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Abstract

Standard automatic metrics, e.g. BLEU, are001
not reliable for document-level MT evalua-002
tion. They can neither distinguish document-003
level improvements in translation quality from004
sentence-level ones, nor identify the discourse005
phenomena that cause context-agnostic trans-006
lations. This paper introduces a novel auto-007
matic metric BLONDE1 to widen the scope008
of automatic MT evaluation from sentence to009
document level. BLONDE takes discourse010
coherence into consideration by categorizing011
discourse-related spans and calculating the012
similarity-based F1 measure of categorized013
spans. We conduct extensive comparisons on014
a newly constructed dataset BWB. The ex-015
perimental results show that BLONDE pos-016
sesses better selectivity and interpretability at017
the document-level, and is more sensitive to018
document-level nuances. In a large-scale hu-019
man study, BLONDE also achieves signifi-020
cantly higher Pearson’s r correlation with hu-021
man judgments compared to previous metrics.022

1 Introduction023

Over the past few years, neural machine translation024

(NMT) models have become the models of choice025

in Machine Translation (MT) (Luong et al., 2015;026

Vaswani et al., 2017; Zhang et al., 2018, inter alia).027

Although some recent work (Hassan et al., 2018;028

Popel, 2018; Bojar et al., 2018) suggest that NMT029

has achieved human parity at the sentence level,030

the reliability of these human-parity claims was031

quickly contested by Läubli et al. (2018, 2020),032

showing that there is a larger difference between033

human and machine translation quality when inter-034

sentential context is taken into account.035

Therefore, document-level machine translation036

has received growing attention in the MT commu-037

nity. However, despite various modeling advances,038

we still lack an efficient and effective evaluation039

1BLONDE: Bilingual Evaluation of Document Translation.
The package and data will be publically available.

Figure 1: BLONDE is a lot more selective than BLEU for
document-level MT, and also shows a larger quality difference
between human and machine translations.

metric for document-level translation. Standard 040

evaluation metrics for MT (e.g., BLEU (Papineni 041

et al., 2002), TER (Snover et al., 2006) and ME- 042

TEOR (Banerjee and Lavie, 2005)) focus on the 043

quality of translations at the sentence level and do 044

not consider discourse-level features. 045

Thus, test suites that performs context-aware 046

evaluation by targeting characteristic discourse- 047

level phenomena have been proposed (Hardmeier 048

et al., 2015; Guillou and Hardmeier, 2016; Bur- 049

chardt et al., 2017; Isabelle et al., 2017; Rios Gon- 050

zales et al., 2017; Müller et al., 2018; Bawden et al., 051

2018; Voita et al., 2019; Guillou and Hardmeier, 052

2018, inter alia) for document-level MT. However, 053

such test suites need to be re-created for new do- 054

mains or even language pairs, and the construction 055

of such test suites can be very labor-intensive. We 056

still lack a easy-to-use automatic metric that can 057

reliably discriminate the quality of document-level 058

translation. 059

In this paper, we curate a large-scale document- 060

level parallel corpus (BWB) from heterogeneous 061

data sources, and quantify document-level transla- 062

tion mistakes by performing a large human study. 063

We found that on this dataset, inconsistency2, el- 064

lipsis and ambiguity were the most noticeable phe- 065

nomena critical for document-level MT, together 066

2By inconsistency we mean the mistakes related to coref-
erence and lexical cohesion (Carpuat, 2009; Guillou, 2013).
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amounting to 86.73% of MT mistakes.067

Based on this analysis, we propose BLONDE, an068

automatic metric that evaluates translation quality069

at the document level. At the core of the metric070

is the similarity-based bijection between subsets071

of reference and system categories (e.g. pronouns,072

inflected forms, discourse relations and lexicons)073

and phrases (e.g. named entities). It then com-074

putes recall, precision and F-measure, along with075

the corresponding measure of n-grams. Further-076

more, BLONDE can incorporate human annotation077

easily by computing scores of human-annotated078

categories in the same way.079

We compare BLONDE with 11 other metrics080

and demonstrate that BLONDE is better at dis-081

tinguishing between context-aware and context-082

agnostic MT systems. We also observe that the083

degree to which BLONDE correlates with sentence-084

level metrics (e.g. BLEU) are lower than the de-085

gree to which the sentence-level metrics correlate086

with each other. This signals that BLONDE indeed087

captures additional aspects of translation quality088

beyond the sentence-level. Human evaluation also089

reveals significantly higher Pearson’s r correlation090

coefficients between BLONDE and human assess-091

ments.092

2 BWB: Bilingual Web Book Dataset093

To design a metric that is more sensitive to094

document-level phenomena, we first curate a095

document-level Chinese–English parallel corpus,096

called BWB (Bilingual Web Books). BWB con-097

sists of Chinese online novels and their corre-098

sponding English translations crawled from the099

Internet. Table 1 summarizes the statistics of the100

BWB dataset. It is a much larger dataset, and con-101

tains longer documents and richer discourse phe-102

nomena compared to all previous document-level103

datasets (Lison and Tiedemann, 2016; Koehn and104

Knowles, 2017; Barrault et al., 2019; Koehn, 2005;105

Liu and Zhang, 2020). To the best of our knowl-106

edge, this is the largest Chinese–English document-107

level translation dataset. 3108

Statistic Train Test Dev Total

#Docs 196,304 80 79 196,463
#Sents 9,576,566 2,632 2,618 9,581,816
#Words 325.4M 68.0K 67.4K 460.8M

Table 1: Statistics of the proposed BWB dataset.

3The details of the corpus creation and quality control are
described in Appendix A.

Dataset Split We treat chapters as documents. 109

The maximum, median, and minimum number of 110

sentences per document are 46, 30 and 18, respec- 111

tively. We split the dataset into a training, devel- 112

opment and a test set in units of books. We use 113

377 books for training, and randomly select 80 and 114

79 documents from the 3,018 documents in the 115

remaining 6 books as the development and test set. 116

3 Analyzing Discourse Errors 117

Error Type # %

NO ERROR 451 17.1%
SENTENCE 1351 51.3%
DOCUMENT 1893 71.9%

INCONSISTENCY 1695 64.4%
NAMED ENTITY 1139 43.3%
TENSE 1018 38.7%

ELLIPSIS 534 20.3%
PRONOUN 456 17.3%
OTHER 103 4.0%

AMBIGUITY 193 7.3%

Table 2: The statistics of translation errors in human analysis.

In this section, we conduct a human study on the 118

test set of BWB, in which we identify and cate- 119

gorize the discourse errors made by MT systems 120

that are invisible in sentence-level evaluation. This 121

human study is conducted by eight professional 122

translators. The annotators are asked to classify 123

translation errors into DOCUMENT-level and SEN- 124

TENCE-level errors (in some cases, both). SEN- 125

TENCE-level errors refer to those errors that cause 126

the translations to be inadequate or not fluent as 127

stand-alone sentences, while DOCUMENT-level er- 128

rors lead to coherence violation across multiple sen- 129

tences in the document. DOCUMENT-level errors 130

are further categorized according to the linguistic 131

phenomena leading to a discrepancy in context- 132

dependent translations.4 133

Table 2 shows the result of error analysis. A sub- 134

stantial proportion of translations have document- 135

level errors (71.9%). This verifies that BWB con- 136

tains rich discourse phenomena that current com- 137

mon MT systems cannot address. We observe that 138

three categories, i.e. inconsistency (64.4%), ellip- 139

sis (20.3%) and ambiguity (7.3%), account for the 140

vast majority of document-level errors. Below we 141

discuss these three categories of DOCUMENT-level 142

errors and the design intuitions behind BLONDE. 143

Inconsistency We consider two kinds of consis- 144

tencies in translation: lexical and grammatical. 145

4The annotation guidelines are described in Appendix B.
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ENTITY E TENSE V PRONOUN P DM M

SRC a) 小乔(Qiao)看着(look)相片回忆(recall)起了二十年前。

JQiaoK [VBD,
VBZ]

[masculine,
feminine,
epicene,
neuter]

[contigency,
temporal,
expansion,
comparison ]

b)那个满脸胡须的男人(man)正是(be)她(she)的新婚丈夫。
c)那却是(be)他们之间初次见面(meet)。
d) 小乔(Qiao)一见到他(he)心里就咯噔(jolt)了一下，
噌的站(stand)起来。

REF a) Qiao looked at the photo and recalled twenty years ago. [1] [2, 0] [0, 0, 0, 0] -
b) This bearded man was her newlywedded husband, [0] [1, 0] [0, 1, 0, 0] [0, 0, 0, 0]
c) JyetK this was the first time they were meeting with each other. [0] [2, 0] [0, 0, 1, 0] [0, 0, 0, 1]
d) JSoK Qiao’s heart jolted as soon as JsheK saw him, and JsheK [1] [2, 0] [1, 2, 0, 0] [1, 0, 0, 0]

quickly stood up.

MTA a) Qiao looked at the photo and recalled twenty years ago. [1] [2, 0] [0, 0, 0, 0] -
b) The bearded man is her newlywed husband. [0] [0, 1] [0, 1, 0, 0] [0, 0, 0, 0]
c) This is the first time they meet with each other. [0] [0, 2] [0, 0, 1, 0] [0, 0, 0, 0]
d) Joe’s heart is squeaky as soon as JheK saw him, and JheK [0] [0, 2] [3, 1, 0, 0] [0, 0, 0, 0]

quickly stands up.

MTB a) Qiao looked at the photo and recalled the past twenty years ago. [1] [2, 0] [0, 0, 0, 0] -
b) This bearded man was her newlywed husband. [0] [1, 0] [0, 1, 1, 0] [0, 0, 0, 0]
c) JHoweverK, that was the first time they met. [0] [2, 0] [0, 0, 1, 0] [0, 0, 0, 1]
d) JSoK as soon as Qiao saw him, JherK heart became squeaky, [1] [2, 0] [1, 2, 0, 0] [1, 0, 0, 0]

and JsheK swiftly stood up.

Figure 2: An example containing inconsistency and ellipsis in BWB. For inconsistency, the same entities are marked in the
same color (Qiao and Husband), and verbs are marked in teal. For ellipsis, omissions are marked with JK. DM stands for
discourse markers (JK). The translation mistakes are underlined. MTB is intuitively a better system than MTA to human readers.

BLEU BLONDE BLOND-D
P P R F1 F1

MTA 47.6 47.6 11.9 19.1 3.0
MTB 41.1 69.1 68.1 68.6 98.5

Table 3: The BLEU and BLONDE scores of the two system
outputs in Figure 2. P, R and F1 represent precision, recall and
F-measure, respectively.

Lexical consistency is defined as a repetitive term146

keeping the same translation throughout the whole147

document (Carpuat and Simard, 2012). Inconsis-148

tent translation of named entities can significantly149

impact translation output, although BLEU may not150

be adversely affected (Agrawal and Singla, 2012;151

Hermjakob et al., 2008). Therefore, in the design152

of BLONDE, we mainly focus on the reiteration153

of named entities (e.g. Qiao in Figure 2). Typi-154

cal grammatical consistency includes tense consis-155

tency and gender consistency. Tense consistency156

refers to the tense being compatible (rather than157

keeping exactly the same tense) with the context. It158

is prominent when the source language is an isolat-159

ing language, e.g. Chinese, and the target language160

is synthetic language, e.g. English (teal in Fig-161

ure 2). In the same spirit, the same entity should162

maintain a consistent grammatical gender. 5163

Ellipsis Ellipsis denotes the omission from a164

clause of one or more words that are nevertheless165

understood in the context of the remaining elements166

(Voita et al., 2019; Yamamoto and Sumita, 1998).167

5It is worth noting that the metric proposed in this study
can be applied to a wider range of language pairs by extending
the definition of grammatical consistency.

SRC 你在看(kan)什么？《复仇者联盟》。
REF What are you watching? The Avengers.
MT What are you looking at? The Avengers.

Figure 3: An example of ambiguity. 看(kan) corresponds to
look, see, watch and view. The correct translation can only be
inferred from the next sentence (The Avengers).

Confusion arises when there are elliptical construc- 168

tions in the source language while the target lan- 169

guage does not allow the same types of ellipsis. For 170

example, the ellipsis of subjects or objects is very 171

common in Chinese while it is ungrammatical in 172

English, especially for pronouns. In Figure 2, she 173

(Qiao) is omitted in Chinese. However, it is hard 174

to know the gender of Qiao from this stand-alone 175

sentence: the correct pronoun choice can only be 176

inferred from context (there is a her in the previous 177

sentence). Another ellipsis that cannot be ignored 178

is the omission of discourse markers, especially 179

when the source language has more zero connec- 180

tive structures (Po-Ching and Rimmington, 2004) 181

than the target language. In the example, How- 182

ever and So are ignored in SRC, which misleads the 183

sentence-level system MTA to ignore the discourse 184

relations between sentences. 185

Ambiguity Translation ambiguity occurs when a 186

word in one language can be translated in more 187

than one way into another language (Tokowicz 188

and Degani, 2010). The cross-language ambiguity 189

comes from several sources of within-language am- 190

biguity including lexical ambiguity, polysemy, and 191

near-synonymy. A unified feature of these is that 192

ambiguous terms satisfy the form of one-to-many 193

mappings. For the example in Figure 3, the word 194
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看(kan) can be translated to look, see, watch or195

view. Without the context indicating what refers to196

a movie, all the lexical choices are coherent.197

4 BLONDE198

The aforementioned document-level phenomena199

have little impact on the n-gram statistics of trans-200

lations. However, as is shown in Section 3, they201

can be key considerations for human readers when202

evaluating translations at the document level. Stan-203

dard automatic metrics ignore the importance of204

contextual coherence of translations, causing the205

document-level nuances to be overlooked (Zhou206

et al., 2008; Xiong and Zhang, 2014). In this sec-207

tion, we describe BLONDE, an automatic metric208

that explicitly tracks discourse phenomena.209

4.1 Document-Level Evaluation210

We first give the formulation of measuring dis-
course phenomena. We define a document D =
[S1, . . . , SN ] of length N as a sequence of N sen-
tences, each denoted as Sn. We take a sentence
Sn of length T to be a string of tokens t1 · · · tT
where each token ti is taken from the target vocab-
ulary V . LetM (Sn) = {m1,m2, . . .} be the set
of spans in the sentence Sn. A span is a subse-
quence of the tokens that comprise Sn = t1 · · · tT .
We then define a category Ck (Sn) ⊆ M (Sn) as
an equivalence class of spans that share a certain
property k, e.g. POS-tag (VBD) or discourse rela-
tion (contigency).6 Let a sequence of mutually
exclusive categories7 in a sentence Sn be

C(Sn) = [Ck (Sn) : k = 1, 2, . . . ,K] .

In our scenario, C(·) corresponds to a certain dis-211

course phenomenon.212

Categorization Let cat :M (Sn)→ C(Sn) im-213

plement a categorization function from the set of214

spans in utterance Sn to the sequence of categories.215

The simplest implementation is strict string match.216

For example, the span he could be directly matched217

to the pronoun category masculine.218

Similarity Measure Let sim : C(Ssn) ×219

C(Srn) → R be an abstract similarity measure220

between two sequences of categories. sim takes221

non-negative value: zero means that C(Ssn) and222

C(Srn) have nothing in common. It is desirable223

6We have left the definition of categories intentionally
open-ended and will revisit this point in Section 4.2

7Each mention m can only belong to one Ck in C.

that the sim increases when C(Ssn) and C(Srn) be- 224

come similar. One possible choice is the number 225

of common spans shared by C(Srn) and C(Ssn). 226

Now we turn from measuring the similarity at the 227

sentence level to the document level. We lift the 228

similarity measure to a system document Ds and a 229

set of reference documents Dr = {Dr1 ,Dr2 , · · · } 230

by summing up the sim of all sentences in D and 231

D. For clarity’s sake, we abuse notation and write 232

sim(C(Ssn),C(Srn)) as sim(Ssn, S
r
n): 233

sim (Ds,Dr) =
∑
Ss
n∈Ds

⊕
Sr
n∈Ur

n

sim(Ssn, S
r
n) (1) 234

where Dr = {Dri
n : Dri ∈ Dr; i = 1, 2, · · · }, and 235

⊕ is a generic aggregator over multiple references, 236

e.g., ⊕ = max, if we take the reference which has 237

the maximum similarity with the system output; or 238

⊕ =
∑

, if we sum up the similarity scores of all 239

references. Here we also reuse the notation sim(·, ·) 240

for two documents and for two sets of documents: 241

sim
(
Ds,Ds′

)
=

N∑
n=1

sim(Ssn, S
s′
n ) (2) 242

sim
(
Dr,Dr

′
)

=
N∑
n=1

⊕
Sr
n∈Ur

n,S
r′
n ∈Ur′

n

sim(Srn, S
r′
n ) 243

Scoring We are now ready to define the “good- 244

ness” of a system output in regards to a certain 245

discourse phenomenon C(·). The precision, recall 246

and F-measure are defined as follows: 247

p =
sim (Ds,Dr)
sim (Ds,Ds)

, r =
sim (Ds,Dr)
sim (Dr,Dr)

248

F =
2pr

p+ r
. (3) 249

4.2 BLOND-D 250

So far, we have tacitly kept cat and sim abstract. In 251

this section, we introduce one operationalization 252

of these two functions and a way of combining 253

multiple categories that are related to discourse 254

phenomena. 255

Categories As shown in Section 3, named 256

entity inconsistency, tense inconsistency and 257

pronoun ellipsis make up the majority of dis- 258

course errors (67.8%) on the data analyzed. We, 259

therefore, introduce three types of categories: 260

ENTITY E , TENSE V and PRONOUN P (See 261

Figure 3). E is a sequence of named entities in 262
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D, V = [MD,VBD,VBN,VBP,VBZ,VBG,VB],8263

and P = [masculine, feminine, neuter,264

epicene]9. In addition, we introduce discourse265

markers DM as categories:M = [contigency,266

temporal,expansion,comparison]10.267

The categorizing function cat then can be op-268

erationalized as a NER model, a POS parser, a269

rule-based string match and a discourse marker270

miner for ENTITY, TENSE, PRONOUN and DM,271

respectively. Note that the number of ENTITY272

categories depends on D while the numbers of273

TENSE and PRONOUN categories are fixed. The274

intuition behind this is that we want to encourage275

the system output to keep consistent tense and276

pronouns as well as the consistent translation for a277

specific named entity.278

Similarity How similar two sequences of cate-279

gories are can be measured by the counts of their280

matched spans:281

sim(Ssn, S
r
n) = (4)282

w � min(count(C(Ssn)), count(C(Srn)))283

where count(C(·)) = [|Ck(·)| : k = 1, 2, · · · ,K],284

and w ∈ ∆K−1 is a weight vector.285

Intuitively, this measures how many functionally286

similar spans they share. For example, in Figure 2,287

sim(UMTA
b , U REF

b ) = 0 since MTA mistranslated all288

the verb into the present tense due to the ignorance289

of context. The total similarity sim(DMTA,DREF)290

is the (weighted) total shared spans in all subcat-291

egories: (1, 2, 4, 0) for (E , V , P , M). The de-292

nominators of Equation (3) are thus the numbers of293

detected spans in the system output (1, 6, 6, 0) and294

in the reference (2, 7, 5, 2), respectively. F1 is then295

the ratio of spans that are in the correct category.296

It is worth noting that there are many other rea-297

sonable ways to operationalize sim. For ENTITY,298

partial credit could be assigned to two named en-299

tities if they have overlapping tokens; for TENSE300

and PRONOUN, partial credit could be assigned to301

two similar categories, e.g. VBP and VB; for DM,302

partial credit could be assigned according to the303

sense hierarchy and the confidences in the detected304

8MD: Modal; VBD: Verb (past tense verb); VBN: Verb (past
participle); VBP: Verb (non-3rd person singular present); VBZ:
Verb (3rd person singular present); VBG: Verb (gerund or
present participle); VB: Verb (base form).

9masculine: he, him, his, himself; feminine: she,
her, hers, herself, neuter: it, its, itself; epicene: they,
them, their, theirs, themselves.

10A detailed explanation is provided in Table 6

discourse markers. We leave the expansion of the 305

sim definition to future work. 306

BLOND-D Further, we combine these four 307

scores into an overall score by a simple weighted 308

averaging approach, named as BLOND-D. By com- 309

puting BLOND-D, one can distill the document- 310

level translation quality from the sentence-level 311

one. 312

BLOND-D(Ds,Dr) = (5) 313( ∏
C∈{E,V,P,M}

(F (Ds,D;C)wi

)1/∑i wi

314

where wi is the weight corresponding to a certain 315

type of categories C, and F (·, ·;C) is the scor- 316

ing in Equation (3), as described in Section 4.1.11 317

The BLOND-D.R, BLOND-D.P and BLOND-D.F1 318

of MTA are (12)
1
4 (27)

1
4 (45)

1
4 ( δ2)

1
4 = .03, (11)

1
3 (26)

1
3 319

(46)
1
3 = .04 and 2·.03·.04

.03+.04 = .036, respectively. 320

4.3 BLONDE: Combining with N-Grams 321

However, focusing on discourse phenomena solely 322

is not enough to provide comprehensive MT evalua- 323

tion that correlates strongly with human judgments. 324

Consider the following example: 325

(1) REF Qiao lifted her heavy eyelids. 326

MT Qiao scrunched her brows together. 327

The output of MT is far from “good” in terms of 328

adequacy, whereas BLOND-D(MT) = 1, since MT 329

translates both named entities and tenses correctly. 330

On account of that, we further calculate the same 331

statistics of n-grams by simply treating each n-gram 332

(span) as a singleton category, and combine them 333

all together: 334

BLONDE(Ds,Dr) = (6) 335( ∏
C∈{E,V,P,M}∪

{n−gram:n=1,2,··· ,N}

(F (Ds,D;C)wi

)1/∑i wi

336

BLONDE covers both discourse coherence features 337

and the sentence-level adequacy, thus provides a 338

comprehensive measurement of translation quality. 339

Table 3 compares BLONDE with BLEU using the 340

two MT outputs found in Figure 3. It is striking 341

that BLEU rates MTA higher than MTB given that 342

MTB is clearly better than MTA to human readers. 343

In sharp contrast, their BLONDE scores reflect the 344

correct ranking in translation quality. 345

11BLOND-D adopts uniform weights. The weighted arith-
metic mean can also be applied.
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4.4 BLOND+: Combining with Human346

Annotations347

BLONDE is highly extensible and it is easy to incor-348

porate human annotations: we can annotate spans349

related to a discourse errors and treat them as cat-350

egories. The automated detected categories and351

human annotated categories is then combined by352

adopting the same weighted averaging approach.353

We name it as BLOND+. We hired the same trans-354

lators who conducted Section 3 to annotate am-355

biguous and omitted word/phrases on the test set356

of BWB. This annotated test set is also publicly357

available as a testbed for evaluating MT system’s358

capacity to disambiguate word senses and to pre-359

dict coherent pronouns or discourse markers in the360

case of omission.361

5 Experiments362

In this section, we examine the effectiveness of363

BLONDE at the document through experiments.364

The following question needs to be answered:365

• Do differences in BLONDE reliably reflect366

differences in the document-level translation367

quality of different MT systems?368

To answer this question, we run several MT base-369

lines and compare their BLONDE scores to eleven370

other metrics:371

Standard Sentence-level metrics BLEU (Pap-372

ineni et al., 2002), METEOR (Banerjee and Lavie,373

2005), TER (Snover et al., 2006), ROUGE-L (Lin,374

2004), CIDER (Vedantam et al., 2015).375

Document-level metrics LC and RC (Wong and376

Kit, 2012). LC and RC are the ratios between the377

number of lexical cohesion devices (i.e. repetition378

and collocation) and repeated content words over379

the total number of content words in a target doc-380

ument. They are direct measurements of lexical381

cohesion.382

Embedding-based metrics SKIP (SkipThought383

cosine similarity (Kiros et al., 2015)), AVER (Em-384

bedding average cosine similarity (Sharma et al.,385

2017)), VECTOR (Vector extrema cosine similarity386

(Forgues et al., 2014)), GREEDY (Greedy Match387

(Rus and Lintean, 2012)).388

5.1 MT Systems389

We test BLONDE on the following system outputs:390

a SMT system (Chiang, 2007), three well-known391

online commercial NMT systems (OMT-A, OMT-B,392

OMT-C), a sentence-level transformer-based sys- 393

tem (MT-S) and a document-level system (MT-D) 394

trained on BWB. MT-D (Zhang et al., 2018) trains 395

sentence-level model parameters first and then es- 396

timates document-level model parameters while 397

keeping the learned original sentence-level Trans- 398

former model parameters fixed. We adopt Trans- 399

former Big (Vaswani et al., 2017) for both MT-S 400

and MT-D. The final system is a human post-editing 401

(PE) on OMT-C, provided by professional transla- 402

tors, so it is supposed to be the strongest baseline.12 403

5.2 The BLONDE Evaluation 404

Firstly, we leverage the test set of BWB and evalu- 405

ate the above-mentioned systems by BLONDE and 406

other metrics. Figure 4 presents the means of all 407

metrics along with the 95% confidence interval es- 408

timated from bootstrap resampling. We observe 409

that the BLONDE scores demonstrate an "exponen- 410

tially" increasing trend from sentence-level towards 411

document-level and human post-editing, while the 412

trends of standard metrics are mostly linear. Specif- 413

ically, the difference between the BLONDE scores 414

of MT-S and MT-D (denoted as ∆(MT-S, MT-D)) 415

is significantly higher than the difference between 416

the ∆(MT-S, MT-D) in their BLEU scores. An even 417

larger ∆ between MT-D and PE in their BLONDE 418

scores is observed, indicating MT-D is still far away 419

from achieving human parity. Note that the trend 420

of BLOND-D scores is even more "exponential", in- 421

dicating BLOND-D indeed distills document-level 422

translation quality. 423

The paired t-statistics of individual documents 424

are given in Table 4. Unlike BLEU, METEOR and 425

other metrics, which either fails to distinguish hu- 426

man and machine translation or has lower discrimi- 427

native power compared to distinguishing different 428

machine translations, the BLONDE family main- 429

tain similar discriminative power across the three 430

pair comparisons. Interestingly but not surprisingly, 431

the non-reference-based LC and RC fail to distin- 432

guish neither (MT-S, MT-D) nor (MT-D, PE), since 433

sentence-level MT is by nature more repetitive than 434

human translation, thus hard to distinguish acciden- 435

tal repetition from document-level cohesion. 436

In addition, the t-statistics of BLOND-D cate- 437

gories provide rich diagnostic information. As can 438

be seen, although transformer-based NMT models 439

have way higher BLEU scores than SMT, MT-S is 440

12We trained models by fairseq (Ott et al., 2019). Model
parameters and the post-editing details are in Appendix F.2
and C, respectively.
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Figure 4: The mean scores of different system outputs given by different metrics on the BWB test set. Shaded region represents
95% confidence interval.

BLEU
BLONDE BLOND+ BLOND-D Categories

R P F1 R P F1 R P F1 E V P M

SMT→ MT-S 25.8 13.5 7.42 10.9 14.5 8.51 12 8.02 1.32 5.1 -2.12 23.6 11.4 13.6
MT-S→ MT-D 8.97 6.32 5.45 5.92 6.58 5.61 6.13 4.85 4.57 4.79 4.93 1.88 7.43 1.62

MT-D→ PE 2.6 4.51 7.77 6.06 4.2 7.27 5.66 6.44 11.1 8.58 12.9 2.44 2.76 5.35

Other Standard Metrics Discourse Cohesion Embedding-based Metrics
METEOR ROUGE-L TER CIDER LC RC SKIP AVER VECTOR GREEDY

SMT→ MT-S 25.3 19.8 -8.28 .853 11.7 12.9 12.2 9.5 18 22.3
MT-S→ MT-D 13.4 11.8 .148 -3.03 -1.23 -1.45 1.62 3.13 5.05 5.83

MT-D→ PE 3.58 9.65 19.9 -6.67 -4.23 -4.44 -6.23 .628 -1.03 -3.15

Table 4: The paired t-statistics of different MT systems. The cells with p-value > .05 are marked in gray. While BLEU
distinguishes SMT and the sentence-level MT-S significantly, it fails to possess the same discriminative power towards document-
level and human translations. BLONDE maintains similar discriminative power across the three t-tests.

Figure 5: Absolute Pearson correlation pairs of automatic
metrics. Computed over the scores of individual documents
in BWB test set.

not statistically superior to SMT in terms of named441

entity translation. However, human post-editing442

scores significant better machine translations in en-443

tity translation – meaning that named entity trans-444

lation accounts for a substantial part of quality dif-445

ferences between machine and human. In terms446

of TENSE and and DM translation, MT-D is not do-447

ing significantly better than MT-S, which could be448

taken into consideration in future document-level449

MT model designs. 450

We also show the pairwise Pearson correlations 451

between different metrics in Figure 5. It illustrates 452

the homogeneity/heterogeneity of different metrics. 453

We report the absolute value of correlation for TER 454

as it aims for a strong negative correlation with 455

human assessment. We see that while sentence- 456

level metrics (BLEU, METEOR and ROUGE-L) have 457

strong correlations with each other, BLONDE corre- 458

lates less well with those metrics, suggesting their 459

heterogeneity. 460

5.3 Human Evaluation 461

We then evaluate BLONDE along with other met- 462

rics in terms of their Pearson correlation with hu- 463

man assessment. Our human assessment is pro- 464

vided by four professional Chinese to English 465

translators and four native English revisers. Two 466

experimental units (SENTENCE vs DOCUMENT) 467

are assessed independently in terms of FLUENCY 468

and ADEQUACY, respectively. In the SENTENCE- 469

level evaluation, we show raters isolated sentences, 470

while in the DOCUMENT-level evaluation, entire 471

documents are presented and we only ask raters 472

to evaluate the overall quality of sequential blocks 473

of sentences (5 sentences per block). We adopt 474

7



Unit SENTENCE DOCUMENT
ADE FLU ADE FLU

BLONDE.R .363 .327 .436† .371†

BLONDE.P .331 .296 .383† .344†

BLONDE.F1 .35 .314 .417† .358 †

BLOND+.R .364 .329 .44† .373†

BLOND+.P .334 .3 .39† .349†

BLOND+.F1 .351 .318 .422† .362†

BLEU .325 .308 .343 .266
METEOR .338 .31 .339 .278
ROUGE-L .275 .262 .29 .211

TER .063 .027 .044 .092
CIDER .139 .116 .114 .087

SKIP .213 .174 .163 .171
AVER .163 .163 .16 .111

VECTOR .25 .243 .248 .218
GREEDY .323 .3 .307 .265

LC .086 .061 .153 .116
RC .096 .07 .169 .13

Table 5: Absolute Pearson correlation with human judgments
on BWB. The highest correlations are in bold. Correlation of
metrics not significantly outperformed by any other metrics
are highlighted with †. The BLONDE family are not tested
against each other.

Relative Ranking (RR) (Bojar et al., 2016). The475

detailed protocol is presented in Appendix D. We476

employ Williams significance test (Williams, 1959;477

Graham and Baldwin, 2014) following the practice478

adopted by WMT (Mathur et al., 2020).479

The results are shown in Table 5. BLONDE ob-480

tains the highest correlation with human assess-481

ment at both the sentence level and the document482

level. However, BLONDE correlates remarkably483

better with human assessment when context is484

taken into account, and it only significantly out-485

performs all other metrics at document level.486

It is worth noting that BLONDE also correlates487

well with FLUENCY assessment, even though it488

is, in essence, still a reference-based metric. One489

possible explanation for this unexpected positive490

result is that it tracks span categories that directly491

relate to cohesion and coherence. Another impor-492

tant observation is that the recall-based BLONDE493

variants generally correlates better with human as-494

sessment, yet work worse in selectivity compared495

to the precision-based variants (see MT-D→ PEin496

Table 4). This provides support for adopting the497

F-measure in terms to get the best of both worlds.498

6 Related Work499

There have been a few works on automatic eval-500

uation metrics for specific discourse phenomena.501

For pronoun translation, Hardmeier and Federico502

(2010) measured the precision and recall of pro-503

nouns directly and Miculicich Werlen and Popescu- 504

Belis (2017) proposed to estimate the accuracy 505

of pronoun translation (APT) by aligning source 506

and target texts. However, as shown in Guillou 507

and Hardmeier (2018), APT does not take the an- 508

tecedents of an anaphoric pronoun into account. 509

They cannot handle the mismatches in the numbers 510

of pronouns either. Jwalapuram et al. (2019) also 511

proposed a specialized measure for pronoun evalu- 512

ation which involves training. Compared to those 513

metrics, BLONDE does not rely on any alignment 514

or training. For lexical cohesion, Wong and Kit 515

(2012) proposed LC and RC. Gong et al. (2015) 516

described a cohesion function to measure text cohe- 517

sion via lexical chain and a gist consistency score 518

based on topic model. However, they fail to dis- 519

tinguish accidental repetition from document-level 520

cohesion. For discourse relations, Hajlaoui and 521

Popescu-Belis (2013) proposed to assessing the ac- 522

curacy of connective translation (ACT). However, 523

it needs a bilingual dictionary of all possible DM 524

translations, while BLONDE only demands a list 525

of monolingual DMs. Moreover, BLONDE has 526

higher tolerance of valid drop (Zufferey and Car- 527

toni, 2012), where ACT suffers due to its recalled- 528

based exact match. Guzmán et al. (2014) and Joty 529

et al. (2014) exploited the discourse structure by 530

computing a similarity measure between the dis- 531

course trees of reference and system output. Those 532

discourse-representation-based metrics are indirect, 533

and rely on discourse parsing tools, which are much 534

more inaccurate than syntactic and semantic pars- 535

ing tools used in BLONDE. 536

Unlike previously proposed metrics, BLONDE 537

does not only focus on one specific discourse phe- 538

nomenon, thus has significantly higher Pearson’s r 539

correlation coefficients with human assessments. 540

7 Conclusion 541

In this paper, we build a large-scale parallel dataset 542

for document-level translation, BWB. We analyze 543

it for common document-level translation errors in 544

practice and propose BLONDE, an interpretable au- 545

tomatic metric for document-level MT evaluation. 546

We further improve BLONDE by diagnosing and 547

distilling discourse-related errors in MT outputs 548

and human-annotations to obtain two improved 549

metrics BLOND-D and BLOND+. These metrics 550

were shown to have better selectivity than various 551

sentence-level metrics and correlate better with hu- 552

man judgments. 553

8



Ethical Considerations554

The annotators were paid a fair wage and the an-555

notation process did not solicit any sensitive in-556

formation from the annotators. Finally, while our557

approach is not tuned for any specific real-world558

application, the approach could be used in sensi-559

tive contexts such as legal or health-care settings,560

and any work must use our approach undertake561

extensive quality-assurance and robustness testing562

before using it in their setting.563

Replicability: As part of our contributions, we564

will release the annotated BWB test set, and re-565

lease the crawling script of the training set under566

Fair Use rules. The BLONDE package will also be567

public available.568
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A Dataset Creation946

The Background of Translators The original947

Chinese books are translated by professional native948

English speakers, and are corrected by editors.949

Data Collection This process is implemented by950

a python web crawler, and certain data cleaning951

is also done in the process. We crawl the books952

chapter by chapter, and convert the text to UTF-8.953

After deduplication, we remove the chapters with954

less than 5 sentences. We further remove the titles955

of each chapter, because most of them are neither956

translated properly nor in the document-level.957

Alignment and Quality Control After collect-958

ing the web books, we align the bilingual books959

chapter by chapter according to the indices, while960

removing those chapters without parallel data.961

Then, we use Bluealign13 (Sennrich and Volk,962

2011), which is an MT-based sentence alignment963

tool, to align the chapters into parallel sentences,964

while retaining the document-level information.965

We further deduplicate the parallel corpus and filter966

the pairs with a sequence ratio of 3.0. The scale967

of the final corpus is 384 books with 9,581,816968

sentence pairs (a total of 460 million words). To969

estimate the accuracy of this process, we hired 4970

bilingual graduate students to manually evaluate971

163 randomly selected documents from the result-972

ing BWB parallel corpus. These students are na-973

tive Chinese speakers who are proficient in English.974

More specifically, they were asked to distinguish975

whether a document is well aligned at the sentence976

level by counting the number of misalignment. For977

example, if Line 39 in English actually corresponds978

to Line 39 and Line 40 in Chinese, but the tool979

made a mistake that it combines the two sentences,980

it is identified as a misalignment. We observe an981

alignment accuracy rate of 93.1%.982

We further asked the same batch of annotators983

to correct such misalignments in both the develop-984

ment and the test set. The annotation result shows985

that 7.3% lines are corrected.986

B Error Analysis and BLOND+987

Annotation988

Error analysis and BLOND+ annotation are con-989

ducted together. This task is conducted by eight990

professional Chinese-English translators who are991

native in Chinese and fluent in English.992

13https://github.com/rsennrich/Bleualign

The guideline is as follows: 993

• First, identify cases which have translation 994

errors. The annotators are instructed to mark 995

examples as “translations with no error” only 996

if it satisfies the criteria of both adequacy and 997

fluency as well as satisfies the criterion that it 998

is coherent in the context. 999

• Second, identify whether the translation con- 1000

tains document-level error or sentence-level 1001

error (or both). The annotators are instructed 1002

to mark examples as “cases with sentence- 1003

level errors” when they are not adequate 1004

or fluent as stand-alone sentences; while 1005

“document-level errors” mean those errors that 1006

cause the example violating the global crite- 1007

rion of coherence. 1008

• Third, categorize the examples with 1009

document-level errors according to the 1010

linguistic phenomena that lead to errors in 1011

MT outputs when considering context. 1012

We first conduct a test annotation and observe 1013

that the annotators categorize document-level er- 1014

rors into mainly into 3 categories, namely inconsis- 1015

tency, ellipsis, and ambiguity. According to this ob- 1016

servation, we instruct annotators to mark document- 1017

level errors as inconsistency, ellipsis, and ambigu- 1018

ity, or other document-level error during the anno- 1019

tation process for the entire test set. 1020

In the formal annotation process, we also added 1021

the requirement to annotate BLOND+M. The de- 1022

tailed requirement is as follows: 1023

• Third, categorize the examples with 1024

document-level into 4 categories: incon- 1025

sistency, ellipsis, and ambiguity, or other 1026

document-level error which cannot be 1027

categorized. 1028

• Fourth, if the example is categorized as am- 1029

biguity, mark the specific word/phrase in the 1030

reference (English) that cause ambiguity and 1031

give the correct word/phrase. 1032

• Fifth, if the example is categorized as ellipsis 1033

and it is not related to pronouns or discourse 1034

markers, mark the omitted word/phrase in the 1035

reference (English). 1036

C Human Post-Editing 1037

This task is conducted by the same eight profes- 1038

sional Chinese-English translators who carry out 1039

13



CATEGORIES DESCRIPTION MARKERS

contingency only consider "cause" ["but", "while", "however", "although", "though", "still",
"yet", "whereas", "on the other hand", "in contrast", "by
contrast", "by comparison", "conversely"]

comparison combine "concession" and "contrast" ["if", "because", "so", "since", "thus", "hence", "as a
result", "therefore", "thereby", "accordingly", "conse-
quently", "in consequence", "for this reason"]

expansion only consider "conjunction" ["also", "in addition", "moreover", "additionally", "be-
sides", "else,", "plus"]

temporal
"synchronous" ["meantime", "meanwhile", "simultaneously"]
"asynchronous" ["when", "after", "then", "before", "until", "later",

"once", "afterward", "next"]

Table 6: Explanations of the discourse marker types (discourse relations) in DM.

Dataset Domain #Docs #Sents
WMT (Barrault et al., 2019) News 68.4k 3.63M

OpenSubtitles (Lison et al., 2018) Subtitles 29.1k 31.2k
TED (Ansari et al., 2020) Talks 1K 219M

BWB Books 196k 9M

Table 7: Comparison of different document-level datasets.

the annotation in Appendix B. We asked them1040

to follow guidelines for achieving “good enough”1041

quality at the sentence-level (comprehensible, ac-1042

curate but as not being stylistically compelling) but1043

especially pay attention to document-level errors1044

and correct them.1045

D The Human Evaluation Protocol1046

The human evaluation is conducted on outputs of1047

five systems (SMT, OMT-B, MT-S, CTX, PE). We fol-1048

low the protocol proposed by (Läubli et al., 2018,1049

2020). We conduct the evaluation experiment with1050

a 2× 2 mixed factorial design, carrying both DOC-1051

UMENT-level and SENTENCE-level evaluation in1052

terms of ADEQUACY and FLUENCY. In the SEN-1053

TENCE-level evaluation, we show raters isolated1054

sentences by random order; while in the DOCU-1055

MENT-level evaluation, entire documents are pre-1056

sented and we only ask raters to evaluate a sequence1057

of 5 sequential sentences at a time in order.1058

To avoid reference bias, the ADEQUACY evalua-1059

tion is only based on source texts, while no source1060

texts nor references are presented in the FLUENCY1061

evaluation.1062

We adopt Relative Ranking (RR): raters are pre-1063

sented with outputs from the aforementioned five1064

systems, which they are asked to evaluate relative1065

to each other, e.g. to determine system A is better1066

than system B (with ties allowed).1067

We use source sentences and documents from 1068

theBWB test set, but blind their origins by random- 1069

izing both the order in which the system outputs are 1070

presented. Note that in the DOCUMENT-level eval- 1071

uation, the same ordering of systems is used within 1072

a document. The order of experimental items is 1073

also randomised. Sentences are randomly drawn 1074

from these documents, regardless of their position. 1075

We also use spam items for quality control (Kit- 1076

tur et al., 2008): In a small fraction of items, we 1077

render one of the five options nonsensical by ran- 1078

domly shuffling the order of all translated words, 1079

except for 10% at the beginning and end. If a rater 1080

marks a spam item as better than or equal to an ac- 1081

tual translation, this is a strong indication that they 1082

did not read both options carefully. On document- 1083

level, we render one of the five options nonsensical 1084

by randomly shuffling the order of all translated 1085

sentences, except for the first and the last sentence. 1086

We recruit four professional Chinese to English 1087

translators and four native English revisers for the 1088

adequacy and fluency conditions respectively. Note 1089

that the eight translators are different from those 1090

professional translators who carry out the human 1091

translation PE. We deliberately invite another group 1092

of specialists for human evaluation to avoid making 1093

unreasonable judgments biased towards PE. In each 1094

condition, each raters evaluate 162 documents (plus 1095

18 spam items) and 162 sentences (plus 18 spam 1096

items). We use two non-overlapping sets of docu- 1097
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SENTENCE DOCUMENT

RATER1-RATER2 .171 .169
RATER3-RATER4 .294 .346
RATER5-RATER6 .323 .402
RATER7-RATER8 .378 .342

Table 8: Inter-rater agreements measure by Cohen’s κ, where
RATER1-4 are professional translators whose native language
is Chinese, RATER5-8 are native English revisers.

ments and two non-overlapping sets of sentences,1098

and each is evaluated by two raters. Specifically,1099

we refer the first half of the test set as PART1 and1100

the second half as PART2. Note that PART1 and1101

PART2 are chosen from different books. Each rater1102

evaluates both sentences and documents, but never1103

the same text in both conditions so as to avoid rep-1104

etition priming (Gonzalez et al., 2011): RATER11105

and RATER2 conduct the DOCUMENT-level ADE-1106

QUACY evaluation on 180 documents sampled from1107

PART1 and the SENTENCE-level ADEQUACY evalu-1108

ation for PART2; RATER3 and RATER4 conduct the1109

SENTENCE-level FLUENCY evaluation on 180 doc-1110

uments sampled from PART1 and the DOCUMENT-1111

level FLUENCY evaluation for PART2; RATER5 and1112

RATER6 conduct the DOCUMENT-level FLUENCY1113

evaluation on 180 documents sampled from PART11114

and the SENTENCE-level FLUENCY evaluation for1115

PART2; RATER7 and RATER8 conduct the SEN-1116

TENCE-level FLUENCY evaluation on 180 docu-1117

ments sampled from PART1 and the DOCUMENT-1118

level FLUENCY evaluation for PART2.1119

E Statistical Analysis of Human1120

Evaluation1121

We calculate Cohen’s kappa coefficient:1122

κ =
P (A)− P (E)

1− P (E)
(7)1123

where P (A) is the proportion of times that two1124

raters agree, and P (E) is the likelihood of agree-1125

ment by chance. We report pairwise inter-rater1126

agreement in Table 8.1127

F Experiment Settings1128

F.1 BLONDE1129

We use the named entity recognition module and1130

the POS tagger of spaCy (Honnibal and Montani,1131

2017) to implement the categorizing function cat1132

for ENTITY and TENSE, respectively. We use the1133

script provided by Sileo et al. (2019) as the dis- 1134

course marker minor. 1135

F.2 Model Hyperparameters 1136

We follow the setup of Transformer big model for 1137

BWB experiments. More precisely, the parame- 1138

ters in the big encoders and decoders are N = 12 1139

, the number of heads per layer is h = 16, the di- 1140

mensionality of input and output is dmodel = 1024, 1141

and the inner-layer of a feed-forward networks has 1142

dimensionality dff = 4096. The dropout rate 1143

is fixed as 0.3. We adopt Adam optimizer with 1144

β1 = 0.9, β2 = 0.98, ε = 10−9, and set learn- 1145

ing rate 0.1 of the same learning rate schedule as 1146

Transformer. We set the batch size as 6,000 and the 1147

update frequency as 16 for updating parameters to 1148

imitate 128 GPUs on a machine with 8 V100 GPU. 1149

The datasets are encoded by BPE with 60K merge 1150

operations. 1151
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