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Abstract

Key Information Extraction (KIE) from visu-001
ally rich documents (VRDs) is typically framed002
as either fine-grained token classification or003
coarse-grained entity retrieval. Token-level004
models effectively capture spatial and visual005
information associated with document spans,006
while entity-level models excel in modeling log-007
ical dependencies and align more closely with008
real-world use cases. This work introduces009
PM3-KIE, a probabilistic, multi-task meta-010
model that integrates fine-grained and coarse-011
grained approaches, leveraging the strengths012
of both paradigms. The proposed model in-013
troduces two key innovations: domain-specific014
schema constraints to enforce logical consis-015
tency and mitigate extraction errors, and the016
integration of large language models (LLMs)017
to validate extractions through semantic plau-018
sibility. Experimental evaluation on the pub-019
lic VRDU dataset demonstrates that PM3-KIE020
significantly outperforms three state-of-the-art021
models and a stacked ensemble, achieving a022
2.5% improvement in F1 score, highlighting the023
model’s efficacy in unifying fine- and coarse-024
grained representations for enhanced KIE per-025
formance.026

1 Introduction027

KIE is a crucial task in automating business doc-028

ument processing, with applications spanning fi-029

nance, legal, and supply chain management. KIE030

automation is essential for reducing operational031

costs; for example, processing a single invoice032

can cost $13,11 and take eight days (Girsch-Bock,033

Mary, 2024; Cohen and York, 2020). Despite re-034

cent advancements, KIE remains challenging, par-035

ticularly for documents with complex schemas or036

semi-structured layouts, where state-of-the-art ap-037

proaches often fall short (Wang et al., 2023c).038

KIE aims to extract structured key-value pairs039

from VRDs (Huang et al., 2019) and is typically040

performed using one of two paradigms, displayed 041

in Figure 1: 042
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Figure 1: Fine-grained Token Classification vs. Coarse
Grained Entity Extraction Task for KIE

Fine-grained token classification Models label 043

individual tokens via sequence tagging, typically 044

leveraging multi-modal transformer encoders that 045

integrate text, spatial layout, and image features, 046

such as LayoutLMv3 (Huang et al., 2022) and LiLT 047

(Wang et al., 2022). While effective at capturing 048

token-level spatial information, these models re- 049

quire extensive annotated data. 050

Coarse-grained entity extraction Models either 051

generate structured output in the form of key-value 052

pairs o json (Cesista et al., 2024), retrieve indi- 053

vidual entity values (Cao et al., 2023) or classify 054

a predefined set of entity candidates (Majumder 055

et al., 2020). These methods perform well in captur- 056

ing logical dependencies and producing coherent, 057

structured outputs for coarse-grained tasks. 058

Token-level models excel at capturing spatial 059

relationships, while entity-level models better cap- 060

ture logical dependencies, highlighting the need for 061

approaches that integrate both. Ding et al. (2024) 062

bridge these paradigms and suggest a knowledge 063

distillation model to acquire knowledge from both 064

model types, but their model is limited to specific 065

architectures and necessitates classification logits. 066

Thus, an integration of generative decoder-based 067
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approaches or large-scale LLMs producing direct068

structured output is not possible.069

Moreover, existing methods neglect domain-070

specific constraints, resulting in schema violations071

such as failing to extract required elements or in-072

correctly including optional ones. While heuristic073

postprocessing can partially address these issues, it074

often falls short of ensuring logical consistency.075

Common errors also include syntactic or seman-076

tic inconsistencies, such as incomplete addresses077

or implausible entity values that could easily be078

prevented with contextual validation.079

To address these limitations, we propose PM3-080

KIE, a novel probabilistic multi-task meta-model081

designed for KIE. PM3-KIE employs a lightweight082

probabilistic reasoning layer, leveraging the Prob-083

abilistic Soft Logic (PSL) framework (Bach et al.,084

2017) to combine logical constraints with proba-085

bilistic inference. This design ensures robust rea-086

soning across granularities while maintaining com-087

putational efficiency.088

We evaluate PM3-KIE on the public VRDU089

dataset (Wang et al., 2023c), demonstrating signifi-090

cant improvements over state-of-the-art models and091

a stacked ensemble meta-model across various in-092

distribution, out-of-distribution, and low-resource093

scenarios. Our contribution are the following:094

• We introduce a probabilistic meta-model that095

integrates fine-grained and coarse-grained096

models with key innovations:097

fine-grained and coarse-grained blackbox098

model integration: PM3-KIE is a meta-099

model that supports incorporation of arbi-100

trary fine-grained and coarse-grained black-101

box KIE models including generative decoder102

approaches producing structured output.103

Schema consistency: Domain-specific con-104

straints ensure logical adherence to extraction105

schemas and contained required and optional106

elements, reducing schema-related errors.107

LLM-as a judge based validation: Pre-108

trained LLMs as a "judge" validate extractions109

based on syntactic and semantic plausibility.110

This mechanism provides an additional layer111

of quality control, enabling the model to pre-112

vent errors such as incorrect formatting or im-113

plausible entity values.114

• We achieve state-of-the-art performance on115

the VRDU dataset, outperforming baseline116

models by a significant margin.117

The remainder of this paper is structured as fol- 118

lows: Section 2 reviews related work. Section 3 119

provides background on the KIE problem descrip- 120

tions. Section 4 provides details about the prob- 121

abilistic model architecture. Section 5 presents 122

experimental results, and Section 6 concludes with 123

a discussion and future directions. 124

2 Related Work 125

KIE involves identifying key-value pairs from doc- 126

uments for structured data extraction (Huang et al., 127

2019) and can be performed as fine-grained to- 128

ken sequence classification or coarse-grained entity 129

extraction at the document level, detailed in the 130

following subsections. 131

2.1 Fine Grained Token Classification Models 132

Traditional Models To overcome the limitations 133

of template-based approaches (Chiticariu et al., 134

2013; Schuster et al., 2013), neural networks were 135

introduced, defining KIE as a token sequence clas- 136

sification problem. Recurrent Neural Networks 137

(RNNs) were first used to process floating text and 138

classify tokens (Palm et al., 2017), with some mod- 139

els incorporating spatial features to better represent 140

document layouts (Sage et al., 2019). 141

Subsequently, convolutional architectures were 142

employed to capture a non-sequential spatial con- 143

text (Yang et al., 2017; Borges Oliveira and Viana, 144

2017; Zhao et al., 2019; Katti et al., 2018; Denk 145

and Reisswig, 2019; Zhang et al., 2020). 146

Graph-based models enhanced this by modeling 147

the document as a graph to represent textual and 148

spatial relationships. Graph Convolutional Neu- 149

ral Networks have been used to integrate textual, 150

spatial, and visual information for KIE tasks (Yao 151

et al., 2024; Shi et al., 2023; Lee et al., 2022, 2021; 152

Wei et al., 2020; Yu et al., 2020; Hwang et al., 2020; 153

Liu et al., 2019; Qian et al., 2019). 154

Multimodal Transformer Approaches With the 155

rise of transformer-based architectures, encoder- 156

based models have become a dominant approach 157

for multi-modal token classification in KIE. These 158

models have been enhanced in various ways to 159

address the challenges of integrating textual and 160

visual features in business documents. DocFormer 161

(Appalaraju et al., 2021), LAMBERT (Garncarek 162

et al., 2021), FormNet (Lee et al., 2022), and 163

ERNIE-Layout (Peng et al., 2022) focus on captur- 164

ing spatial relationships through attention mecha- 165

nisms. LayoutLMv3 (Huang et al., 2022), LAM- 166
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BERT, Docformer, Structext (Li et al., 2021), and167

UDOP (Tang et al., 2023) incorporate layout-aware168

embeddings to better represent document struc-169

tures, a technique employed in models. Further-170

more, LayoutMask (Tu et al., 2023), StructextV2171

(Yu et al., 2023), Structext, UDOP, DocFormer,172

ERNIE-Layout and Wokung-Reader (Bai et al.,173

2023) have introduced pre-training tasks designed174

to leverage multimodal information. In LiLT, Wang175

et al. (2022) adapted the transformer concepts to176

work in a language-independent way.177

Low Ressource Approaches Chen et al. (2023)178

propose a task-aware meta-learning framework179

with a hierarchical decoder and contrastive learn-180

ing for out-of-distribution, few-shot entity extrac-181

tion. QueryForm (Wang et al., 2023b) utilize a182

dual prompting mechanisms to integrate schema183

and entity queries for zero-shot entity extraction.184

2.2 Coarse-Grained Entity Extraction185

Traditional and Encoder-Decoder Architectures186

Other works frame KIE as an entity extraction task.187

This can involve detecting candidates and classify-188

ing them, as proposed in RELIE (Majumder et al.,189

2020), or directly generating structured outputs us-190

ing encoder-decoder models such as TILT (Powal-191

ski et al., 2021) and Donut (Kim et al., 2022), with192

TILT being one of the first to utilize a decoder to193

generate sequences that contain all entities.194

Generative LLMs Recent works leverage LLMs195

with natural language prompts for KIE using two196

primary strategies: Per-Key Prompting, where in-197

dividual prompts query values for each key (e.g.,198

DocLLM (Wang et al., 2023a), LayoutLLM (Luo199

et al., 2024)); and Unified Prompting, where a200

single prompt queries all keys simultaneously, pro-201

ducing either plain text outputs with all values (e.g.,202

GenKIE (Cao et al., 2023)) or structured outputs203

such as key-value pairs or JSON (e.g., RASG (Ce-204

sista et al., 2024), ICL-D3IE (He et al., 2023),205

LMDX (Perot et al., 2024)).206

GenKiE employ an encoder-decoder framework207

to integrate such prompts, where the encoder pro-208

cesses multimodal document data and prompts,209

while the decoder outputs plain text containing210

entity values. LayoutLLM and DocLLM employ211

layout-aware LLM pretraining and VRDU task spe-212

cific fine-tuning, addressing KIE by querying indi-213

vidual values for each document key.214

Prompting Strategies and Paradigms Recent 215

works like RASG, ICL-D3IE and LMDX utilize ex- 216

isting LLMs and propose techniques for in-context 217

learning, document layout encoding, and prompt- 218

ing for KIE. RASG introduces retrieval-augmented 219

structured generation, enabling LLMs to generate 220

schema-constrained outputs by encoding document 221

layout as text and modeling structured output pre- 222

diction as a tool-use approach. ICL-D3IE employs 223

in-context learning with demonstration examples 224

that highlight positional relationships and enforce 225

structured output. LMDX is a layout encoding 226

technique to incorporate document text and spatial 227

layout into the prompt and a decoding mechanism 228

to parse the extracted entities from the LLM output. 229

Joint Token Classification and Entity Extraction 230

Models Ding et al. (2024) address both token 231

classification and entity extraction tasks simultane- 232

ously with a student-teacher framework for knowl- 233

edge distillation. However, this method is limited 234

to architectures that generate classification logits, 235

rendering it incompatible with e.g. decoder-based 236

LLMs that produce structured output. 237

We propose a more flexible multi-task meta- 238

learning approach that combines fine-grained and 239

coarse-grained models, including black-box ap- 240

proaches. By enforcing consistency across tasks 241

and utilizing domain-specific schemas, our method 242

overcomes the limitations of existing systems. 243

3 KIE Problem Statement 244

3.1 Traditional KIE Learning Tasks 245

KIE is a core task in document information extrac- 246

tion, aiming to extract key-value pairs that align 247

with a predefined schema (Huang et al., 2019). Tra- 248

ditional approaches address KIE as either: 249

Token Sequence Classification Task The goal 250

is to assign a label ls ∈ T to each token ws in a 251

document d, where w = {ws}|S|s=1 is the sequence 252

of tokens, |S| is the length of the sequence, and 253

T = {ti}|T |
i=1 is the set of possible label types. The 254

label set T includes a special "OTHER" label, indi- 255

cating that the token does not belong to any prede- 256

fined label. The model predicts the label sequence 257

l = {l1, l2, . . . , l|S|}. 258

Key-Value Pair (KVP) Prediction Task The 259

task is to extract a set of key-value pairs K = 260

{(kn, vn)}|N |
n=1, where kn ∈ T is the field type, vn 261

is the associated field value, and |N | is the number 262
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of extracted pairs. Each vn is typically a subse-263

quence of the token sequence w = {ws}|S|s=1.264

3.2 Unified Prediction265

We introduce a new formulation for the joint fine-266

grained and coarse grained extraction task.267

Business documents often adhere to a schema268

specifying the structured knowledge to be extracted.269

A schema T = {ti}|T |
i=1 defines field types, such270

as invoice number, and is populated by extracting271

corresponding information from each document d.272

We define Fields as concrete instances of a field273

type ti. Field Mentions represent text spans in d274

referring to fields, where multiple mentions may275

correspond to the same field.276

Token sequence classification predicts field men-277

tions in d, while entity extraction predicts higher-278

level field instances. Our joint formulation inte-279

grates them to predict both field instances and their280

mentions, leveraging outputs from both tasks.281

Meta-Model for Finegrained and Coarsegrained282

Models Let O = {Oq}|Q|
q=1 denote a set of |Q|283

finegrained prediction models all producing a pre-284

dicted label sequence Lq = {lqs}|S|s=1. Let U =285

{U r}|R|
r=1 denote a set of |R| coarse-grained predic-286

tion models all producing a set of key value pairs287

Kr = {(krn, vrn)}
|N |
n=1 Given a document d, token288

sequence w and the output of prediction models O289

and U, we define two sets of candidates:290

• Field Mention Candidates (M i): For a given291

field type ti, the mention candidate set is de-292

fined as a subset of tokens in w predicted to293

belong to label ti by at least one model in O:294

M i = {wj | j ∈ {1, . . . , |S|}, ∃
q ∈ {1, . . . , |Q|}lqj = ti}.

(1)295

• Field Candidates (F i): For a given field type296

ti, the field candidate set is defined as a subset297

of all field values vn predicted to belong to298

the type ti by at least one model in U :299

F i = {vc | c ∈ {1, . . . , |N |},∃
r ∈ {1, . . . , |R|}, kr

c = ti}.
(2)300

Objective is to predict field mentions, fields and301

links, represented by random variable x, y and a:302

Field Mentions: xji =
{
1 if wji is mention of type ti,

0 otherwise.
303

304

Fields: yci =
{
1 if vci is a field instance of type ti,

0 otherwise.
305

306

Field Linking: ajci =
{
1 if wji is linked to vci,

0 otherwise.
307

The joint approach leverages task interdependen- 308

cies both from mentions to fields and from fields 309

to mentions: Mentions predicted in the token se- 310

quence classification task refine field extraction, 311

while field extractions validate and enhance men- 312

tion predictions, ensuring schema consistency. 313

4 Methodology 314

4.1 P3M-KIE overall model architecture 315

We propose PM3-KIE, a probabilistic multi-task 316

meta-model for KIE, that integrates fine-grained 317

and coarse-grained models to reason across granu- 318

larities. The framework features a logical decision 319

layer based on PSL (Bach et al., 2017), combining 320

first-order logic with probabilistic graphical model- 321

ing, as detailed in Subsection 4.1. Subsequent sec- 322

tions elaborate on PM3-KIE’s architecture . Sub- 323

section 4.3 presents the integration of fine- and 324

coarse-grained models for joint predictions of field 325

mentions and values. Subsection 4.4 introduces the 326

modeling of field cardinalities, while Subsection 327

4.5 describes the incorporation of LLMs as seman- 328

tic and syntactic validators. Finally, Subsection 329

4.6 outlines the learning and inference mechanisms 330

within the proposed framework. 331

4.2 Probabilistic Framework 332

Probabilistic Graphical Model PSL represents 333

a probability distribution over a set of random vari- 334

ables using a Hinge-Loss Markov Random Field 335

(HL-MRF). The probability density function for 336

unobserved variables Y = (Y1, . . . , Yn′), condi- 337

tioned on observed variables X = (X1, . . . , Xn), 338

is expressed as: 339

P (Y |X) =
1

Z(ω,X)
exp

[
−

m∑
j=1

ωjϕj(X,Y )

]
, (3) 340

where ϕj are potential functions, ωj are their asso- 341

ciated weights, and Z(ω,X) is the normalization 342

factor. This formulation allows joint reasoning over 343

interdependent variables. 344

Declarative Logic Rules PSL employs a declar- 345

ative language to define logical rules as templates 346

for potential functions in the HL-MRF. Each rule 347
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consists of predicates representing observed or un-348

observed variables and constants serving as place-349

holders. For example:350

w : Prediction(mention, type) =⇒
IsType(mention, type).

(Rule 1)351

w indicates the rule’s importance. Grounding re-352

places variables in the rule ( e.g. mention, type)353

with constants, generating multiple ground rules.354

Learning and Inference PSL learns optimal rule355

weights w by maximizing a likelihood function. In-356

ference determines the most probable assignments357

for unobserved variables, framed as a convex op-358

timization problem (see Bach et al. (2017) for a359

detailed description).360

4.3 Multi-Task Metamodel Design361

Integration of Fine-Grained Models We intro-362

duce an unobserved predicate Mei(d,m) for each363

field type ti ∈ T , where d represents a document,364

and m is a mention candidate in M i. This predi-365

cate encodes the true field mention prediction for366

each candidate xji.367

Let oqji denote the output of a prediction model368

Oq for a specific label ti and a mention candi-369

date wj in M i with j ∈ {1, 2, . . . , |S|}, and q ∈370

{1, 2, . . . , |Q|}, lqj = ti}. For models that predict a371

label for each word, we define oqji = 1
(
lqj = ti

)
,372

where 1(·) is an indicator function returning 1 if the373

label assigned to wj by Oq is ti, and 0 otherwise.374

For models outputting a probability distribution375

over labels ti ∈ T , oqji is defined as the probability376

assigned by Oq to word wj and label ti: oqji =377

P (ti | wj , O
q),378

We define an observed predicate OM q,i(d,m)379

for each model Oq, representing the output oqji for380

field type ti. Here, d corresponds to the document381

and m to the mention candidate in M i. This predi-382

cate encapsulates the model’s predictions for each383

mention in a document.384

Rule 2 and Rule 3 establish the relationship be-385

tween the outputs of models O and the unobserved386

field mention predictions Mei(d,m) for each field387

type ti and model Oq:388

wli
1 : OMq,i(d,m)⇒Mei(d,m), (Rule 2)389

390
wli

2 : ¬OMq,i(d,m)⇒ ¬Mei(d,m). (Rule 3)391

These rules adjust the likelihood of assigning a field392

type ti to a mention candidate m based on model393

outputs. The probability of Mei(d,m) increases394

as more models predict ti, while the probability395

decreases when models predict alternative labels.396

Integration of coarse grained models We intro- 397

duce an unobserved predicate Fii(d, v) for each 398

field type ti in T , where d is a constant represent- 399

ing a document and m a field candidate in F i. This 400

predicate indicates the true field mention prediction 401

for each candidate yji. 402

Let urci denote the output of a prediction model 403

U r for a specific label ti and a field candi- 404

date vc in F i with c ∈ {1, 2, . . . , |N |}, ∃r ∈ 405

{1, 2, . . . , |R|}, krc = ti}. 406

For models producing a predicted label for each 407

word, we define urci = 1 (krc = ti). 1(·) is an indi- 408

cator function that outputs 1 if the label assigned 409

by the model to value vc is ti, and 0 otherwise. 410

In the case of models outputting a probability 411

distribution over all labels ti ∈ T , we define urc 412

as the probability assigned by U q to value vc and 413

label ti: urci = P (ti | vc, U q). 414

We introduce an observed predicate UF q,i(d, f) 415

for each model in U , representing the output uqi for 416

field type ti, with a constant d for every document 417

and f for every field candidate in F i. 418

Rule 4 and Rule 5 correlate the outputs of the 419

models U with the unobserved field prediction 420

Fii(d, f) for each field type ti and model U r: 421

wli
3 : UF ri(d, f)⇒ Fii(d, f) (Rule 4) 422

423
wli

4 :!UF ri(d, f)⇒!Fii(d, f) (Rule 5) 424

These rules increase the likelihood of assigning 425

a field type ti to a field candidate as more mod- 426

els predict this label, and conversely, decrease the 427

probability if models predict a different field type. 428

Linking Fine and Coarse Grained Models As 429

outlined in Section 3, the task involves predicting 430

the existence of a field link ajc for each pair of 431

field mention and field candidate in Fi and Mi. 432

Rather than treating this as an unobserved variable, 433

we define a linking function with values in [0, 1], 434

indicating the likelihood that a field mention can- 435

didate belongs to a field candidate. This function 436

can leverage string or embedding similarity, nor- 437

malized to [0, 1]. We adopt the Jaccard distance to 438

compare string representations of field mentions 439

and candidates (refer to Appendix A). To capture 440

the interdependence between field mentions and 441

fields, we introduce Rule 6 and Rule 7. These 442

rules ensure that a field candidate and its mentions 443

share the same field type ti, enabling bidirectional 444

propagation of predicted field types: 445

w5 : Mei(d,m) ∧ Lnk(d,m, f)⇒ Fii(d, f) (Rule 6) 446
447

w6 : Fii(d, f) ∧ Lnk(d,m, f)⇒Mei(d,m) (Rule 7) 448
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4.4 Cardinality Constraints449

In many domains, field types are subject to cardinal-450

ity constraints. For instance, business documents451

often contain a unique identification number and452

multiple entries for fields such as addresses. We453

extend the information schema by associating each454

field type ti with a cardinality cardinalityi and spec-455

ifying whether the field is mandatory or optional.456

For mandatory fields, Rule 8 enforces that exactly457

cardinalityi fields of type ti are extracted per docu-458

ment. For optional fields, Rule 9 ensures that the459

number of instances does not exceed cardinalityi.460

wi
7 : F i(d,+f) = cardinalityi (Rule 8)461

462
wi

8 : F i(d,+f) ≤ cardinalityi (Rule 9)463

Here, F i(d,+f) denotes the summation over all464

extracted fields of type ti in document d.465

4.5 LLM as a Judge466

Common model errors in information extraction467

include format inconsistencies, such as partial date468

entries (e.g., missing years), and factual inaccura-469

cies, such as misidentifying a rural postbox as a470

headquarters address. To systematically verify and471

refine field candidates F i for each field type ti, we472

propose utilizing a LLM as a scoring mechanism.473

An in-context-tuned LLM assigns a score s(f) ∈474

[0, 1] to each field candidate in f ∈ F i, represent-475

ing its likelihood of being a valid instance based on476

domain specific propertiees such as format adher-477

ence and factual correctness. The scoring functions478

are integrated using Rule 10 and Rule 11:479

wli
9 : LLMri(d, f)⇒ F i(d, f) (Rule 10)480

481
wli

1 0 : ¬LLM i(d, f)⇒ ¬F i(d, f) (Rule 11)482

LLM i(d, f) denotes the predicate indicating that483

the LLM supports field assignment for f based on484

document d. These rules increase confidence in F i485

when s(f) is high and reduce confidence otherwise.486

The scoring mechanism is extensible to other487

feedback functions, such as human annotation488

scores, regular expressions and database lookups489

for fact-checking. These feedback signals can be490

integrated into the meta-model framework to refine491

the prediction of field candidates F i improving the492

overall robustness of the model.493

4.6 Learning and Inference494

We define a probability distribution over our un-495

observed random variables—field mentions and496

fields—conditioned on the observed variables: the 497

prediction outputs from fine-grained models (word 498

and label sequences) and coarse-grained models 499

(key-value pairs), as well as the links between can- 500

didates and LLM-judgment scores. The potential 501

functions that govern these distributions are defined 502

by the logical rules, as shown in Formula 3. 503

The weights ω in the potential functions (e.g., 504

rule weights) are learned by maximizing the likeli- 505

hood of the observed data under the model, which 506

can be formulated as an optimization problem that 507

maximizes the log-likelihood or another suitable 508

performance metric. During inference, the most 509

probable field mention and field assignment are 510

identified by maximizing the joint probability dis- 511

tribution as specified in Formula 3. 512

5 Experiments 513

5.1 Experimental Setup 514

We evaluate PM3-KIE on the VRDU corpus and 515

compare it against three state-of-the-art models: 516

LayoutLMv3, Lilt, and a fine-tuned GPT-3.5 Turbo 517

(Radford and Narasimhan, 2018; OpenAI, 2024), 518

along with a stacked ensemble (Wolpert, 1992). 519

Additionally, an ablation study assesses the impact 520

of PM3-KIE components on overall performance. 521

A complete list of all software components used 522

for the experiments including their licenses can be 523

found in Appendix E. 524

Data We use the VRDU dataset, which con- 525

tains complex ad buy invoices with 9 fields: ’ad- 526

vertiser’, ’contract_num’, ’gross_amount’, ’prop- 527

erty’, ’tv_address’, ’flight_from’, ’flight_to’, ’prod- 528

uct’, and ’agency’. The dataset includes different 529

train, development, and test folds, with both in- 530

distribution (ID) and out-of-distribution (OOD) test 531

sets. We evaluate performance using splits of vary- 532

ing training sizes (10, 50, 100, 200), with one ID 533

and one OOD fold and three splits per (train size, 534

distribution)-combination, resulting in 24 models 535

enabling to assess model performance under differ- 536

ent training sizes and distribution shifts. We also 537

corrected errors in annotations, especially for date 538

fields. Detail can be found in Appendix F.2 and F. 539

Evaluation Metrics We apply field-specific 540

matching functions (Wang et al., 2023c) to nor- 541

malize values and introduce additional functions to 542

address mismatches (see Appendix F.2). As noted 543

by Nourbakhsh et al. (2024), document-level met- 544

rics provide a more practical measure of workload 545

6



for correcting document extractions than field-level546

F1 scores. To offer comprehensive insights, we547

report the metrics in Table 1 Statistical significance548

is evaluated using paired differences and 95% con-549

fidence intervals, calculated with paired standard550

errors as proposed by Miller (2024). Both are com-551

puted for each split and training-size/distribution552

combination, then averaged across splits to derive553

confidence intervals.

Metric Description

F1 per Field Mean F1 across fields.
F1 per Doc Mean F1 across documents.
Hit per Doc Mean hit rate, "hit" = correct field extraction.
Doc-Level perc. of documents with correct extraction
Accuracy

Table 1: Performance Metrics for KIE

554

Baselines We compare PM3-KIE with three fine-555

tuned models: LayoutLMv3, Lilt, and GPT-3.5556

Turbo. These models not only serve as benchmarks557

but also as prediction models for PM3-KIE, as de-558

scribed in Section 4. All models are fine-tuned559

on the training fold and hyperparameters are op-560

timized on the validation fold. Additionally, we561

compare with a logistic regression stacked ensem-562

ble that combines all baseline models, Lilt, Lay-563

outLMv3, and GPT-3.5 Turbo and is trained on the564

validation fold. Further details on model architec-565

tures, prompt templates, training, and hyperparam-566

eters are listed in Appendix B.567

PM3-KIE Model The final PM3-KIE model in-568

tegrates all components described in Section ??. It569

combines all baseline models, Lilt, LayoutLMv3,570

and GPT-3.5 Turbo, along with cardinality con-571

straints specifying mandatory fields (contract num-572

ber, gross amount, advertiser, property) and op-573

tional fields (tv address, product, agency, flight574

start and end date) with at most one field value per575

document. We incorporate two LLM-based com-576

ponents for fact- and format-checking using GPT-4577

mini via the OpenAI API (see G for details about578

the prompt templates used). Training is conducted579

on the development fold (details in Appendix C).580

5.2 Results and Analysis581

Baseline Comparison Table 2 summarizes the582

F1 scores for PM3-KIE and baseline models, with583

standard errors in brackets. The "best model" base-584

line is selected per split as the model achieving585

the highest F1 score. Results are averaged over586

three splits for each training size and distribution 587

type. The "paired difference" column shows the 588

performance difference between PM3-KIE and the 589

best baseline, with 95% confidence intervals in 590

brackets. Results demonstrate that PM3-KIE con- 591

sistently outperforms all baselines across all data 592

chunks with statistical significance (95%), high- 593

lighting its robustness in a variety of settings. 594

Document-Level Metrics To assess practical 595

utility, we analyze performance at the document 596

level, providing insights into error rates per docu- 597

ment. Table 3 shows that PM3-KIE achieves sig- 598

nificant improvements in document-level accuracy, 599

reducing the practical manual correction workload. 600

This indicates the model’s capability to fully auto- 601

mate invoice processing for over 60% of the doc- 602

uments and additional 9% compared to the best 603

performing baseline model. 604

Impact of Training Size and Document Distribu- 605

tion We investigate whether PM3-KIE performs 606

particularly well under specific conditions, such as 607

limited training data or test folds with unseen docu- 608

ment formats. Figure 2 visualizes the performance 609

gains by training size and test distribution type (ID 610

vs. OOD). Gains are averaged over three splits 611

per configuration. The results show that PM3-KIE 612

excels especially in low-resource settings and on 613

OOD test sets. This demonstrates its robustness to 614

distributional shifts and effectiveness in scenarios 615

with limited labeled data.

10 50 100 200
#Docs in Training Fold

0.0

2.5

5.0

7.5

10.0

12.5

15.0

F1
 D

iff
er

en
ce

F1 Difference by Size of Train Fold

in distribution
out of distribution

Figure 2: F1 difference (F1 PM3-SKIE and F1 Best
Model) with 95% confidence interval by train size for
both id and ood test folds.

616

5.3 Ablation Study 617

We conduct an ablation study to assess the contribu- 618

tions of individual model components. Models are 619

trained on three splits for each combination of train- 620

ing size (10, 50, 100, 200) and distribution type (ID 621

7



Table 2: Performance metrics for various training sizes (Train) and OOD test sets. The reported F1 scores are
averaged across all fields and are accompanied by their corresponding standard errors in parentheses. The paired
difference between PM3-KIE and the best-performing model is presented, along with the 95% confidence interval
enclosed in parentheses. A detailed result table with ID and OOD test set results is displayed in Appendix D

Dist #Train #Test F1 LILT F1 GPT F1 LMv3 F1 STE F1 Best F1 PM3-KIE Paired Diff
(std. error) (std. error) (std. error) (std. error) (std. error) (std. error) (conf. interval)

ood 10 294 64.89 78.00 58.11 72.13 78.00 82.29 +5.85
(1.50) (1.48) (1.60) (1.15) (1.48) (1.15) (+1.86, +9.85)

ood 50 236 89.86 85.65 83.46 84.53 89.86 92.44 +2.93
(0.97) (1.42) (1.21) (1.07) (0.97) (0.83) (+0.86, +4.99)

ood 100 211 91.10 86.76 83.66 84.01 91.10 92.99 +2.40
(1.07) (1.21) (1.28) (1.04) (1.07) (0.88) (+0.75, +4.05)

ood 200 156 93.11 90.19 85.30 88.40 93.11 94.38 +1.24
(0.99) (1.46) (1.41) (1.06) (0.99) (0.96) (+0.11, +2.59)

Table 3: Mean F1-scores, Hit-rate and Accuracy per
Field and per Document averaged over all 24 models

Model
F1

per Field
Hit

per Doc
F1

per Doc
Doc Lv.

Acc.

LILT 88.24 87.40 86.85 48.84
LMv3 81.45 80.10 79.48 24.69
GPT3.5 87.60 88.81 86.28 53.35
Stacked 84.64 79.15 83.13 19.03
Best Model 90.22 89.86 88.83 53.55

PM3-SKIE 92.47 92.28 91.67 62.38

Table 4: Ablation study results. Difference in F1 for the
basic PM3-KIE model compared to the adapted model
version.

Ablation F1 Field Hit Doc F1 Doc Acc
PM3-KIE 92.47 92.28 91.67 62.38
+ Token Task -0.59 +0.23 -0.41 +0.18
- Constraints -1.88 -1.76 -1.76 -7.78
- fact & format judges -0.28 -0.34 -0.26 -2.03
- fact judge -0.17 -0.12 -0.15 -0.62
- format judge -0.21 -0.31 -0.18 -1.75

and OOD). Table 4 summarizes the findings.622

The basic model is a model learned only on the623

final field extraction data with two LLM judges624

for fact and format checking and with information625

schema constraints.626

Granular Labeling. To assess the impact of pro-627

viding granular labels at the field mention level, we628

compare a multitask learning approach ("+Token629

Task") with the standard single-task setup, where630

ground truth is only available for field extractions.631

The results indicate that multitask learning yields632

only marginal improvements in hit-rate per docu-633

ment and document-level accuracy, while slightly634

reducing performance in other metrics.635

Cardinality Constraints. We assess the role of636

cardinality constraints by training models with-637

out these constraints ("-constraints"). Performance638

metrics decrease across all metrics, confirming that639

these constraints enhance model performance. 640

Effectiveness of LLM-as-a-Judge. Two LLMs 641

for fact-checking and format-checking are inte- 642

grated into PM3-KIE. Removing these components 643

("- fact & format judges") slightly reduces F1 per 644

Field, F1 per Document, and Hit Rate by approx- 645

imately 0.3%, but document-level accuracy drops 646

significantly by 2%, highlighting the judges’ im- 647

portance for precise field extractions. We compare 648

against removing only one of the two LLMs ("- 649

fact judge" and "-format judge"). These perform 650

slightly better then removing both, but still worse 651

than the base model. This underscores the advan- 652

tage of each of the task-specific LLM judges. 653

6 Conclusion and Discussion 654

In this work, we have proposed PM3-KIE, a prob- 655

abilistic multi-task meta-model that addresses the 656

challenges in KIE. By integrating both fine-grained 657

token classification models and coarse-grained en- 658

tity extraction models, our approach provides a 659

flexible and robust solution for handling diverse 660

KIE tasks. Through the incorporation of schema 661

consistency and LLM-based validation, PM3-KIE 662

ensures logical adherence to extraction schemas 663

and semantic plausibility, significantly reducing er- 664

rors and improving reliability. Our experiments on 665

the VRDU dataset demonstrate that PM3-KIE out- 666

performs existing state-of-the-art methods across 667

a range of scenarios, including in-distribution, out- 668

of-distribution, and low-resource conditions. These 669

results highlight the potential of our approach in 670

document processing tasks. 671

7 Limitations 672

Prompt Design Sensitivity: The performance 673

of the LLM-as-a-judge component is sensitive to 674

both the capability of the LLM (e.g., parameter 675

8



size and training data) as well as the quality of676

the prompts used. For example, the capability for677

fact checking requires up to data training data that678

contain the fact. Inadequate model size or poorly679

designed prompts may lead to unreliable validation680

scores While the meta-models training ensures that681

weights are adjusted in a way to minimize the effect682

of uninformative LLM outputs, they will not benefit683

overall performance in such cases. In future we684

plan to show that in form of additional robustness685

checks with noisy models.686

Dependency on Base Models: The extraction687

quality of the meta-model relies on the performance688

of the base fine-grained and coarse-grained models.689

If all base models fail to detect a true extraction as690

potential candidates, they cannot be identified by691

the overall system. This limitation is common for692

most ensembling and meta-model approaches.693

Computational Costs: While PM3-KIE itself694

is lightweight with relatively few parameters, the695

meta-model’s complexity arises from integrating696

fine-grained and coarse-grained models along with697

LLMs for validation. This integration increases698

both computational overhead and deployment com-699

plexity, as it requires managing multiple models in700

conjunction with the meta-model. This is a com-701

mon challenge in ensemble and meta-model ap-702

proaches.703

Additional Processing: PM3-KIE requires data704

to be formatted as specified in Section 4, including705

the creation of constants for predicates and truth706

values for observed predicates. This necessitates707

additional computational effort for postprocessing708

both model outputs and input data to meet the re-709

quired format.710

Closed-World Assumption: PM3-KIE assumes711

all fields to be extracted are known in advance,712

limiting its applicability to scenarios involving the713

detection of new or unknown field types.714

Dependency on Parsed Strings: This work as-715

sumes input documents are in a machine-readable716

format, typically processed through OCR. OCR717

error correction and parsing accuracy are beyond718

the scope of this study, with the approach presum-719

ing that such errors have been corrected prior to720

downstream processing.721

8 Ethical Considerations 722

Automation and Job Displacement: Automat- 723

ing key information extraction from documents, 724

especially in business-critical domains like finance 725

and legal, could reduce the demand for manual data 726

entry and administrative roles. While this improves 727

efficiency and reduces operational costs, it risks 728

unemployment for workers currently performing 729

these tasks. 730

Risk of Overreliance on Automated Systems: 731

Deploying PM3-KIE in critical sectors, such 732

as healthcare, legal documentation, or property 733

records, may lead to errors being accepted with- 734

out human verification. Incorrect or incomplete 735

extractions could have significant consequences, 736

including legal disputes, financial losses, or med- 737

ical errors. PM3-KIE should always operate in a 738

semi-automated manner with manual review. 739

Bias and Fairness Concerns: Like many AI sys- 740

tems, PM3-KIE’s performance depends on the qual- 741

ity and diversity of training data used to train the 742

base models integrated. Biases in the training data 743

could lead to unequal performance across docu- 744

ment types, languages, or regions, potentially dis- 745

advantaging users from underrepresented groups. 746

Care must be taken to curate balanced datasets and 747

evaluate the model across diverse scenarios. 748

References 749

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, 750
Yusheng Xie, and R. Manmatha. 2021. Docformer: 751
End-to-end transformer for document understanding. 752
In 2021 IEEE/CVF International Conference on Com- 753
puter Vision (ICCV), page 973–983. IEEE. 754

Stephen H. Bach, Matthias Broecheler, Bert Huang, and 755
Lise Getoor. 2017. Hinge-loss markov random fields 756
and probabilistic soft logic. J. Mach. Learn. Res., 757
18(1):3846–3912. 758

Haoli Bai, Zhiguang Liu, Xiaojun Meng, Li Wentao, 759
Shuang Liu, Yifeng Luo, Nian Xie, Rongfu Zheng, 760
Liangwei Wang, Lu Hou, Jiansheng Wei, Xin Jiang, 761
and Qun Liu. 2023. Wukong-reader: Multi-modal 762
pre-training for fine-grained visual document under- 763
standing. In Proceedings of the 61st Annual Meeting 764
of the Association for Computational Linguistics (Vol- 765
ume 1: Long Papers), pages 13386–13401, Toronto, 766
Canada. Association for Computational Linguistics. 767

Dário Augusto Borges Oliveira and Matheus Palhares 768
Viana. 2017. Fast cnn-based document layout analy- 769
sis. In 2017 IEEE International Conference on Com- 770
puter Vision Workshops (ICCVW), pages 1173–1180. 771

9

https://doi.org/10.1109/iccv48922.2021.00103
https://doi.org/10.1109/iccv48922.2021.00103
https://doi.org/10.1109/iccv48922.2021.00103
https://doi.org/10.18653/v1/2023.acl-long.748
https://doi.org/10.18653/v1/2023.acl-long.748
https://doi.org/10.18653/v1/2023.acl-long.748
https://doi.org/10.18653/v1/2023.acl-long.748
https://doi.org/10.18653/v1/2023.acl-long.748
https://doi.org/10.1109/ICCVW.2017.142
https://doi.org/10.1109/ICCVW.2017.142
https://doi.org/10.1109/ICCVW.2017.142


Panfeng Cao, Ye Wang, Qiang Zhang, and Zaiqiao772
Meng. 2023. GenKIE: Robust generative multimodal773
document key information extraction. In The 2023774
Conference on Empirical Methods in Natural Lan-775
guage Processing.776

Franz Louis Cesista, Rui Aguiar, Jason Kim, and Paolo777
Acilo. 2024. Retrieval augmented structured gener-778
ation: Business document information extraction as779
tool use. 2024 IEEE 7th International Conference780
on Multimedia Information Processing and Retrieval781
(MIPR), pages 227–230.782

Jiayi Chen, Hanjun Dai, Bo Dai, Aidong Zhang, and783
Wei Wei. 2023. On task-personalized multimodal784
few-shot learning for visually-rich document entity785
retrieval. In Findings of the Association for Computa-786
tional Linguistics: EMNLP 2023, pages 9006–9025,787
Singapore. Association for Computational Linguis-788
tics.789

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.790
2013. Rule-based information extraction is dead!791
long live rule-based information extraction systems!792
In Proceedings of the 2013 Conference on Empiri-793
cal Methods in Natural Language Processing, pages794
827–832, Seattle, Washington, USA. Association for795
Computational Linguistics.796

B. Cohen and M. York. 2020. Ardent partners’ accounts797
payable metrics that matter in 2020. technical report.798
Ardent Partners (2020).799

Timo I. Denk and Christian Reisswig. 2019. Bertgrid:800
Contextualized embedding for 2d document represen-801
tation and understanding. NeurIPS, abs/1909.04948.802

Yihao Ding, Lorenzo Vaiani, Soyeon Caren Han, Jean803
Lee, Paolo Garza, Josiah Poon, and Luca Cagliero.804
2024. 3mvrd: Multimodal multi-task multi-teacher805
visually-rich form document understanding. In An-806
nual Meeting of the Association for Computational807
Linguistics.808

Łukasz Garncarek, Rafał Powalski, Tomasz809
Stanisławek, Bartosz Topolski, Piotr Halama,810
Michał Turski, and Filip Graliński. 2021. LAMBERT:811
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A Similarity Score Calculation1043

To match field mentions to fields, a similarity score,1044

displayed in Algorithm 1, is calculated based on1045

their string representations.1046

Algorithm 1 Linking Function
Require: token_str, field_str
Ensure: link
1: function calculate_link(token_str, field_str)
2: if token_str.isnumeric() and token_str = field_str then
3: return 1.0
4: else if ¬token_str.isnumeric() then
5: sim← jaccard_similarity(token_str, field_str)
6: if sim > 0.7 then
7: return sim
8: else
9: return 0.0

10: end if
11: end if
12: end function

13: function jaccard_similarity(text1, text2)
14: if len(text1) = 0 or len(text2) = 0 then
15: return 0
16: end if
17: if len(text1) < 4 and len(text2) < 4 then
18: if text1 = text2 then
19: return 1.0
20: else
21: return 0.0
22: end if
23: end if
24: n1← ngrams(text1, 3)
25: n2← ngrams(text2, 3)
26: jsim← 1− jaccard_distance(set(n1), set(n2))
27: jsim← max(0, jsim− 0.1× |len(text1)− len(text2)|)
28: return jsim
29: end function

B Baseline Training Details 1047

Stacked Ensemble: The stacked ensemble 1048

model utilizes the Logistic Regression imple- 1049

mentation from sklearn1 and during training, 1050

hyperparameters are tuned with a grid search 1051

over the following hyperparameters: {’C’: [0.01, 1052

0.1, 1, 10, 100, 1000], ’penalty’: [’l1’, ’l2’], 1053

’solver’:[’liblinear’, ’saga’]}. For each field can- 1054

didate, we construct an input vector comprising 1055

features that include prediction scores for each field 1056

type and model. Field mentions detected by Lay- 1057

outLMv3 and LiLT are mapped to field candidates 1058

during preprocessing using the similarity algorithm 1059

detailed in Appendix 1. For the GPT-3 model, pre- 1060

diction scores are binary (0,1), whereas LiLT and 1061

LayoutLMv3 provide predicted probabilities for 1062

each field candidate. Additionally, LLM judge 1063

scores for factual and format correctness per field 1064

type are incorporated as features. 1065

Token Sequence Tagging Task LiLT and Lay- 1066

outLMv3 are fine-tuned on a downstream sequence 1067

1https://scikit-learn.org/1.5/
modules/generated/sklearn.linear_model.
LogisticRegression.html
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tagging task with a classification head for token1068

classification, utilizing the BILOU schema. How-1069

ever, certain fields span multiple token sequences1070

within the document, making them incompati-1071

ble with the BILOU schema. To address this,1072

we introduce an additional label, LABELNAME_ADD,1073

for subsequent field sequences following the first.1074

In the DeepForm VRDU dataset, this applies to1075

"tv_address" and "product" fields. During train-1076

ing, the models predict these _ADD labels, and in1077

postprocessing, scattered fields are reconstructed1078

by linking each _ADD-labeled sequence to its corre-1079

sponding sequence labeled without _ADD.1080

LiLT: The LiLT model was trained and ap-1081

plied using the LayoutLMv3TokenizerFast,1082

AutoModelForTokenClassification, and1083

Trainer classes from the Transformers library1084

(Wolf et al., 2019)https://huggingface.co/1085

docs/transformers/index.1086

We utilized the pretrained tokenizer and1087

model SCUT-DLVCLab/lilt-roberta-en-base,1088

provided by the authors (Wang et al.,1089

2022) on Hugging Face2. The tokenizer1090

was configured with the following set-1091

tings: truncation=True, stride=128,1092

padding="max_length", max_length=512,1093

return_overflowing_tokens=True, and1094

return_offsets_mapping=True.1095

The model was fine-tuned using the1096

AutoModelForTokenClassification class1097

and the Trainer, with the following hyperparame-1098

ters:1099

• Learning rate: 5× 10−61100

• Batch size: 81101

• Gradient accumulation steps: 41102

• Maximum steps: 90001103

• Metric for model selection: overall_f11104

• Warmup ratio: 0.11105

The experiments were conducted on a system1106

equipped with dual Intel Xeon Gold 6226R CPUs1107

(64 cores, 128 threads), 754 GB of RAM, and two1108

NVIDIA Tesla V100 32GB GPUs. Each experi-1109

ment utilized a single GPU and required approxi-1110

mately 20 hours to complete.1111

2https://huggingface.co/SCUT-DLVCLab/
lilt-roberta-en-base

LayoutLMv3: The LayoutLMv3 model was 1112

trained and applied using the AutoProcessor, 1113

LayoutLMv3ForTokenClassification, and 1114

Trainer classes from the Transformers library. 1115

We utilized the pretrained tokenizer and model 1116

microsoft/layoutlmv3-base, provided by the 1117

authors (Huang et al., 2022) on Hugging Face3. 1118

The processor was loaded and applied us- 1119

ing the AutoProcessor class with the setting 1120

apply_ocr=False. 1121

The model was fine-tuned using the 1122

LayoutLMv3ForTokenClassification class 1123

and the Trainer with the following hyperparame- 1124

ters: 1125

• Metric for model selection: overall_f1 1126

• Warmup ratio: 0.1 1127

• Learning rate: 5× 10−6 1128

• Batch size: 8 1129

• Gradient accumulation steps: 4 1130

• Maximum steps: 9000 1131

The experiments were conducted on a system 1132

equipped with dual Intel Xeon Gold 6226R CPUs 1133

(64 cores, 128 threads), 754 GB of RAM, and two 1134

NVIDIA Tesla V100 32GB GPUs. Each experi- 1135

ment utilized a single GPU and required approxi- 1136

mately 20 hours to complete. 1137

GPT-3.5: The GPT-3.5 Turbo model (OpenAI, 1138

2024) is a decoder-based large language model 1139

(LLM) fine-tuned for the entity extraction task, fol- 1140

lowing the tool-use approach introduced by Cesista 1141

et al. (2024). Unlike Cesista et al. (2024), we do 1142

not employ structured prompting to transform PDF 1143

content but instead use raw PDF text to minimize 1144

additional processing costs. 1145

For supervised fine-tuning, we uti- 1146

lize the OpenAI plattform4 to fine-tune 1147

the gpt-3.5-turbo-0125 model. The 1148

gpt-3.5-turbo-0125 model was chosen as 1149

it is more cost-effective than newer models while 1150

maintaining a knowledge cutoff in 2022, ensuring 1151

that the base model has not been exposed to the 1152

VRDU dataset. 1153

3https://huggingface.co/microsoft/
layoutlmv3-base

4https://platform.openai.com/finetune
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The fine-tuning process follows the guidelines1154

provided in the OpenAI Cookbook5, and the result-1155

ing model generates valid JSON outputs. These out-1156

puts are parsed to extract entities for downstream1157

tasks. Training costs amounted to approximately1158

C210 ($221), with additional application costs for1159

the test sets estimated at C75 ($79).1160

We implement retrieval-augmented generation1161

using OpenAI’s ChatCompletion API with Func-1162

tion Calling6 in conjunction with the Python pack-1163

age llama-index(Liu, 2022). Fine-tuning was1164

conducted following the instructions available in1165

the OpenAI Cookbook7. The function definition,1166

detailed in Listing 1, defines the data schema for1167

invoice fields and is passed to the ChatCompletion1168

API as a tool8.1169

The model produces valid JSON outputs, from1170

which entities are extracted for further processing.1171

The cost of training the model was approximately1172

C210 ($221), and applying the model to the test1173

sets incurred an additional cost of approximately1174

C75 ($79).1175

The system prompt utilized for processing polit-1176

ical advertisement invoice documents is shown in1177

Listing 2. This prompt, combined with the function1178

dictionary (Listing 1), is supplied to the OpenAI1179

ChatCompletion API to facilitate fine-tuning and1180

inference.1181

To align the assistant’s responses with ground1182

truth extractions from the VRDU dataset, these1183

extractions are provided as examples during fine-1184

tuning. The format of these examples is presented1185

in Listing 3.1186

C MP3-KIE Implementation, Training1187

and Inference Details1188

Model generation, training, and inference were1189

based on the Statistical Relational Learning frame-1190

work introduced by Bach et al. (2017). For our1191

experiments, we utilized the pslpython package1192

(version 2.4.09), which wraps the Java-based PSL1193

implementation10.1194

Meta-model weight learning was performed on1195

5https://cookbook.openai.com/examples/chat_
finetuning_data_prep

6https://platform.openai.com/docs/guides/
function-calling

7https://cookbook.openai.com/examples/chat_
finetuning_data_prep

8https://platform.openai.com/docs/
api-reference/chat

9https://pypi.org/project/pslpython/
10https://github.com/linqs/psl

the development folds using the structured percep- 1196

tron algorithm11. Inference was conducted using 1197

ADMM12 as described by Bach et al. (2017). 1198

Default hyperparameters were employed, with 1199

modifications to the regularization settings as fol- 1200

lows: 1201

• gradientdescent.negativelogregularization = 1202
0 1203

• gradientdescent.negativeentropyregularization 1204
= 0.0001 1205

All experiments were executed on a CPU system 1206

equipped with 48 cores (Intel® Xeon® Gold 5118, 1207

2.3 GHz base clock, 3.2 GHz max clock) and 376 1208

GiB of RAM. Training the meta-model weights 1209

required approximately 20 minutes per model on 1210

average. 1211

D In Distribution Results on VRDU 1212

Table 5 summarizes the ID and OOD results of all 1213

baselines and PM3-KIE on the VRDU dataset. 1214

E Additional Software and Licenses 1215

Table 6 lists all first-level import python packages 1216

used to perform the experiments described in this 1217

work. 1218

F Dataset 1219

F.1 VRDU Dataset and Evaluation 1220

We utilized the VRDU dataset and evaluation 1221

framework implementation provided by Wang et al. 1222

(2023c).13 1223

F.2 Annotation and Evaluation Corrections 1224

To reduce spurious matching errors during eval- 1225

uation, we employed the field-specific matching 1226

functions available for the dataset14 to normalize 1227

values, such as standardizing date formats. In addi- 1228

tion to the existing functions, we introduced three 1229

additional matching strategies to address inconsis- 1230

tencies in the dataset: 1231

• GeneralCaseInsensitiveStringMatch: 1232

Strings are considered equivalent if their 1233

lowercase representations match. 1234

11org.linqs.psl.application.learning.weight.gradient .opti-
malvalue.StructuredPerceptron

12org.linqs.psl.application.inference.mpe.
ADMMInference

13https://github.com/google-research-datasets/vrdu
14https://github.com/google-research/

google-research/tree/master/vrdu
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Listing 1: Function Description for OpenAI Tool Use
function_dict = {
'name ': 'AdInvoice ', 'description ': 'Data model for invoice fields.', 'parameters ':
{'title ': 'AdInvoice ', 'description ': 'Data model for invoice fields.', 'type ': 'object ',
'properties ': {

'contract_num ': {
'title ': 'Contract Number ',
'description ': 'The invoice contract number or order number.', 'type ': 'string '},

'tv_address ': {
'title ': 'Tv Address ', 'description ': 'Physical address of the tv channel.',
'default ': '', 'type ': 'string '},

'property ': {
'title ': 'Property ', 'description ': 'Property , usually equivalent to tv channel name.',
'default ': '', 'type ': 'string '},

'agency ': {
'title ': 'Agency ', 'description ': 'The advertisement agency.', 'default ': '', 'type ': 'string '},

'advertiser ': {'title ': 'Advertiser ', 'description ': 'The advertiser.', 'type ': 'string '},
'flight_from ': {

'title ': 'Flight From ',
'description ': 'The order flight start date.',
'default ': '',
'type ': 'string '},

'flight_to ': {
'title ': 'Flight To ',
'description ': 'The order flight end date.',
'default ': '',
'type ': 'string '},

'product ': {
'title ': 'Product ',
'description ': 'The product that is advertised.',
'default ': '',
'type ': 'string '},

'gross_amount ': {
'title ': 'Gross Amount ',
'description ': 'The total amount to be paid.',
'type ': 'string '},

'line_items ': {
'title ': 'Line Items ',
'description ': 'List of line items.',
'type ': 'array ',
'items ': {

'$ref ': '#/ definitions/LineItem ' }}},
'required ': ['contract_num ', 'advertiser ', 'line_items '],
'definitions ': {

'LineItem ': {
'title ': 'LineItem ',
'description ': 'Data model for line item fields.',
'type ': 'object ',
'properties ': {

'channel ': {
'title ': 'Channel ',
'description ': 'Name of the tv channel broadcasting the advertisement.',
'default ': '',
'type ': 'string '},

'program_start_date ': {
'title ': 'Program Start Date ',
'description ': 'Program start date (only date without timestamp).',
'default ': '',
'type ': 'string '},

'program_end_date ': {
'title ': 'Program End Date ',
'description ': 'Program end date (only date without timestamp).',
'default ': '',
'type ': 'string '},

'program_desc ': {
'title ': 'Program Desc ',
'description ': 'Description of the TV program.',
'default ': '',
'type ': 'string '},

'sub_amount ': {
'title ': 'Sub Amount ',
'description ': 'Sub amount for one program ad.',
'default ': '',
'type ': 'string '}}}}}}
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Listing 2: Formatted System Prompt
You a r e r e c e i v i n g c o n t e n t from a p o l i t i c a l a d v e r t i s e m e n t i n v o i c e document .
Th i s i n v o i c e i s s i g n e d between a TV s t a t i o n and a campaign group .
The document u s e s t a b l e s , m u l t i −columns , and key − v a l u e p a i r s t o r e c o r d t h e i n f o r m a t i o n .
Your t a s k i s t o d i g i t i z e t h e s e documents by e x t r a c t i n g t h e i r i n f o r m a t i o n i n a s t r u c t u r e d f o r m a t .
E x t r a c t t h e un i qu e h e a d e r i n f o r m a t i o n , such as TV c h a n n e l a d d r e s s e s and t o t a l c o s t s ,
a l o n g wi th t h e l i s t o f l i n e i t e m s d e t a i l i n g s p e c i f i c ads , TV programs i n which t h e y w i l l be b r o a d c a s t e d ,
and sub −amounts .
E x t r a c t l i n e i t em f i e l d s on ly from t h e t a b u l a r l i n e i t em l i s t i n t h e i n v o i c e document
and n o t from t h e i n v o i c e h e a d e r : i f l i n e i t em f i e l d s a r e n o t p r e s e n t i n t h e l i n e i t em l i s t , don ' t e x t r a c t them .

Listing 3: Ground Truth Assistant Answer provided for Fine-Tuning
{

" r o l e " : " a s s i s t a n t " ,
" f u n c t i o n _ c a l l " : {

" name " : " AdInvo ice " ,
" a rgumen t s " :

" { " c o n t r a c t _ n u m " : " 6 6 8 8 6 4 " ,
" t v _ a d d r e s s " : " PO Box 8 0 9 2 2 9 \ \ nChicago , IL 60680 −9229\ \ n " ,
" p r o p e r t y " : "WAXN−TV \ \ nWSOC T e l e v i s i o n , I n c . \ \ n " ,
" agency " : " " ,
" a d v e r t i s e r " : " POL / Donald Trump / R / PRES / US−A \ \ n " ,
" f l i g h t _ f r o m " : " 0 3 / 0 5 / 2 0 " ,
" f l i g h t _ t o " : " 0 3 / 1 0 / 2 0 \ \ n " ,
" p r o d u c t " : "TRUMP FOR PRESIDENT \ \ n " ,
" g ros s_amoun t " : " $3 , 9 2 0 . 0 0 \ \ n " ,
" l i n e _ i t e m s " : [

{" c h a n n e l " : "WAXN " , " p r o g r a m _ s t a r t _ d a t e " : " 0 3 / 0 9 / 2 0 " , " p rog ram_end_da t e " : " 0 3 / 0 9 / 2 0 " ,
" p rogram_desc " : "M−F 7a −8a \ \ n " , " sub_amount " : " $250 . 0 0 \ \ n " } ,
{" c h a n n e l " : "WAXN " , " p r o g r a m _ s t a r t _ d a t e " : " 0 3 / 0 6 / 2 0 " , " p rog ram_end_da t e " : " 0 3 / 0 6 / 2 0 " ,
" p rogram_desc " : "M−F 7a −8a \ \ n " , " sub_amount " : " $250 . 0 0 \ \ n " } ,
{" c h a n n e l " : "WAXN " , " p r o g r a m _ s t a r t _ d a t e " : " 0 3 / 0 9 / 2 0 " , " p rog ram_end_da t e " : " 0 3 / 0 9 / 2 0 " ,
" p rogram_desc " : "M−F 8a −9a \ \ n " , " sub_amount " : " $260 . 0 0 \ \ n " } ,
{" c h a n n e l " : "WAXN " , " p r o g r a m _ s t a r t _ d a t e " : " 0 3 / 0 6 / 2 0 " , " p rog ram_end_da t e " : " 0 3 / 0 6 / 2 0 " ,
" p rogram_desc " : "M−F 8a −9a \ \ n " , " sub_amount " : " $260 . 0 0 \ \ n " } ,
{" c h a n n e l " : "WAXN " , " p r o g r a m _ s t a r t _ d a t e " : " 0 3 / 0 6 / 2 0 " , " p rog ram_end_da t e " : " 0 3 / 0 6 / 2 0 " ,
" p rogram_desc " : "M−F 8p −830p \ \ n " , " sub_amount " : " $0 . 0 0 \ \ n " } ,
. . . . , }

] } "
}

}

Table 5: Performance metrics for various training set sizes (Train) and distribution folds (Dist). The reported
F1 scores are F1-scores averaged across all fields and are accompanied by their corresponding standard errors in
parentheses. Additionally, the paired difference between our model and the best-performing model is presented,
along with the 95% confidence interval enclosed in parentheses.

Dist #Train #Test F1 LILT F1 GPT F1 LMv3 F1 STE F1 Best F1 PM3-KIE Paired Diff
(std. error) (std. error) (std. error) (std. error) (std. error) (std. error) (conf. interval)

iid 10 6 87.36 87.92 80.97 86.84 90.09 92.79 +2.73
(4.49) (5.14) (4.32) (4.80) (2.65) (2.84) (+2.48, +2.98)

iid 50 64 91.55 87.92 82.30 85.36 91.55 93.39 +2.82
(2.36) (2.25) (3.12) (2.08) (2.36) (1.86) (+1.93, +3.72)

iid 100 89 93.85 92.41 87.72 88.63 93.85 95.70 +2.67
(1.66) (1.59) (2.11) (1.48) (1.66) (1.17) (+1.58, +3.76)

iid 200 144 94.21 91.99 90.06 87.21 94.21 95.81 +2.03
(1.20) (1.64) (1.19) (1.16) (1.20) (0.93) (+0.93, +3.13)

ood 10 294 64.89 78.00 58.11 72.13 78.00 82.29 +5.85
(1.50) (1.48) (1.60) (1.15) (1.48) (1.15) (+1.86, +9.85)

ood 50 236 89.86 85.65 83.46 84.53 89.86 92.44 +2.93
(0.97) (1.42) (1.21) (1.07) (0.97) (0.83) (+0.86, +4.99)

ood 100 211 91.10 86.76 83.66 84.01 91.10 92.99 +2.40
(1.07) (1.21) (1.28) (1.04) (1.07) (0.88) (+0.75, +4.05)

ood 200 156 93.11 90.19 85.30 88.40 93.11 94.38 +1.24
(0.99) (1.46) (1.41) (1.06) (0.99) (0.96) (+0.11, +2.59)

• IgnorePropertySuffixStringMatch: Ac-1235

counts for inconsistent annotations of prop-1236

erties (e.g., with or without the suffix "remit1237

to"). Strings are matched after removing the1238

phrase "remit to" and redundant whitespace.1239

• IgnoreLeadingTrailingNumbersStringMatch: 1240

Handles inconsistent annotations for products 1241

and agencies where numeric prefixes or 1242

suffixes (including those in brackets) may 1243

or may not be present. Strings are matched 1244
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Table 6: Software Packages and Their Licenses

Name Version License

python 3.10.14 PSF License
editdistance 3.10.14 MIT License
datasets 2.19.0 Apache Software License
pandas 2.2.3 BSD License
scikit-learn 1.5.1 BSD License
tqdm 4.66.4 MIT License; MPL 2.0
pydantic 2.8.2 MIT License
pydantic_core 2.20.1 MIT License
transformers 4.40.1 Apache Software License
numpy 1.26.4 BSD License
torch 2.3.0 BSD License
pillow 10.3.0 HPND
llama-index 0.10.52 MIT License
tiktoken 0.7.0 MIT License
nltk 3.8.1 Apache Software License
pdf2image 1.17.0 MIT License
dataclasses-json 0.6.7 MIT License
mlflow 2.12.2 Apache Software License
plotly 5.22.0 MIT License
matplotlib 3.9.0 Python SF License
scipy 1.13.0 BSD License

after removing leading or trailing numeric1245

sequences and redundant whitespace.1246

Several annotations in the VRDU dataset were1247

incorrect, incomplete, or missing, particularly for1248

dates and address elements. For instance, dates1249

were often missing complete year information, and1250

address components were inconsistently annotated.1251

Table 7 lists the corrections we introduced. Both1252

the corrected annotations and the original dataset1253

annotations were considered valid during evalua-1254

tion.1255

G LLM as a Judge1256

We use the gpt4o mini model (OpenAI, 2023),1257

chosen for its cost-effectiveness and reliable perfor-1258

mance. For both LLMs, we designed one prompt1259

per field type. These prompts were automatically1260

generated for each field type using the following1261

prompt templates for format checking (see Listing1262

4) and for fact checking (see Listing 5), requiring1263

only minor adjustments afterward.1264
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Listing 4: Meta-Prompt for Generating Factual Correctness Prompts
I have a c o r p u s o f i n v o i c e s f o r p o l i t i c a l a d v e r t i s e m e n t s from TV c h a n n e l s ,
where i n f o r m a t i o n s h o u l d be e x t r a c t e d . The f o l l o w i n g s e t o f i n f o r m a t i o n
s h o u l d be e x t r a c t e d :
−−−
a d v e r t i s e r
agency
c h a n n e l
c o n t r a c t _ n u m
f l i g h t _ f r o m
f l i g h t _ t o
g ros s_amoun t
p r o d u c t
p rogram_desc
p rog ram_end_da t e
p r o g r a m _ s t a r t _ d a t e
p r o p e r t y
sub_amount
t v _ a d d r e s s
−−−
I want t o v e r i f y t h e f a c t u a l c o r r e c t n e s s o f each o f t h e s e i n f o r m a t i o n u s i n g
a prompt . P l e a s e g e n e r a t e a prompt f o r e v e r y i n f o r m a t i o n i n t h e s t y l e o f
t h i s prompt f o r t h e tv − a d d r e s s and o u t p u t them i n t h e form of a Python d i c t i o n a r y :

f a c t u a l _ c o r r e c t n e s s _ p r o m p t s = {
" t v _ a d d r e s s " : "You w i l l e v a l u a t e a d d r e s s e s t o d e t e r m i n e i f t h e y a r e
l i k e l y t o be t h e o f f i c i a l l o c a t i o n s o f a TV c h a n n e l o r b r o a d c a s t i n g
company . For each a d d r e s s :

As se s s S u i t a b i l i t y : E v a l u a t e whe the r t h e a d d r e s s c o u l d r e a l i s t i c a l l y
s e r v e as a media o r b r o a d c a s t i n g l o c a t i o n . C o n s i d e r f a c t o r s such as
t h e p r e s e n c e o f c o r p o r a t e o f f i c e s , p r o x i m i t y t o media hubs , o r known
b r o a d c a s t i n g f a c i l i t i e s t h a t would s u p p o r t i t s use as a TV c h a n n e l a d d r e s s .

P r o v i d e a C o n f i d e n c e Score : Based on t h i s a s s e s s m e n t , a s s i g n a c o n f i d e n c e
s c o r e from 0 t o 1 , r e f l e c t i n g how l i k e l y i t i s t h a t t h e s t r i n g i s a v a l i d
l o c a t i o n f o r a TV c h a n n e l .

Outpu t Format (CSV ) :
s c o r e ; j u s t i f i c a t i o n
< n u m e r i c a l s c o r e (0 t o 1 ) > ; ' < S h o r t e x p l a n a t i o n o f t h e s c o r e , h i g h l i g h t i n g
s p e c i f i c a s p e c t s o f t h e a d d r e s s t h a t s u p p o r t o r d e t r a c t from i t s
c o m p l e t e n e s s and c o r r e c t n e s s . ' > "

}
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Table 7: List of Documents with the field types and corrected values, that are added to the VRDU ground truth for
evaluation

Document Field Type Field Value

b0ae0954-274a-f270-797c-76224b78b8ee.pdf agency Del Ray Media
89b8c007-4189-bfa6-e0a5-fe1d173edf92.pdf flight_from 05/27/20
89b8c007-4189-bfa6-e0a5-fe1d173edf92.pdf flight_to 05/31/20
42adf390-6e50-6fbc-fbbe-65117a1ffcb2.pdf gross_amount $500.00
143af697-c6f9-a36e-d43f-1a92e800ffeb.pdf flight_from 07/01/20
143af697-c6f9-a36e-d43f-1a92e800ffeb.pdf flight_to 07/07/20
14632210-11d9-a184-e3db-b1b219f52ca8.pdf flight_from 06/02/20
14632210-11d9-a184-e3db-b1b219f52ca8.pdf flight_to 06/08/20
48845b9d-9e1b-a9e8-d560-58d35d2b31b2.pdf flight_from 01/01/20
48845b9d-9e1b-a9e8-d560-58d35d2b31b2.pdf flight_to 01/08/20
45f3875f-2b24-42fe-ddb4-fa203f4eec30.pdf flight_from 01/22/20
45f3875f-2b24-42fe-ddb4-fa203f4eec30.pdf flight_to 02/05/20
4cc700a3-6cb8-b791-2428-890e7fb7cf2a.pdf flight_from 10/06/20
4cc700a3-6cb8-b791-2428-890e7fb7cf2a.pdf flight_to 10/12/20
64243566-745a-3edd-224b-542129a844a6.pdf flight_from Apr16/20
64243566-745a-3edd-224b-542129a844a6.pdf flight_to Apr22/20
64243566-745a-3edd-224b-542129a844a6.pdf product POLITICIAL
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf flight_from Feb15/20
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf flight_to Feb21/20
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf product BLOOMBERG 4 PRES
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf flight_from Jun05/20
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf flight_to Jun19/20
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf product OWENS FOR CON UT04
0be55a7b-c4b9-7956-d523-30f79a4ebc1a.pdf flight_from 1/27/2020
0be55a7b-c4b9-7956-d523-30f79a4ebc1a.pdf flight_to 2/23/2020
4b330586-f3e8-28ea-b0cc-2d060dc10622.pdf flight_from 4/27/2020
4b330586-f3e8-28ea-b0cc-2d060dc10622.pdf flight_to 5/31/2020
38a1ec3a-18bd-0b73-1155-b6ced503f7a1.pdf flight_from 1/27/2020
38a1ec3a-18bd-0b73-1155-b6ced503f7a1.pdf flight_to 2/23/2020
c1ede720-d1f9-dcb4-e56f-65bf46300e84.pdf flight_from 02/11/20
c1ede720-d1f9-dcb4-e56f-65bf46300e84.pdf flight_to 02/17/20
cda5811d-3cf3-9c50-0941-28094bf9880f.pdf flight_from 01/01/20
cda5811d-3cf3-9c50-0941-28094bf9880f.pdf flight_to 01/08/20
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf tv_address PO BOX 206270 Dallas, TX 75320-6270
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf flight_from 2/1/2020
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf flight_to 2/29/2020
a5a37afc-bbf5-db26-bd19-a71fee1ae67a.pdf flight_from 05/06/20
88fa6e33-408f-6ac2-a253-d30e32bce302.pdf flight_from 03/31/20
88fa6e33-408f-6ac2-a253-d30e32bce302.pdf flight_to 04/05/20
80ff3aa4-3617-496e-fc29-cf9fdbecc54d.pdf flight_from 04/29/20
80ff3aa4-3617-496e-fc29-cf9fdbecc54d.pdf flight_to 05/05/20
65ebbb18-8a01-357a-94ce-bfa16723822e.pdf flight_from 06/09/20
65ebbb18-8a01-357a-94ce-bfa16723822e.pdf flight_to 06/15/20
64780ed0-180c-a77b-bfe0-478c2a48a3a0.pdf flight_from 05/19/20
64780ed0-180c-a77b-bfe0-478c2a48a3a0.pdf flight_to 05/22/20
73badb45-b62c-0c2e-1a2f-4b5fb4fda5b9.pdf tv_address 6301 Bandel Road NW ROCHESTER Rochester,

MN 55901-8798
73badb45-b62c-0c2e-1a2f-4b5fb4fda5b9.pdf flight_from 10/06/20
73badb45-b62c-0c2e-1a2f-4b5fb4fda5b9.pdf flight_to 10/12/20
685a2568-66ec-e3e0-27a1-78b56402b8cb.pdf flight_from 09/15/20
685a2568-66ec-e3e0-27a1-78b56402b8cb.pdf flight_to 09/21/20
2437f486-c8f2-72ad-1c75-4d45eedd57d2.pdf flight_from 05/05/20
2437f486-c8f2-72ad-1c75-4d45eedd57d2.pdf flight_to 05/05/20
c1f3f40f-9003-6d17-9d92-f7d62836f017.pdf flight_from 04/06/20
c1f3f40f-9003-6d17-9d92-f7d62836f017.pdf flight_to 04/13/20
35b3207f-bd16-d173-09a5-570acac710b2.pdf flight_from 03/30/20
35b3207f-bd16-d173-09a5-570acac710b2.pdf flight_to 04/06/20
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Listing 5: Meta-Prompt for Generating Factual Correctness Prompts with JSON Output
I have a c o r p u s o f i n v o i c e s f o r p o l i t i c a l a d v e r t i s e m e n t s from TV c h a n n e l s ,
where i n f o r m a t i o n s h o u l d be e x t r a c t e d . The f o l l o w i n g s e t o f i n f o r m a t i o n
s h o u l d be e x t r a c t e d :
−−−
a d v e r t i s e r
agency
c h a n n e l
c o n t r a c t _ n u m
f l i g h t _ f r o m
f l i g h t _ t o
g ros s_amoun t
p r o d u c t
p rogram_desc
p rog ram_end_da t e
p r o g r a m _ s t a r t _ d a t e
p r o p e r t y
sub_amount
t v _ a d d r e s s
−−−
I want t o v e r i f y t h e f a c t u a l c o r r e c t n e s s o f each o f t h e s e i n f o r m a t i o n u s i n g
a prompt . P l e a s e g e n e r a t e a prompt f o r e v e r y i n f o r m a t i o n i n t h e s t y l e o f
t h i s prompt f o r t h e tv − a d d r e s s and add i t t o t h i s JSON f i l e :

f a c t u a l _ c o r r e c t n e s s _ p r o m p t s = {
" t v _ a d d r e s s " : "You w i l l e v a l u a t e a d d r e s s e s t o d e t e r m i n e i f t h e y a r e
l i k e l y t o be t h e o f f i c i a l l o c a t i o n s o f a TV c h a n n e l o r b r o a d c a s t i n g
company . For each a d d r e s s :

As se s s S u i t a b i l i t y : E v a l u a t e whe the r t h e a d d r e s s c o u l d r e a l i s t i c a l l y
s e r v e as a media o r b r o a d c a s t i n g l o c a t i o n . C o n s i d e r f a c t o r s such as
t h e p r e s e n c e o f c o r p o r a t e o f f i c e s , p r o x i m i t y t o media hubs , o r known
b r o a d c a s t i n g f a c i l i t i e s t h a t would s u p p o r t i t s use as a TV c h a n n e l a d d r e s s .

P r o v i d e a C o n f i d e n c e Score : Based on t h i s a s s e s s m e n t , a s s i g n a c o n f i d e n c e
s c o r e from 0 t o 1 , r e f l e c t i n g how l i k e l y i t i s t h a t t h e s t r i n g i s a v a l i d
l o c a t i o n f o r a TV c h a n n e l .

Outpu t Format (CSV ) :
s c o r e ; j u s t i f i c a t i o n
< n u m e r i c a l s c o r e (0 t o 1 ) > ; ' < S h o r t e x p l a n a t i o n o f t h e s c o r e , h i g h l i g h t i n g
s p e c i f i c a s p e c t s o f t h e a d d r e s s t h a t s u p p o r t o r d e t r a c t from i t s
c o m p l e t e n e s s and c o r r e c t n e s s . ' > "

}
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