BLONDE: An Automatic Evaluation Metric for Document-level Machine Translation

Anonymous NAACL submission

Abstract

Standard automatic metrics, e.g. BLEU, are not reliable for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones, nor identify the discourse phenomena that cause context-agnostic translations. This paper introduces a novel automatic metric **BLONDE**\(^1\) to widen the scope of automatic MT evaluation from sentence to document level. **BLONDE** takes discourse coherence into consideration by categorizing discourse-related spans and calculating the similarity-based F1 measure of categorized spans. We conduct extensive comparisons on a newly constructed dataset **BWB**. The experimental results show that **BLONDE** possesses better selectivity and interpretability at the document-level, and is more sensitive to document-level nuances. In a large-scale human study, **BLONDE** also achieves significantly higher Pearson’s \(r \) correlation with human judgments compared to previous metrics.

1 Introduction

Over the past few years, neural machine translation (NMT) models have become the models of choice in Machine Translation (MT) (Luong et al., 2015; Vaswani et al., 2017; Zhang et al., 2018, *inter alia*). Although some recent work (Hassan et al., 2018; Popel, 2018; Bojar et al., 2018) suggest that NMT has achieved human parity at the sentence level, the reliability of these human-parity claims was quickly contested by Läubli et al. (2018, 2020), showing that there is a larger difference between human and machine translation quality when inter-sentential context is taken into account.

Therefore, document-level machine translation has received growing attention in the MT community. However, despite various modeling advances, we still lack an efficient and effective evaluation metric for document-level translation. Standard evaluation metrics for MT (e.g., **BLEU** (Papineni et al., 2002), **TER** (Snover et al., 2006) and **METEOR** (Banerjee and Lavie, 2005)) focus on the quality of translations at the sentence level and do not consider discourse-level features.

Thus, test suites that performs context-aware evaluation by targeting characteristic discourse-level phenomena have been proposed (Hardmeier et al., 2015; Guillou and Hardmeier, 2016; Burchardt et al., 2017; Isabelle et al., 2017; Rios Gonzales et al., 2017; Müller et al., 2018; Bawden et al., 2018; Voita et al., 2019; Guillou and Hardmeier, 2018, *inter alia*) for document-level MT. However, such test suites need to be re-created for new domains or even language pairs, and the construction of such test suites can be very labor-intensive. We still lack a easy-to-use automatic metric that can reliably discriminate the quality of document-level translation.

In this paper, we curate a large-scale document-level parallel corpus (**BWB**) from heterogeneous data sources, and quantify document-level translation mistakes by performing a large human study. We found that on this dataset, inconsistency\(^2\), ellipsis and ambiguity were the most noticeable phenomena critical for document-level MT, together

\(^1\) **BLONDE**: Bilingual Evaluation of Document Translation. The package and data will be publically available.

\(^2\) By inconsistency we mean the mistakes related to coreference and lexical cohesion (Carpuat, 2009; Guillou, 2013).
amounting to 86.73% of MT mistakes.

Based on this analysis, we propose BLONDE, an automatic metric that evaluates translation quality at the document level. At the core of the metric is the similarity-based bijection between subsets of reference and system categories (e.g. pronouns, inflected forms, discourse relations and lexicons) and phrases (e.g. named entities). It then computes recall, precision and F-measure, along with the corresponding measure of n-grams. Furthermore, BLONDE can incorporate human annotation easily by computing scores of human-annotated categories in the same way.

We compare BLONDE with 11 other metrics and demonstrate that BLONDE is better at distinguishing between context-aware and context-agnostic MT systems. We also observe that the degree to which BLONDE correlates with sentence-level metrics (e.g. BLEU) are lower than the degree to which the sentence-level metrics correlate with each other. This signals that BLONDE indeed captures additional aspects of translation quality beyond the sentence-level. Human evaluation also reveals significantly higher Pearson’s r correlation coefficients between BLONDE and human assessments.

2 \textit{BWB: Bilingual Web Book Dataset}

To design a metric that is more sensitive to document-level phenomena, we first curate a document-level Chinese–English parallel corpus, called \textit{BWB} (Bilingual Web Books). \textit{BWB} consists of Chinese online novels and their corresponding English translations crawled from the Internet. Table 1 summarizes the statistics of the \textit{BWB} dataset. It is a much larger dataset, and contains longer documents and richer discourse phenomena compared to all previous document-level datasets (Lison and Tiedemann, 2016; Koehn and Knowles, 2017; Barrault et al., 2019; Koehn, 2005; Liu and Zhang, 2020). To the best of our knowledge, this is the largest Chinese–English document-level translation dataset.\footnote{The details of the corpus creation and quality control are described in Appendix A.}

3 Analyzing Discourse Errors

In this section, we conduct a human study on the test set of \textit{BWB}, in which we identify and categorize the discourse errors made by MT systems that are invisible in sentence-level evaluation. This human study is conducted by eight professional translators. The annotators are asked to classify translation errors into DOCUMENT-level and SENTENCE-level errors (in some cases, both). SENTENCE-level errors refer to those errors that cause the translations to be inadequate or not fluent as stand-alone sentences, while DOCUMENT-level errors lead to coherence violation across multiple sentences in the document. DOCUMENT-level errors are further categorized according to the linguistic phenomena leading to a discrepancy in context-dependent translations.\footnote{The annotation guidelines are described in Appendix B.}

Table 2 shows the result of error analysis. A substantial proportion of translations have document-level errors (71.9%). This verifies that \textit{BWB} contains rich discourse phenomena that current common MT systems cannot address. We observe that three categories, i.e. inconsistency (64.4%), ellipsis (20.3%) and ambiguity (7.3%), account for the vast majority of document-level errors. Below we discuss these three categories of DOCUMENT-level errors and the design intuitions behind BLONDE.

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
Statistic & Train & Test & Dev & Total \\
\hline
#Docs & 196,304 & 80 & 79 & 196,463 \\
#Sents & 9,576,566 & 2,632 & 2,618 & 9,581,816 \\
#Words & 325.4M & 68.0K & 67.4K & 460.8M \\
\hline
\end{tabular}
\caption{Statistics of the proposed \textit{BWB} dataset.}
\end{table}
Table 3: The BLEU and BLONDE scores of the two system outputs in Figure 2. P, R and F1 represent precision, recall and F-measure, respectively.

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>BLONDE</th>
<th>BLOND-D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F1</td>
</tr>
<tr>
<td>MTA</td>
<td>47.6</td>
<td>47.6</td>
<td>11.9</td>
</tr>
<tr>
<td>MTB</td>
<td>41.1</td>
<td>69.1</td>
<td>68.1</td>
</tr>
</tbody>
</table>

Lexical consistency is defined as a repetitive term keeping the same translation throughout the whole document (Carpuat and Simard, 2012). Inconsistent translation of named entities can significantly impact translation output, although BLEU may not be adversely affected (Agrawal and Singla, 2012; Hermjakob et al., 2008). Therefore, in the design of BLONDE, we mainly focus on the reiteration of named entities (e.g. Qiao in Figure 2). Typical grammatical consistency includes tense consistency and gender consistency. Tense consistency refers to the tense being compatible (rather than keeping exactly the same tense) with the context. It is prominent when the source language is an isolating language, e.g. Chinese, and the target language is synthetic language, e.g. English (teal in Figure 2). In the same spirit, the same entity should maintain a consistent grammatical gender. 5

Ellipsis Ellipsis denotes the omission from a clause of one or more words that are nevertheless understood in the context of the remaining elements (Voita et al., 2019; Yamamoto and Sumita, 1998).

5It is worth noting that the metric proposed in this study can be applied to a wider range of language pairs by extending the definition of grammatical consistency.

Figure 2: An example containing inconsistency and ellipsis in BWB. For inconsistency, the same entities are marked in the same color (Qiao and Husband), and verbs are marked in teal. For ellipsis, omissions are marked with []. DM stands for discourse markers ([]). The translation mistakes are underlined. MTB is intuitively a better system than MTA to human readers.

Confusion arises when there are elliptical constructions in the source language while the target language does not allow the same types of ellipsis. For example, the ellipsis of subjects or objects is very common in Chinese while it is ungrammatical in English, especially for pronouns. In Figure 2, she (Qiao) is omitted in Chinese. However, it is hard to know the gender of Qiao from this stand-alone sentence: the correct pronoun choice can only be inferred from context (there is a her in the previous sentence). Another ellipsis that cannot be ignored is the omission of discourse markers, especially when the source language has more zero connective structures (Po-Ching and Rimington, 2004) than the target language. In the example, However and So are ignored in SRC, which misleads the sentence-level system MTA to ignore the discourse relations between sentences.

Ambiguity Translation ambiguity occurs when a word in one language can be translated in more than one way into another language (Tokowicz and Degani, 2010). The cross-language ambiguity comes from several sources of within-language ambiguity including lexical ambiguity, polysemy, and near-synonymy. A unified feature of these is that ambiguous terms satisfy the form of one-to-many mappings. For the example in Figure 3, the word...
We first give the formulation of measuring discourse phenomena. The simplest implementation is strict string match. Let similarity measure S be an abstract similarity measure that the sim increases when $C(S^a_n)$ and $C(S^r_n)$ become similar. One possible choice is the number of common spans shared by $C(S^a_n)$ and $C(S^r_n)$. Now we turn from measuring the similarity at the sentence level to the document level. We lift the similarity measure to a system document \mathcal{D}^a and a set of reference documents $\mathcal{D}^r = \{\mathcal{D}^{r_1}, \mathcal{D}^{r_2}, \ldots\}$ by summing up the sim of all sentences in \mathcal{D} and \mathcal{D}. For clarity’s sake, we abuse notation and write $\text{sim}(C(S^a_n), C(S^r_n))$ as $\text{sim}(S^a_n, S^r_n)$:

$$\text{sim}(\mathcal{D}^a, \mathcal{D}^r) = \sum_{S^a_n \in \mathcal{D}^a} \sum_{S^r_n \in \mathcal{D}^r} \text{sim}(S^a_n, S^r_n)$$

(1)

where $\mathcal{D}^r = \{\mathcal{D}^{r_i} : \mathcal{D}^{r_i} \in \mathcal{D}^r; i = 1, 2, \ldots\}$, and \oplus is a generic aggregator over multiple references, e.g., $\oplus = \max$, if we take the reference which has the maximum similarity with the system output; or $\oplus = \sum$, if we sum up the similarity scores of all references. Here we also reuse the notation $\text{sim}(\cdot, \cdot)$ for two documents and for two sets of documents:

$$\text{sim}(\mathcal{D}^a, \mathcal{D}^r) = \sum_{n=1}^{N} \text{sim}(S^a_n, S^r_n)$$

(2)

$$\text{sim}(\mathcal{D}^r, \mathcal{D}^r) = \sum_{n=1}^{N} \sum_{s^r_n \in \mathcal{D}^r} \text{sim}(S^r_n, S^r_n)$$

(3)

Scoring We are now ready to define the “goodness” of a system output in regards to a certain discourse phenomenon $C(\cdot)$. The precision, recall and F-measure are defined as follows:

$$p = \frac{\text{sim}(\mathcal{D}^a, \mathcal{D}^r)}{\text{sim}(\mathcal{D}^a, \mathcal{D}^a)}$$

$$r = \frac{\text{sim}(\mathcal{D}^r, \mathcal{D}^r)}{\text{sim}(\mathcal{D}^r, \mathcal{D}^r)}$$

$$F = \frac{2pr}{p+r}.$$
\[\mathcal{D}, \mathcal{V} = [\text{MD}, \text{VBD}, \text{VBN}, \text{VB}, \text{VBP}, \text{VBZ}, \text{VBG}, \text{VB}], \]
and \(P = [\text{masculine, feminine, neuter, epicene}]^{8} \). In addition, we introduce discourse markers DM as categories: \(\mathcal{M} = [\text{contingency, temporal, expansion, comparison}]^{10} \). The categorizing function cat then can be operationalized as a NER model, a POS parser, a rule-based string match and a discourse marker miner for ENTITY, TENSE, PRONOUN and DM, respectively. Note that the number of ENTITY categories depends on \(\mathcal{D} \) while the numbers of TENSE and PRONOUN categories are fixed. The intuition behind this is that we want to encourage the system output to keep consistent tense and pronouns as well as the consistent translation for a specific named entity.

Similarity How similar two sequences of categories are can be measured by the counts of their matched spans:

\[
\text{sim}(S^n_\mathcal{D}, S'^n_\mathcal{D}) = w \odot \min(\text{count}(C(S^n_\mathcal{D})), \text{count}(C(S'^n_\mathcal{D})))
\]

where \(\text{count}(C(\cdot)) = ||C_k(\cdot) : k = 1, 2, \ldots, K || \), and \(w \in \Delta^{K-1} \) is a weight vector.

Intuitively, this measures how many functionally similar spans they share. For example, in Figure 2, \(\text{sim}(U^\text{MTA}_b, U^\text{REF}_b) = 0 \) since MTA mistranslated all the verb into the present tense due to the ignorance of context. The total similarity \(\text{sim}(\mathcal{D}^\text{MTA}, \mathcal{D}^\text{REF}) \) is the (weighted) total shared spans in all subcategories: \((1, 2, 4, 0)\) for \((\mathcal{E}, \mathcal{V}, \mathcal{P}, \mathcal{M})\). The denominators of Equation (3) are thus the numbers of detected spans in the system output \((1, 6, 6, 0)\) and in the reference \((2, 7, 5, 2)\), respectively. F1 is then the ratio of spans that are in the correct category.

It is worth noting that there are many other reasonable ways to operationalize sim. For ENTITY, partial credit could be assigned to two named entities if they have overlapping tokens; for TENSE and PRONOUN, partial credit could be assigned to two similar categories, e.g. VBP and VB; for DM, partial credit could be assigned according to the sense hierarchy and the confidences in the detected discourse markers. We leave the expansion of the sim definition to future work.

BLOND-D Further, we combine these four scores into an overall score by a simple weighted averaging approach, named as BLOND-D. By computing BLOND-D, one can distill the document-level translation quality from the sentence-level one.

\[
\text{BLOND-D}(\mathcal{D}^\text{s}, \mathcal{D}^\text{r}) = \left(\prod_{C \in \{\mathcal{E}, \mathcal{V}, \mathcal{P}, \mathcal{M} \}} (F(\mathcal{D}^\text{s}, \mathcal{D}^\text{r}); C)^{w_C} \right)^{1/\sum w_C}
\]

where \(w_C \) is the weight corresponding to a certain type of categories \(C \), and \(F(\cdot, \cdot; \cdot) \) is the scoring in Equation (3), as described in Section 4.1.\(^{11}\)

The BLOND-D.R, BLOND-D.P and BLOND-D.F1 of MTA are \((1\frac{1}{3}) \cdot (\frac{2}{3}) \cdot \frac{1}{4} = .03, \) \((\frac{1}{2}) \cdot (\frac{2}{3}) \cdot (\frac{1}{2}) = .04 \) and \(2.03 \cdot 0.04 = .036 \), respectively.

4.3 BLONDE: Combining with N-Grams

However, focusing on discourse phenomena solely is not enough to provide comprehensive MT evaluation that correlates strongly with human judgments. Consider the following example:

\[
\text{(1)} \quad \text{REF} \quad \text{Qiao lifted her heavy eyelids.}
\]

\[
\text{MT} \quad \text{Qiao scrunched her brows together.}
\]

The output of MT is far from “good” in terms of adequacy, whereas BLOND-D(MT) = 1, since MT translates both named entities and tenses correctly. On account of that, we further calculate the same statistics of n-grams by simply treating each n-gram (span) as a singleton category, and combine them all together:

\[
\text{BLONDE}(\mathcal{D}^\text{s}, \mathcal{D}^\text{r}) = \left(\prod_{C \in \{\mathcal{E}, \mathcal{V}, \mathcal{P}, \mathcal{M} \} \cup \{n-\text{gram}: n=1, 2, \ldots, N \}} (F(\mathcal{D}^\text{s}, \mathcal{D}^\text{r}); C)^{w_C} \right)^{1/\sum w_C}
\]

BLONDE covers both discourse coherence features and the sentence-level adequacy, thus provides a comprehensive measurement of translation quality. Table 3 compares BLONDE with BLEU using the two MT outputs found in Figure 3. It is striking that BLEU rates MTA higher than MTB given that MTB is clearly better than MTA to human readers. In sharp contrast, their BLONDE scores reflect the correct ranking in translation quality.

\(^{8}\)MD: Modal; VBD: Verb (past tense verb); VBN: Verb (past participle); VB: Verb (non-3rd person singular present); VBZ: Verb (3rd person singular present); VBG: Verb (gerund or present participle); VB: Verb (base form).

\(^{9}\)masculine: he, him, his, himself; feminine: she, her, hers, herself; neuter: it, its, itself; epicene: they, them, their, theirs, themselves.

\(^{10}\)A detailed explanation is provided in Table 6

\(^{11}\)BLOND-D adopts uniform weights. The weighted arithmetic mean can also be applied.
4.4 BLOND+: Combining with Human Annotations

BLOND is highly extensible and it is easy to incorporate human annotations: we can annotate spans related to a discourse errors and treat them as categories. The automated detected categories and human annotated categories is then combined by adopting the same weighted averaging approach. We name it as BLOND+. We hired the same translators who conducted Section 3 to annotate ambiguous and omitted word/phrases on the test set of BWB. This annotated test set is also publically available as a testbed for evaluating MT system’s capacity to disambiguate word senses and to predict coherent pronouns or discourse markers in the case of omission.

5 Experiments

In this section, we examine the effectiveness of BLOND at the document through experiments. The following question needs to be answered:

• Do differences in BLOND reliably reflect differences in the document-level translation quality of different MT systems?

To answer this question, we run several MT baselines and compare their BLOND scores to eleven other metrics:

Standard Sentence-level metrics BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), TER (Snover et al., 2006), ROUGE-L (Lin, 2004), CIDER (Vedantam et al., 2015).

Document-level metrics LC and RC (Wong and Kit, 2012). LC and RC are the ratios between the number of lexical cohesion devices (i.e. repetition and collocation) and repeated content words over the total number of content words in a target document. They are direct measurements of lexical cohesion.

Embedding-based metrics SKIP (SkipThought cosine similarity (Kiros et al., 2015)), AVER (Embedding average cosine similarity (Sharma et al., 2017)), VECTOR (Vector extrema cosine similarity (Forgues et al., 2014)), GREEDY (Greedy Match (Rus and Lintean, 2012)).

5.1 MT Systems

We test BLOND on the following system outputs: a SMT system (Chiang, 2007), three well-known online commercial NMT systems (OMT-A, OMT-B, OMT-C), a sentence-level transformer-based system (MT-S) and a document-level system (MT-D) trained on BWB. MT-D (Zhang et al., 2018) trains sentence-level model parameters first and then estimates document-level model parameters while keeping the learned original sentence-level Transformer model parameters fixed. We adopt Transformer Big (Vaswani et al., 2017) for both MT-S and MT-D. The final system is a human post-editing (PE) on OMT-C, provided by professional translators, so it is supposed to be the strongest baseline. 12

5.2 The BLOND Evaluation

Firstly, we leverage the test set of BWB and evaluate the above-mentioned systems by BLOND and other metrics. Figure 4 presents the means of all metrics along with the 95% confidence interval estimated from bootstrap resampling. We observe that the BLOND scores demonstrate an "exponentially" increasing trend from sentence-level towards document-level and human post-editing, while the trends of standard metrics are mostly linear. Specifically, the difference between the BLOND scores of MT-S and MT-D (denoted as Δ(MT-S, MT-D)) is significantly higher than the difference between the Δ(MT-S, MT-D) in their BLEU scores. An even larger Δ between MT-D and PE in their BLOND scores is observed, indicating MT-D is still far away from achieving human parity. Note that the trend of BLOND-D scores is even more "exponential", indicating BLOND-D indeed distills document-level translation quality.

The paired t-statistics of individual documents are given in Table 4. Unlike BLEU, METEOR and other metrics, which either fails to distinguish human and machine translation or has lower discriminative power compared to distinguishing different machine translations, the BLOND family maintain similar discriminative power across the three pair comparisons. Interestingly but not surprisingly, the non-reference-based LC and RC fail to distinguish neither (MT-S, MT-D) nor (MT-D, PE), since sentence-level MT is by nature more repetitive than human translation, thus hard to distinguish accidental repetition from document-level cohesion.

In addition, the t-statistics of BLOND-D categories provide rich diagnostic information. As can be seen, although transformer-based NMT models have way higher BLEU scores than SMT, MT-S is

12 We trained models by fairseq (Ott et al., 2019). Model parameters and the post-editing details are in Appendix F.2 and C, respectively.
Figure 4: The mean scores of different system outputs given by different metrics on the BWB test set. Shaded region represents 95% confidence interval.

<table>
<thead>
<tr>
<th>Categories</th>
<th>R</th>
<th>P</th>
<th>F1</th>
<th>R</th>
<th>P</th>
<th>F1</th>
<th>R</th>
<th>P</th>
<th>F1</th>
<th>Categories</th>
<th>R</th>
<th>P</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E V P M</td>
<td>12</td>
<td>8.51</td>
<td>6.13</td>
<td>4.85</td>
<td>4.57</td>
<td>4.79</td>
<td>4.93</td>
<td>1.88</td>
<td>7.43</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMT → MT-S</td>
<td>25.3</td>
<td>19.8</td>
<td>-8.28</td>
<td>.853</td>
<td>11.7</td>
<td>12.9</td>
<td>12.2</td>
<td>9.5</td>
<td>18</td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-S → MT-D</td>
<td>13.4</td>
<td>11.8</td>
<td>-1.48</td>
<td>-3.03</td>
<td>-1.23</td>
<td>-1.45</td>
<td>1.62</td>
<td>3.13</td>
<td>5.05</td>
<td>5.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-D → PE</td>
<td>3.58</td>
<td>9.65</td>
<td>19.9</td>
<td>-6.67</td>
<td>-4.23</td>
<td>-4.44</td>
<td>-6.23</td>
<td>.628</td>
<td>-1.03</td>
<td>-3.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: The paired t-statistics of different MT systems. The cells with p-value > .05 are marked in gray. While BLEU distinguishes SMT and the sentence-level MT-S significantly, it fails to possess the same discriminative power towards document-level and human translations. BLONDe maintains similar discriminative power across the three t-tests.

Figure 5: Absolute Pearson correlation pairs of automatic metrics. Computed over the scores of individual documents in BWB test set.

not statistically superior to SMT in terms of named entity translation. However, human post-editing scores significant better machine translations in entity translation — meaning that named entity translation accounts for a substantial part of quality differences between machine and human. In terms of TENSE and and DM translation, MT-D is not doing significantly better than MT-S, which could be taken into consideration in future document-level MT model designs.

We also show the pairwise Pearson correlations between different metrics in Figure 5. It illustrates the homogeneity/heterogeneity of different metrics. We report the absolute value of correlation for TER as it aims for a strong negative correlation with human assessment. We see that while sentence-level metrics (BLEU, METEOR and ROUGE-L) have strong correlations with each other, BLONDe correlates less well with those metrics, suggesting their heterogeneity.

5.3 Human Evaluation

We then evaluate BLONDe along with other metrics in terms of their Pearson correlation with human assessment. Our human assessment is provided by four professional Chinese to English translators and four native English revisers. Two experimental units (SENTENCE vs DOCUMENT) are assessed independently in terms of FLUENCY and ADEQUACY, respectively. In the SENTENCE-level evaluation, we show raters isolated sentences, while in the DOCUMENT-level evaluation, entire documents are presented and we only ask raters to evaluate the overall quality of sequential blocks of sentences (5 sentences per block). We adopt
There have been a few works on automatic evaluation metrics for specific discourse phenomena. For pronoun translation, Hardmeier and Federico (2010) measured the precision and recall of pronouns directly and Miculich Werlen and Popescu-Belis (2017) proposed to estimate the accuracy of pronoun translation (APT) by aligning source and target texts. However, as shown in Guillou and Hardmeier (2018), APT does not take the antecedents of an anaphoric pronoun into account. They cannot handle the mismatches in the numbers of pronouns either. Jwalapuram et al. (2019) also proposed a specialized measure for pronoun evaluation which involves training. Compared to those metrics, BLONDE does not rely on any alignment or training. For lexical cohesion, Wong and Kit (2012) proposed LC and RC. Gong et al. (2015) described a cohesion function to measure text cohesion via lexical chain and a gist consistency score based on topic model. However, they fail to distinguish accidental repetition from document-level cohesion. For discourse relations, Hajlaoui and Popescu-Belis (2013) proposed to assessing the accuracy of connective translation (ACT). However, it needs a bilingual dictionary of all possible DM translations, while BLONDE only demands a list of monolingual DMs. Moreover, BLONDE has higher tolerance of valid drop (Zufferey and Cartoni, 2012), where ACT suffers due to its recalled-based exact match. Guzmán et al. (2014) and Joty et al. (2014) exploited the discourse structure by computing a similarity measure between the discourse trees of reference and system output. Those discourse-representation-based metrics are indirect, and rely on discourse parsing tools, which are much more inaccurate than syntactic and semantic parsing tools used in BLONDE.

Unlike previously proposed metrics, BLONDE does not only focus on one specific discourse phenomenon, thus has significantly higher Pearson’s ρ correlation coefficients with human assessments.

6 Related Work

Relative Ranking (RR) (Bojar et al., 2016). The detailed protocol is presented in Appendix D. We employ Williams significance test (Williams, 1959; Graham and Baldwin, 2014) following the practice adopted by WMT (Mathur et al., 2020).

The results are shown in Table 5. BLONDE obtains the highest correlation with human assessment at both the sentence level and the document level. However, BLONDE correlates remarkably better with human assessment when context is taken into account, and it only significantly outperforms all other metrics at document level.

It is worth noting that BLONDE also correlates well with FLUENCY assessment, even though it is, in essence, still a reference-based metric. One possible explanation for this unexpected positive result is that it tracks span categories that directly relate to cohesion and coherence. Another important observation is that the recall-based BLONDE variants generally correlates better with human assessment, yet work worse in selectivity compared to the precision-based variants (see MT-D → PE in Table 4). This provides support for adopting the F-measure in terms to get the best of both worlds.

7 Conclusion

In this paper, we build a large-scale parallel dataset for document-level translation, B3V8. We analyze it for common document-level translation errors in practice and propose BLONDE, an interpretable automatic metric for document-level MT evaluation. We further improve BLONDE by diagnosing and distilling discourse-related errors in MT outputs and human-annotations to obtain two improved metrics BLOND-D and BLOND+. These metrics were shown to have better selectivity than various sentence-level metrics and correlate better with human judgments.
Ethical Considerations

The annotators were paid a fair wage and the annotation process did not solicit any sensitive information from the annotators. Finally, while our approach is not tuned for any specific real-world application, the approach could be used in sensitive contexts such as legal or health-care settings, and any work must use our approach undertake extensive quality-assurance and robustness testing before using it in their setting.

Replicability: As part of our contributions, we will release the annotated BWB test set, and release the crawling script of the training set under Fair Use rules. The BLONDe package will also be public available.

References

A Dataset Creation

The Background of Translators The original Chinese books are translated by professional native English speakers, and are corrected by editors.

Data Collection This process is implemented by a python web crawler, and certain data cleaning is also done in the process. We crawl the books chapter by chapter, and convert the text to UTF-8. After deduplication, we remove the chapters with less than 5 sentences. We further remove the titles of each chapter, because most of them are neither translated properly nor in the document-level.

Alignment and Quality Control After collecting the web books, we align the bilingual books chapter by chapter according to the indices, while removing those chapters without parallel data. Then, we use Bluealign (Sennrich and Volk, 2011), which is an MT-based sentence alignment tool, to align the chapters into parallel sentences, while retaining the document-level information. We further deduplicate the parallel corpus and filter the pairs with a sequence ratio of 3.0. The scale of the final corpus is 384 books with 9,581,816 sentence pairs (a total of 460 million words). To estimate the accuracy of this process, we hired 4 bilingual graduate students to manually evaluate 163 randomly selected documents from the resulting BWB parallel corpus. These students are native Chinese speakers who are proficient in English. More specifically, they were asked to distinguish whether a document is well aligned at the sentence level by counting the number of misalignment. For example, if Line 39 in English actually corresponds to Line 39 and Line 40 in Chinese, but the tool made a mistake that it combines the two sentences, it is identified as a misalignment. We observe an alignment accuracy rate of 93.1%.

We further asked the same batch of annotators to correct such misalignments in both the development and the test set. The annotation result shows that 7.3% lines are corrected.

B Error Analysis and BLOND + Annotation

Error analysis and BLOND+ annotation are conducted together. This task is conducted by eight professional Chinese-English translators who are native in Chinese and fluent in English.

The guideline is as follows:

- First, identify cases which have translation errors. The annotators are instructed to mark examples as “translations with no error” only if it satisfies the criteria of both adequacy and fluency as well as satisfies the criterion that it is coherent in the context.
- Second, identify whether the translation contains document-level error or sentence-level error (or both). The annotators are instructed to mark examples as “cases with sentence-level errors” when they are not adequate or fluent as stand-alone sentences; while “document-level errors” mean those errors that cause the example violating the global criterion of coherence.
- Third, categorize the examples with document-level errors according to the linguistic phenomena that lead to errors in MT outputs when considering context.

We first conduct a test annotation and observe that the annotators categorize document-level errors into mainly into 3 categories, namely inconsistency, ellipsis, and ambiguity. According to this observation, we instruct annotators to mark document-level errors as inconsistency, ellipsis, and ambiguity, or other document-level error during the annotation process for the entire test set.

In the formal annotation process, we also added the requirement to annotate BLOND+M. The detailed requirement is as follows:

- Third, categorize the examples with document-level errors into 4 categories: inconsistency, ellipsis, and ambiguity, or other document-level error which cannot be categorized.
- Fourth, if the example is categorized as ambiguity, mark the specific word/phrase in the reference (English) that cause ambiguity and give the correct word/phrase.
- Fifth, if the example is categorized as ellipsis and it is not related to pronouns or discourse markers, mark the omitted word/phrase in the reference (English).

C Human Post-Editing

This task is conducted by the same eight professional Chinese-English translators who carry out
the annotation in Appendix B. We asked them to follow guidelines for achieving “good enough” quality at the sentence-level (comprehensible, accurate but as not being stylistically compelling) but especially pay attention to document-level errors and correct them.

D The Human Evaluation Protocol

The human evaluation is conducted on outputs of five systems (SMT, OMT-B, MT-S, CTX, PE). We follow the protocol proposed by (Läubli et al., 2018, 2020). We conduct the evaluation experiment with a 2 x 2 mixed factorial design, carrying both DOCUMENT-level and SENTENCE-level evaluation in terms of ADEQUACY and FLUENCY. In the SENTENCE-level evaluation, we show raters isolated sentences by random order; while in the DOCUMENT-level evaluation, entire documents are presented and we only ask raters to evaluate a sequence of 5 sequential sentences at a time in order.

To avoid reference bias, the ADEQUACY evaluation is only based on source texts, while no source texts nor references are presented in the FLUENCY evaluation.

We adopt Relative Ranking (RR): raters are presented with outputs from the aforementioned five systems, which they are asked to evaluate relative to each other, e.g. to determine system A is better than system B (with ties allowed).

We use source sentences and documents from the BWB test set, but blind their origins by randomizing both the order in which the system outputs are presented. Note that in the DOCUMENT-level evaluation, the same ordering of systems is used within a document. The order of experimental items is also randomised. Sentences are randomly drawn from these documents, regardless of their position.

We also use spam items for quality control (Kittur et al., 2008): In a small fraction of items, we render one of the five options nonsensical by randomly shuffling the order of all translated words, except for 10% at the beginning and end. If a rater marks a spam item as better than or equal to an actual translation, this is a strong indication that they did not read both options carefully. On document-level, we render one of the five options nonsensical by randomly shuffling the order of all translated sentences, except for the first and the last sentence.

We recruit four professional Chinese to English translators and four native English revisers for the adequacy and fluency conditions respectively. Note that the eight translators are different from those professional translators who carry out the human translation PE. We deliberately invite another group of specialists for human evaluation to avoid making unreasonable judgments biased towards PE. In each condition, each rater evaluate 162 documents (plus 18 spam items) and 162 sentences (plus 18 spam items). We use two non-overlapping sets of docu-

<table>
<thead>
<tr>
<th>CATEGORIES</th>
<th>DESCRIPTION</th>
<th>MARKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>contingency</td>
<td>only consider "cause"</td>
<td>["but", "while", "however", "although", "though", "still", "yet", "whereas", "on the other hand", "in contrast", "by contrast", "by comparison", "conversely"]</td>
</tr>
<tr>
<td>comparison</td>
<td>combine "concession" and "contrast"</td>
<td>["if", "because", "so", "since", "thus", "hence", "as a result", "therefore", "thereby", "accordingly", "consequently", "in consequence", "for this reason"]</td>
</tr>
<tr>
<td>expansion</td>
<td>only consider "conjunction"</td>
<td>["also", "in addition", "moreover", "additionally", "besides", "else", "plus"]</td>
</tr>
<tr>
<td>temporal</td>
<td>"synchronous"</td>
<td>["meantime", "meanwhile", "simultaneously"]</td>
</tr>
<tr>
<td></td>
<td>"asynchronous"</td>
<td>["when", "after", "then", "before", "until", "later", "once", "afterward", "next"]</td>
</tr>
</tbody>
</table>

Table 6: Explanations of the discourse marker types (discourse relations) in DM.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Domain</th>
<th>#Docs</th>
<th>#Sents</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMT (Barrault et al., 2019)</td>
<td>News</td>
<td>68.4k</td>
<td>3.63M</td>
</tr>
<tr>
<td>OpenSubtitles (Lison et al., 2018)</td>
<td>Subtitles</td>
<td>29.1k</td>
<td>31.2k</td>
</tr>
<tr>
<td>TED (Ansari et al., 2020)</td>
<td>Talks</td>
<td>1K</td>
<td>219M</td>
</tr>
<tr>
<td>BWB</td>
<td>Books</td>
<td>196k</td>
<td>9M</td>
</tr>
</tbody>
</table>

Table 7: Comparison of different document-level datasets.
Table 8: Inter-rater agreements measure by Cohen’s κ, where RATER1-4 are professional translators whose native language is Chinese, RATER5-8 are native English revisers.

<table>
<thead>
<tr>
<th>RATER</th>
<th>RATER</th>
<th>SENTENCE</th>
<th>DOCUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATER1</td>
<td>RATER2</td>
<td>.171</td>
<td>.169</td>
</tr>
<tr>
<td>RATER3</td>
<td>RATER4</td>
<td>.294</td>
<td>.346</td>
</tr>
<tr>
<td>RATER5</td>
<td>RATER6</td>
<td>.323</td>
<td>.402</td>
</tr>
<tr>
<td>RATER7</td>
<td>RATER8</td>
<td>.378</td>
<td>.342</td>
</tr>
</tbody>
</table>

We calculate Cohen’s kappa coefficient:

\[\kappa = \frac{P(A) - P(E)}{1 - P(E)} \] (7)

where \(P(A) \) is the proportion of times that two raters agree, and \(P(E) \) is the likelihood of agreement by chance. We report pairwise inter-rater agreement in Table 8.

F.2 Model Hyperparameters

We follow the setup of Transformer big model for BIB experiments. More precisely, the parameters in the big encoders and decoders are \(N = 12 \), the number of heads per layer is \(h = 16 \), the dimensionality of input and output is \(d_{model} = 1024 \), and the inner-layer of a feed-forward networks has dimensionality \(d_{ff} = 4096 \). The dropout rate is fixed as 0.3. We adopt Adam optimizer with \(\beta_1 = 0.9, \beta_2 = 0.98, \epsilon = 10^{-9} \), and set learning rate 0.1 of the same learning rate schedule as Transformer. We set the batch size as 6,000 and the update frequency as 16 for updating parameters to imitate 128 GPUs on a machine with 8 V100 GPU. The datasets are encoded by BPE with 60K merge operations.