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Abstract

Key Information Extraction (KIE) from visu-
ally rich documents (VRDs) is typically framed
as either fine-grained token classification or
coarse-grained entity retrieval. Token-level
models effectively capture spatial and visual
information associated with document spans,
while entity-level models excel in modeling log-
ical dependencies and align more closely with
real-world use cases. This work introduces
PM3-KIE, a probabilistic, multi-task meta-
model that integrates fine-grained and coarse-
grained approaches, leveraging the strengths
of both paradigms. The proposed model in-
troduces two key innovations: domain-specific
schema constraints to enforce logical consis-
tency and mitigate extraction errors, and the
integration of large language models (LLMs)
to validate extractions through semantic plau-
sibility. Experimental evaluation on the pub-
lic VRDU dataset demonstrates that PM3-KIE
significantly outperforms three state-of-the-art
models and a stacked ensemble, achieving a
2.5% improvement in F1 score, highlighting the
model’s efficacy in unifying fine- and coarse-
grained representations for enhanced KIE per-
formance.

1 Introduction

KIE is a crucial task in automating business doc-
ument processing, with applications spanning fi-
nance, legal, and supply chain management. KIE
automation is essential for reducing operational
costs; for example, processing a single invoice
can cost $13,11 and take eight days (Girsch-Bock,
Mary, 2024; Cohen and York, 2020). Despite re-
cent advancements, KIE remains challenging, par-
ticularly for documents with complex schemas or
semi-structured layouts, where state-of-the-art ap-
proaches often fall short (Wang et al., 2023c).
KIE aims to extract structured key-value pairs
from VRDs (Huang et al., 2019) and is typically

performed using one of two paradigms, displayed
in Figure 1:
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Figure 1: Fine-grained Token Classification vs. Coarse
Grained Entity Extraction Task for KIE

Fine-grained token classification Models label
individual tokens via sequence tagging, typically
leveraging multi-modal transformer encoders that
integrate text, spatial layout, and image features,
such as LayoutLMv3 (Huang et al., 2022) and LiLT
(Wang et al., 2022). While effective at capturing
token-level spatial information, these models re-
quire extensive annotated data.

Coarse-grained entity extraction Models either
generate structured output in the form of key-value
pairs o json (Cesista et al., 2024), retrieve indi-
vidual entity values (Cao et al., 2023) or classify
a predefined set of entity candidates (Majumder
et al., 2020). These methods perform well in captur-
ing logical dependencies and producing coherent,
structured outputs for coarse-grained tasks.
Token-level models excel at capturing spatial
relationships, while entity-level models better cap-
ture logical dependencies, highlighting the need for
approaches that integrate both. Ding et al. (2024)
bridge these paradigms and suggest a knowledge
distillation model to acquire knowledge from both
model types, but their model is limited to specific
architectures and necessitates classification logits.
Thus, an integration of generative decoder-based



approaches or large-scale LLMs producing direct
structured output is not possible.

Moreover, existing methods neglect domain-
specific constraints, resulting in schema violations
such as failing to extract required elements or in-
correctly including optional ones. While heuristic
postprocessing can partially address these issues, it
often falls short of ensuring logical consistency.

Common errors also include syntactic or seman-
tic inconsistencies, such as incomplete addresses
or implausible entity values that could easily be
prevented with contextual validation.

To address these limitations, we propose PM3-
KIE, a novel probabilistic multi-task meta-model
designed for KIE. PM3-KIE employs a lightweight
probabilistic reasoning layer, leveraging the Prob-
abilistic Soft Logic (PSL) framework (Bach et al.,
2017) to combine logical constraints with proba-
bilistic inference. This design ensures robust rea-
soning across granularities while maintaining com-
putational efficiency.

We evaluate PM3-KIE on the public VRDU
dataset (Wang et al., 2023c), demonstrating signifi-
cant improvements over state-of-the-art models and
a stacked ensemble meta-model across various in-
distribution, out-of-distribution, and low-resource
scenarios. Our contribution are the following:

* We introduce a probabilistic meta-model that
integrates fine-grained and coarse-grained
models with key innovations:

fine-grained and coarse-grained blackbox
model integration: PM3-KIE is a meta-
model that supports incorporation of arbi-
trary fine-grained and coarse-grained black-
box KIE models including generative decoder
approaches producing structured output.

Schema consistency: Domain-specific con-
straints ensure logical adherence to extraction
schemas and contained required and optional
elements, reducing schema-related errors.

LLM-as a judge based validation: Pre-
trained LLMs as a "judge" validate extractions
based on syntactic and semantic plausibility.
This mechanism provides an additional layer
of quality control, enabling the model to pre-
vent errors such as incorrect formatting or im-
plausible entity values.

* We achieve state-of-the-art performance on
the VRDU dataset, outperforming baseline
models by a significant margin.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work. Section 3
provides background on the KIE problem descrip-
tions. Section 4 provides details about the prob-
abilistic model architecture. Section 5 presents
experimental results, and Section 6 concludes with
a discussion and future directions.

2 Related Work

KIE involves identifying key-value pairs from doc-
uments for structured data extraction (Huang et al.,
2019) and can be performed as fine-grained to-
ken sequence classification or coarse-grained entity
extraction at the document level, detailed in the
following subsections.

2.1 Fine Grained Token Classification Models

Traditional Models To overcome the limitations
of template-based approaches (Chiticariu et al.,
2013; Schuster et al., 2013), neural networks were
introduced, defining KIE as a token sequence clas-
sification problem. Recurrent Neural Networks
(RNNs) were first used to process floating text and
classify tokens (Palm et al., 2017), with some mod-
els incorporating spatial features to better represent
document layouts (Sage et al., 2019).

Subsequently, convolutional architectures were
employed to capture a non-sequential spatial con-
text (Yang et al., 2017; Borges Oliveira and Viana,
2017; Zhao et al., 2019; Katti et al., 2018; Denk
and Reisswig, 2019; Zhang et al., 2020).

Graph-based models enhanced this by modeling
the document as a graph to represent textual and
spatial relationships. Graph Convolutional Neu-
ral Networks have been used to integrate textual,
spatial, and visual information for KIE tasks (Yao
et al., 2024; Shi et al., 2023; Lee et al., 2022, 2021;
Wei et al., 2020; Yu et al., 2020; Hwang et al., 2020;
Liu et al., 2019; Qian et al., 2019).

Multimodal Transformer Approaches With the
rise of transformer-based architectures, encoder-
based models have become a dominant approach
for multi-modal token classification in KIE. These
models have been enhanced in various ways to
address the challenges of integrating textual and
visual features in business documents. DocFormer
(Appalaraju et al., 2021), LAMBERT (Garncarek
et al., 2021), FormNet (Lee et al., 2022), and
ERNIE-Layout (Peng et al., 2022) focus on captur-
ing spatial relationships through attention mecha-
nisms. LayoutLMv3 (Huang et al., 2022), LAM-



BERT, Docformer, Structext (Li et al., 2021), and
UDOP (Tang et al., 2023) incorporate layout-aware
embeddings to better represent document struc-
tures, a technique employed in models. Further-
more, LayoutMask (Tu et al., 2023), StructextV2
(Yu et al., 2023), Structext, UDOP, DocFormer,
ERNIE-Layout and Wokung-Reader (Bai et al.,
2023) have introduced pre-training tasks designed
to leverage multimodal information. In LiLT, Wang
et al. (2022) adapted the transformer concepts to
work in a language-independent way.

Low Ressource Approaches Chen et al. (2023)
propose a task-aware meta-learning framework
with a hierarchical decoder and contrastive learn-
ing for out-of-distribution, few-shot entity extrac-
tion. QueryForm (Wang et al., 2023b) utilize a
dual prompting mechanisms to integrate schema
and entity queries for zero-shot entity extraction.

2.2 Coarse-Grained Entity Extraction

Traditional and Encoder-Decoder Architectures
Other works frame KIE as an entity extraction task.
This can involve detecting candidates and classify-
ing them, as proposed in RELIE (Majumder et al.,
2020), or directly generating structured outputs us-
ing encoder-decoder models such as TILT (Powal-
ski et al., 2021) and Donut (Kim et al., 2022), with
TILT being one of the first to utilize a decoder to
generate sequences that contain all entities.

Generative LLMs Recent works leverage LLMs
with natural language prompts for KIE using two
primary strategies: Per-Key Prompting, where in-
dividual prompts query values for each key (e.g.,
DocLLM (Wang et al., 2023a), LayoutLLM (Luo
et al., 2024)); and Unified Prompting, where a
single prompt queries all keys simultaneously, pro-
ducing either plain text outputs with all values (e.g.,
GenKIE (Cao et al., 2023)) or structured outputs
such as key-value pairs or JSON (e.g., RASG (Ce-
sista et al., 2024), ICL-D3IE (He et al., 2023),
LMDX (Perot et al., 2024)).

GenKiE employ an encoder-decoder framework
to integrate such prompts, where the encoder pro-
cesses multimodal document data and prompts,
while the decoder outputs plain text containing
entity values. LayoutLLM and DocLLM employ
layout-aware LLM pretraining and VRDU task spe-
cific fine-tuning, addressing KIE by querying indi-
vidual values for each document key.

Prompting Strategies and Paradigms Recent
works like RASG, ICL-D3IE and LMDX utilize ex-
isting LLMs and propose techniques for in-context
learning, document layout encoding, and prompt-
ing for KIE. RASG introduces retrieval-augmented
structured generation, enabling LLMs to generate
schema-constrained outputs by encoding document
layout as text and modeling structured output pre-
diction as a tool-use approach. ICL-D3IE employs
in-context learning with demonstration examples
that highlight positional relationships and enforce
structured output. LMDX is a layout encoding
technique to incorporate document text and spatial
layout into the prompt and a decoding mechanism
to parse the extracted entities from the LLM output.

Joint Token Classification and Entity Extraction
Models Ding et al. (2024) address both token
classification and entity extraction tasks simultane-
ously with a student-teacher framework for knowl-
edge distillation. However, this method is limited
to architectures that generate classification logits,
rendering it incompatible with e.g. decoder-based
LLMs that produce structured output.

We propose a more flexible multi-task meta-
learning approach that combines fine-grained and
coarse-grained models, including black-box ap-
proaches. By enforcing consistency across tasks
and utilizing domain-specific schemas, our method
overcomes the limitations of existing systems.

3 KIE Problem Statement
3.1 Traditional KIE Learning Tasks

KIE is a core task in document information extrac-
tion, aiming to extract key-value pairs that align
with a predefined schema (Huang et al., 2019). Tra-
ditional approaches address KIE as either:

Token Sequence Classification Task The goal
is to assign a label [ € T to each token w; in a
document d, where w = {ws}lsﬂ1 is the sequence
of tokens, |S| is the length of the sequence, and
T = {t;} Lzll is the set of possible label types. The
label set 1" includes a special "OTHER" label, indi-
cating that the token does not belong to any prede-
fined label. The model predicts the label sequence

1= {l1, 0o, i) }-

Key-Value Pair (KVP) Prediction Task The
task is to extract a set of key-value pairs K =
{(kn, vn)}lﬂl, where k,, € T is the field type, vy,
is the associated field value, and | N| is the number



of extracted pairs. Each v, is typically a subse-

quence of the token sequence w = {ws}LS:ll.

3.2 Unified Prediction

We introduce a new formulation for the joint fine-
grained and coarse grained extraction task.

Business documents often adhere to a schema
specifying the structured knowledge to be extracted.
A schema T = {ti}gl defines field types, such
as invoice number, and is populated by extracting
corresponding information from each document d.

We define Fields as concrete instances of a field
type t;. Field Mentions represent text spans in d
referring to fields, where multiple mentions may
correspond to the same field.

Token sequence classification predicts field men-
tions in d, while entity extraction predicts higher-
level field instances. Our joint formulation inte-
grates them to predict both field instances and their
mentions, leveraging outputs from both tasks.

Meta-Model for Finegrained and Coarsegrained
Models Let O = {Oq}‘q@1 denote a set of 1QI
finegrained prediction models all producing a pre-
dicted label sequence LY = {ZZ}LS:‘I. Let U =

{U T}lfill denote a set of IRI coarse-grained predic-
tion models all producing a set of key value pairs
K" = {(k], v;)}lnj\gl Given a document d, token
sequence w and the output of prediction models O
and U, we define two sets of candidates:

* Field Mention Candidates ()/?): For a given
field type ¢;, the mention candidate set is de-
fined as a subset of tokens in w predicted to
belong to label ¢; by at least one model in O:

M ={w; |je{L,...,|8]},3 n

ge{l,...,[QI}] =t}

* Field Candidates (F): For a given field type
t;, the field candidate set is defined as a subset
of all field values v, predicted to belong to
the type ¢; by at least one model in U:

F'={v.|ce{l,...,|N|},3 @
re{l,...,|R|} ke =t}

Objective is to predict field mentions, fields and

links, represented by random variable z, y and a:

0 otherwise.

Field Mentions: z;; = {

1 if wj is mention of type ¢;,

1 if vt is a field instance of type ¢;,

Fields: y.; = {

0 otherwise.

Field Linking: a;.; = {(1) ;i}ijr;l;:nked o et
The joint approach leverages task interdependen-
cies both from mentions to fields and from fields
to mentions: Mentions predicted in the token se-
quence classification task refine field extraction,
while field extractions validate and enhance men-
tion predictions, ensuring schema consistency.

4 Methodology

4.1 P3M-KIE overall model architecture

We propose PM3-KIE, a probabilistic multi-task
meta-model for KIE, that integrates fine-grained
and coarse-grained models to reason across granu-
larities. The framework features a logical decision
layer based on PSL (Bach et al., 2017), combining
first-order logic with probabilistic graphical model-
ing, as detailed in Subsection 4.1. Subsequent sec-
tions elaborate on PM3-KIE’s architecture . Sub-
section 4.3 presents the integration of fine- and
coarse-grained models for joint predictions of field
mentions and values. Subsection 4.4 introduces the
modeling of field cardinalities, while Subsection
4.5 describes the incorporation of LLMs as seman-
tic and syntactic validators. Finally, Subsection
4.6 outlines the learning and inference mechanisms
within the proposed framework.

4.2 Probabilistic Framework

Probabilistic Graphical Model PSL represents
a probability distribution over a set of random vari-
ables using a Hinge-Loss Markov Random Field
(HL-MRF). The probability density function for
unobserved variables Y = (Y7,...,Y,), condi-
tioned on observed variables X = (X1,...,X,),
is expressed as:

j=1

where ¢; are potential functions, w; are their asso-
ciated weights, and Z(w, X) is the normalization
factor. This formulation allows joint reasoning over
interdependent variables.

Declarative Logic Rules PSL employs a declar-
ative language to define logical rules as templates
for potential functions in the HL-MRF. Each rule



consists of predicates representing observed or un-
observed variables and constants serving as place-
holders. For example:

w : Prediction(mention, type) —
. (Rule 1)
IsType(mention, type).

w indicates the rule’s importance. Grounding re-
places variables in the rule ( e.g. mention, type)
with constants, generating multiple ground rules.

Learning and Inference PSL learns optimal rule
weights w by maximizing a likelihood function. In-
ference determines the most probable assignments
for unobserved variables, framed as a convex op-
timization problem (see Bach et al. (2017) for a
detailed description).

4.3 Multi-Task Metamodel Design

Integration of Fine-Grained Models We intro-
duce an unobserved predicate Me?(d, m) for each
field type t; € T, where d represents a document,
and m is a mention candidate in M*. This predi-
cate encodes the true field mention prediction for
each candidate x j;.

Let o?i denote the output of a prediction model
01 for a specific label t; and a mention candi-
date w; in M* with j € {1,2,...,|S|},and q €
{1,2,...,|QI},1] = t;}. For models that predict a

label for each word, we define o?i =1 (l? = ti) ,

where 1(-) is an indicator function returning 1 if the
label assigned to w; by OY is t;, and O otherwise.

For models outputting a probability distribution
over labels t; € T, o?l. is defined as the probability
assigned by O? to word w; and label t;: og»i =
P(t; | wj,0%),

We define an observed predicate OM%(d, m)
for each model OY, representing the output o?i for
field type ¢;. Here, d corresponds to the document
and m to the mention candidate in M. This predi-
cate encapsulates the model’s predictions for each
mention in a document.

Rule 2 and Rule 3 establish the relationship be-
tween the outputs of models O and the unobserved
field mention predictions Me?(d,m) for each field
type t; and model O?:

wh : OM*"(d, m) = Me'(d, m),
wy 1 ~OM?®*(d, m) = ~Me'(d, m).

(Rule 2)
(Rule 3)

These rules adjust the likelihood of assigning a field
type t; to a mention candidate m based on model
outputs. The probability of Me’(d, m) increases
as more models predict ¢;, while the probability
decreases when models predict alternative labels.

Integration of coarse grained models We intro-
duce an unobserved predicate F'i*(d, v) for each
field type t; in T', where d is a constant represent-
ing a document and m a field candidate in F*. This
predicate indicates the true field mention prediction
for each candidate y;;.

Let u.; denote the output of a prediction model
U™ for a specific label ¢; and a field candi-
date v, in F* with ¢ € {1,2,...,|N|},3r €
{1,2,...,|R|}, kL = ti}.

For models producing a predicted label for each
word, we define v/, = 1 (k} =t;). 1(-) is an indi-
cator function that outputs 1 if the label assigned
by the model to value v, is ¢;, and 0 otherwise.

In the case of models outputting a probability
distribution over all labels ¢; € T', we define wuy,
as the probability assigned by UY to value v, and
label t;: ul, = P(t; | v., U?).

We introduce an observed predicate U F'%(d, f)
for each model in U, representing the output u%* for
field type t;, with a constant d for every document
and f for every field candidate in F*.

Rule 4 and Rule 5 correlate the outputs of the
models U with the unobserved field prediction
Fi'(d, f) for each field type t; and model U":

wh : UF™(d,f) = Fi'(d,f)
wy NUF™(d, f) =!Fi'(d, f)

(Rule 4)
(Rule 5)

These rules increase the likelihood of assigning
a field type ¢; to a field candidate as more mod-
els predict this label, and conversely, decrease the
probability if models predict a different field type.

Linking Fine and Coarse Grained Models As
outlined in Section 3, the task involves predicting
the existence of a field link a;. for each pair of
field mention and field candidate in F; and M.
Rather than treating this as an unobserved variable,
we define a linking function with values in [0, 1],
indicating the likelihood that a field mention can-
didate belongs to a field candidate. This function
can leverage string or embedding similarity, nor-
malized to [0, 1]. We adopt the Jaccard distance to
compare string representations of field mentions
and candidates (refer to Appendix A). To capture
the interdependence between field mentions and
fields, we introduce Rule 6 and Rule 7. These
rules ensure that a field candidate and its mentions
share the same field type ¢;, enabling bidirectional
propagation of predicted field types:

ws : Me'(d,m) A Lnk(d, m, f) = Fi‘(d,f) (Rule 6)
we : Fi'(d,f) A Lnk(d, m,f) = Me'(d, m) (Rule7)



4.4 Cardinality Constraints

In many domains, field types are subject to cardinal-
ity constraints. For instance, business documents
often contain a unique identification number and
multiple entries for fields such as addresses. We
extend the information schema by associating each
field type ¢; with a cardinality cardinality; and spec-
ifying whether the field is mandatory or optional.
For mandatory fields, Rule 8 enforces that exactly
cardinality, fields of type ¢; are extracted per docu-
ment. For optional fields, Rule 9 ensures that the
number of instances does not exceed cardinality,.

wt : F'(d, +f) = cardinality, (Rule 8)

wg : F'(d, +f) < cardinality, (Rule 9)

Here, F(d, +f) denotes the summation over all
extracted fields of type ¢; in document d.

4.5 LLM as a Judge

Common model errors in information extraction
include format inconsistencies, such as partial date
entries (e.g., missing years), and factual inaccura-
cies, such as misidentifying a rural postbox as a
headquarters address. To systematically verify and
refine field candidates F* for each field type t;, we
propose utilizing a LLM as a scoring mechanism.

An in-context-tuned LLM assigns a score s(f) €
[0, 1] to each field candidate in f € F", represent-
ing its likelihood of being a valid instance based on
domain specific propertiees such as format adher-
ence and factual correctness. The scoring functions
are integrated using Rule 10 and Rule 11:

wh : LLM™(d,f) = F'(d,f) (Rule 10)

wi'0 : ~LLM'(d,f) = —F'(d,f) (Rule 11)

LLM?(d, f) denotes the predicate indicating that
the LLM supports field assignment for f based on
document d. These rules increase confidence in I
when s( f) is high and reduce confidence otherwise.

The scoring mechanism is extensible to other
feedback functions, such as human annotation
scores, regular expressions and database lookups
for fact-checking. These feedback signals can be
integrated into the meta-model framework to refine
the prediction of field candidates F'* improving the
overall robustness of the model.

4.6 Learning and Inference

We define a probability distribution over our un-
observed random variables—field mentions and

fields—conditioned on the observed variables: the
prediction outputs from fine-grained models (word
and label sequences) and coarse-grained models
(key-value pairs), as well as the links between can-
didates and LLM-judgment scores. The potential
functions that govern these distributions are defined
by the logical rules, as shown in Formula 3.

The weights w in the potential functions (e.g.,
rule weights) are learned by maximizing the likeli-
hood of the observed data under the model, which
can be formulated as an optimization problem that
maximizes the log-likelihood or another suitable
performance metric. During inference, the most
probable field mention and field assignment are
identified by maximizing the joint probability dis-
tribution as specified in Formula 3.

S Experiments

5.1 Experimental Setup

We evaluate PM3-KIE on the VRDU corpus and
compare it against three state-of-the-art models:
LayoutLMv3, Lilt, and a fine-tuned GPT-3.5 Turbo
(Radford and Narasimhan, 2018; OpenAl, 2024),
along with a stacked ensemble (Wolpert, 1992).
Additionally, an ablation study assesses the impact
of PM3-KIE components on overall performance.
A complete list of all software components used
for the experiments including their licenses can be
found in Appendix E.

Data We use the VRDU dataset, which con-
tains complex ad buy invoices with 9 fields: ’ad-
vertiser’, contract_num’, ’gross_amount’, ’prop-
erty’, 'tv_address’, ’flight_from’, "flight_to’, *prod-
uct’, and "agency’. The dataset includes different
train, development, and test folds, with both in-
distribution (ID) and out-of-distribution (OOD) test
sets. We evaluate performance using splits of vary-
ing training sizes (10, 50, 100, 200), with one ID
and one OOD fold and three splits per (train size,
distribution)-combination, resulting in 24 models
enabling to assess model performance under differ-
ent training sizes and distribution shifts. We also
corrected errors in annotations, especially for date
fields. Detail can be found in Appendix F.2 and F.

Evaluation Metrics We apply field-specific
matching functions (Wang et al., 2023c) to nor-
malize values and introduce additional functions to
address mismatches (see Appendix F.2). As noted
by Nourbakhsh et al. (2024), document-level met-
rics provide a more practical measure of workload



for correcting document extractions than field-level
F1 scores. To offer comprehensive insights, we
report the metrics in Table 1 Statistical significance
is evaluated using paired differences and 95% con-
fidence intervals, calculated with paired standard
errors as proposed by Miller (2024). Both are com-
puted for each split and training-size/distribution
combination, then averaged across splits to derive
confidence intervals.

Metric Description

F1 per Field Mean F1 across fields.

F1per Doc  Mean F1 across documents.

Hit per Doc  Mean hit rate, "hit" = correct field extraction.
Doc-Level perc. of documents with correct extraction
Accuracy

Table 1: Performance Metrics for KIE

Baselines We compare PM3-KIE with three fine-
tuned models: LayoutLMv3, Lilt, and GPT-3.5
Turbo. These models not only serve as benchmarks
but also as prediction models for PM3-KIE, as de-
scribed in Section 4. All models are fine-tuned
on the training fold and hyperparameters are op-
timized on the validation fold. Additionally, we
compare with a logistic regression stacked ensem-
ble that combines all baseline models, Lilt, Lay-
outLMv3, and GPT-3.5 Turbo and is trained on the
validation fold. Further details on model architec-
tures, prompt templates, training, and hyperparam-
eters are listed in Appendix B.

PM3-KIE Model The final PM3-KIE model in-
tegrates all components described in Section ??. It
combines all baseline models, Lilt, LayoutLMv3,
and GPT-3.5 Turbo, along with cardinality con-
straints specifying mandatory fields (contract num-
ber, gross amount, advertiser, property) and op-
tional fields (tv address, product, agency, flight
start and end date) with at most one field value per
document. We incorporate two LLM-based com-
ponents for fact- and format-checking using GPT-4
mini via the OpenAl API (see G for details about
the prompt templates used). Training is conducted
on the development fold (details in Appendix C).

5.2 Results and Analysis

Baseline Comparison Table 2 summarizes the
F1 scores for PM3-KIE and baseline models, with
standard errors in brackets. The "best model" base-
line is selected per split as the model achieving
the highest F1 score. Results are averaged over

three splits for each training size and distribution
type. The "paired difference” column shows the
performance difference between PM3-KIE and the
best baseline, with 95% confidence intervals in
brackets. Results demonstrate that PM3-KIE con-
sistently outperforms all baselines across all data
chunks with statistical significance (95%), high-
lighting its robustness in a variety of settings.

Document-Level Metrics To assess practical
utility, we analyze performance at the document
level, providing insights into error rates per docu-
ment. Table 3 shows that PM3-KIE achieves sig-
nificant improvements in document-level accuracy,
reducing the practical manual correction workload.
This indicates the model’s capability to fully auto-
mate invoice processing for over 60% of the doc-
uments and additional 9% compared to the best
performing baseline model.

Impact of Training Size and Document Distribu-
tion We investigate whether PM3-KIE performs
particularly well under specific conditions, such as
limited training data or test folds with unseen docu-
ment formats. Figure 2 visualizes the performance
gains by training size and test distribution type (ID
vs. OOD). Gains are averaged over three splits
per configuration. The results show that PM3-KIE
excels especially in low-resource settings and on
OOD test sets. This demonstrates its robustness to
distributional shifts and effectiveness in scenarios
with limited labeled data.

F1 Difference by Size of Train Fold
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Figure 2: F1 difference (F1 PM3-SKIE and F1 Best
Model) with 95% confidence interval by train size for
both id and ood test folds.

5.3 Ablation Study

We conduct an ablation study to assess the contribu-
tions of individual model components. Models are
trained on three splits for each combination of train-
ing size (10, 50, 100, 200) and distribution type (ID



Table 2: Performance metrics for various training sizes (Train) and OOD test sets. The reported F1 scores are
averaged across all fields and are accompanied by their corresponding standard errors in parentheses. The paired
difference between PM3-KIE and the best-performing model is presented, along with the 95% confidence interval
enclosed in parentheses. A detailed result table with ID and OOD test set results is displayed in Appendix D

Dist #Train #Test F1LILT F1GPT F1LMv3 Fl1 STE‘ F1Best F1PM3-KIE ‘ Paired Diff
(std. error) (std. error) (std. error) (std. error) | (std. error) (std. error) | (conf. interval)

ood 10 294 64.89 78.00 58.11 72.13 : 78.00 82.29 : +5.85
(1.50) (1.48) (1.60) (1.15) (1.48) (1.15) | (+1.86, +9.85)

ood 50 236 89.86 85.65 83.46 84.53 1 89.86 92.44 | +2.93
0.97) (1.42) a.2n (1.07) ! 0.97) 0.83) | (+0.86, +4.99)

ood 100 211 91.10 86.76 83.66 84.01 : 91.10 92.99 : +2.40
1.07) (1.21) (1.28) (1.04) | (1.07) (088) | (+0.75,+4.05)

ood 200 156 93.11 90.19 85.30 88.40 | 93.11 94.38 | +1.24
(0.99) (1.46) (1.41) (1.06) 1 (0.99) (0.96) I (+0.11, +2.59)

Table 3: Mean Fl-scores, Hit-rate and Accuracy per
Field and per Document averaged over all 24 models

F1 Hit F1 Doc Lv.
Model per Field per Doc per Doc Acc.
LILT 88.24 87.40 86.85 48.84
LMv3 81.45 80.10 79.48 24.69
GPT3.5 87.60 88.81 86.28 53.35
Stacked 84.64 79.15 83.13 19.03

_BestModel 9022 §9.86 8883 5355

PM3-SKIE 92.47 92.28 91.67 62.38

Table 4: Ablation study results. Difference in F1 for the
basic PM3-KIE model compared to the adapted model
version.

Ablation F1Field HitDoc F1 Doc Acc
PM3-KIE 92.47 92.28 91.67 62.38
"+ TokenTask 0359  +023 041 +0.18
- Constraints -1.88 -1.76 -1.76  -7.78
- fact & format judges -0.28 -0.34 -0.26  -2.03
- fact judge -0.17 -0.12 -0.15 -0.62
- format judge -0.21 -0.31 -0.18  -1.75

and OOD). Table 4 summarizes the findings.

The basic model is a model learned only on the
final field extraction data with two LLM judges
for fact and format checking and with information
schema constraints.

Granular Labeling. To assess the impact of pro-
viding granular labels at the field mention level, we
compare a multitask learning approach ("+Token
Task") with the standard single-task setup, where
ground truth is only available for field extractions.
The results indicate that multitask learning yields
only marginal improvements in hit-rate per docu-
ment and document-level accuracy, while slightly
reducing performance in other metrics.

Cardinality Constraints. We assess the role of
cardinality constraints by training models with-
out these constraints ("-constraints"). Performance
metrics decrease across all metrics, confirming that

these constraints enhance model performance.

Effectiveness of LLM-as-a-Judge. Two LLMs
for fact-checking and format-checking are inte-
grated into PM3-KIE. Removing these components
("- fact & format judges") slightly reduces F1 per
Field, F1 per Document, and Hit Rate by approx-
imately 0.3%, but document-level accuracy drops
significantly by 2%, highlighting the judges’ im-
portance for precise field extractions. We compare
against removing only one of the two LLMs ("-
fact judge" and "-format judge"). These perform
slightly better then removing both, but still worse
than the base model. This underscores the advan-
tage of each of the task-specific LLM judges.

6 Conclusion and Discussion

In this work, we have proposed PM3-KIE, a prob-
abilistic multi-task meta-model that addresses the
challenges in KIE. By integrating both fine-grained
token classification models and coarse-grained en-
tity extraction models, our approach provides a
flexible and robust solution for handling diverse
KIE tasks. Through the incorporation of schema
consistency and LLM-based validation, PM3-KIE
ensures logical adherence to extraction schemas
and semantic plausibility, significantly reducing er-
rors and improving reliability. Our experiments on
the VRDU dataset demonstrate that PM3-KIE out-
performs existing state-of-the-art methods across
a range of scenarios, including in-distribution, out-
of-distribution, and low-resource conditions. These
results highlight the potential of our approach in
document processing tasks.

7 Limitations

Prompt Design Sensitivity: The performance
of the LLM-as-a-judge component is sensitive to
both the capability of the LLM (e.g., parameter



size and training data) as well as the quality of
the prompts used. For example, the capability for
fact checking requires up to data training data that
contain the fact. Inadequate model size or poorly
designed prompts may lead to unreliable validation
scores While the meta-models training ensures that
weights are adjusted in a way to minimize the effect
of uninformative LLM outputs, they will not benefit
overall performance in such cases. In future we
plan to show that in form of additional robustness
checks with noisy models.

Dependency on Base Models: The extraction
quality of the meta-model relies on the performance
of the base fine-grained and coarse-grained models.
If all base models fail to detect a true extraction as
potential candidates, they cannot be identified by
the overall system. This limitation is common for
most ensembling and meta-model approaches.

Computational Costs: While PM3-KIE itself
is lightweight with relatively few parameters, the
meta-model’s complexity arises from integrating
fine-grained and coarse-grained models along with
LLMs for validation. This integration increases
both computational overhead and deployment com-
plexity, as it requires managing multiple models in
conjunction with the meta-model. This is a com-
mon challenge in ensemble and meta-model ap-
proaches.

Additional Processing: PM3-KIE requires data
to be formatted as specified in Section 4, including
the creation of constants for predicates and truth
values for observed predicates. This necessitates
additional computational effort for postprocessing
both model outputs and input data to meet the re-
quired format.

Closed-World Assumption: PM3-KIE assumes
all fields to be extracted are known in advance,
limiting its applicability to scenarios involving the
detection of new or unknown field types.

Dependency on Parsed Strings: This work as-
sumes input documents are in a machine-readable
format, typically processed through OCR. OCR
error correction and parsing accuracy are beyond
the scope of this study, with the approach presum-
ing that such errors have been corrected prior to
downstream processing.

8 [Ethical Considerations

Automation and Job Displacement: Automat-
ing key information extraction from documents,
especially in business-critical domains like finance
and legal, could reduce the demand for manual data
entry and administrative roles. While this improves
efficiency and reduces operational costs, it risks
unemployment for workers currently performing
these tasks.

Risk of Overreliance on Automated Systems:
Deploying PM3-KIE in critical sectors, such
as healthcare, legal documentation, or property
records, may lead to errors being accepted with-
out human verification. Incorrect or incomplete
extractions could have significant consequences,
including legal disputes, financial losses, or med-
ical errors. PM3-KIE should always operate in a
semi-automated manner with manual review.

Bias and Fairness Concerns: Like many Al sys-
tems, PM3-KIE’s performance depends on the qual-
ity and diversity of training data used to train the
base models integrated. Biases in the training data
could lead to unequal performance across docu-
ment types, languages, or regions, potentially dis-
advantaging users from underrepresented groups.
Care must be taken to curate balanced datasets and
evaluate the model across diverse scenarios.
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A Similarity Score Calculation

To match field mentions to fields, a similarity score,
displayed in Algorithm 1, is calculated based on
their string representations.
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Algorithm 1 Linking Function

Require: token_str, field_str
Ensure: link

: function calculate_link(token_str, field_str)
if token_str.isnumeric() and token_str = field_str then
return 1.0
. else if —token_str.isnumeric() then
sim < jaccard_similarity (token_str, field_str)
if sim > 0.7 then
return sim
else
return 0.0
end if
: end if
. end function

—_———
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: function jaccard_similarity(textl, text2)
. if len(text]l) = O or len(text2) = O then
return 0
: end if
. if len(textl) < 4 and len(text2) < 4 then
if text] = text2 then
return 1.0
else
return 0.0
: end if
. end if
: nl < ngrams(textl, 3)
: n2 < ngrams(text2, 3)
: jsim < 1 — jaccard_distance(set(nl), set(n2))
: jsim  max(0, jsim — 0.1 X |len(textl) — len(text2)|)
: return jsim
: end function

B Baseline Training Details

Stacked Ensemble: The stacked ensemble
model utilizes the Logistic Regression imple-
mentation from sklearn' and during training,
hyperparameters are tuned with a grid search
over the following hyperparameters: {"C’: [0.01,
0.1, 1, 10, 100, 1000], ’penalty’: [’11°, ’12°],
’solver’:[’liblinear’, ’saga’]}. For each field can-
didate, we construct an input vector comprising
features that include prediction scores for each field
type and model. Field mentions detected by Lay-
outLMv3 and LiLT are mapped to field candidates
during preprocessing using the similarity algorithm
detailed in Appendix 1. For the GPT-3 model, pre-
diction scores are binary (0,1), whereas LiL.T and
LayoutLMv3 provide predicted probabilities for
each field candidate. Additionally, LLM judge
scores for factual and format correctness per field
type are incorporated as features.

Token Sequence Tagging Task LiLT and Lay-
outLMv3 are fine-tuned on a downstream sequence

"https://scikit-learn.org/1.5/
modules/generated/sklearn.linear_model.
LogisticRegression.html
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tagging task with a classification head for token
classification, utilizing the BILOU schema. How-
ever, certain fields span multiple token sequences
within the document, making them incompati-
ble with the BILOU schema. To address this,
we introduce an additional label, LABELNAME_ADD,
for subsequent field sequences following the first.
In the DeepForm VRDU dataset, this applies to
"tv_address" and "product” fields. During train-
ing, the models predict these _ADD labels, and in
postprocessing, scattered fields are reconstructed
by linking each _ADD-labeled sequence to its corre-
sponding sequence labeled without _ADD.

LiLT: The LiLT model was trained and ap-
plied using the LayoutlLMv3TokenizerFast,
AutoModelForTokenClassification, and
Trainer classes from the Transformers library
(Wolf et al.,, 2019)https://huggingface.co/
docs/transformers/index.

We utilized the pretrained tokenizer and
model SCUT-DLVCLab/lilt-roberta-en-base,
provided by the authors (Wang et al,
2022) on Hugging Face. The tokenizer
was configured with the following set-
tings: truncation=True, stride=128,
padding="max_length", max_length=512,
return_overflowing_tokens=True, and
return_offsets_mapping=True.

The model was fine-tuned the
AutoModelForTokenClassification class
and the Trainer, with the following hyperparame-
ters:

using

* Learning rate: 5 x 1076

Batch size: 8
Gradient accumulation steps: 4

Maximum steps: 9000

Metric for model selection: overall_f1
e Warmup ratio: 0.1

The experiments were conducted on a system
equipped with dual Intel Xeon Gold 6226R CPUs
(64 cores, 128 threads), 754 GB of RAM, and two
NVIDIA Tesla V100 32GB GPUs. Each experi-
ment utilized a single GPU and required approxi-
mately 20 hours to complete.

2https://huggingface.co/SCUT—DLVCLab/
lilt-roberta-en-base
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LayoutLMv3: The LayoutLMv3 model was
trained and applied using the AutoProcessor,
LayoutLMv3ForTokenClassification, and
Trainer classes from the Transformers library.

We utilized the pretrained tokenizer and model
microsoft/layoutlmv3-base, provided by the
authors (Huang et al., 2022) on Hugging Face’.
The processor was loaded and applied us-
ing the AutoProcessor class with the setting
apply_ocr=False.

The model was fine-tuned using the
LayoutLMv3ForTokenClassification class
and the Trainer with the following hyperparame-
ters:

* Metric for model selection: overall_f1
Warmup ratio: 0.1

Learning rate: 5 x 1076

Batch size: 8

Gradient accumulation steps: 4
Maximum steps: 9000

The experiments were conducted on a system
equipped with dual Intel Xeon Gold 6226R CPUs
(64 cores, 128 threads), 754 GB of RAM, and two
NVIDIA Tesla V100 32GB GPUs. Each experi-
ment utilized a single GPU and required approxi-
mately 20 hours to complete.

GPT-3.5: The GPT-3.5 Turbo model (OpenAl,
2024) is a decoder-based large language model
(LLM) fine-tuned for the entity extraction task, fol-
lowing the tool-use approach introduced by Cesista
et al. (2024). Unlike Cesista et al. (2024), we do
not employ structured prompting to transform PDF
content but instead use raw PDF text to minimize
additional processing costs.

For supervised fine-tuning, we  uti-
lize the OpenAl plattform* to fine-tune
the gpt-3.5-turbo-0125 model. The

gpt-3.5-turbo-0125 model was chosen as
it is more cost-effective than newer models while
maintaining a knowledge cutoff in 2022, ensuring
that the base model has not been exposed to the
VRDU dataset.

*https://huggingface.co/microsoft/
layoutlmv3-base
*https://platform.openai.com/finetune
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The fine-tuning process follows the guidelines
provided in the OpenAl Cookbook’, and the result-
ing model generates valid JSON outputs. These out-
puts are parsed to extract entities for downstream
tasks. Training costs amounted to approximately
€210 ($221), with additional application costs for
the test sets estimated at €75 ($79).

We implement retrieval-augmented generation
using OpenAl’s ChatCompletion API with Func-
tion Calling® in conjunction with the Python pack-
age llama-index(Liu, 2022). Fine-tuning was
conducted following the instructions available in
the OpenAl Cookbook’. The function definition,
detailed in Listing 1, defines the data schema for
invoice fields and is passed to the ChatCompletion
API as a tool®.

The model produces valid JSON outputs, from
which entities are extracted for further processing.
The cost of training the model was approximately
€210 ($221), and applying the model to the test
sets incurred an additional cost of approximately
€75 ($79).

The system prompt utilized for processing polit-
ical advertisement invoice documents is shown in
Listing 2. This prompt, combined with the function
dictionary (Listing 1), is supplied to the OpenAl
ChatCompletion API to facilitate fine-tuning and
inference.

To align the assistant’s responses with ground
truth extractions from the VRDU dataset, these
extractions are provided as examples during fine-
tuning. The format of these examples is presented
in Listing 3.

C MP3-KIE Implementation, Training
and Inference Details

Model generation, training, and inference were
based on the Statistical Relational Learning frame-
work introduced by Bach et al. (2017). For our
experiments, we utilized the pslpython package
(version 2.4.0%), which wraps the Java-based PSL
implementation'.

Meta-model weight learning was performed on

5https://cookbook.openai.com/examples/chat_
finetuning_data_prep
°https://platform.openai.com/docs/guides/
function-calling
7https://cookbook.openai.com/examples/chat_
finetuning_data_prep
8https://platform.openai.com/docs/
api-reference/chat
9https://pypi.org/project/pslpython/
Ohttps://github.com/lings/psl
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the development folds using the structured percep-
tron algorithm'!. Inference was conducted using
ADMM? as described by Bach et al. (2017).

Default hyperparameters were employed, with
modifications to the regularization settings as fol-
lows:

e gradientdescent.negativelogregularization
Q

* gradientdescent.negativeentropyregularization
= 0.0001

All experiments were executed on a CPU system
equipped with 48 cores (Intel® Xeon® Gold 5118,
2.3 GHz base clock, 3.2 GHz max clock) and 376
GiB of RAM. Training the meta-model weights
required approximately 20 minutes per model on
average.

D In Distribution Results on VRDU

Table 5 summarizes the ID and OOD results of all
baselines and PM3-KIE on the VRDU dataset.

E Additional Software and Licenses

Table 6 lists all first-level import python packages
used to perform the experiments described in this
work.

F Dataset

F.1 VRDU Dataset and Evaluation

We utilized the VRDU dataset and evaluation
framework implementation provided by Wang et al.
(2023¢).1?

F.2 Annotation and Evaluation Corrections

To reduce spurious matching errors during eval-
uation, we employed the field-specific matching
functions available for the dataset'* to normalize
values, such as standardizing date formats. In addi-
tion to the existing functions, we introduced three
additional matching strategies to address inconsis-
tencies in the dataset:

* GeneralCaselnsensitiveStringMatch:
Strings are considered equivalent if their
lowercase representations match.

"org.lings.psl.application.learning.weight.gradient .opti-
malvalue.StructuredPerceptron
12org.linqs.psl.application.inference.mpe.
ADMMInference
Bhttps://github.com/google-research-datasets/vrdu
14https://github.com/google—research/
google-research/tree/master/vrdu
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Listing 1: Function Description for OpenAl Tool Use

function_dict = {
'name ': 'AdInvoice', 'description 'Data model for invoice fields.', 'parameters
{'title': 'AdInvoice', 'description': 'Data model for invoice fields.', 'type': 'object',
'properties': {
‘contract_num': {

'title': 'Contract Number',

'description': 'The invoice contract number or order number.', 'type': 'string'},
'tv_address ': {

'title': 'Tv Address', 'description': 'Physical address of the tv channel.',

‘default': '', ‘'type': 'string'},
'property ': {

'title': 'Property', 'description

‘default': '', 'type': 'string'},
‘agency ': {

'title': 'Agency', 'description
‘advertiser': {'title': 'Advertiser', 'description
'flight_from': {

'title': 'Flight From',

'description': 'The order flight start date.',

'default': '',

'type': 'string'},

'flight_to': {

'title': 'Flight To',

'description': 'The order flight end date.',

'default': '',

'type': 'string'},

'product ': {

'title': 'Product',

'description': 'The product that is advertised.',

'default': '',

'type': 'string'},

'gross_amount ': {

'title': 'Gross Amount',

'description': 'The total amount to be paid.',

'type': 'string'},

'line_items': {

'title': 'Line Items',

'description': 'List of line items.',

'type': 'array',

‘items': {

'"$ref': '#/definitions/Lineltem' 3}}3},
'required': ['contract_num', 'advertiser',6 'line_items'],
‘definitions': {
'LineItem': {

'title': 'LineItem',

'description': 'Data model for line item fields.',

'type': 'object',

'properties': {

'channel '": {
'title': 'Channel',
'description': 'Name of the tv channel broadcasting the advertisement.',
'default': '',
'type': 'string'},
'program_start_date ': {
'title': 'Program Start Date',
'description': 'Program start date (only date without timestamp).',
'default': '',
'type': 'string'},
'program_end_date ': {
'title': 'Program End Date',
'description': 'Program end date (only date without timestamp).',
'default': '',
'type': 'string'},
'program_desc ': {
'title': 'Program Desc',
'description': 'Description of the TV program.',
'default': '',
'type': 'string'},
'sub_amount ': {
'title': 'Sub Amount',
'description': 'Sub amount for one program ad.',
'default': '',
"type': 'string'}3}}}}}

'Property, usually equivalent to tv channel name.',

': 'The advertisement agency.', 'default': '', ‘'type': 'string'},

'The advertiser.', 'type': 'string'},

15



Listing 2: Formatted System Prompt

You are receiving content from a political advertisement invoice document.

This invoice is signed between a TV station and a campaign group.

The document uses tables, multi—columns, and key-value pairs to record the information.

Your task is to digitize these documents by extracting their information in a structured format.

Extract the unique header information, such as TV channel addresses and total costs,

along with the list of line items detailing specific ads, TV programs in which they will be broadcasted,

and sub-amounts.

Extract line item fields only from the tabular line item list in the invoice document

and not from the invoice header: if line item fields are not present in the line item list, don't extract them.

Listing 3: Ground Truth Assistant Answer provided for Fine-Tuning

"role": "assistant",
"function_call": {
"name": "AdInvoice",
"arguments":
"{"contract_num":"668864 ",
"tv_address ":"PO Box 809229\\nChicago, IL 60680-9229\\n",
"property ":"WAXN-TV\\nWSOC Television, Inc.\\n",
"agency":"",
"advertiser ":"POL/Donald Trump/R/PRES/US-A\\n",
"flight_from":"03/05/20 ",
"flight_to ":"03/10/20\\n",
"product ":"TRUMP FOR PRESIDENT\\n",
"gross_amount":"$3,920.00\\n",
"line_items ":[
{"channel ":"WAXN ","program_start_date":"03/09/20 ","program_end_date":"03/09/20 ",
"program_desc ":"M-F 7a-8a\\n","sub_amount":" $250.00\\n"},
{"channel ":"WAXN "," program_start_date ":"03/06/20 ","program_end_date":"03/06/20 ",
"program_desc":"M-F 7a-8a\\n","sub_amount":"$250.00\\n"},
{"channel ":"WAXN ","program_start_date":"03/09/20 ","program_end_date":"03/09/20 ",
"program_desc ":"M-F 8a-9a\\n","sub_amount":" $260.00\\n"},
{"channel ":"WAXN "," program_start_date":"03/06/20 ","program_end_date":"03/06/20 ",
"program_desc ":"M-F 8a-9a\\n","sub_amount":"$260.00\\n"},
{"channel ":"WAXN "," program_start_date":"03/06/20 ","program_end_date":"03/06/20 ",
"program_desc ":"M-F 8p-830p\\n","sub_amount":"$0.00\\n"},
e}
1"
}

Table 5: Performance metrics for various training set sizes (Train) and distribution folds (Dist). The reported
F1 scores are F1-scores averaged across all fields and are accompanied by their corresponding standard errors in
parentheses. Additionally, the paired difference between our model and the best-performing model is presented,
along with the 95% confidence interval enclosed in parentheses.

Dist #Train #Test FI1LILT F1GPT FI1LMv3 F1STE F1Best F1PM3-KIE Paired Diff

(std. error) (std. error) (std. error) (std. error) + (std. error) (std. error)  (conf. interval)

iid 10 6 8736 8792 8097 8684 1 90.09 9279 | +2.73

(4.49) (5.14) (4.32) (4.80) ! (2.65) (2.84) | (4248, +2.98)

iid 50 64 91.55 87.92 8230 8536 | 9155 9339 | +2.82

(2.36) (2.25) (3.12) 2.08) (2.36) (1.86) | (+1.93,+3.72)

iid 100 89 9385 9241 8772 8863 | 9385 95.70 | +2.67

(1.66) (1.59) @.11) (1.48) | (1.66) (1.17) | (+1.58, +3.76)

iid 200 144 94.21 91.99 90.06 8721 ' 9421 95.81 ! +2.03

(1.20) (1.64) (1.19) (1.16) : (1.20) (0.93) : (+0.93, +3.13)

ood 10 294 64.89 78.00 58.11 7213 | 78.00 82.29 | +5.85

(1.50) (1.48) (1.60) (L.15) (1.48) (1.15) | (+1.86,+9.85)

ood 50 236 89.86  85.65 83.46 8453 |  89.86 92.44 | +2.93

0.97) (1.42) 1.21) 1.07) | 0.97) (0.83) | (+0.86, +4.99)

ood 100 211 91.10  86.76 83.66 8401 ' 9110 92.99 ! +2.40

(1.07) 1.21) (1.28) (1.04) : (1.07) (0.88) : (+0.75, +4.05)

ood 200 156 93.11 90.19 8530 8840 , 93.11 94.38 | +1.24

(0.99) (1.46) (1.41) (1.06) | (0.99) 0.96) | (+0.11, +2.59)

 IgnorePropertySuffixStringMatch:  Ac- * IgnoreLeadingTrailingNumbersStringMatch:

counts for inconsistent annotations of prop- Handles inconsistent annotations for products
erties (e.g., with or without the suffix "remit and agencies where numeric prefixes or
to"). Strings are matched after removing the suffixes (including those in brackets) may
phrase "remit to" and redundant whitespace. or may not be present. Strings are matched
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Table 6: Software Packages and Their Licenses

Name Version License

python 3.10.14  PSF License

editdistance 3.10.14  MIT License

datasets 2.19.0  Apache Software License
pandas 2.2.3 BSD License

scikit-learn 1.5.1 BSD License

tqdm 4.66.4 MIT License; MPL 2.0
pydantic 2.8.2 MIT License
pydantic_core 2.20.1  MIT License
transformers 4.40.1  Apache Software License
numpy 1.26.4 BSD License

torch 2.3.0 BSD License

pillow 10.3.0 HPND

llama-index 0.10.52  MIT License

tiktoken 0.7.0 MIT License

nltk 3.8.1 Apache Software License
pdf2image 1.17.0  MIT License
dataclasses-json 0.6.7 MIT License

mlflow 2.12.2  Apache Software License
plotly 5.22.0 MIT License

matplotlib 3.9.0 Python SF License

scipy 1.13.0 BSD License

after removing leading or trailing numeric
sequences and redundant whitespace.

Several annotations in the VRDU dataset were
incorrect, incomplete, or missing, particularly for
dates and address elements. For instance, dates
were often missing complete year information, and
address components were inconsistently annotated.
Table 7 lists the corrections we introduced. Both
the corrected annotations and the original dataset
annotations were considered valid during evalua-
tion.

G LLM as a Judge

We use the gpt4o mini model (OpenAl, 2023),
chosen for its cost-effectiveness and reliable perfor-
mance. For both LLMs, we designed one prompt
per field type. These prompts were automatically
generated for each field type using the following
prompt templates for format checking (see Listing
4) and for fact checking (see Listing 5), requiring
only minor adjustments afterward.
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Listing 4: Meta-Prompt for Generating Factual Correctness Prompts

I have a corpus of invoices for political advertisements from TV channels,
where information should be extracted. The following set of information
should be extracted:

advertiser

agency

channel

contract_num

flight_from

flight_to

gross_amount

product

program_desc

program_end_date

program_start_date

property

sub_amount

tv_address

I want to verify the factual correctness of each of these information using
a prompt. Please generate a prompt for every information in the style of
this prompt for the tv—-address and output them in the form of a Python dictionary:

factual_correctness_prompts = {
"tv_address": "You will evaluate addresses to determine if they are
likely to be the official locations of a TV channel or broadcasting
company. For each address:

Assess Suitability: Evaluate whether the address could realistically
serve as a media or broadcasting location. Consider factors such as
the presence of corporate offices, proximity to media hubs, or known
broadcasting facilities that would support its use as a TV channel address.

Provide a Confidence Score: Based on this assessment, assign a confidence
score from O to 1, reflecting how likely it is that the string is a valid
location for a TV channel.

Output Format (CSV):

score; justification

<numerical score (0 to 1)>; '<Short explanation of the score, highlighting
specific aspects of the address that support or detract from its
completeness and correctness.'>"
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Table 7: List of Documents with the field types and corrected values, that are added to the VRDU ground truth for
evaluation

Document Field Type Field Value
b0ae0954-274a-270-797c-76224b78b8ee.pdf  agency Del Ray Media
89b8c007-4189-bfa6-e0a5-fe1d173edf92.pdf flight_from 05/27/20
89b8c007-4189-bfa6-e0aS-feld173edf92.pdf flight_to 05/31/20

42adf390-6e50-6fbc-tbbe-65117alftfcb2.pdf gross_amount  $500.00
143af697-c6f9-a36e-d43f-1a92e800ffeb.pdf flight_from 07/01/20

143af697-c6f9-a36e-d43f-1a92e800ffeb.pdf flight_to 07/07/20
14632210-11d9-a184-e3db-b1b219f52ca8.pdf  flight_from 06/02/20
14632210-11d9-a184-e3db-b1b219f52ca8.pdf  flight_to 06/08/20
48845b9d-9e1b-a9e8-d560-58d35d2b31b2.pdf  flight_from 01/01/20
48845b9d-9e1b-a9e8-d560-58d35d2b31b2.pdf  flight_to 01/08/20
45f3875f-2b24-42fe-ddb4-fa203f4eec30.pdf flight_from 01/22/20
45£3875£-2b24-42fe-ddb4-fa203f4eec30.pdf flight_to 02/05/20
4cc700a3-6cb8-b791-2428-890e7fb7cf2a.pdf  flight_from 10/06/20
4cc700a3-6cb8-b791-2428-890e7fb7cf2a.pdf  flight_to 10/12/20
64243566-745a-3edd-224b-542129a844a6.pdf  flight_from Aprl16/20
64243566-745a-3edd-224b-542129a844a6.pdf  flight_to Apr22/20
64243566-745a-3edd-224b-542129a844a6.pdf  product POLITICIAL
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf  flight_from Feb15/20
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf  flight_to Feb21/20
7b9c8208-d2be-2a81-8a15-215a9a5a26e8.pdf  product BLOOMBERG 4 PRES
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf  flight_from Jun05/20
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf  flight_to Jun19/20
dbd4ed2d-11f1-ba35-cc98-43127897504a.pdf  product OWENS FOR CON UT04
0Obe55a7b-c4b9-7956-d523-30f79a4ebcla.pdf  flight_from 1/27/2020
Obe55a7b-c4b9-7956-d523-30f79ad4ebcla.pdf  flight_to 2/23/2020
4b330586-f3e8-28ea-b0cc-2d060dc10622.pdf  flight_from 4/27/2020
4b330586-f3e8-28ea-b0cc-2d060dc10622.pdf  flight_to 5/31/2020
38alec3a-18bd-0b73-1155-b6ced503f7al.pdf  flight from 1/27/2020
38alec3a-18bd-0b73-1155-b6ced503f7al.pdf  flight_to 2/23/2020
clede720-d1{9-dcb4-e56f-65bf46300e84.pdf flight_from 02/11/20
clede720-d1{9-dcb4-e56f-65bf46300e84.pdf flight_to 02/17/20
cda5811d-3cf3-9¢50-0941-28094bf9880f.pdf  flight_from 01/01/20
cda5811d-3c£3-9¢50-0941-28094bf9880f.pdf ~ flight_to 01/08/20

b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf  tv_address PO BOX 206270 Dallas, TX 75320-6270
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf  flight_from 2/1/2020
b009ea0d-d54e-7410-320d-2dc99dbc8c09.pdf  flight_to 2/29/2020
a5a37afc-bbf5-db26-bd19-a71feelae67a.pdf flight_from 05/06/20
88fa6e33-408f-6ac2-a253-d30e32bce302.pdf flight_from 03/31/20

88fa6e33-408f-6ac2-a253-d30e32bce302.pdf flight_to 04/05/20
80ff3aad-3617-496e-fc29-cf9fdbecc54d.pdf flight_from 04/29/20
80ff3aa4-3617-496e-fc29-cf9fdbecc54d.pdf flight_to 05/05/20
65ebbb18-8a01-357a-94ce-bfal6723822e.pdf  flight_from 06/09/20
65ebbb18-8a01-357a-94ce-bfal6723822e.pdf  flight_to 06/15/20
64780ed0-180c-a77b-bfe0-478c2a48a3a0.pdf  flight_from 05/19/20
64780ed0-180c-a77b-bfe0-478c2a48a3a0.pdf  flight_to 05/22/20

73badb45-b62c-0c2e-1a2f-4b5fb4fdaSb9.pdf tv_address 6301 Bandel Road NW ROCHESTER Rochester,
MN 55901-8798
73badb45-b62c-0c2e-1a2f-4b5fb4fdaSb9.pdf flight_from 10/06/20

73badb45-b62c-0c2e-1a2f-4b5fb4fdas5b9.pdf flight_to 10/12/20
685a2568-66ec-e3e0-27a1-78b56402b8cb.pdf  flight_from 09/15/20
685a2568-66ec-e3e0-27a1-78b56402b8cb.pdf  flight_to 09/21/20
2437f486-c8f2-72ad-1c75-4d45eedd57d2.pdf  flight_from 05/05/20
2437f486-c8f2-72ad-1c75-4d45eedd57d2.pdf  flight_to 05/05/20
c1£3f40£-9003-6d17-9d92-17d62836f017.pdf flight_from 04/06/20
c1f3f40f-9003-6d17-9d92-£7d62836f017.pdf flight_to 04/13/20
35b3207f-bd16-d173-09a5-570acac710b2.pdf  flight_from 03/30/20
35b3207f-bd16-d173-09a5-570acac710b2.pdf  flight to 04/06/20
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Listing 5: Meta-Prompt for Generating Factual Correctness Prompts with JSON Output

I have a corpus of invoices for political advertisements from TV channels,
where information should be extracted. The following set of information
should be extracted:

advertiser

agency

channel

contract_num

flight_from

flight_to

gross_amount

product

program_desc

program_end_date

program_start_date

property

sub_amount

tv_address

I want to verify the factual correctness of each of these information using
a prompt. Please generate a prompt for every information in the style of
this prompt for the tv—address and add it to this JSON file:

factual_correctness_prompts = {
"tv_address": "You will evaluate addresses to determine if they are
likely to be the official locations of a TV channel or broadcasting
company. For each address:

Assess Suitability: Evaluate whether the address could realistically
serve as a media or broadcasting location. Consider factors such as
the presence of corporate offices, proximity to media hubs, or known
broadcasting facilities that would support its use as a TV channel address.

Provide a Confidence Score: Based on this assessment, assign a confidence
score from O to 1, reflecting how likely it is that the string is a valid
location for a TV channel.

Output Format (CSV):

score; justification

<numerical score (0 to 1)>; '<Short explanation of the score, highlighting
specific aspects of the address that support or detract from its
completeness and correctness.'>"
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