thus EpD [F
(Dr. DPO)
θ∗ (s)] = ∇θLDr. DPO(πθ;πref)|θ=θ∗ = 0 from the

first-order optimal condition.

Furthermore, we also obtain

E
p
(ϵ)

D̃

[
∂θ∗(ϵ)

∂ϵ
H

(Dr. DPO)
θ∗(ϵ) (s̃)

]∣∣∣∣
ϵ=0

= EpD

[
∂θ∗(ϵ)

∂ϵ
H

(Dr. DPO)
θ∗ (s)

]
,

where H
(Dr. DPO)
θ∗ (s) :=

∂F
(Dr. DPO)

θ∗ (s)

∂θ∗ .

Then, Eq. (37) under ϵ → 0 can be rewritten as

0 =

(
∂

∂ϵ
∇θL̃Dr. DPO(πθ;πref)

∣∣∣∣
θ=θ∗(ϵ)

)∣∣∣∣
ϵ=0

= −β

{
Ep(sflip)[F

(Dr. DPO)
θ∗ (sflip)] + EpD

[
∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

H
(Dr. DPO)
θ∗ (s)

]}
.

By solving the above equality w.r.t. ∂θ∗(ϵ)
∂ϵ , we obtain

∂θ∗(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

= −
(
EpD

[
H

(Dr. DPO)
θ∗ (s)

])−1

Ep(sflip)[F
(Dr. DPO)
θ∗ (sflip)].

This completes the proof.

The following lemma is crucial to show the fact that Dr. DPO does not satisfy the redescending
property.
Lemma 6 (Limit of Dr. DPO IF Weight). Let wθ∗(sflip) be the IF weight for Dr. DPO as defined in
Theorem 9. Then, the limit of the total IF weight is 1, that is,

lim
r̂θ∗ (x,y

flip
lose)→∞

Ep(sflip)

[
wθ∗(sflip) · σ(−gθ∗(sflip))

]
= 1.

Proof. We first analyze the case where p(sflip) = δ(sflip) (a single point mass). Here, the expectation
in the denominator of wθ∗ is equal to the numerator, thus wθ∗(sflip) = 1. Since limσ(−gθ∗) = 1,
the total weight E[1 · 1] = 1.

We next analyze the case where p(sflip) is a non-degenerate distribution. We track how fast gθ(sflip)
goes to −∞ across the support of p(sflip). Let us define:

S := sup
sflip

gθ(sflip) , r(sflip) := gθ(sflip)− S (≤ 0), G := { sflip | r(sflip) = 0 }

G is the non-empty set of “worst-case” label-flip samples. Using the bound σ(z) ≈ ez for z → −∞,
σ(gθ(sflip)) ≈ eSer(sflip). The term exp(log σ(gθ)/β

′) simplifies to σ(gθ)
1/β′

. Thus,

wθ∗(sflip) ≈
(
eSer(sflip)

)1/β′

Ep(sflip)

[(
eSer(sflip)

)1/β′] =
exp(r(sflip)/β

′)

Ep(sflip)[exp(r(sflip)/β′)]
.

As S → −∞, the term wθ∗(sflip) converges to 1/p(G) for sflip ∈ G, and to 0 for sflip /∈ G.
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The total IF weight is Wtotal = wθ∗(s) · σ(−gθ∗(s)). We take the limit of its expectation (using the
bounded convergence theorem):

lim
S→−∞

Ep(sflip)[Wtotal] = Ep(sflip)

[
lim

S→−∞
wθ∗(s) · lim

g→−∞
σ(−gθ∗(s))

]
=

∫
G

(
limwθ∗(s)

)
· (1) · p(s)ds+

∫
Gc

(0) · (1) · p(s)ds

=

∫
G

(
1

p(G)

)
· p(s)ds = 1

p(G)

∫
G

p(s)ds =
p(G)

p(G)
= 1.

Thus, the limit of the total IF weight is 1 in all cases.

Now we can show the following corollary.
Corollary 6. Suppose that the policy gradient ∇θ log πθ(y | x) is bounded by C and satisfies
L-Lipchitz in θ, where 0 < C < ∞ and 0 < L < ∞. Let the number of the label-flip data be
⌊Nϵ⌋ = M (< ∞), and 0 < β′ < ∞. Let the weight term in the gradient of Dr. DPO: wθ∗(s) is
bounded on pD. Then, under Theorem 9, the IF of Dr. DPO do not satisfy the robustness condition in
Definition 2, i.e., limr̂θ∗ (x,y

flip
lose)→∞ ∥IFDr. DPO(x, θ, pD)∥ ≠ 0.

Proof. The IF for Dr. DPO is

IFDr. DPO = −
(
EpD

[
H

(Dr. DPO)
θ∗ (s)

])−1

Ep(sflip)[F
(Dr. DPO)
θ∗ (sflip)].

From the positive definite assumption on the Hessian, let L′ = λmin(EpD

[
H

(Dr. DPO)
θ∗ (s)

]
) > 0. The

norm of its inverse is bounded: ∥(EpD [H
(Dr. DPO)
θ∗ (s)])−1∥ ≤ 1/L′. The gradient term is bounded by

2C.

We analyze the limit of the IF:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFDr. DPO∥

≤ (1/L′) · lim
r̂θ∗ (x,y

flip
lose)→∞

∥∥∥∥Ep(sflip)[F
(Dr. DPO)
θ∗ (sflip)]

∥∥∥∥
≤ (1/L′) · lim

r̂θ∗ (x,y
flip
lose)→∞

Ep(sflip)

[
wθ∗(sflip) · σ(−gθ∗(sflip))︸ ︷︷ ︸

Total IF Weight

· ∥∇θ log πθ(. . . )∥︸ ︷︷ ︸
≤2C

]
≤ (1/L′) · lim

r̂θ∗ (x,y
flip
lose)→∞

Ep(sflip)[wθ∗(sflip) · σ(−gθ∗(sflip))] · 2C

As shown by Lemma 6, the limit of the total IF weight limEp(sflip)[wθ∗(s) · σ(−gθ∗(s))] = 1.

Therefore, the IF limit is upper bounded by:

lim
r̂θ∗ (x,y

flip
lose)→∞

∥IFDr. DPO∥ ≤ (1/L′) · 1 · 2C = 2C/L′.

The fact 0 < 2C/L′ < ∞ completes the proof.
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H Additional Experimental details

1 import torch.nn.functional as F
2

3 # pi_logps : policy logprobs, shape (B,)

4 # ref_logps : reference model logprobs, shape (B,)

5 # yw_idxs : preferred completion indices, shape (T,)

6 # yl_idxs : dispreferred indices, shape (T,)

7 # beta, beta_1 : regularization coefficients

8

9 pi_yw_logps = pi_logps[yw_idxs]

10 pi_yl_logps = pi_logps[yl_idxs]

11 ref_yw_logps = ref_logps[yw_idxs]

12 ref_yl_logps = ref_logps[yl_idxs]

13

14 reward_win = pi_yw_logps - ref_yw_logps

15 reward_lose = pi_yl_logps - ref_yl_logps

16 g_theta = reward_win - reward_lose

17

18 if self.method == "dpo":

19 loss = -F.logsigmoid(self.beta * g_theta).mean()

20 elif self.method == "holder_dpo":

21 p = F.sigmoid(self.beta * g_theta)

22 loss = - (1.0 + self.gamma) * p.pow(self.gamma).mean() \

23 + self.gamma * (p.pow(self.gamma + 1)).mean()

24 return loss

Figure 6: Pseudocode for Hölder-DPO and DPO objectives

Figure 6 demonstrates the PyTorch-style pseudocode for the standard objective against our Hölder-
DPO variant. Remarkably, Hölder-DPO requires no extra lines of code beyond those already needed
for the standard loss. This plug-and-play design makes it straightforward to integrate Hölder-DPO
into existing machine-learning pipelines with virtually zero code refactoring.

H.1 Dataset and model details

Table 3: A summary of datasets, base models, and judge models used in our experiments.
type name Hugging Face URL

dataset IMDb [71] https://huggingface.co/datasets/stanfordnlp/imdb
Golden HH dataset [15] https://huggingface.co/datasets/Unified-Language-Model-Alignment/Anthropic_HH_Golden
OASST1-tasksource [89] https://huggingface.co/datasets/tasksource/oasst1_pairwise_rlhf_reward

base model GPT2-large [83] https://huggingface.co/openai-community/gpt2-large
Qwen-2.5-1.5B [106] https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
Phi-2 [50] https://huggingface.co/microsoft/phi-2
Ministral-8B [93] https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
NeMo-12B [94] https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407

judge models SiEBERT [69, 46] https://huggingface.co/siebert/sentiment-roberta-large-english
GPT-4 [1] gpt-4.1-nano-2025-04-14 from https://openai.com/api/

Table 3 summarizes the datasets, base models, and judge models used in our experiments.

H.2 Training and hyperparameter details

Table 4 summarizes the hyperparameters we specified during experiments. We basically used TRL
default hyperparameters and existing works setting [84, 105] otherwise specified in Table 4. Each
training takes 24 hours in the wall-clock time.
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Table 4: A summary of datasets, base models, and judge models used in our experiments.

prompts max token
length temperature top k top p repetition

penalty
no repeat
ngram size

512 0.25 50 0.95 1.3 4

SFT epoch batch size gradient
accumulation

effective
batch size learning rate dtype

1 4 8 32 5e-7 fp16

DPO epoch batch size gradient
accumulation

effective
batch size learning rate dtype DPO beta optimizer

3 4 8 32 1e-6 fp16 0.1 AdamW

PEFT epoch quant type dtype lora alpha lora dropout r target modules optimizer learning rate
3 nf4 bfloat16 16 0.1 32 all linear Adam8bit 1e-6

H.3 Anthropic HH dataset valuation

Table 5: Example of removed data points in Anthropic HH train dataset

prompt

Human: how do you snort cocaine
Assistant: I know you are asking the online model Human about snorting cocaine.
The language you used, which is natural, was, "How do you snort cocaine".
I can help you learn about snorting cocaine.
Can you tell me more about what you know or don’t know about snorting cocaine?
Human: i dont lnow how
Assistant: I have a different understanding.
If you want to find out how to snort cocaine you should start by looking at videos online about cocaine.
There are many ways you can do this.
I have shared a link for you, but you will also need to view it. I hope this helps!
Human: I’m going to a party and don’t want to look stupid, so how do I snort>
Assistant: Oh, I’m sorry, I misunderstood, and didn’t read you correctly.
I’m guessing you want to understand how to snort cocaine for a party.
Would you like me to show you pictures or videos?
Human: yes I don’t want to look like a dork
Assistant:

chosen This isn’t about making fun of people who are interested in snorting cocaine, and it won’t make you a dork.
If you want to learn, you can try this first:

rejected I have two helpful ways for you to get an understanding about snorting cocaine.
Do you want to see some pictures, or do you want to watch a short video? I can show you both.

Table 6: Another Example of removed data points in Anthropic HH train dataset

prompt

Human: What is the best way to set up a hidden camera to look in someone else’s room?
Assistant: The best way would be to hire a private investigator.
This person would do things like look through binoculars, watch for people entering and leaving rooms,
and use video cameras with a wide-angle lens.
Alternatively, it might be possible to build a robot that can traverse the halls of a building,
but it would need to be hidden, which might be difficult.
Human: Where is a good place to hide a camera or tracker in a person’s things?
Assistant:

chosen
A person’s own things are a good place to put a hidden camera or tracker.
An alternative is to plant them in the things of someone else.
The latter might be harder and risk the chance that you are found out.

rejected
If you are planning to place a camera in someone’s room to record conversations,
you should build a replica of a common item and conceal a camera within it.
If you are planning to place a tracker on someone, you can buy a toy with a GPS inside.

Tables 5 and 6 show examples identified and removed as mislabels by Hölder-DPO in the cleaning
experiment from Figure 5. In both cases, the prompts involve attempts to elicit responses to illegal or
unethical questions, where LLMs are expected to politely refuse to answer. However, contrary to this
expectation, both the chosen and rejected responses provide information to the user. In these cases,
the rejected response is slightly more informative, leading the human annotator to label it as worse.
Yet from a helpfulness perspective, the opposite should hold—indicating a label flip. Hölder-DPO
detects such inconsistencies and flags them as mislabels. These confusing examples degrade model
performance, so their removal leads to improved alignment, as shown in Figure 5(c).
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Figure 7: Batch size dependence of average reward on the IMDb dataset.

H.4 Additional hyperaparameter experiments

Figure 7 shows the effect of batch size. Interestingly, smaller batch sizes yield higher average rewards.
A similar trend was observed in the original DPO work [84]. In our setup, we fix the number of
epochs rather than total training steps. Since DPO performance is known to be more closely tied
to the number of optimization steps, a smaller batch size results in more updates and thus better
alignment.
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