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Figure 1: a: Original and rotated 3D volume visualization with its spheres packing. b: Difference in the distance ratios between 
sphere’s centers before and after rotation. c: Difference in the sphere’s radiuses before and after rotation. 

 
ABSTRACT: 
Sometimes SRS (Stereotactic Radio Surgery) requires 
using sphere packing on a Region of Interest (ROI) 
such as cancer to determine a treatment plan.  We have 
developed a sphere packing algorithm which packs 
non-intersecting spheres inside the ROI.  The region 
of interest in our case are those voxels which are 
identified as cancer tissues.  In this paper, we analyze 
the rotational invariant properties of  our sphere-
packing algorithm which is based on distance 
transformations. e-Rotation invariant means the ability 
to arbitrary rotate the 3D ROI while keeping the 
volume properties remaining (almost) same within 
some limit of e. The applied rotations produce 
spherical packing which remains highly correlated as 
we analyze the geometrically properties of sphere 
packing before and after the rotation of the volume 
data for the ROI. Our novel sphere packing algorithm 
has high degree of rotation invariance within the range 
of ± e. Our method used a shape descriptor derived 
from the values of the disjoint set of spheres form the 
distance-based sphere packing algorithm to extract the 
invariant descriptor from the ROI. We demonstrated 
by implementing these ideas using Slicer3D platform 
available for our research.  The data is based on sing 
MRI Stereotactic images. We presented several 
performance results on different benchmarks data of 
over 30 patients in Slicer3D platform. 
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INTRODUCTION: 
In several applications such as inspection of  tumor or 
interacting with portion of a 3D volume data, the ROI  
could be rotated at arbitrary angles. If a sphere packing 
algorithm is used before and after such rotation, then 

rotational invariance suggests that there might be high 
correlation between spheres found by our sphere 
packing algorithm before and after the rotation. 
Defining correspondences between the original and 
rotated ROIs is an important task that could be solved 
by spheres’ descriptors.  If these descriptors are highly 
correlated, then we can anticipate that the ROIs might 
be similar as well. Li et al. (Li & Simske, 2002) stated 
that translation and scaling are easy compared to 
rotation. Rotation of a 3D volume data or 3D image 
involves simultaneous manipulation of three 
coordinates to maintain invariance. In the case of 
sphere packing, as we capture the ROI with non-
intersecting spheres, the rotation invariance means that 
set of spheres will remain identical in size although 
their placement is expected to change under an 
arbitrary rotation. There are three major techniques to 
prove the rotation invariance: landmarking, rotation 
invariant features/shape extraction descriptor, and 
brute force rotation alignment. The landmarking is 
normally carried out by following two methods, 
domain specific landmarking and generic landmarking 
(Szeptycki, Ardabilian, & Chen, 2009). The domain 
specific landmarking accepts some fixed point in the 
image and does rotation with respect to that about an 
arbitrary axis. The generic landmarking method on the 
other hand, finds the major axes of the 3D/2D image 
and that can rotate the volume or image as a whole in 
carrying out the rotation. Because the size of the 
volume data can be typically large based on the size of 
the data, both these approaches require that large 
memory storage is available as the complete voxel 
information is required, and usually is time 
consuming. The brute force alignment method 
divides/degrades the object into large number of 
smaller parts and works with them for rotation. This 
method is time consuming, complex and complicated 
because parts have to be organized. The developed 
code for a particular shape in this method may only 
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apply to the data in hand and may not be generalizable. 
Finally, Invariant feature/shape descriptor involves 
identification of certain invariant features (measurable 
quantities) that remains unaltered under rotations of 
the 3D image or volume data. The invariant features 
are indexed with a feature vector also known as shape 
signatures. Then, the optimal rotation can be defined 
by measuring model’s similarities in terms of the 
distance such that the rotation invariant property 
would mean that these distance measures are as close 
to each other with certain limit before and after the 
rotation. There are literally many of rotation invariant 
features that been used in the past, including ratio of 
perimeter to area, fractal measures, circularity, 
min/max/mean curvature, and shape histograms, etc. 
Lin et al. (Lin, Khade, & Li, 2012) and Yankov et al. 
(Yankov, Keogh, Wei, Xi, & Hodges, 2008) use time 
series representation as a feature vector to match the 
3D shapes to prove the rotation invariance. Based on 
our research, most of the studies have been used 
spherical harmonic method to map the features of 
objects into a unit sphere to prove the invariance under 
rotation (Kazhdan, Funkhouser, & Rusinkiewicz, 
2003; Nina-Paravecino & Manian, 2010; Vranic, 
2003). The spherical harmonic method does not 
always give accurate results to distinguish between 
models since the internal parts of the 3D shapes may 
not fit in same sphere. Other researchers combined the 
spherical harmonic with spatial geometric moments 
(El Mallahi, Zouhri, El-Mekkaoui, & Qjidaa, 2017; 
Kakarala & Mao, 2010). The most common graph 
method used is skeletons. The skeletons are based on 
medial axis. The medial axis of the 3D objects has 
been used as a shape descriptor in a number of 
researches (Iyer, Kalyanaraman, Lou, Jayanti, & 
Ramani, 2003; Iyer, Jayanti, Lou, Kalyanaraman, & 
Ramani, 2004; Liu, 2009; Lou et al., 2003; S'anchez-
Cruz & Bribiesca, 2003; Sundar, Silver, Gagvani, & 
Dickinson, 2003).  However, this method is sensitive 
to noise and has a heavy computationally cost. 
In this paper, we considered the set of spheres as 
shape-descriptors and analyzed the sphere packing 
before and after the rotations and looked for the 
similarity measure. We aimed to show that set of 
spheres are invariant such that even if we rotate the 
image, the size of the spheres and center’s distances 
are highly correlated. We used our sphere packing 
algorithm to pack non-intersecting spheres into the 
ROIs before and after rotations.  As mentioned earlier, 
those spheres could provide invariant shape descriptor. 
After rotation the voxels will be populated with the 
new voxel orientation. Our shape descriptor provides 
a novel featureless method that doesn’t depend on any 
specific feature or texture, instead is related to sphere 
packing generated by our sphere packing algorithm. 
Our method characterizes the 3D object similarity by 

the shape geometries of  the sphere packing, and 
sphere’s correspondence with one another and their 
spatial relationships. In this paper, we show that our 
previous work for sphere packing (Anonymous, 2019) 
can be used to show the invariance under rotation since 
our algorithm can describe volumetric shapes more 
succinctly than voxel representation. In this work, the 
spheres packing together with the radiuses and centers 
functions provided an shape descriptor, a novel 
approach for characterization and compression of 
shape information for 3D volume and voxel data. 
 
SPHERE PACKING DESCRIPTOR  
In Stereotactic radio surgery, tumors are irradiated by 
beams of high-energy waves. It is a challenge during 
cancer treatment planning to provide minimal damage 
to healthy tissue around the tumors that get exposed to 
the radiation and still radiate cancerous cells. Our goal 
using sphere packing is to arrange beams on “spheres” 
in a way that hit the unhealthy tissue and leave the 
healthy tissue intact. A key geometric problem in 
Stereotactic radio surgery planning is to fill a 3D 
irregular-tumor shape (ROI) with disjointed spheres. 
We use the spheres packing to represent the 3D object, 
so this method of representation is called region-based 
descriptor since it is based on regions. In one of our 
work, Sphere Packing algorithm is used based on the 
maximum Euclidean distance has been studied and 
implemented in Slicer3D using medical imaging 
(Anonymous, 2019). Sphere packing problem is 
heuristically solved by using Euclidean maximum 
distance. The solution is to find a set of non-
intersecting spheres that used greedy method and can 
be called largest sphere first. Each sphere is 
characterized by its radius and center. The size of the 
regions can be controlled depending on the treatment 
planning required size. Also, in our implementation, 
the density of the volume coverage can be customized 
such as we did in (Anonymous, 2019), we used 50%- 
90% of the density. This means 50% to 90% (or 
theoretically any amount up to 100%) of the ROI is 
covered disjoint spheres which our algorithm finds. Of 
course, more the coverage, more time is taken by the 
algorithm to find all the spheres satisfying the user 
selected criteria. Generally for all patients, 50% 
coverage takes up to 25 minutes, and 90% takes 
minimum of  7 hours and maximum of 72 hours. 
Our algorithm for the sphere packing is defined as a 
set of n unequal spheres and object P of a bounding 
box B. Each sphere 𝑖	𝜖	𝑛 = {1,2, … . . , 𝑛} is 
characterized by its radius 𝑟. and center 𝑐.. The goal of 
this algorithm is to pack sets of disjoint spheres inside 
the ROI providing certain coverage. Our strategy is as 
follows: A uniform grid (voxelization) is used to 
calculate the maximum distance of each voxel to the 



3D object boundary. Then, use the maximum distance 
to be the radius of the first sphere and the location to 
be the sphere center. Iteratively, we extract new 
spheres each time and recalculate the distances based 
on the following constraints: spheres must not 
intersect with other spheres  must completely locate 
inside the volume, and the volume covered by spheres 
is maximized using greedy strategy by subtracting the 
volume of the largest sphere for every iteration where 
largest sphere is found using a distance 
transformation. In our technique, sphere placements 
are no longer on the skeleton line. Instead, the spheres 
are placed wherever the maximum distance value 
occurred inside the ROI during that iteration (Fig. 2). 
We applied our maximum distance sphere packing 
strategy  algorithm successfully on many MRIs using 
the Slicer3D platform; a new module in Slicer3D to be 
used for different shape approximation purposes.  
The spheres centers of the 3D object represent a spatial 
template as a graph. The graph is a representation of 
the intersection of the sphere’s centers that represent 
vertices of the graph of all maximum distances 
contained inside the 3D object, and edges connected 
each two consecutive generated spheres (Fig. 3). 
Ordering of the spheres is important for example: B, 
C, A will give different signature graph than A, B, C.  
 

 
Figure 2: 3D results of our algorithm for sphere packing in 
Slicer3D with 50%, 60%, 70%  of packing density (gray is 

tumor, blue is sphere) (Anonymous, 2019). 
 
  
 
 
 
 

 
Figure 3: Spatial template graph of the original and 
rotated volumes generated from the intersection of 

the spheres’ centers. 
 

 
 

EPSILON ROTATION INVARIANT: 
We introduce a measure called epsilon-rotation 
invariant. Such geometric accuracy of MRI is practical 
especially when it used for planning radio surgery. 
Testing different angles of the image for beam 
planning is needed. Rotating the 3D volume must give 
the similar arrangement of sphere packing. We 
captured inner distances between two consecutive 
spheres’ centers of our shape descriptors as an 
approximation to compute the difference between the 
two 3D shape descriptors, before and after the rotation. 
This graph distances representation is useful to 
abstract a geometric meaning of the 3D shape and to 
characterize the connectivity information. From 
Figure 2, assuming we rotated a 3D tumor, apart from 
how close d1 is to d’1 and d2 is to d’2 etc., we also look 
at the inner spheres’ centers distances between center 
of the original spheres compared with the 
corresponding distances on the rotated volume by 
finding the ratio as follow:  

Distance ratio =  0			
𝑑2

𝑑3	4 = 	𝑑`2 𝑑`34 							invariance	is	met

𝑑2
𝑑3	4 ≠ 	𝑑`2 𝑑`3						

4 invariance	not	met
 

The inner distances between the spheres capture the 
distances before and after the rotation of 3D object, 
and find the sphere packing descriptors. In other 
words, we find how similar the spherical coverage is 
before and after, and intuitively compare that to the 
graph inside the spheres.  Although we did not 
implement the orientation of such inter-distances, we 
expect that to be closely related for better results for 
our distance transformation based shape descriptors.  
Intuitive idea is that apart from radius being equal, the 
relationship between the centers should also be similar 
between one sphere to another. Our algorithm 
descriptor map entries correspond to the Euclidean 
distance between spheres’ centers and these values are 
arranged in a manner that preserve the relative position 
of each sphere.  
 
IMPLEMENTATION: 
We implemented our method in Slicer3D (Fig. 4). The 
Slicer3D (Kikinis, Pieper, & Vosburgh, 2014), is an 
open source medical visualization tool. The 3D slicer 
builds on top of different libraries such as VTK, ITK, 
CMake, NA-MIC, Qt and Python (Anonymous, 2018). 
Also, it contains more than a hundred modules written 
in C++ or Python to provide researchers many 
common tools and rich implementations to achieve 
and implement their goals. The visualization toolkit 
(VTK) framework is an open source with C++ 
libraries that contains many filters for data 
representation/visualization. We developed our 
Slicer3D Python module for sphere packing to work 
with the VTK for volume rotation. 3D arbitrary 
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rotations are introduced for medical images as an 
extension of our previous work carried out for sphere 
packing (Anonymous, 2019).  We used VtkTransform 
to apply rotation via 4x4 matrix multiplications. Our 
algorithm rotates images any number of degrees 
around x, y, and z axes. Any arbitrary rotation can be 
described by specifying the coordinates of the object 
in 3D space and rotation angels. Unlike 2D rotation, 
3D rotation occurs along an arbitrary axis. Suppose the 
rotation angle is a, the rotations about three major axes 
uses well known formulae:  
 

- Rotation along x= B
1 0 0
0 cos(a) −sin(a)
0 sin(a) cos(a)

G  

- Rotation along y= B
cos(a) 0 sin(a)
0 1 0

−sin(a) 0 cos(a)
G 

- Rotation along z= B
cos(a) − sin(a) 0
sin(a) cos(a) 0
0 0 1

G 

Slicer3D create a 3D scene file as Medical Reality 
Markup Language (MRML) and display images in 
physical space using patient coordinates system RAS 
(Right Anterior Superior), based on the information of 
the image spacing, origin, and direction. When 
applying rotation, we used the spheres packing 
information along with the origin and spacing. Thus, 
before we apply the rotation, we need to know the data 
of the volume: 
- Position: the 3D coordinates of the object. 
- Bound: the bound box of the object represented as 

(xmin, xmax, ymin, ymax, zmin, zmax). 
- Origin: it is the position of the first voxel in the 

patient coordinate (0, 0, 0). It is the space origin, 
which is the center of all rotations 

- Spacing: it is the voxels distances along each axis 
in the image. 
 

Applying rotation using VtkTransform is done by 
following six phases as follow: 
• Phase 1: Crate and add a transformation node. We 

first create a TransformNode using 
VtkMRMLTransformNode, then add that node to 
the MRML scene. This node contains the 
transform ID and can store any linear 
transformations of composite of multiple 
transformations. 

 
def addTransform(self): 

 transformNode = slicer.mrmlScene.AddNode                           

               (slicer.vtkMRMLTransformNode()) 

 

• Phase 2: Create a homogenous 4x4 
transformation matrix. VtkTransform generates 

4x4 matrix that initialized to the identity matrix 
transformation (all zeros with ones in the 
diagonal) to describe the linear transformation. 

Rotation = vtk.vtkTransform() 

 

• Phase 3: Set the parameters of rotation. Our 
algorithm rotates images any number of degrees 
around x, y, and z in z, x, y order.  

 
     if rx != 0: 

        rotation.RotateX(rx) 

     if ry != 0: 

        rotation.RotateY(ry) 

     if rz != 0: 

        rotation.RotateZ(rz) 

 

RotateX, RotateY, and RotateZ create the 
rotation matrix. Since VtkTransform rotate the 
object around the origin (0,0,0), the rotation 
algorithm performs the following steps to rotate 
the volume about its center. The volume is first 
translated to its center so that its centroids lie on 
the center of the image instead of the origin 
(0,0,0). The resulting volume is then rotated 
according to transformation chosen by the user (x, 
y, and z angles values).  Then, translate the 
volume back to its original pose. 

 
• Phase 4: Apply transformation. 

 
tNode.ApplyTransformMatrix(rotation.GetMatrix()) 
 

Where tNode is the transform node. GetMatrix 
is used to return the current values to be used for 
the view manipulations such as rotate the current 
values in x, y, z angles. So, the current values 
(vtkMatrix 4x4) are multiplied by transformation 
matrix. Applying transformation is basically done 
by multiplying current node with the transform 
node and stored in simple linear transform: 

 
VtkMRMLVolumeNode(tNode) * transformNode 

 
• Phase 5: Concatenate multiple (nested) 

transformations and attach volume to transform 
node. 
 

OutputVolume.SetAndObserveTransformNodeID(tNode.GetID()) 
        

• Phase 6: Harden transform. 
Describe applying transformations and save it as 
a transformed model. Invoking transform model 
and harden transform the volume to get the 
correct new orientation, which will be stored in 
the image header. Thus, harden transformation is 



used for: changing orientation and generation of 
the output volume.  

 
logicH = slicer.vtkSlicerTransformLogic() 
logicH.hardenTransform(outputVolume) 

 
Our heuristic is based on the greedy concept of 
generating largest spheres first, is O(n*K) where n is 
the number of spheres found to satisfy the chosen 
coverage and K is per sphere iterative constant where 
K= number of voxels in the volume data set. The 
pseudo code for Euclidean sphere packing rotation 
algorithm is as follow: 

1. Input volume as nrrd file 

2. Calculate 3D coordinates position, origin, 

and spacing 

3. Add a transfer node: VtkMRMLTransformNode 
4. Create a homogenous 4x4 transformation 

matrix: VtkTransform 
5. Set the parameters of rotation: RotateX(), 

RotateY(), RotateZ() 

6. Apply transformation: ApplyTransform 
7. Compute the new spacing, origin 

8. Output (Rotated Model) 

9. SegmentedRegion= Bounded rotated Model 

10. Distance= EuclideanDistance(SegmentedRegion) 

11. Max= maximum distance 

12. Sphereraduis= max 

13. Spherecenter= location(max)           // center 

inside bounding box 

14. Sphereisocenter= (Spherecenter + nrrd)   //center 

inside nrrd volume 

15. Spheregrid= (distance, radius, center) 

16. SegmentedRegion= (1- Spheregrid) 

17. While(pixels not covered > pixels in desired 

coverage)do 

      Repeat Steps 10-16 

18. Draw MultiSpheres() 

 
Figure 4: The GUI of our sphere packing rotation in 

Slicer3D. 
 

RESULTS: 
Experimental results demonstrate the effectiveness 
and efficiency of the proposed method. In our 
experiments, we used thirty MRIs of segmented brain 
tumors from the BRATS dataset (Menze, Bjoern H 
and Jakab, 2015) separated on three datasets with ten 
patients on each (Fig. 5). The three datasets are 

manually revised and delineated by experts broad-
certified neuroradiologists and radically different in 
size, shape and complexity. The tumor sizes range 
from 248318 to 12948 pixels.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5: 3D MRI datasets of brain tumor. 
 
The proposed method is applicable to different volume 
shape representations and different arbitrary rotations 
angles (Fig. 6). Our attempt for seeking a rotation 
invariant descriptor is to improve the matching 
similarity performance inspired by region’s partition 
by non-intersecting spheres packing and based on 
maximum distance. We first divide the volume with 
spheres. Then, distances ratios and radii of each sphere 
are calculated to be compared with the correspondence 
on the rotated volume of distance ratio and radii values 
(Fig. 1). More similarity measurements are 
investigated such calculating the accuracy along with 
the Mean Absolute Error (MAE) of our algorithm. We 
developed an epsilon value measure for similarity 
based on our study.  This allowed us to manage 
differences that result due to the fact that voxel sizes 
also change and are within epsilon (e) of each other. 
 
Results under Epsilon (e) -value criteria: 
In our study, we observed interesting patterns looking 
at the radius of spheres, and they are being close 
enough before and after the rotation. The spheres 
radiuses and distance ratios are actually within epsilon 
(e) value criteria. The Epsilon is the maximum 
distance  in terms of voxel size and is always given 
within a small range of numbers. Thus, after analyzing 
our 30 patients MRIs, the epsilon values of the 
difference spheres’ radius before and after rotation are 
under one unit of difference, specifically within the 
value of 0.8 mm. Therefore, any radiuses within ± 0.8 
are meant to be acceptable and there is then a high 
probability that the 3D volumes are similar when there 
are no multiple spheres with the same sphere-radius. 
Since previous epsilon value is based on the 50% of 
the packing density, we tested our epsilon value under 
different packing densities such as 60%, 70% and 
90%. We found that, our epsilon value is consistent 
under ± 0.8 (Fig. 7).  



On the other hand, when we consider the ratio of 
distance between two consecutive spheres in both 
before and after sphere packing list, the epsilon value 
between the distance ratios of the original volume and 
the rotated volume is within ± 2.5. That means, the 
difference in distance ratio between any consecutive 
spheres has to be within ± 2.5. However, increasing 
the packing density strongly increase this value to ± 4 
in 60%, ± 12 in 70%, and ± 32 in 80% of packing 
density (Fig. 8).  This is as expected results (discussed 
in the next section) as we go deeper in the list of 
spheres.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Rotational Euclidean sphere packing. 
 

 
Figure 7: Increase the number of spheres within epsilon 

value with the increase of spheres packing density. 
 

 
 

Figure 8: Increase the epsilon value with the increase of 
spheres packing density. 

 

The accuracy of our technique to approximate the 
same radiuses/ratio values after rotation is calculated 
for each patient data, we divided each radius or ratio 
in the original volume by its corresponding 
radius/ratio after rotation to see how well our 
algorithm works. The overall average radiuses 
accuracy percentage is 96.86% (Fig. 9). On the other 
hand, differences between the ratio of distance before 
and after, the overall Ratio average accuracy of getting 
same ratios is 69.23% (Fig. 10). We noted that our 
results are driven by a good accuracy and further 3D-
spatial improvements will fetch better results. 
To increase the accuracy, we further tested the 
accuracy of some of our results by varying the volume 
dimension (voxel size). Our datasets patients’ grid size 
varies so we increased the dimensions to different 
values to have bigger grid size with a greater number 
of voxels of smaller sizes. We find that the decrease in 
voxel size change the accuracy level. The more the 
voxel size decreased (grid became finer), the accuracy 
increased (Fig. 11).   This is expected because smaller 
voxel sized provide more accuracy than the bigger size 
 

 
Figure 9: Radiuses accuracy. 

 

 
Figure 10: Distance ratio accuracy. 

 
Still, we analyzed the data further. For each patient, we 
computed the absolute error between the original and 
the rotated radiuses/ratios. Absolute values were 
estimated across a range of different patients. 
 
Absolute error = (Before_radius – After_raduis). 

 
Then, the mean absolute error (MAE) was calculated 
for patients using the distribution of ratios and radiuses 
in 30 patients. The closer this value to the zero indicate 
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the great algorithm approximation to cover the 
targeted object. The overall MAE of our algorithm is 
0.2. In medical applications (Irwig, 2007), we believe 
that this measure could be important because the 
absolute error represents the risk of developing 
recurrent disease because this value indicates the 
untreated cells/voxels. Being able to differentiate 
between patient with highest and lowest absolute risk 
of recurrence is an important task in order to diagnose 
the patient with the appropriate treatment. Therefore, 
the MAE play an important role to differentiate whom 
radiotherapy can yield to meaningful benefits. 
 

 
Figure 11: Increased radius accuracy. 

 
DISCUSSION: 
The spheres radius works the best for our study for 
finding the similarity after rotation. Even though there 
are differences between the total number of calculated 
distances before and after rotation, our algorithm 
accuracy is reasonably high because it is able to 
calculate almost similar radiuses each time within 
epsilon. The consistency of spheres radius is because 
our algorithm at each iteration finds the maximum 
radius distance to pick first, so increasing the number 
of packed spheres to cover the required voxels based 
on the desired packing density doesn’t affect the 
epsilon value. Changing the topology due to equal 
spheres is the main reason of the increase of the 
epsilon value of the distance ratios. The algorithm 
decision of choosing which sphere of the same size to 
place first, is the big issue here. Therefore, increasing 
the number of packed spheres will significantly 
increase the changes in topology which will results in 
increasing the epsilon value.  
When the radiuses are equal, the descriptor graph 
before and after might change considerably based on 
which sphere our algorithm suggests. In this case, 
aggregate we will need to collect all those spheres 
which are equal and replace them by the average of the 
center of the sphere in the shape descriptor, and so then  
(e) value will be similar in the shape description before 
and after the rotation. Thus, set of spheres whose 
radius are equal are replaced with one sphere. That is 
expected to reduce the epsilon (e) value further. 
Moreover, the topology changing in our study affect 

our accuracy results. We believe that eliminating equal 
spheres by using the enclosing sphere in our 
implementation will decrease the distance ratio results 
comparing the shape descriptors before and after the 
rotation of the ROI.    
 
CONCLUSION: 
Our novel medical visualization techniques promise to 
improve the efficiency, diagnostic quality and the 
treatment. The field of 3D shape approximation and 
similarity have been a focus in the area of geometry in 
general for several hundred years now. Shape analysis 
for feature extraction is the key problem in the shape 
approximation and similarity issues. The best way for 
similarity matching is to identify certain shape 
signatures (prominent features in the image). These 
signatures are then compared between the transformed 
images through similarity assessment, distance 
computation or any other appropriate methods. This 
paper presented a method for defining a possible 
invariant shape descriptor from 3D-image or 3D-
volume data to be used to match the objects from 
different rotations/viewpoints. Our method can be 
applied to a wide variety of data types such as 2D 
images and even polygonal meshes. Our heuristics is 
e-invariant and has an impressive result of  96% 
invariant under rotations. The experimental results 
prove the effectiveness of our novel idea. The 
proposed system was fully software implemented in 
Slicer3D and has been tested on 30 patient’s databases. 
For future works, we will apply other measures such 
as 3D-spatial sorting based on the spheres found, or 
identifying a minimal volume enclosing sphere 
surrounding all spheres of equal radius (as mentioned 
earlier) to improve epsilon (e) value further. 
Moreover, as Slicer3D is experimental, not FDA 
approved, yet used worldwide, our plan is to upload 
our implementations under BSD license so that world-
wide communities can try the system and provide 
more feedback using their 3D volume data and 
reporting e-value for their data. 
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