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ABSTRACT

Parameter transfer is a central paradigm in transfer learning, enabling knowledge reuse across tasks
and domains by sharing model parameters between upstream and downstream models. However,
when only a subset of parameters from the upstream model is transferred to the downstream model,
there remains a lack of theoretical understanding of the conditions under which such partial parameter
reuse is beneficial and of the factors that govern its effectiveness. To address this gap, we analyze a
setting in which both the upstream and downstream models are ReLU convolutional neural networks
(CNNs). Within this theoretical framework, we characterize how the inherited parameters act as
carriers of universal knowledge and identify key factors that amplify their beneficial impact on
the target task. Furthermore, our analysis provides insight into why, in certain cases, transferring
parameters can lead to lower test accuracy on the target task than training a new model from scratch.
To our best knowledge, our theory is the first to provide a dynamic analysis for parameter transfer
and also the first to prove the existence of negative transfer theoretically. Numerical experiments and
real-world data experiments are conducted to empirically validate our theoretical findings.

1 INTRODUCTION

Transfer learning has become the workhorse of modern deep learning, because it breaks the traditional curse of having
to train a gigantic model from scratch for every new problem (Pan and Yang, 2009; Dai et al., 2009; Torrey and Shavlik,
2010; Imani et al., 2021). By reusing knowledge acquired in a source domain, practitioners can reach higher accuracy
with orders-of-magnitude less labeled data and compute (Yosinski et al., 2014; Ruder et al., 2019). The dominant
instantiation of this idea is the pre-train—fine-tune pipeline: an upstream model is first optimized on a large-scale, often
self-supervised task and is subsequently adapted to a downstream objective (Devlin et al., 2019; Radford et al., 2021; He
et al., 2020). Yet the real world seldom offers a perfect one-to-one architectural match between the two stages (Zhuang
et al., 2020). Upstream backbones may be deeper, include modality-specific components, or be released as black-box
feature extractors (Jiang et al., 2022), while downstream tasks can impose new input resolutions, output spaces, memory
budgets, or even deployment hardware that forbid a literal copy of every weight (Bommasani et al., 2021). Parameter
transfer emerges as an elegant remedy to this mismatch. Because it requires no raw data from the upstream domain
and places almost no constraints on network topology, it combines the sample efficiency of transfer learning with the
flexibility of modular design, fueling its rapid adoption across vision, speech, language, and multi-modal applications
(Houlsby et al., 2019; Liu et al., 2022).

Despite these advances, existing theoretical studies have focused on static generalization bounds (Maurer et al., 2016;
Kumagai, 2016; Wu et al., 2024), without addressing how transfer learning evolves during the training dynamics. Such
a dynamic perspective is essential, since transfer is not only about the final generalization guarantee but also about the
trajectory through which knowledge is acquired and reused across tasks. Parameter transfer is intrinsically a question of
network dynamics. In particular, while empirical works have repeatedly reported the phenomenon of negative transfer
(Wang et al., 2019; Zhang et al., 2022; Zu et al., 2025), a rigorous theoretical characterization has been missing. Our
work fills this gap: we provide, to the best of our knowledge, the first theoretical analysis of training dynamics in
parameter transfer. Importantly, our framework not only proves when and why transfer is beneficial, but also reveals, for
the first time in theory, the precise conditions under which negative transfer arises. These findings significantly broaden
the theoretical landscape of transfer learning and underscore the necessity of dynamic analysis for the principled design
of parameter transfer.
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More specifically, we aim to address two fundamental questions: (i) why parameter transfer can enhance test perfor-
mance compared to random initialization, and (ii) why naive transfer learning may sometimes fail or even lead to
negative transfer. In this paper, we conduct a theoretical analysis of parameter transfer within a nonlinear dynamical
system (Huang et al., 2024; Zhang et al., 2025) where both the upstream model and the downstream model are two layer
neural networks. We explicitly model the universal knowledge (also known as meta-knowledge) and the task-specific
knowledge between the source task and the target task. It is assumed that an a-proportion of the upstream model’s
weights are inherited by the downstream model. For the downstream model, the remaining weights are randomly
initialized. To our best knowledge, we are the first one to give the training dynamics of parameter transfer and prove the
existence of negative transfer in mathematics. Based on the above modeling, we analyze the roles of the three crucial
factors: (1) the universal knowledge between the source task and the target tasks; (2) the training sample size for the
upstream model; (3) the noise level in the source task. It shows that more inherited parameters, larger training sample
size for the upstream model, and less noise in the upstream task can improve the performance of the downstream model.
The results are consistent with the empirical performance of parameter transfer, providing theoretical support for its
effectiveness. The contributions of our paper are as follows.

* To our best knowledge, this work is the first to give the training dynamics of parameter transfer. Specifically, we prove
that when the training sample size, signal strength, noise level, and dimension of both the upstream and downstream
models satisfy a certain condition, the test error rate approaches the Bayes optimal. The condition is tight. In opposite
of this condition, we prove that the test error remains a constant away from the Bayes optimal. These results together
demonstrate the sharpness of our theory and provide a rigorous explanation for the empirical success of parameter
transfer.

* We provide theoretical explanation when parameter transfer outperforms direct training from random initialization.
Specifically, we identify the critical roles of three factors in determining its effectiveness: the norm of the universal
knowledge between the source task and target tasks, the sample size of the source task, and the noise level present in
the source data. Our analysis reveals how these factors jointly influence the success of parameter transfer. In particular,
we show that parameter transfer allows the downstream model to inherit universal knowledge of guaranteed strength,
thereby improving generalization and mitigating the effect of noise memorization in the target tasks. These results
offer a rigorous characterization of the advantage of inherited parameters over random initialization and provide
practical guidance for their application.

* Qur theoretical framework also sheds light on why parameter transfer can sometimes lead to a degradation in
test accuracy compared to direct training. Recent studies have reported such phenomena (Zhang et al., 2022; Go
et al., 2023; Zu et al., 2025), but the underlying mechanisms remain theoretically underexplored. In this work, we
theoretically proved the existence of the negative transfer. Particularly, when the shared signal between the source and
target tasks is very weak, even a well-trained upstream model with a large sample size or low noise level can harm the
target task. The key mechanism is that the weight norm learned from the upstream model becomes excessively large.
When transferred, these over-amplified weights fail to enhance the weak shared signal in the target task but instead
magnify task-specific noise, hence degrading test performance. Our results thus offer rigorous theoretical guidance
for the effective application of the parameter transfer methodology: parameter transfer should be designed to extract
and transfer strong shared features, which necessitates careful selection of the source dataset to ensure sufficient
relevance and signal quality.

2 RELATED WORK

Transfer Learning Theory: Transfer learning has long been the subject of rigorous theoretical scrutiny. The seminal
bias-learning framework introduced by Baxter (2000) first quantified the benefits of a shared inductive bias across
tasks. Later works refined this picture, establishing finite-sample guarantees for representation-based transfer (Maurer
et al., 2016), information-theoretic upper bounds on the joint risk (Wang, 2018; Wu et al., 2024), and minimax-optimal
sample-complexity characterisations in linear regimes (Tripuraneni et al., 2020). Yi et al. (2023) proves that conditional
independence from spurious attributes given the label is sufficient for OOD robustness under correlation shift, and
introduces the Conditional Spurious Variation (CSV) metric that directly controls the OOD generalization error. Besides,
existing theoretical work on parameter transfer is quite limited, Kumagai (2016) assumes the parameter-transfer
learnability of the parametric feature mapping and provides static generalization bounds without consideration of
optimization for parameter transfer. Hu and Zhang (2023) assumes that different models may share common knowledge
in their parameters and prove that transferring parameters via model averaging can improve the prediction performance
of the target model. For discussion on transfer learning application, please refer to Section G.
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Neural Tangent Kernel and Feature Learning: With the advancement of deep learning, analyzing the dynamics
underlying neural networks has become increasingly meaningful. Jacot et al. (2018) introduce the Neural Tangent
Kernel (NTK) regime, which effectively characterizes the dynamics of sufficiently over-parameterized neural networks
and explains how they fit data during training. Building on this, Cao and Gu (2019; 2020) further investigated the
generalization capabilities of neural networks in the over-parameterized regime. At the core of these studies is the
observation that, under sufficiently over-parameterization, neural network weights can be well-approximated by a linear
system (Yu et al., 2023; Benjamin et al., 2024; Fu and Wang, 2024) and remain close to their initialization throughout
training. This phenomenon is known as lazy training (Chizat et al., 2019; Ghorbani et al., 2019; Zhu et al., 2023),
which cannot explain the superior performance of neural networks well. Besides NTK regime, another line of studies
explores benign overfitting in neural network, which is called feature learning (Zou et al., 2023; Cao et al., 2022; Meng
et al., 2025). Feature learning theory typically assumes a specific data generation model and estimates how the weights
learn the signals and noise present in the data. Feature learning theory differs from NTK in two key aspects: 1) Feature
learning theory employs small initializations, which allow the learning process to dominate and avoid lazy training. 2)
Feature learning system can be a highly nonlinear system, and its dynamics are closer to those of real neural networks.
For example, Allen-Zhu and Li (2023) characterizes ensemble learning and knowledge distillation. Meng et al. (2024)
investigates that CNN’s can learn XOR problem efficiently. Shang et al. (2024) investigate the two layer neural networks
and discover that the initialization of second layers matters in the generalization.

3 PROBLEM SETTING

Notations. For sequences {x,,} and {y,, }, the relation x,, = O(y,,) indicates the existence of absolute constants C; > 0
and N > 0 such that [z,,| < C1]yn| holds uniformly for all n > N. Similarly, we write 2, = Q(yy) if yn = O(2y),
and we denote x,, = O(y,) when both z,, = O(y,) and z,, = Q(y,) hold. We adopt O(-), Q(-), and ©(-) to hide
some logarithmic terms. For any event £, we denote its indicator function by 1(£), which equals 1 if £ occurs and 0
otherwise. Furthermore, for non-negative quantities x1, . . ., zx, we use the shorthand y = poly(z1, ..., x)) to express
that y is bounded above by a positive power of max{xy,...,z;}, i.e., y = O(max{wy,...,z;}") for some constant
D > 0. y = polylog(x) indicates that y grows polynomially with respect to log .

Then, we introduce the data generation model, the network model we adapt and the algorithm of parameter transfer. Let
u,vy,vo € R< be three fixed signal vectors with u L v; and u L v,. The data is given in the following definition.

Definition 3.1 (Data in Task 1). Each data point (x,y) with x = (x(l)—r,x(z)T)—r € R?? is generated from the
Sollowing distribution D1: 1. The data label y € {£1} is genemted as a Rademacher random variable. 2. A noise
vector € is generated from the Gaussian distribution N'(0, o5 | (I — uu' /|[ul|3 — viv] /|[vi]3)). 3. One of x(V), x(2)
is randomly selected and assigned as y - (0 + v1) which is the signal part, and the other is assigned as & which is the
noise part.

Definition 3.2 (Data in Task 2). Each data point (x,y) with x = (x(D7T, X(Q)T)—r € R?? is generated from the
Sollowing distribution Ds: 1. The data label y € {1} is generated as a Rademacher random variable. 2. A noise
vector € is generated from the Gaussian distribution N'(0, o5 o (I — uu' /|[ul|3 — vavy /||v2]|3)). 3. One of x(V), x(2)
is randomly selected and assigned as y - (0 + va) which is the signal part, and the other is assigned as & which is the
noise part.

We divide the data input into the signal and noise patch. Such data generation model has been widely used (Allen-Zhu
and Li, 2023; Cao et al., 2022; Jelassi and Li, 2022; Kou et al., 2023; Meng et al., 2024). For the signal patch, the
datasets in Task 1 and Task 2 share a universal signal vector denoted by u, while also containing task-specific signal
vectors v and vo respectively. For the noise patch, we assume that it is orthogonal to the signal patch for simplicity.
Although this orthogonality assumption simplifies the analysis, it can be naturally extended to more general cases where
the noise may have a non-trivial correlation with the signal part. We show later that the universal knowledge is crucial
for parameter transfer. In addition, the noise variances in Task 1 and Task 2 are 0, 1 and o, »; the sample sizes for Task
1 and Task 2 are /V; and Ns; the data samples for Task 1 is denoted by {Xi,h yi,l} zN:ll and the data samples for Task 2

is denoted by {x; 2, %2} 22,

We consider adapt two-layer convolutional neural networks (CNN) for both the upstream model and the downstream
model. The CNN filters are applied to both the signal part and the noise part. Specifically, the network is defined as

m

FOW33) = Fa (Wix) = FL (W), F(W:) = — 3 [o(w ) + (w0 xP))]
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Algorithm 1: Algorithm of Parameter Transfer.

Input: Data on Task 1 {x; 1, ym}ﬁvzll and data on Task 2 {x; 2, yzg}fvjl The upstream model f* and the
downstream model f”. The ratio of inherited parameters c.

Initialize f4: Wf;(o) ~ N(0,03),j € {+1,-1},r € [m];
fort <T* do
‘ Update wf;(t) as: Wﬁ;(t+1) = Wﬁ}(t) — nvwﬁrLTaskl(WA’(t)); t=t+1;
end
Initialize f7: Wfr’(o) = wf;(T*) if 1 <r < am,and wf;(o) ~ N(0,03) ifam <r < m.
fort <T* do
‘ Update wf,,’.(t) as: wf,,’.(tﬂ) = wf,,’.(t) — UVW?TLTaskl(WD’(t)); t=t+1;
end

Algorithm 2: Standard training.

Input: Data on Task 2 {x; o, yw}év:?l. The downstream model f7.

Initialize f7: wf;(o) ~ N(0,03),j € {+1,-1},r € [m];
fort <T* do

Update Wf;(t) as: Wf;(t_‘—l) = wf;(t) — nVWETLTaSkl(WD’(t)); t=t+1;
end

Here, m is the number of convolutional filters, and o(z) = max{0, z} is the activation function. Moreover, W ,
denotes the weight for r-th filter, W ; is the weight matrices associated with I, and W collects all the weight matrices
w;» for j € {£1}. Such convolutional neural network is widely used in feature learning theory. Then, define the
cross-entropy loss function £(z) = log(1 + exp(—=z)), the training loss for Task 1 and Task 2 can be written as

1 1
Lrask1 (W) = i > Uyinf(Wixi1));  Lraska(W) = A D Uyiaf (Wixiz)).
1€[N1] i€[N2]

With a well-defined training objective, we present the parameter transfer training procedure in Algorithm 1, alongside
the standard training baseline in Algorithm 2. The parameter transfer algorithm used in this work randomly sample
weights from the upstream model. In contrast, most existing methods are typically designed to extract and transfer
strong shared features. In addition, it is worth noting that in the upstream model, practitioners often leverage larger
datasets and more complex model architectures to extract transferable knowledge. Such pretraining processes may incur
substantial computational costs, sometimes exceeding the capacity of local computing resources. Furthermore, as we
will discuss in the following section, transferring parameters from the upstream model to the downstream task is not
universally beneficial. In some stringent scenarios, inappropriate inheritance of parameters can even degrade the test
performance of the downstream model, which is also reported in literature.

4 MAIN RESULTS

In this section, we present our main results. Our main results aim to show the theoretical guarantees with probability
at least 1 — § for some small § > 0. With such probability, we show that the training loss will converge below some
arbitrarily small € > 0, while the test accuracy can have different performance based on the training sample size N1, No,
the dimension d and the inherited parameters « etc. We define T* = n~poly(n, d, e, m) be the maximum admissible
number of training iterations. To establish the results, we require several conditions that are summarized below.

Condition 4.1. Define n = max{Ny, Na}. Suppose there exists a sufficiently large constant C, such that the following
hold with v = v1 or vy, and 0, = 0p 1 0r 0p 2:

1. Dimension d satisfies: d = Q(max {no,?|lu+vl3,n?}).
2. Training sample size n and neural network width satisfy: m > C'log(n/d), n > C'log(m/J).



Under review as a conference paper at ICLR 2026

3. The norm of the signal satisfies ||[u + v |3 = Q(o2 log(n/9)).
4. The standard deviation of Gaussian initialization o is appropriately chosen such that

oo = O( (max {Upd/\/ﬁ, Viog(m/é) - ||u+ v||2})1).

5. The learning rate n satisfies
-1
n < O( (max {aidS/Q/(nzm\/log(m/é)), ord/n, |lu+ v||§/m}> )

The first two conditions on d, n, and m are imposed to ensure the desired concentration results hold, accounting
for randomness in both the data distribution and random initialization. The assumption on the width d ensures that
the learning dynamics operate in the over-parameterized regime. Similar assumptions have been adopted in a series
of recent works (Allen-Zhu and Li, 2023; Cao et al., 2022; Kou et al., 2023; Meng et al., 2024). The condition on
the initialization scale o requires it to be sufficiently small, so that the impact of initialization on training remains
negligible. This allows the learning dynamics to dominate the training process, moving beyond the Neural Tangent
Kernel (NTK) regime. Finally, the smallness condition on the learning rate n is a standard technical assumption,
ensuring the stability of the analysis. Under Condition 4.1, we have the following theorem.

Theorem 4.2 (With parameter transfer). Suppose that percentage o (0 < o < 1) of the upstream model’s weights are
inherited. For any €, > 0, if Condition 4.1 holds, then there exist constants C, Co, Cs3 > 0, such that with probability
at least 1 — 20, the following results hold at T = Q(Nym/(neo? 5)):
1. The training loss is below e: Lg(W®) < ¢,
2_2
2. Ifd < C1(*— Nl ‘“”2 LN H“+V2\|2 /(2 TpalV Ny), the test error is close to the optimum. For any new data
p,2

Op1
(x,y)

Q?N2|ul?  NZ[|u+vo|i. oo, Nid
IP’(yf(W(t);x) <O) SGXP[—CQ( 14” ||2 + 2” . 2“2)/( P722 -‘rNgd)];
Ip1 Ip,2 Ip,1
(y2N2 |uH Nz\u-&-vQH a?o2 ,Ny .
3Ifd > O ot 24 222 [(—52— + Ny), the test error has a gap from the optimum:
p,2 p,1

P(yf(W®:x) < 0) z 0.1.

Theorem 4.2 reveals a phase transition of the generalization performance. It highlights the critical role of universal
knowledge in parameter transfer, as well as the influence of inherited parameters, the sample size of the source task,
and the signal-to-noise ratio. Specifically, the theorem shows that in the upstream model, generalization performance
improves when the sample size of the source task, the amount of inherited parameters, and the strength of universal
knowledge are sufficiently large, and when the noise level in the upstream model is small. Conversely, in the absence of
universal knowledge, inherited parameters, or with a small sample size, such benefits do not emerge, regardless of other
factors.

Theorem 4.3 (Without parameter transfer, Previous results in Kou et al. (2023)). For any ¢,0 > 0, if Condition 3.1
holds, then there exist constants C1, Ch, C% > 0, such that with probability at least 1 — 20, the following results hold at
T = Q(Nom/(neo2,)):

1. The training loss converges below ¢, i.e., LW (7)) < ¢.

2. If Na|ju+ v3||3 > Cloy od, then the CNN trained by gradient descent can achieve near Bayes-optimal test error:
P(yf(W®;x) < 0) < exp (~C)Na[[u + va|[3/ (0 »d)) -

3. If No||u + va|3 < Clop od, then the CNN trained by gradient descent can only achieve sub-optimal error rate:
P(yf(W®;x) < 0) > 0.1.

Theorem 4.3 characterizes the generalization performance of networks without parameter transfer. We define the
a®Ni|[ull3

p,1f’p,2d ’ . a,e
sufficient condition in determining the success of parameter transfer. By comparing the conditions of the two theorems,
we can draw the following conclusions.

following key quantity I = Under Condition 4.1, we observe in the theorem above that large value of I is a

Proposition 4.4. Under the condition of Theorem 4.2 and 4.3:
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1. IfT > C for some sufficient large C > 0, when d > C{(Na|lu + v2l[3)/(0}, 5), inherited parameters improves the
performance of downstream models:

« Without parameter transfer, the error rate is sub-optimal: P(yf(W®;x) < 0) > 0.1;
« With parameter transfer, the error rate is near optimal: P(yf(W®);x) < 0) < ¢ for ¢ small enough.

When d < C4(Ns||u+v2|3)/ (0 ), using parameter transfer or not both are near optimal error rate.

lutva|3 2 2 . . .
2. When T\%Q > aNyo, 5 /(Naoy 1) > Cy for Cy large enough, which means that the norm of the universal signal
is much smaller than that of the task-specific signal, parameter transfer is detrimental to the downstream model, i.e.,

negative transfer.

For the first term, the value of I" should not be regarded as a necessary condition for determining the failure of parameter
transfer. The key reason is that even when I' is small, a sufficiently large sample size N5 or high data quality in Task 2
can still ensure the success of parameter transfer. As shown in Proposition 4.4, when I' is large, parameter transfer
will not degrade performance if Task 2 itself achieves good generalization. Conversely, if Task 2 suffers from poor
test performance, parameter transfer can leverage its knowledge transfer to improve overall accuracy. For the second
term, theoretical analysis reveals that under very stringent conditions, parameter transfer can be detrimental to the
performance of downstream models, i.e., negative transfer. The conditions indicate that negative transfer occurs only
when the norm of the universal signal is much smaller than that of the task-specific signal.

5 PROOF SKETCH

In this section, we give a concise proof outline of Theorem 4.2 and full proof can be found in the appendix. Define the
maximum admissible iterations for two training systems as 7, T** = n~poly(n, d, e, m), where T* is the maximum
training iterations in the upstream model and 7 is the maximum training iterations in the downstream model. The
CNN filters’ training dynamics are analyzed via the decomposition of weights:

t 0 . t — . t — . t _
W = w2 a Al v+, valls? v

N1 N2
t — t _
+ Zpﬁ-,l,i,l N&iallz? - & + Z/’;},i,z &i2llz? - &
=1 =1

Here, v and p track signal learning and noise memorization, respectively. The analysis proceeds in two systems (Task 1
and Task 2).

System 1: We define 77, z{* as solutions to:
A = A
AL =M, e b = A4,

with parameters BA, b*, and @, ¢ depending on 7, 0p,1,d, N1, m. The key lemma bounds the coefficients:
Lemma 5.1. Under Condition 4.1, it holds that

nllullgf,q ~ 2n]lulfl3 <0 < 77||11||§96A ~ 2n]lull3

am t—2 m — I3,r — om Zt—1 m )
nvil3_a  20lvill3 __ae _ nllvilld 4 2nlvall3

Zm Ty_9 — m S’Yj7r,1 < cm L1 — m

Moreover, for the noise memorization it holds that

Ny _ _ _A(t
Tz(fcf—z - 1714) < Z pj,rEi,)l < 5N1L£A—1~

These bounds are established via the balanced loss property and continuous approximations.

System 2: We transfer the analysis by defining fyf;(t) — fyf;(T*H), isolating the effect of new initialization. Define

itD , P analogously, yielding:
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Figure 1: Test accuracy under varying conditions of the source task. "w/o PT" corresponds to standard training without
parameter transfer. We compare three key factors that influence the effectiveness of parameter transfer: (a) training
sample size of Task 1 Ny; (b) the noise level of Task 1; (c) the universal signal strength ||u||2 while fixing ||u + v3]|2.
All scenarios include a baseline setting without parameter transfer.
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Figure 2: (a) is the heatmap of test accuracy under different dimensions d and the universal signal strength ||ul| with
fixex ||u + vg||2. The x-axis is the value of ||ul||2 and the y-axis is the dimension d. (b) and (c) display the truncated
heatmap of test accuracy. The accuracy smaller than 0.65 (0.70) is set as O (yellow) and the other is set as 1 (blue).

Lemma 5.2. Under Condition 4.1, for T* + 1 < t < T**, it holds that

w3 oo 20l _ pw oy vl _p 20l
cPm =t—2 m =% Vj.r = @Dy Tt m
nllvig o 2nllvells _ b _ nlvIE p  20llvall3
QDTTL Zt—2 m = ljr2 = EDm t—1 m .

Moreover, for the noise memorization term, it holds that

Ny _D,(t _
§(££2 - £1D) < Z pj,r,(i,)2 < 5N2I?—1-
1€[Na2]

Finally, test accuracy and training loss are evaluated by comparing inner products <W](t3, u + va) and <W§t3, &),

leveraging the established bounds on  and p. This yields the desired generalization and convergence guarantees.

6 NUMERICAL EXPERIMENTS

In this section, we conduct experiments on the synthesized data. Our experiments choose training sample size Ny, No,
noise level o), 1, 0p, 2, the universal signal strength ||u||,. The test sample size is 1000 for all experiments. Given the
dimension d and the signal u, vy, vo, the data in Task 1 and Task 2 is generated according to Definition 3.1 and 3.2.
Specifically, We set d = 2000 and the signal are constructed via the Gram-Schmidt orthogonalization process to ensure
mutual orthogonality in the vector space. Then, we generated the nosie vector £ from Gaussion distribution.

We adapt the two-layer CNN model defined in section 3 for both upstream model and downstream model. The number
of filters is m = 40. All models are trained with gradient descent with a learning rate 7 = 0.01. For all weights without
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Table 1: Effect of varying N; on CIFAR-10 and CIFAR-100. "w/o PT" corresponds to standard training without
parameter transfer, while "w/ PT" refers to the proposed parameter transfer methodology.

PT N1 /N:

Upstream | Downstream | w/o PT W/ PT (vary Ny /o)

2 3 4

oo | T [ o [ o

CIFAR-10 \iz}g il 82.05 91‘85 94.25 96'80
VGG-16 - ' ' ' '

VGG-13 8590 | 89.80 92.65 95.20

oo [ RN 65 s 701

CIFAR-100 \jz}(:ti 1 62.05 64.30 65.65 66.60
VGG-16 - ' ‘ ' '

VGG-13 63.75 | 6435 65.35 65.65

using parameter transfer, it is initialized as N (0, 03), where og = 0.01. We set the learning rate as 0.01. The upstream
models are trained for 77 = 800 epochs while the downstream models are trained for 75 = 400 epochs. Our goal is to
explain the effect of parameter transfer under different settings.

1. In the first setting, we fix the noise level 0, 1 = 0, 2 = 5 and the sample size of the target dataset No = 100. Then,
we compare the test accuracy under different sample sizes of the target dataset N7 and the results are shown in
Figure la.

2. In the second setting, we fix N; = Ny = 100 and the noise level of Task 2 o), » = 5. Then, we compare the test
accuracy under noise level of Task 1 ¢}, ; and the results are shown in Figure 1b.

3. In the third setting, we fix Ny = 1000, N2 = 100, the noise level of all data 0, 1 = 02 = 15 and ||{u+ val|2 = 3,
Then, we compare the test accuracy under different ||u|2 and the results are shown in Figure lc. Note that it is
important to fix ||u + v3||2 instead of ||vz||2 = 3. Otherwise, the performance improvement may be attributed to a
stronger signal rather than parameter transfer.

4. In the fourth setting, we set N; = 1000, No = 100,0, 1 = 0,2 = 15, a = 0.5 so that the inherited weights plays
a dominant role in Task 2. According to Theorem 4.2, the phase transition happens when ||ul|2 and d break the
balance. We plot the heatmap of test accuracy under different d and ||u/|2 in Figure 2a. Moreover, the truncated
heatmaps are also shown in Figure 2b and 2c.

Figure | demonstrates that increasing training sample size for the upstream model, reducing the noise in Task 1, or
enhancing the universal knowledge in the signal can all improve the performance of parameter transfer. Especially, in
Figure 1c, we find that when ||u||y = 0, parameter transfer lead to a degradation in test accuracy. This implies that there
is few universal knowledge in the signal, it may lead to negative transfer, thereby impairing the model’s performance on
new tasks. As shown in Figure 2, increasing ||u||2 or decreasing d will improve the effect of parameter transfer. The
universal knowledge in the signal is critical for the success of parameter transfer. These conclusions are intuitive and
consistent with our theoretical analysis.

7 REAL DATA EXPERIMENTS

In this section, we perform real data experiments to show that parameter transfer is effective and is impacted by several
factors: the training sample size of Task 1 and the noise level in Task 1.

Experiments on Varying N;. We investigated the impact of the training sample size of Task 1 on the efficacy of the
inherited parameters. Specifically, We randomly select 2 classes from CIFAR-10 (or 20 classes from CIFAR-100) as
Task 2, and then randomly choose & classes from the remaining categories as Task 1. For example, when N1 /Ny = 3,
we select 6 (or 60) classes from CIFAR-10 (or CIFAR-100) as Task 1. We use ResNet-101 as the upstream model and
use ResNet-34 and ResNet-50 as the downstream models. As presented in Tab. 1, the results indicate that as the number
of samples in Task 1 increases, parameter transfer demonstrates progressively greater performance improvements
relative to a from-scratch training baseline. For example, employing a ResNet-101 upstream model and a ResNet-34
downstream model on CIFAR-100, the performance increment due is 2.6% when the source tasks are 40 classes. This
increment rise to 12% when the source tasks are 80 classes.
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Figure 3: Effect of varying o, > on CIFAR-10 and CIFAR-100. Test accuracy of ResNet-34 and ResNet-50 as
downstream models on (a) CIFAR-10 and (b) CIFAR-100 under different noise level o, 5. "w/" and "w/o" denote
models trained with and without parameter transfer, respectively.

Experiments on Varying o, ». Furthermore, we explore the effect of different proportions of added noise on the target
tasks. Initially, both Task 1 and Task 2 inherently contain intrinsic noise. Subsequently, we designed an experiment
where we progressively introduced noise into Task 2, as illustrated in Fig. 3. Specifically, we add Gaussian noise
&~ N(0, 012,}2) to the original image. We use ResNet-101 as the upstream model and use ResNet-34 and ResNet-50 as
the downstream models. The experimental results indicate that as noise is continuously added to Task 2, the performance
of inherited parameters consistently surpasses that of methods without parameter transfer. As presented in Fig. 3a,
where the noise values gradually increase from 1 to 20, the advantage of parameter transfer not only persists but also
tends to widen over time.

Experiments on Vision Transformers. We adopt DeiT (Touvron et al., 2021) as the architecture for both the upstream
and downstream models. Specifically, both models are DeiT-Base, which consists of 12 multi-head attention blocks and
12 layers, totaling approximately 86M parameters. The upstream model is pretrained on ImageNet-2012 (Deng et al.,
2009), achieving an accuracy of 81.8%. We select the 9th, 10th, and 11th layers from the upstream model as inherited
parameters and transfer them to the downstream models. The downstream models are then fine-tuned on CIFAR-10 and
CIFAR-100, respectively. We compare the performance of downstream models with parameter transfer against those
with random initialization. The results are presented in Figure 4 in the appendix.

8 DISCUSSION

In this paper, we present a rigorous theoretical analysis of the parameter transfer mechanism within the framework of
a two-layer ReLU convolutional neural network. Our analysis provides theoretical evidence that several key factors,
such as the strength of universal signals shared between the upstream and downstream models, the sample size of the
source task, and the noise level in the source task, play crucial roles in determining the effectiveness of parameter
transfer. These theoretical findings are further supported by numerical simulations. Additionally, we conduct extensive
real-world experiments on CIFAR-10 and CIFAR-100, employing modern neural architectures such as ResNet, VGG,
and ViT, all of which consistently validate our theoretical predictions. A possible limitation of our theoretical framework
is its focus on shallow neural networks. Nevertheless, even in this simplified setting, the theoretical understanding of
parameter transfer remains highly non-trivial. Without first establishing a rigorous foundation for shallow networks, it
would be challenging to develop solid theoretical insights for deeper and more complex architectures. This work thus
serves as a necessary first step, and several promising directions remain for future research. One important direction
is to extend our theoretical analysis to deep neural networks, which involves understanding more intricate dynamical
systems arising from their training processes. Another interesting direction is to design regularization techniques that
can guide the inherited model to select more effective weights rather than random transfer. Developing a theoretical
framework to understand how regularization influences weight selection in parameter transfer remains an open and
important question.
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A  PROOF SKETCH

In this section, we briefly give the proof sketch of Theorem 4.2. We define T, T** = n~!poly(n,d,e, m) be the
maximum admissible number of training iterations in system 1 and 2. Readers may refer to Section B for the calculation
of gradient, and the meaning of the notations.

Our proof is based on a rigorous analysis of the training dynamics of CNN filters. Note that the activation functions are
always non negative, hence F;1(W;x) always contribute to the class +1, and F_; (W x) always contribute to the
class —1. Our test error is calculated by rigorously comparing the output between F', 1 (W;x) and F_;(W;x). By the
definition of Fly; or F_, it is clear that the inner product of w; ,. and the signal u + v in task 2 plays a key role in
achieving high test accuracy.

t

( t
Jirt

Our analysis focused on the training dynamics of w: . By gradient calculation, w]( .. in the downstream model can be

decomposed as

w§f3 wi (t) (t

)+J ’YJT ||u||2 u+jryj'r1 ' ||v1||2_2v1+jry.j,’r)‘,2 ||‘,2H2_2‘,2
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This is because the update direction of W( ) is in the space of span{u, v1, vo, &, 1, &; 2}, Readers may refer to Section B
for the detail. From the algorithm in Sectlon 3, all the coefficients experienced two different systems. We proceed the
analysis in the first system. With the precise characterization in the first system, we then transfer the whole analysis into
the second system. readers may refer to Lemma B.2 for the two systems.

The following lemma constitutes the core technical results in our analysis of signal learning dynamics and noise
memorization behavior in the first system. It is clear from the decomposition above that the coefficients v (i.e ;)
are related to the growth of signal learning in the neural networks, and the coefficients p (i.e p; ;1) are related to the
growth of noise memorization. We would like to define z; and z, which help us give the precise characterization of
signal learning and noise memorization. Let

_4GN log(4N2 12mN
Cy 1||u6—i|-V1H21 g(T*) + (4Cy + 64) Ny MlOg(T*)+8 1og< ”; 1) .aoap@\/(}.
pl

and define Z{, z{* be the unique solution of

+b e’“t —cAt+b

A pten = Mo,

_A 2 .
where b = e #a/2 ¢4 = ‘Z‘:,J, b = e"4/2 and ¢ = %’Ni. We have the following lemmas.
im 1m
Lemma A.1. Under Condition 4.1, it holds that
77”“”%IA ~ 2n]lulfl3 <A < nlul3 A 2n||ul3
am t—2 m 7, — om 7t 1 m i
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Moreover, for the noise memorization it holds that

N
12 (‘rt 2 Z pgrzl <5N1£2471'
1€[N1]

The proof of Lemma A.1 is structured through Lemmas D.8 and D.9, which separately characterize the dynamics of
signal learning and noise memorization. A key step in establishing Lemma A.1 lies in demonstrating the balanced
nature of the per-sample training losses, namely that the ratio E;(t) / E,'L-Et) remains uniformly bounded by a constant for
all iterations ¢ and any ¢, ¢’ € [IN7]. Readers may refer to the proof of Proposition D.5 for a detailed argument on this
balancing property. With the balanced loss established, we proceed to apply continuous approximation techniques,
following a similar approach to that of Meng et al. (2024), and obtain the lemma above.
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With the precise characterization of v and p in system 1, we then transfer the analysis into the second system. The main
challenges in second system are related to the analysis of the system with different initializations. In our analysis of

: D,(t) D, (1) D,(T"+1)
the second system, for the universal part of ;" *, we directly define a new term ;> — ~;

i , and analysis is
directly performed on this term. Combing the analys1s in system 1, we define

402N2”“;V2”21 g(T*) + 7402]\[1'2“”21 (T*) + 161/log(12mN2 /3) - 000 2Vd

log(4(N? + N3)/9)
d

+ (40, + 64) (N, I22 4 NQ)\/ log(T™*).

Op1
With the transfer from system 1 into system 2, we give the characterization of noise memorization and signal learning
in the system 2. Let T, 2 be the unique solution of
D 5P =ePt 457
+QDe£‘ =9Dt+bD,

=D _ _ 3no? ,d no? ,d . . .
where b = e~ #p/2 ¢l = 5 szl b7 = emr/2 and (P ﬁ The coefficient in system 2 can be characterized as
in the following lemma.

Lemma A.2. Under Condition 4.1, for T* + 1 < t < T™**, it holds that

a3 p o 20lalll _ b oy o nlull3 zP ~2n[|u]3
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Moreover, for the noise memorization term, it holds that
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With Lemma A.1 and A.2, our analysis then focuses on how much the training data noises &; have been memorized by
the CNN filters, and then the training loss and the test error can be calculated and bounded based on their definitions.

Specifically, for the test accuracy, we can directly achieve the rate of (w; ’( ), Ynew (1 + v2)) and (w; D (t , &) for the

new data sample point (u + vo, &) by the expression of W( )

the training loss, the inner product of W; 3

training loss.

Direct comparison will achieve our des1red results. For

and &; » will make the output of neural networks large, leading to small

B GRADIENT CALCULATION

In this section, we give the signal-noise decomposition of the weights and the update rule of each part in the weights.
Moreover, we give the iterative equations for Task 1 and Task 2 separately. We use the superscript A for the upstream
model in Task 1 and the superscript D for the downstream model in Task 2.

Definition B.1. Let w for je{+1,-1}andr € {1,2,...,m} be the convolution filters of the CNN at the t-th
® @ @ (t)

iteration of gradient descent Then there exist unique coeﬁ‘iczents Vi Vi Virz 20, pg 2“ and p; . ; 5 such that,
Wiy = Wi gl u g 7521 Avalls® v gl vallz® v
+ ZPJ i NEinllz? - &+ ZPJ Yo &ollz? & (B.1)
Further denote
Pt = A (60 2 0), o0 = 1 (60 <0).
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Based on the above definition of the signal-noise decomposition of the weights, we will prove the unique of the
coefficients and give the iterative equations in the next lemma.

Lemma B.2 (Update Rule). The coefficients are defined as

Definition B.1. Note that We use the superscript A for the

upstream model in Task 1 and the superscript D for the downstream model in Task 2. The coefficients in Task 1 are

unique and satisfy the following iterative equations:

A,(0) 0) _A4,(0) A,(0) _A, A
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forallr € [m],j € {£1} and i € [Ny]. For the coefficients in task 2 are also unique and satisfy the following iterative

equations:
D,(t+1 D,(t D,(t) D,(t
T = = s 30 6 (W e ) -l
ZE[NQ]
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forallr € [m],j € {£1} and i € [N>).

Proof of Lemma B.2. In Task 1, by the definition of data gen
tion of the network weights, it is obvious that all the vectors

eration model in Definition 3.1 and the Gaussian initializa-
(signals, noise and weights) are linearly independent with

probability 1. So the decomposition equation B.2 is unique in Task 1. The update iterative equations can be calculated
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directly by WA (4D w;‘;(t) — anA LTaskl(WAit)). That is shown as following
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Note that 7; ,. , and p; ;. ; , remain unchanged. Furthermore, denoted by p; /., , = p; .. 11(p;, ;1 > 0) and Piin =
pétzl 11(p§t21 1 <0), we have
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Next, we prove the results for Task 2. Note that partial weights (aem < r < m) are re-initialized at the start of Task 2.
Then, by the definition of data generation model in Definition 3.2 and the Gaussian initialization of the re-initialized
weights, it is obvious that all the vectors (signals, noise and weights) are also linearly independent with probability 1.
So the decomposition equation B.2 is unique in Task 2. The update iterative equations can be calculated directly by

D41 _ D@ _ Vb LTast(WD (t)) That is shown as followmg
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Note that yj(tr) , and ,0;’?, ;,1 Temain unchanged in Task 2. Furthermore, denoted by p§ 2 i2 = pgti 12 1( p; 3 ;2> 0)and
2 1y = P02 < 0), we have
—_(t+1) () UVION 2 .
Pjri2 = pjr1,2_]\[17m€i (< ]r’E’LQ))'H A 2'1{yi,2_]}7
(t+1) _ (1) U ION : 2 1Ly = —i
B]r22 p]r12+ Nlmgi (< ]“512)) 2 1{/‘%’2_ '7}'
Then, we complete the proof. O

C PRELIMINARY LEMMAS

In this section, we introduce some basic technical lemmas, which can describe important properties of the data the
weights at initialization.

Lemma C.1. Suppose that 6 > 0 and d = Q(log(4 max{N1, N2}/4)), the following results hold with probability at
least 1 — 36. In Task 1, for all i,i’ € [N1], we have

Ug,ld/Q < ||€zl||§ < 3(7;2;,103/2’

[(€i1,&ir1)] < 207 1 - \/dlog(4NF /).
In Task 2, for all i,i' € [Ns], we have
Ug,zd/Q < ||&2||§ < 3(7;2;,2d/2a

|(&i2,&ir 2)| < 203,2 ) dlog(4N22/6).
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Moreover, for all i € [N1],i’ € [Na], we have
(€i1.&0 )| < 20,1052 - \/dlog(4max{ N}, N3}/6).

Proof of Lemma C.1. For Task 1, by Bernstein’s inequality, it holds with probability at least 1 — 6 /(2N7)

‘5 —o2,d < 0(02, - /dTog(aNB)).

By setting d = (log(4 max{Ny, N2}/d)), we have

‘7;27,107/2 < Hsi,lH% < 3‘7;2),165/2-
For the second result for Task 1, for i # i, (€; 1, & 1) has mean zero. Then by Bernstein’s inequality, it holds with
probability at least 1 — §/(2N?)

[(&i1, & 1)| < 20;2],1 -/ d1og(4N}/6).

The proof for Task 2 is similar and we omit it here. For i € [N1],i’ € [IN2], by Bernstein’s inequality, it holds with
probability at least 1 — 6/(2N1N3)

(€i1.€0 )| < 20,10, - \/dlog(4max{N7, N3}/6).
Finally, by union bound, we complete the proof. O

Lemma C.2 (Meng et al. (2024)). Suppose that d = Q(log(m max N1, N2/d)), m = Q(log(1/d)). Then with
probability at least 1 — 6,

o3d/2 < [|w) |3 < 303d/2,
(Wi )l < 210g(12m/5)-00||u||2,
|(w JT,& | < 2y/log(12mn/é) - ooo,Vd
forallr € [m],j € {£1},i € [n], & € {&1,& 2} and p € {u,vy,va}. Moreover,

wollullo/2 < max (wiil, ) < /2log(12m/8) - oo |l

ooopVd/4 < mf}x}(wgor),fi} < 2y/log(12mn/d) - ooo,Vd,
re(m ’

forall j € {£1},i € [n], (&,0p) € {(&i,1,0p,1), (&i,2,0p,2)} and p € {u,v1,va}.
Lemma C.3 (Kou et al. (2023)). Suppose that 6 > 0, m = Q(log(2max{Ny, N2}/d)). Define SA ) = ={re[ml:
<wy, &) > 0} and SD -(8) ={rem: (wé?Q,r, &i2) > 0}. Then, with probability at least 1 — 6,
S8 > 04m  and 1S > 0.4m
foralli € [n].

Proof of Lemma C.3. By definition, we know that 5;” = {r € [m] : <w3(,??17r,£i,1> > 0}. At initialization, it is

obvious that P(<Wyi,1,r, &i1) > 0) = 0.5. By Hoeffding’s inequality, it holds with probability at least 1 — 6/(2Ny)
that

A,(0)
IS5 o] < sl
2m
So, the proof will be completed by applying union bound as if y/log(4N1/d)/2m < 0.1, i.e., m > 501log(4N1 /).
The condition is satisfied. The proof for |SiD ’(0)| > 0.4m is similar and we omit it here. O

Lemma C.4 (Meng et al. (2024)). Suppose that a sequence ay,t > 0 follows the iterative formula
c
ot = 0 T e
for some 1 > ¢ > 0and b > 0. Then it holds that
c
< < —
Tt S Gy > 1+b6a0 + T

forallt > 0. Here, x; is the unique solution of

Ty + be™t = ct + ag + be®.

17
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D THE FIRST SYSTEM

Note that the downstream model maintains an identical architecture to the upstream model but inherits only half of the
first-layer parameters from the upstream model. The remaining half undergoes re-initialization, effectively creating a
hybrid initialization scheme. To rigorously distinguish the training epochs between the upstream model’s performance
on Task 1 and the downstream model’s performance on Task 2, we formally define 7™ as the transition point marking
the boundary between the two tasks. The upstream model (Task 1): Training occurs over the interval [0, 7*]; the
downstream model (Task 2): Training proceeds from [T, T**].

Lemma B.2 clearly gives us the update rule in both system. Note that in parameter transfer, some values of w; ,. are
changed into the initialized normal distribution, we will later incoporate such change in the second system and analyze
the test error.

D.1 COEFFICIENT SCALE ANALYSIS

We denote the results from the upstream model (Task 1) with a superscript notation A.
Proposition D.1. Under Condition 4.1, for 0 < t < T, it holds that

0< g < 4log(T™), (D.1)
4N.
12mN 105( '

0> ph0 > -2, [log ( m 1) <000y 1Vd — C) d‘S)N1 log(T*) > —4log(T*),  (D.2)

N 2
0240 < NI oy 3
: oz,
CyN1||v
0< ’Y;,‘r(? < 201Hd1”21 e(T), D.4)

p,1

forallr € [m],j € {£1},i € [N1], where Cy and C4 are two absolute constant.

We will prove Proposition D.1 by induction. Before that we give some important technical lemmas used in the proof.

Lemma D.2. Under Condition 4.1, for 0 < t < T, suppose equation D.1, equation D.2, equation D.3, equation D.4
hold at iteration t. Then, for all v € [m],j € {£1},i € [N1], it holds that

log(4N2 /6 " .
\<W;};<t> —wih® g) — g;f;fj?l\ < 16N/ g(fl/) log(T™),  j # yia; (D.5)

_ log(4N2/é . _
|wit O =Wt O g — 50 < 16M a0 og(1), 5= pia. (D.6)
Proof of Lemma D.2. By equation B.2, we have
At .(0 At
(wi = win® €)= pr?l 1o allz? - (€1, i +ijﬁff/1 € al52 - (€ &) D)
i’=1 ir=1

When j # y; .1, we have p;; ;(u) 1 = 0 and the equation equation D.7 can be turned into

A,
(Wb — w0 = 0 37 el (€ €in). (D.8)
)

Then we bound the remainder as

ZPA (2) ||€z",1||2 (€ir1,6i1)

3,7yt ,1
i/ #£i

< Lo ] g llz® (6, &)

jrz’l
i’ #i

< 16N,

1og(4fi\712/5) log(T").

18
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We finish the proof of equation D.5. When j = y; 1, we have p; T(Z2 1 = 0 and the equation equation D.7 can be turned

into
At A,(0 _A,(t _AL(t _
(Wi —wi &) = ph D pi lially? - (€ €in).
)
Then we bound the remainder as

,A t
S ot i ally? - (€ €in)
i/ #i

= Z |pg i, 1’ 1€irall5® - [(&ir1, &)
i £

2
< 16N, w log(T™).

We finish the proof of equation D.6. O

Next, we will give the bound for the output of the network. Before that, we define « 4 as

4CN u+v log(4N2 /6 " 12mN-
2 1”2 d 1H21 g(T™) + (4Cy + 64)N, 7g(d1/)1og(T)+8 1og( 5 1)-0001),1\/&.

By the condition of d in Condition 4.1, we have x4 < 0.1.

Lemma D.3. Under Condition 4.1, for 0 < t < T, suppose equation D.1, equation D.2, equation D.3, equation D.4
hold at iteration t. Then, it holds that

m
~A,(t)
pj,r,i,l
r=1

1 1
Foyo s (WY xi1) < ka/d, —m/4+%§jpj NS Fu (Wil i) < mafd+ —

—Yi,1? ri,l — Yi,1 )
A
_HA/2 +— Zp] ri,l = <y 1f(WA7(t)7Xi,1) < '%A/2 + = ij r(:)l

Proof. Recall that the definition of F) (WA ® ,X;i1) as

A,

F J

(W o ((Wjmyin(a+v1)) +o (W, &) .

1
le —_
m

HMS

When j = —y; 1, we have

1 m
nyi,1<Wéy( 1 X, 1) E Z Wj,rayi,1u>’ + H<Wj,rayi,lvl>’ + ‘<Wj,r7£i,1>H

r=1
lo 4N 5
<er(t)+7”(t)+p”1—1—16N\/ g(4NT/9) g(T™)

N / 12 N
< 02 1||u‘;V1H21 (T*) 4 2 log m 1) G001/
1 4N 3) 1 4
+ Oy Ny 22D 08 (ANT/0) 1oy 1 16Ny ) 12BUNL/D) oo

where the first inequality uses triangle inequality, the second inequality is by Lemma D.2, the third 1nequality is by
equation D.2, equation D.3, equation D.4 and the fact that u L v;. When j = y; 1, we have

m

1

A _A,(t
ben (Wit xi0) = — >0
r=1

1 m
< 3 Wi gaaw] + (Wi giav) [+ (Wi i) = 27554 ]

r=1

12mN- 1 N2 0
<+ +2m o001/ + 16Ny | AN 1o
N 12 N | 4N 1)
< CQ 1||11<|C;V1||21 g T* +9 10g< mivy O'()O'pl\f+ 16NV, Og( / ) (T*)
1
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where the first inequality uses triangle inequality, the second inequality is by Lemma D.2, the third inequality is by
equation D.2, equation D.3, equation D.4, and the last inequality uses the fact that u L v;. At last, because

yi,lf(WA’(t)a Xi,l) y1 1 (WA () Xi,l) - F—yi,l (WA,(vt) Xi,l)v

Yi,1 0 —Yi1?

we complete the proof. O

Lemma D.4. Under Condition 4.1, suppose equation D.l, equation D.2, equation D.3, equation D.4 hold for any
iteration 0 < t < T*. Then, the following results hold for any iteration t:

1Ly, [p;j{ W o= | <log(12) + ka + \/log(2N1 /) /m for all i, k € [N ).

2. 5O 58 where S = {r € [m] : (il €:.1) > 0},

3. 880 S8 where SHY = {i € [N s yia = 4. (wihP &i1) > 0.

t t
4. 00 /0" <13,

5. A refined estimation of % Z;n:;[ pA’(t) . and E;(t). It holds that

Yi,1,758,1

— _ A
Zpyzlrzlgx?—i_cA/(l—’—b )7

where TtA, g{‘ are the the unique solution of

A o A
TA+5e =M+ b7,
A+bAe£f:gAt+bA7

and b = e~ral2 cA = AL
)

2
no. 1d
N ,bA—e"“A/Qandc = 2l

5N1m'

Proof. We prove it by induction. When ¢ = 0, all results hold obviously. Now, we suppose there exists t and all the
results hold for ¢ < ¢ — 1. Next, we prove these results hold at ¢ = ¢.

First, we prove the first result. With Lemma D.3, for ¢t < t— 1, we have
—ka/2 <y f(W 4.0 yXi1) —*ij‘r(fl_fi,qﬁ
1 m
A, _A,(t)
—#a/2 <y f(WH, xp0) — — le],rk 1 S Ra/2.

By subtracting the two equations, we have

< kKa. (D.9)

1 1 &
B F WA 0) = WA )| = [ Y0 = S ]
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When L 3" [ﬁ; (fr 1)1 ﬁ:}g;”] < log(12) + k4, we have

L7403 A, Lm[AG) A1) U D . of (A D)
a ; [pyz 1,75%,1 ’oyk 1,7k, 1:| = E Z [pyi.1,7‘7i,1 - pyk,177"7k71:| o Nlm Z O (\Wyr é’ 1>)

r=1 r=1

—1
Ngiall3 = 650 o ((wik T, €00)) - l1€wa 3] (D.10)
A1) A U (1)
72[%1,711 ykl,rkl}fNim Zgz
7":1
co (w0 €0) - 1€anll3,

where the first equality is by the update rule in Lemma B.2, the second inequality uses the fact £,
bound the second term as

N1 -
ST (WD 6 1)) - (€3

Nim m
r=1

I N

/(E-1) < 0. Next, we

IN

n 1 & -1
~—Zm“ww«;$”amwaﬁ

Nim m

IN

A 1
NWIS“NH&M

< napyld
- 2N1m
log(2N1/6)/m,

IN

where the ﬁrst inequality is by triangle inequality, the second inequality uses the fact —1 < él(?_l) < 0 and the definition

of S the third inequality is by Lemma C.1, and the forth inequality is by the condition of 7 in Condition 4.1.
Therefore we have

1 ONoa® _A( 1 & F-1) _AGF-1)
2o s =] < 5 S [ = A + ViR N8
r=1 r=1

<log(12) + ka + /log(2Ny/0)/m.

On the other side, When L 3" | {ﬁi (1t7 ?1 ﬁ:!k(tz 11)} > log(12) + k., with equation D.9, we have

l l 1 oAt _A(F-1
Yia S WA 5 0) = g fOWAETY x0) > oo Z [Py, gt,rz)l pr,k(,ti,l )} —ka
r=1
> log(12),
where the first inequality uses equation D.9. Then, it holds that
78/(?_1) A, (t-1) A, (t-1) ].
i < e Vi f(W Xi,1)+yk,1 f(W Xe1) o (D.11)
_g;c(tfl) - 12°

Then, we have
m -1 (t—1 T A, (=
e Y (D 6) €l =T ST g

D D A (oG ) I 11 R AU el B

1 sty

A, (T—1

S Cra
<1,

where the first inequality uses equation D.11 and Lemma C.1, and the second inequality uses the fact that |Sf:1| <m,
the induction |S?| < |S,;4’(t71)| and \S,’?’(O)| > m/4. Then, with equation D.10, it holds that

L o= Toa,® _A,®D) Lo oAd1)  _AG-)
™ Zl |:py7¢,1,r,i,1 - pyk‘l,r,k,l} < m Zl |:py,;71,r,i,1 - pyh]?r,k,ljl
<log(12) + ka4 + \/10g(2Ny/6)/m
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Next, we prove the second result and the third result together. When j = y; 1, by Lemma B.2, it hols that

(w A(A)aﬁzﬁ (W) A(t R Z A (D o' ({ V) (€ &)
’LE[Nl]
— (wh D g 0) - ’17 Do (w0 g 1)) - €2

LS (WA ) ()

1’7&1
2610, 11/dlog(4N7 /9) UG

m

Jlildé’.(?—l) _
2N1m ¢

> (w0 g )+

> (w0 g,

2 / f'(?_l) < 13, and the second inequality is by the
) 540 and g0 ¢ gD ¢ g0 gy

where the first inequality is by Lemma C.1 and the induction 6/(?

condition of d in Condition 4.1. Then, we know that SA (0) S
induction.
Next, we prove the forth result. With equation D.9, it holds that
/o
/(A)

< e ¥ WD 0 Dy FOWAD xp )

1 m =AL(D)
< e*mzr lp]r11+1n

é elog(l?)-‘r?}ﬂiA-‘r\/10g(2N1/5)/m =12 + 0(1) S 13.

~AL(D)
1P k1 THA

2

Next, we prove the fifth result. From Lemma B.2, we know that

m m - m
l _A, (%) _ l _A,(t—1) Zf A () € >) '
m Yi, 1,781 m Yi,1,m6,1 Nlm m UL 1m0 88,1
r=1 r=1
. A,(t— R
_1 S 15 D 2
m — Yi,1,75%,1 Nym m i 3,112

Here, with Lemma D.3, the gradient é;(tfl)

-1

can be bounded as

1(E-1) _ -1 -1

L4 e S 2 a2 st L WA D) = 4 em Srmapgolatea/z’
Then, we have

iz A fz R I - sl ! el
yzl,’!‘ll— ylell Nim m 1+ 12;”17?%(;}1)1 A/2 B

giiﬁ%z3mﬂ- L

= S T
1A SR S W RCEY n_ |S£47(t_1)| . 1 '||€‘ 1113
m —~ Yi, 1,701 = — Yi,1,75%,1 Nym m 14 em Lsm b ’;: (1’57131-"- v

S Ly | 17l ! .

Tom gt BN s a2

So, the estimation of

1 —A,(®)
EZ:”lpy 1,7,%,1

can be approximated by solving the continuous-time iterative equation

dzt _ a

dt m and o = 0.
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The result is shown in Lemma C.4. For the gradient counterparts, with Lemma D.3, the gradient 6;(?_1)

as

can be bounded

1 < gD _ 1 1
| 4 em SR hkwaz T Lo e OWAE 00 Ty o Sl nal?
The result is obvious since that 1/m >~ | p *i (ltr 2)1 is bounded. Since then we complete the proof. 0

Proof of Proposition D.1. We prove it by induction. When ¢ = 0, all results hold obviously. Now, we suppose there
exists ¢ and all the results hold for ¢ < ¢ — 1. Next, we prove these results hold at ¢ = .

A,(B)

First, for the first result, when j # v; 1, we have Pjri1 = 0. When j = y; 1, by the update rule, it holds that

_A® _AG-1) M Z/_(tll)_a/« A(t 1) &1))' (D.12)

pj’l"ll pj,r,i,l Nlm 7

If 7;4,(: 11) < 2log(T*), we have
_A@) o -AG-D) N 30 1d
pjr11 Spj,r,i,l Nm 2
< 2log(T™) + log(T*) < 4log(T*),

where the first inequality uses the fact —1 < E’(tfl) < 0 and Lemma C.1, and the second inequality is by the condition

of 1 in Condition 4.1. If pj‘r(f 11) > 2log(T™), from equation D.12 we know that ﬁﬁ;fﬁ?l increases with ¢. Therefore,

suppose that tj r,i,1 18 the last time satisfying p; ;(fﬂf i) < 2log(T™). Now, we want to show that the increment of p

from ¢;,,,1 to t does not exceed 2 log(T™).

_A, _A,(tj,r, n i A, (tg,r,
p] r(:)l _pj r(1]1 v - Nlmgl frit) 0/(<Wj,r(] ' 1)7£i71>) ’ ||£l,1||%

oot A, (t
D DI e AR (L P S8 B 1381 (D.13)
tire,1<t<t—1

Here, the second term can be bounded as

2d
7<lo( ),

n tiri A, (5,701
‘gw D (i) ) 3] < SRt

Nlm '

where the first inequality is by Lemma C.1 and the second inequality is by the condition of 7 in Condition 4.1. For the
third term, note that when ¢ > ¢;,.; 1,

¢ _A, log(4N?2/6 .
0 ) > (O )+ 70 — v ERTI
log(4N2 /6
> —2/log(12mN, /0) - 0901V d + 21og(T*) — 4N, M log(T™)
> 1.8log(T™), (D.14)

where the first inequality is by Lemma D.2, the second inequality is by Lemma C.2 and the third inequality is by
V1og(12mN, /5) - 000, 1V/d < 0.11og(T*), 4Ny / 22BN/ 100 (T+) < 0.110g(T*) from the Condition 4.1. Then,
the gradient can be bounded as

1

169 =
' 14 e ¥ 1[F+1(Wi’1(t)7x1,,1)—F—1(Wfi(t)»xi,l)]

—VYi, 1Fy11(w+1 s X, 1)40.1

IN

e

— kS o (Wi (O, ,10)+0.1

e

< Ol 6—1.810g(T*) < 26—1.810g(T")7
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where the first inequality is by Lemma D.3 that k4 < 0.2, the second inequality is by equation D.14. Based on these
results, we can bound the third term in equation D.13 as

n_ A(t)
2 mgét o’ (Wit &) - 1€

tyri1<t<t—1

. 2
12 nT . 9e—1:810g(T") . 30,1d
2 Nlm 2

IN

T 3no},d
= (T8 Nym
<1 <log(T™),

where the first inequality is by the bound of |€Z(.t)| and Lemma C.1, the second inequality is by the fact that
e ® < 1/z,z > 0 and the third inequality is by the selection of 1 in Condition 4.1. Since then, we prove that

_A, *
P D < dlog(T7).

Next, we prove the second result. When j = y; 5, we have Bf}(?1 =0.If B;_‘;(‘Z—ll) < —2y/log (221 . 540, 1V/d —

2
4ANT

P

log
(C1 —4)NV, <d) log(T™*), by Lemma D.2, it holds that

log(AN?/6) |

‘<W{4’(?—1) - WA’(O),Ei,D - PA’(tA*l)’ <4N; og(T™).

3ir Jr Biri1l | =

Rearrange the inequality, we get
7 T log(4N2/§
WD 60) < (WA ) + o0 g [ OEETED) 1oy e
0.

Then, by the update rule, it holds that

IN

A _ A1) N pE=1) s A1) o el 2
Pjrin = Pirin + Nlmgz o (<Ww 75%»1» 1€i.1112
A, (T-1 12mN, log (41‘\5[%)
:7j 7’“(2_1 ) > =2 10g( 5 ) '0‘00’1,71\/a— C1 NV Tlog(T*).
10g<4N12)
nl 5
If p ) > =24 flog (55) - 0001 Vd — (C1 = 4) N1 \| —7—elog(T™), by the update rule, it holds that
AR _ A(T-1) N pi=1 A,(t-1) & e 12
Civin = Pirin T Nlmfi o' (w7 &) - l€iallz
2
> pA,(?—1) 3oy ad
= Bjrin 2N1m
12mN, log (4]}2)
Z —2 log ( 5 ) . UoUpyl\/E— ClNl Tlog(T*),

where the first inequality uses the fact —1 < 4(%1) < 0 and Lemma C.1, and the second inequality is by the condition
of 1 in Condition 4.1.

Next, we prove the third result. We prove a stronger conclusion that for any * € Sfr’(o) ,it holds that

()

A,

7 26N 3
A®) = g2 4
j,T‘,i* p,l
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Recall the update rule that

A t—1) A, (t—1
D = e S A (Y g () -
ZG [Nq]
ﬁ;(t—l) B N?m 13n - E;A7(t—1) '0/(<Wﬁ;(t_1),yi,1 . (u+v1)>) . ”u”g,

where the inequality follows by Eg(t) / E;g(t) < 13 in Lemma D.4, and

_A, n A A .
Pt =t = Yo (Y e ) - e a3 2w 1 = ).

Compare the gradient, we have

fr,(t) . %{’X;(t—n 13N, ~€;(f_1) ~a’(<wﬁ’(t_1),yi*,1 . (u+v1)>) . ||u||§}
_A@D) _A,(t-1)’ -1 A, (i1
Pt Pt 28D ot (w6 1)) - € a3
A,(T-1)

{2 13Nl
=T T T

A(t 1)

< e {2 2
= A, (T-1)" 2
pj,r(,z‘*,l) prld
L 26N}
op’ld

where the first inequality is from two update rules, the second inequality is by ¢* € S A’(O), the third inequality is
A, (t-1) A (%)

‘ 2
by Lemma C.1 and the last inequality use the induction E;;"(;fl) < 26N21”3”2. Similarly, it holds that AJ Z— <
Gori*1 domyi®,1
26N v 13
Ui,ld : O

Proposition D.5. Under Condition 4.1, for 0 < t < T*, it holds that

0< ) < 4log(T (D.15)

0>ph0 > ~2,log 12mN L) oo, Vd — CyL Ny log d log ) > —4log(T™), (D.16)

0< " < L';”QI (D.17)
,1

0<m < (’Wl g(T), (D.18)

SJorallr € [m],j € {£1},i € [N1], where Cy and Cy are two absolute constant. Besides, we also have the following
results:

1. % > [pi (1t)m,1 ﬁ:lk(?l <log(12) + k4 + /log(2N1/6)/m for all i,k € [Ny].
2. M0 ¢ 540 here SMY = {r € [m] : (winP &1) > O}

A A, A, , oA,
3. S]—7;(0) - S’jﬂ,(t), where Sjyr(t) ={ie[M]:yi1=17, (ij(t),ﬁi’l} > 0}.

t t
0 0™ <13,
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5. A refined estimation of % o pA’(t) and K;(t). It holds that

Yi,1,7,0,1

1 " _A(t _ _ A

2 < ™ Zpyl(l)rzl <z +et/(1+D"),
r=1

1 1

— = < *f;(t) L——F

L+ b et 140" et

where T, x* are the unique solution of

A o A
TA+ 5 =M+ b7,

a2 + et = At 4+ b,

2
no, 1d

3na§_1d
2 5N1m'

im

Lemma D.6 (Meng et al. (2024)). It holds that

—A _
andb = e""A/2,cA = QA = efal2 gpd A =

for the defined BA, EA, QA, A,

D.2 SIGNAL LEARNING AND NOISE MEMORIZATION

In this part, we will give detailed analysis of signal learning and noise memorization.

A1)
Jir

Lemma D.7. Under Condition 4.1, for 0 < t < T*, (w; "/, j(u+ Vv)) increases with t.

Proof. By Lemma B.1, it holds that

A, . A, A,
(Wi jutv)) = b0 b,

By the update rule in Lemma B.2, we know that fyf;(t) and fyfﬁ) increase with t. So (wf;(t) ,j(u+ v)) increases with

t. O

Lemma D.8. Under Condition 4.1, for 0 < t < T, it holds that

nlulf_a 20l <0 < w4 20l
om 17 m  — 0T = em T m
nlivalld s 20lvall _ a _ nlvalls a4 20llvall3
p Tio — §7j,r,(1) < 2%71 - 2
em m cm m
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Proof. By the update rule, it holds that

t+1 t+1 At A, (1) 1 wilt
D <0 D S o (vl
7.’ 1
At) | A1) 77||u+v1”% 1
< .
’Y + W],r,l + m 1 + bAeltA
t
A0 a0  nlutvil3 !
< .
Vi T Ve T m Z 1+bA
A,0) | A0 77||“+"1”2/ !
. etk [
’7 +'Y] r1 + m s=0 1+bA i
u+vil3 1
<7A (o)+%{1;(?)+u/ —Adgf
o m s=0 €

lu+vilf 4 2nllu+val3

A,(0) A,(0)
R v

m
lut vl 4 2nllu+ vall3

Ly s

<
- cAm m

where the first inequality is by the fifth result in Lemma D.4, the second inequality is by summation and the forth
inequality is by the definition of z7'. On the other side, we have

1 A 1 A A
o T(t+ )+7wft+ ) =i A1) +i (t) Zgl(t) / ]T(t),yi(U+V1)>)IIU+v1||§
u+v 1
> A0 A0 | 77|| 1||2 1
m 1—|—b et
A0) | A0 nIIU+V1II2
> ! ()+ j,r(l Z
s=0 1+b e$
A 0 A,(0 n u+ vy 1
m s=0 1+4+b e%s
S A A0) | A0) nlwtvillf (11 s
ﬁY +'YJT1 +T - 67 T
2
A,(0) 4,0) 4 nllu+ vyl A 2nllu + vy 3
> JnE T Villia <nhia T vilia
’YJ: +7JT m 1‘—1 m
s> Mutvald 4 2nlut vl
- m Y- m ’

where the first inequality is by the fifth result in Lemma D.4, the second inequality is by summation and the forth
inequality is by the definition of Z2. Since that u L vy, we have

aw _ald o aw A
’ygr Hu+V1H2(WJ’T +,yj,’l",1 )7
aw _ Ivil3 aw A
Vil T \|U+V1H§( G T V1)

Then, we complete the proof. O

Lemma D.9. Under Condition 4.1, for 0 < t < T, it holds that

Ny

_ _A,(t
12( —JUA?) < Z p] 'r(z) < 5N1£24—1'

1€[Nq]
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Proof. For j = y;, it holds that

> i = 2wt X o (W 6)

i€[N1] i€[N1] i€[N1]
_A,(t n t)
D DN UED DR e SR (81
i€[N1] iesh® !
,A t) A0 T
= D Praen 185 Nm—w €113
z€[N1]

1
>3 150 e ——— - I3
Z +bAf;4

t—1
A, (0 U 1
> / |s,,-,r< ol ua 3ds
s=1 1406 7

Nlm
Ny, _ _
- ﬁ(l’?fl 33114)’

where the first inequality is by |Sf;(t)| > |S]‘?71(0) |, the second inequality is by rearranging the summation and the last
inequality is by the definition of Z#'. On the other side, it holds that

_A,(t+1 _A(t Aty M
Z Jrﬁi) Z p]r(z)l S ( T 1A A ||€zl||2

A A
i€[N1] lE[Nl] M m1+b"z

<Z Nm1_|_()7AA €115

t
g/ N L 2ds
s=1  Nim14p7zd ’

< 5Ny (! — 2
S 5N1§243

where the second inequality is by \S A’(t)| < Nj and rearranging the summation and the forth inequality is by the
definition of 1: . Then, we complete the proof. O

E THE SECOND SYSTEM

To clearly distinguish the processes of Task 1 and Task 2, we assume that the upstream model is trained on Task 1
for T* epochs. At this point, a subset of the weights (i.e. inherited parameters, 1 < r < am) is transferred to the
downstream model, while the remaining weights (avm < r < m) are randomly initialized. For simplicity, we assume
that at ¢ = T + 1, the downstream model has completed initialization and begins training on Task 2. So we have

A(T*) .
D(T*+1) Wj,r( ) if1 <r < am,
Wi = YaDJ(T*) .
; ifam <r<m
Jr ="
where WD (T7) ,am < r < m is the re-initialized weights. To distinguish the weights used in Task 1 from those in

Task 2, we use the superscript D to denote the weights and coefficients of the downstream model on Task 2. Specially,

( T) 1 pS Z ;1 and p(t) are updated only on Task 1, we keep the superscript A for them so

that the readers can find the results of system 1 easﬂy

because the coefficients v

E.1 COEFFICIENT SCALE ANALYSIS

In this section, we give the analysis of coefficient scale on Task 2 for T* + 1 < ¢ < T™*.
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Proposition E.1. Under Condition 4.1, and define n = max{ Ny, Nx}, for T* +1 < t < T**, it holds that

0<p; r(z)z < 4log(T™), (E.1)
log(4(N?2 + N2)/6
0 >p] t) > —2/log(12mN /d) - 090 2Vd — C1 (N, 2)\/0g( ( 1d+ 2)/ )1og(T**) > —4log(T™),
Pirio Up,1
(E.2)
* CoN. 2
0 < ,_YD ,(t) 7?;(T +1) S 20-22”;1“2 IOg(T**), (E3)
D,2
CsN.
O < ,ijT(;) < 2 2||V2||2 1 (T**), (E4)

p72

forallr € [m],j € {£1},i € [n], where Cy and C5 are two absolute constant.

We will prove Proposition E.1 by induction. Before that we give some important technical lemmas used in the proof.

Lemma E.2. Under Condition 4.1, for T* +1 < t < T**, suppose equation E.I, equation E.2, equation E.3,
equation E.4 hold at iteration t. Then, for all j € {£1},i € [Na), it holds that for 1 <r < am

2 2
<WD AT +1)7€z >‘ <9 10g(12mN2/5) . anp,Q\/E“r‘ 16N, Zp,l \/log(4(N1d+ NQ)/é) log(T**), (E.5)
p,

and foram <r <m
‘(wj (7741 e 2>’ < 21/10g(12mN2 /) - 0402V (E.6)

T

Proof of Lemma E.2. When am < r < m, because these weights are re-initialized, the result can be directly derived
from Lemma C.2. When 1 < r < am, we have

(WY € 0) ’—‘ e ,&',2}‘

< (W@ &2)| + ij‘r(f/ L l€ialls? - (€irsGi2)

Ny
< 2y/log(12mNy/6) - 090 2Vd + Z 1€ 11122 - (&ir1, & 2) |Alog(T*)

/=1

< 2y/log(12mNy/6) - ooy 2Vd

N 20,10y \[dlog(4(N? + N3) /6)410g(T™)

p,1

d

log(4(N? + N2
< 2¢/log(12mNy/6) - 090y 2Vd + 16N, Ip2 \/og( ( 1d+ 2)/9) log(T™"),
Op,1

where the first inequality is by triangle inequality, the second inequality is by Lemma C.2, Lemma D.5 and 7% < T™*
and the third inequality is by Lemma C.1. O

Lemma E.3. Under Condition 4.1, for T* + 1 < t < T**, suppose equation E.I, equation E.2, equation E.3,
equation E.4 hold at iteration t. Then, for all v € [m], j € {£1},i € [Na), it holds that

log(4(N2 1 N2)/8 o
W) —w T g 0) = g2 | < 16Nz\/ SN N ogre), G #yns €D
* _ log(4(N? + N2)/6 - .
‘<Wfé(t) — w0 — | < ™ ld 2)/ )10g(T )y T =Yias (E.8)
Proof. The proof is similar to that in Lemma D.2 and uses the fact N? + N3 > NZ. So we omit it here. O
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Before we give the next result, we need to define

4 N. 4C5 N
Cs 2”“;"2”21 g(T*) 4 22 Nillul 1'5‘”21 (T*) + 16+/log(12mN3 /) - 500, 2V d
,2 p,1

log(4(N? + N3)/9)
d

+ (40 + 64) (N, 222 4 N2)\/ log(T™*).

Op,1

By the condition of d in Condition 4.1, we have kp < 0.1.

Lemma E.4. Under Condition 4.1, for T* +1 < t < T**, suppose equation E.I, equation E.2, equation E.3,
equation E.4 hold at iteration t. Then, it holds that

1 & 1 &
F—yi,2 (W?y(btgaxl@) < HD/4’ _K’D/4+E ZﬁjD,;",(zt,g < Fyi,Q (WD /(®) X, 2) < HD/4 + — m ﬁD’(t)

Yi,2 7,78,20
r=1

1 m
—kp/2+ — ZﬁJDT(f)z < i af (WP x;5) <kp/2+ - Zﬁf;«,(?z-

r=1

Proof. Recall that the definition of F) (WD () ,X;2) as

Fj(WjD’(t),Xi,Z) = %Z lo ((wf,i(t),yi,z(u + w))) +o (( Do 2>) ].

When j = —y; 2, we have

F*yz‘,z (leg;(fivxlﬂ) < — Z r 7yz 2u ‘ + H 1,) (t)ayi,2V2>| + ‘<Wfr,(t)7£z,2>|]
1<~ (0 DT ) ¢ D
SmZ[VJT +7Jr2 +’ ‘+’pJT(’Lt)2
r=1
log(4(N2 + N2
02N2||U+V2||2 1 & D,(T*+1)
—1 T** — 7 4+/log(12mN5/6) - d
2d ( )+m;’y]77‘ + Og( m 2/) Jogp’zf
log(4(N2 + N2)/§
+(C’1+16)(N10”’2+N2)\/ O8UANE + N3)/0) 1o es)
O'p)l d
Cy N CyN.
< 22l T Vali 2”“;””% (T**)+721H;H21 (T*) + 41/1og(12mN2 /3) - 000 2V d
log(4(N? + N2)/6
(Cl+16)( UPQ —|—N2)\/Og( ( ld 2)/ )log(T**)
p,1

é ’{D/47

where the first inequality uses triangle inequality, the second inequality is by Lemma E.3 and triangle inequality, the
third inequality is by equation E.2, equation E.3, equation E.4, Lemma E.2 and 0 < « < 1, the forth inequality is by
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equation D.17 and 0 < o < 1, and the last inequality is by the definition of kp. When j = y; 2, we have

Fyz‘,z (WD-’(t) Xi,l) -

1 m
oo, < S I o)+ (v vl + (Wi i2) = 50 ]

L~ [ .o, b log(4(N? + N3)/5) »
< ooy Z |:’yj,r +%51 T 16 N5 pi log(T™*)

b g

C'2N2||1H"V2||2 wer | CoNi[lulf3
Q—dl g(T™) + o, log(T™)
2 2

12mN:
+2 10g< ﬂ; 2).0001)’2\/&

g HD/47

where the first inequality uses triangle inequality, the second inequality is by Lemma E.3, the third inequality is by
equation E.2, equation E.3, equation E.4, equation D.17 and Lemma E.2, and the last inequality is by the definition of
K p. At last, because

D,
0i2f (WP x;5) = Fy (WY, x00) = Foy (W2 i),
we complete the proof. O

Lemma E.5. Under Condition 4.1, and define n = max{Ny, No}, for T* < t < T** suppose equation E.I,
equation E.2, equation E.3, equation E.4 hold at iteration t. Then, the following results hold for any iteration t:

1A [ s = o] <108(12) + ki + \/log@N2/8)/m for all i,k € [N,

2. SiD’(O) C SiD’(t) where SD (&) _ ={rem]: (wi §t27 i2) >0}

3. 50 C SPD sphere ST = (i € [No] : yip = 4, (w2 €10) > O},
t t
4. 00 /0" <13,

5. A refined estimation Of S D ) and E;(t). It holds that

r=1 1/L2Tz2

1
L&DSEZﬁigzz<x +eP/(1+5"),

1 /(t) 1
- < /W<
I e N (W e
where TP xP are the unique solution of
=D = =D
TP +b & =ePt+b
zP +bPer = Pt 4P,

-D _ 3no o2 ,d
andb = =e "p/2 P = 317,24 bP = ern/2 and P = e2%,
) 2Nom < 5Nam

Proof. We prove it by induction. When ¢ = 0, all results hold obviously. Now, we suppose there exists t and all the
results hold for ¢ < ¢ — 1. Next, we prove these results hold at t = t.
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First, we prove the first result. With Lemma E.4, for ¢ < t— 1, we have

_HD/2<y 2f<WD(t) XZZ _7Zp‘]7‘12§l‘€D/2
r=1
1 <~ 0.0
D,(t
—6p/2 < yr2f(W )Xk2)_az_;pjrk2<ﬁp/2

By subtracting the two equations, we have

1 <& b, 1 < b,
[yi,zf(WD’(t)7X¢,2) Y2 (WP x; 2)} - [m Pj,,«,(it,)z - ij,r,(ltc),Z]

r=1 r=1

< KD. (Eg)

When - >~ [ﬁfit;zl)z - ﬁf}%{i,}l)] <log(12) + kp, we have

1 = [_0,@ _D,® L S=[_D,@1) D=1 Ul L o= (1) (-1
E Z |:py1 2,7,1,2 pyk 2,1k, 2:| = E Z [pyi.’g,r,i,Q - pykvg,T,k,2:| - Nomn, ) E Z [gz e (< UL 2) ) £z 2>)

r=1 r=1 r=1

_gl(t 1) 0/(< ’Lﬁc(gtTl) Ek2>) ||£k72||§] (E.10)

_D,(-1) PG 7 1 o= (1) D, (-1
72[ Pyio,ri2 — Py, 2,T,k,2:| - 7262 'U/(< Yi, gf ) éz 2>)

Nom m
r=1

I N

where the first equality is by the update rule, the second inequality uses the fact E;C(?_l) < 0. Next, we bound the second
term as

A

n 1 & -1 T
< —— = Z D] o (WD D )) - [1€i213

Nam m

1 &
=N (WD D £ 5)) - [[€s 213

’Ngm m
r=1

5P “>| €212

- N, m2
< napygd
— 2Nom
log(2N5/d)/m

IN

where the first inequality is by triangle inequality, the second inequality uses the fact —1 < é;(?fl) < 0 and the

definition of SZ.D ’(tfl), the third inequality is by Lemma C.1 and |SZ-D ’(t71)| < m, and the forth inequality is by the
condition of 7 in Condition 4.1. Therefore, we have

L~ [0 _ -0® L= [oD,G-1) o DyE-1)
E Z {pyi,zmiﬁ - pyk,z,r,kﬁ] < E Z {pyz‘,zﬂ’,iﬂ - pyk,mhk,?} + 10g(2N2/6)/m

<log(12) + kp + \/10g(2N2/§) /m

_D,(t—1)  _D,(t—1)

On the other side, When % Z:,”Zl {pyi sri2 = Prio ] > log(12) + kp, with equation E.9, we have

- o 1 T b DT
yi,zf(WD’(t 1),Xi,2) - yk,zf(WD’(t 1),Xk,2) > m Z [ iit”l)z - 51;(;,21)} — KD
r=1
> log(12),
where the first inequality uses equation E.9. Then, it holds that
/(t—1)
—4; < e Vi 2F (WP D i o)y (WP D ) < i (E.11)
(’(t 1)) 12
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Then, we have

Y o (WD g )) - (€iallE 0T SPED] g1

Y (WY g 0)) - (1212 —zﬁjt‘” : \SD‘HM N|€k.2 )12

7

< 1
4 |SD @)
<1,

where the first inequality uses equatlon E.11 and Lemma C.1, and the second inequality uses the fact that |.5; D,(E-1) |

the induction |Sk 0)| < |S,C &= 1)| and |S,? (0 | > m/4. Then, with equation E.10, it holds that

IR0 p.(@) L~ D1 D)
E Z [pyi,’zmi,? B pyk,mﬂk,?} < E Z [pyb 2,7,1,2 pyk,zﬂ',k,?}
r=1

r=1

<m

)

<log(12) + kp + v/1og(2N3/d)/m

Next, we prove the second result and the third result together. When j = y; 2, by the update rule in Task 2 in Lemma
B.2, it hols that

e € = 07 ) = g 30 AT () )
i/E[NQ]

= (w {)(t D g0 — N’Zme;(t—l).m« D(t D g0)) -

l(t Y 0-/ D(t 1)751 >) ! <§Z’7E’L>
z;éz

>< D(t 1) £i0) + 2d£ i—1) 2677012)72\/dlog(4N22/6)€,_(;71)
- 52 2Nm ¢ m v
> (W g),

where the first inequality is by Lemma C.1 and the induction E' (¢=1) / 6/ (t=1) < 13, and the second inequality is by the

condition of d in Condition 4.1. Then, we know that SD () C S (= 1) C SD @ and SD O ¢ S (1) C SD (A)
induction.
Next, we prove the forth result. With equation E.9, it holds that
g/(f)
/(A)

< e ¥ 2f (WP @ x, 2)+yr, 2 f(WD ® Xk,2)

. D)
< e*%ZT lp]7‘12+7n 2 lpg7k2+K/D

S elog(12)+2np+\/log(2N2/6)/m =12 + 0(1) S 137

where the second inequality is by equation E.9, the third inequality is by the first result of the induction, and the equation
is by the selection of kp and m. Next, we prove the fifth result. From Lemma B.2, we know that

1 m /\) 1 m . m
_D,(t o _D,(t—1) 1(t—1) D,(t
2 Pularin = 2 2 Pylari T sz - Zf o' ((wyr ). &i2))
r=1 r=1
D,(t-1
_ l “ 7D’(?*1) _ n A |S’L ( )l 3 . ||£ ||2
T m Pyi o,ri2 Nom m i 1,21(]2-
r=1
Here, with Lemma E.4, the gradlentf ) can be bounded as
-1 _ -1 -1
1 sm  D.(GE-1) Sgg(t V= 2 f(WD-(E=1) x; 5) = m_ 5D.(E-1) : (E.12)
1—1—6; r=1 PinQ,T,i,,zf’{D/2 1+ e¥iz 1,2 14e Zr 1Py, 2.7, >+KD/2
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Then, by the update rule of p; T’(f )2 in Lemma B.2, we have

1 & D,(D) 1 — D,(T=1) n \SD’(?_1)| 1
_D,(t _D,(t— i 2
o Zpyi,zﬂ“,iﬂ s — Zpyi,27T>i72 + ’ ’ L —m _D.(i—-1) ’ H&QHQ;
m r—1 m r—1 Nom m 14+e™ P pyi,2,7',i,2_K/D/2
2
< L Z t 1) 3770'pd ) 1 .
- Puisiia ¥ 2Nom | RS ey e /2
m D7(O)
n |5; | 1 2
Z b+ : : &i2lz
2

>*Z _D,(t—1) 770pd. 1 A .

i 7/1 2,71, 2 5N2m 1+ 6% s Piig,:,li),z"‘“D/Q
So, the estimation of % > pi 9 ;.2 can be approximated by solving the continuous-time iterative equation

dxP a
dt = m and To — 0.
The result is shown in Lemma C.4. For the gradient counterparts, with Lemma D.3, the gradient E ) can be bounded
as
1 < _g,({,l) N 1 < 1
14em Ly, pi (;;717,),24"/&[)/2 - 1 + evi2f(WP (=D x; 5) = 14em Lsm pUD1 (2211)27;{13/2

The result is obvious since that 1/m Y - pg’it: 21 )2 is bounded. Since then we complete the proof. O

Proof of Proposition E.1. We prove it by induction. When ¢ = 0, all results hold obviously. Now, we suppose there
exists ¢ and all the results hold for ¢ <t — 1. Next, we prove these results hold at t = ¢.

First, for the first result, when j # y; 2, we have ﬁf;@z = 0. When j = y; o, by the update rule, it holds that

_D, _D,(t-1 U t—1 D,(t-1
2% r(?2 =7, r(zt2 ) mégt Voo (WY €i0)) - N€i 3 (E.13)

1 5251 < 210g(T**), we have

_D,@® _ D@1, 1 3‘7 2d
pjrz2—p]r22 Nm 2
< 2log(T™*) 4 log(T**) < 4log(T™),

where the first inequality uses the fact —1 < Z'.(tfl) < 0 and Lemma C.1, and the second inequality is by the condition
of 7 in Condition 4.1. If p° T(Zt b > 2log(T**), from equation E.13 we know that p; ;(l )2 increases with ¢. Therefore,

suppose that ¢, 2 is the last time satisfying p;’ T(ff ni2) < 9 log(T**). Now, we want to show that the increment of
pj’m’2 from ¢, ;.2 to  does not exceed 2 log(T™**).

_D, _D, tiri, n tiri, D, tjri,
pPi0, = pPltyren) I pltaria) | gt (wDr(tri2) g, 00) g, 013

7,7,8,2 N m 7,r
n () / D,(t) 2
- Z m&' o' (w7 &) - l&izlls- (E.14)

tiri,2<t<t—1
Here, the second term can be bounded as
2
(t.r12) Di(t.012) 310y2d -
0 (D, ) [€iallE| < REE < tog(r™),
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where the first inequality is by Lemma C.1 and the second inequality is by the condition of 7 in Condition 4.1. For the
third term, note that when ¢ > ¢; .. ; 2,

_ log(4(NZ + N2)/5 .
WD) 2 (D ) 4750 16 BTN e
log(4(N? + N2
> —2/log(12mN2 /8) - 690 2Vd 4 21og(T**) — 16( 2)\/ og(4( 1d+ 2)/9) log(T*)
Op,1
> 1.8log(T™*), (E.15)

where the first inequality is by Lemma E.3, the second inequality is by Lemma E.2 and the third inequality is by

V1og(12mN3 /5) - 090, 2V/d < 0.11og(T**), 16(N; Zi’f +Na) w log(T**) < 0.1log(T™**) from the
Condition 4.1. Then, the gradient can be bounded as ’

1
14 e Vi [F+1(WD’(t) xi2)—F_1 (W2 ® x; 5)]

t
1671 =

< €_y7 2Fy, 2(W+1 1X4,2)+0.1

67% 2 U(<Wﬁ’,(2t,)r>€z‘,2>)+0.1

< 60.1 . e—l.8log(T ) < 26—1.810g(T )

)

where the first inequality is by Lemma D.3 that kp < 0.2, the second inequality is by equation E.15. Based on these
results, we can bound the third term in equation E.14 as

nm_ D,(t)
Z mei . O./(<Wj,’l“ ¢ )£i,2>) :

tiri,2 <t§2\—1

sk 2
2| T . 9e—1:81og(T™) 30p,2d
2 = Ngm 2

< T 3770'12)72(1
- (T**)1.8 N2m
<1< log(T™),

where the first inequality is by the bound of |€§t)| and Lemma C.1, the second inequality is by the fact that
e ® < 1/z,xz > 0 and the third inequality is by the selection of 7 in Condition 4.1. Since then, we prove that

_D ok
p] r(?Q < 410g(T )

Next, we prove the second result. When j = y; 2, we have BJD}(? = 0. When j # y;2, If p]Dr(le) <
2 2
log (12mN2) - o9opaVd — (Cy — 16)(N15L’f + N3) ng@**), by Lemma E.3, it holds

that

- 7 log(4(N? + N2)/5
’<WJD777‘("' 1) _W]DT(T +1)7€z > Bf;ffgl)‘ < 16]\72\/ Og( ( 1d+ 2)/ )IOg(T**)

Rearrange the inequality, we get

~ log(4(NZ + N3)/é ok
< D(t 1),& ) < (w ;?;(0)7£i,2>+ij771’(;21)+16N2\/ g(4(IVi 3)/ )log(T )

d
<0,
where the second inequality is by Lemma E.2 and BJD (& SH <=2y /log (L2m2) . o0, 0v/d — (C1 — 16)(V; % +
2 2
Ny)y/ ECTHND/0) 10 (7ev) Then, by the update rule, it holds that
_ D,GE-1 N pE-1) D,(t-1) 2
B]r?2 p] r(22 ) + N m( .U,(<Wj,r 7£i,2>) . ‘|£i,2||2
12mN. o log (4(NZ + N2)/6 .
B]DT(le)Z —92./1o g< 5 2>~0'00'p72\/g—01(]\71 p,?—"_NQ)\/ g( ( 1d 2)/ )log(T )’
’ j 2
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o 2 2
If pJD (t21) > —24/log (2282 . 545, 2V/d — (C1 — 16)(N; Zif + Na) w log(7**), by the update
rule, 71% holds that

DB D 1)+Lg’_(t*1).a’(< Dyt V&) - II€;,

Zg,ri,2 Zg,ri,2 Ngm ?
> pP (=1 3770127,2d
- 9,1,3,2 2N2m
12mN. log (4(N2 + N2)/§
log( TZ 2) - 000p2Vd — C1(N . 2)\/og( ( 1d+ 2)/ )log(T**),
p,1

where the first inequality uses the fact —1 < E;(tfl) < 0 and Lemma C.1, and the second inequality is by the condition
of 7 in Condition 4.1.

D (0)

Next, we prove the third result. We prove a stronger conclusion that for any ¢* € .S, "".it holds that
D,(t D,(T*+1
Vi o ~ i ! ) < 26N2|[u|3
Plrin 2 75,24
Recall the update rule that
D,(t D,(t—1 (t—1 i—1
O =2 - S 3 Y () g (wv))) -l
zE[Nz]
D,(t—1 n t—1 D,(t—1
<Y = g 13N (o (Y e (wva))) -l
where the inequality follows by 4“) / E;ft) < 13 in Lemma D.4, and
_D, _D,(t—1 (t—1 D,(t—1 .
Py, r(;) 2 = pj,r,(i*,Q) i méz* . /(<Wj,r( )7&'*,2)) & 2113 - 1{ys 2 = 5}
Compare the gradient, we have
D,(t D,(T*+1 D,(t—1 D,(T*+1 t—1 D,(t—1
VP O e (T*+1) ) max{% J(E-1) ’7»,T( ) 13N, ,g;g ),0/(<WJ, ( ),yi* S(utvy))) - ||u|§}
_D - _D,(t—1 ’ t—1 D,(t-1)
p] r(;z ,2 pj r(i 2) gi(* ) ' JI(< r( 752 2>) : H&z*,2”%
i—1 D,(T*+1
< [ 2 D — o Lol
= X =~ 9
_D,(t—1) . 2
Jyri*,2
D, (-1 D,(T*+1
B 6/ A O\
= tax _D,(-1) " o2.d
Pjrix 2 P2
26N, a3

2 ’
Up,2d

where the first inequality is from two update rules, the second inequality is by i* € S D’(O), the third inequality is

D,(F-1) 5 ~P ,(®)
by Lemma C.1 and the last inequality use the induction jg”’(zfl) < 26522”3”2 Similarly, it holds that DJ <
Pjri* 2 P2 Pjri* .2
26N2|[v1 13
0‘123,2d : O
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Proposition E.6. Under Condition 4.1, for T* + 1 < t < T**, it holds that

log(4(N2 + N2)/§
0> pJD ) > _9,/log(12mNy /) - 090y 2V'd — C1 (N} 2)\/ og(4( 1d+ 2)/ )10g(T**) > —4log(T™),
Zg,ri,2 O'p71
(E.17)
D _p, 1 +1) _ CoNa|[ul3 .
0<7;7 e -7 D < %del g(T™) (E.18)
CyNo||v *k

0</20 < % log(T™), (E.19)

p,2

forallr € [m],j € {£1},i € [Na], where Cy and Cy are two absolute constant. Besides, we also have the following
results:

I D [pi it)m 5 ﬁ?k(% <log(12) + kp + /log(2N3/8)/m for all i, k € [n].
2. SiD’(O) C SiD’(i) where S; D) - ={reml: (Wgﬁy(f)f”) > 0}.

3. 820 < 520 swhere SV = {i € [No] : iz = j, (Wi €:2) > 0}

t t
4. 09100 < 13,

5. A refined estimation of = 3" | Py, D () i0 and f;(t). It holds that

2,7,

1 _D,(¢
fﬁamei,Lm +2P/(+87),

1 /(t) 1
— < W<
1+bDe£? - v 1+5D€EtD

where ftD , L{j are the the unique solution of

P+ 50 =Pt + 5,
t bD rf :QDt“v‘bD,

=D 3no? ,d o2 ,d
—kp/2 =D ON%p,2@ 3 D KD/2 N9%p,2
andb =e O = SR b =e and cP SN

Lemma E.7 (Meng et al. (2024)). It holds that

2 2
nos od 2 D 2no; od
1 t < <1 —t+1
Og<8Nz +3> = °g< Nom )
2 2
no, od 2 D 2noz od
1 t <zf <1 D=t 41
Og<8N2 +3>_xt_0g<N2m B R

or the defined ED P vP, P,
f ﬁ b = =

E.2 SIGNAL LEARNING AND NOISE MEMORIZATION

In this part, we will give detailed analysis of signal learning and noise memorization of the second system.

Lemma E.8. Under Condition 4.1, for T* +1 <t <T™*, (w; b, (t),j(u + va)) increases with t.

Proof. By Definition B.1, it holds that

D, (1)

() . D,
(Wi jutve)) = )
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By the update rule in Task 2 in Lemma B.2, we know that v, D) and Vjr ’( ) increase with ¢. So (w Dr(t) jlu+v))
increases with ¢. O
Lemma E.9. Under Condition 4.1, for T* + 1 < t < T**, it holds that
nlall3 p 2nlull3 _ py _prr+ry _ nlulli _p 2n|[u|3
m BT T She TS Ty BT T
nlvIg o 20lvalls o o 2lIVIEp  20lvalls
cPm — m I om 1T,
Proof. By the update rule, it holds that
1 D,(t+1 D W
o 7‘(t—&- )Jr,y ,T(;-&- ) _ v D, (t) +i (t) Zél(t) / (t),yl(u+vQ)>)||u+vQH§
D.(t) | Du(t) | 77Hv1+V2||2 1
B T T
D0, 0.0 nlutval 1
S Ve U2t F m 21+6Dei£
D) b0 , 1llatvoll3 / vy
—737“ +737, + m 8201+6De£§’ s

ut+wvs|?2 1
< AP0 4D (o>+77H " 2II2/ L dz?
s=0

2
D,(0) Do) , nllu+val3 2D _ 2nla + vall3
R m
) 2gfut vl
- cPm ¢ m ’

where the first inequality is by the fifth result in Lemma E.6, the second inequality is by summation and the forth
inequality is by the definition of Z2. On the other side, we have

Dy(t+1) | D,(t+1)

t D,(t t Dt
o Gt = 420 L D zy“ (w2 g+ v2))) a4+ Va2

(1) D(t) 77Hu+V2||2 1
A * m 1 —l—bDeﬁtD

>'yjr

0 D,(0 77U+V2
> 42O | DO | I ||ZZ

1+bD

D.(0) | D.(0) M oo
_VJT +p)/jT + m 50 1+bD€£stS
nu+wﬁ/¢11dD

0 D,(0
> 420 4 DO - et

2 T

DO 4 D) nlutvels p o 20l Vol
> ’7] r + 7 + CD L1 — m
S mutvelf po 2nllut voll3
= CD 71571 m ’
where the first inequality is by the fifth result in Lemma D.4, the second inequality is by summation and the forth
inequality is by the definition of . Since that u | vy, we have

pw_ 3 pw b
7,r ||11+V2||2( + gr,2 )7
b _ _lIval3

7] r2 (7] r(t) + ’Yg r(t))'

[+ vall3
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Then, we complete the proof. O

Lemma E.10. Under Condition 4.1, for T* + 1 <t < T**, it holds that
Ny

_D,(t
12 (zt 2~ E Pj, r(z)2 > 5N2It 1
ze[Nz]

Proof. For j = y;, it holds that

(¢ n t D,(t
pist = 2 = 2wt () - €l

] P . Ngm
i€[Na] i€[Na] A
= Di(t) _ /A OPIRT
- ) Bj77”7i72 Z Nngi ”51,2”2
i€[Nz] ies?; O
n 1
> Z pD () 4 (0) on
- 7'12 D D
zG[NQ] - Naym 1 + bP !
sP (0)
2 T D p i,
o [ gp@ n 1
N 1Sjir N. D_D
s=1 m1l1-+b
N
2 E@gl 171D)

where the first inequality is by |SD’(t)\ > |S D’(0)| and the fifth result in Lemma E.6, the second inequality is by

summation and the forth inequality is by the definition of 2. On the other side, it holds that

D L(t41) 1
,J,HQ < g: 73,7*12 N 1+bD 5 H€12H2
1€[Na2] ze[NZ
<Z W €213
' n 1 )
= N =55 - [&i2]2d
_/3:1 2N2m1+bDst &i2]|5ds

< 5Ny () — 7))
< 5N2th7

where the first inequality is by the fifth result in Lemma E.6, the second inequality is by summation and the forth
inequality is by the definition of ZP. Then, we complete the proof. O

E.3 TEST ERROR ANALYSIS

Lemma E.11 (Devroye et al. (2018)). The TV distance between N (0, 0'12)’21,1) and N (v, 012))21(1) satisfies
TV(N(0,07514), N(v, 07 1a)) <

Theorem E.12. For taskl and task2 with

CY¥Nim C5 Nam
s 42 = )

naﬁ)ld 77012772d

T, =

where C, C5 are two absolute constants. Then, it holds that:

1. The training loss is below e: LS(WD’(t)) <e.
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2. If
Q2N1 HUHZ + N2Hu+V2H2
a<c’ %p.1 %p.2
- a2a§_2N1 ’
Py + Ns
p,1
the test error converges to 0: For any new data (z,y),
szQHqu + N2HU+V2II2
D,(t o, 1 oy 2
P(yf(W ( ),x) <0) < eXp{_CQE pa202 2 N1 = }-
—E TV
p,1
3. If
o N1 Hu”z + NgHUJerHQ
d > C// Up,l p 2
= ST, ,
S 4N,
p,1

the test error only achieves a sub-optimal error rate: For any new data (x,y), P(yf(WP-®) z) < 0) > 0.1.

Proof. For the first result, by Lemma E.4, we have

1 m
Yiof (WP x;5) > —/-;D/2+ ﬁfr’,(it,)z
r=1
> —kp/2+a;
0' 1d 2
z—mD/2+log(8N t—|—3)

where the first inequality is by Lemma E.4, the second inequality is by Proposition E.6 and the third inequality is by
Lemma E.7. Then, we can calculate the training loss as
o2 1,1 d " ) )

LWP0) < log (1 1 o/ os (%

eKD/2

IN

where the second inequality uses the fact that log(1 + z) < x,z > 0, the third inequality is by T5 > Q( % ) and the

last inequality is by xp < 0.1. Then we complete the proof of the first result. e

Next, for the second result, for data (x,y) ~ D, we have

r=1
alNi||lul|2  Nollu+ val2 2n|lu + vo|2
log(12m/$) - op|lu + vall2 + ¢( 12H ”2—|— 2l 5 2”2)~ft_1—7n” 2ll
ap,ld ap’2d m
L o) - LY P kv
mr:l mr:l '
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where the first inequality is by Fy, (WP (1) ¢) > 0, and the second inequality is by the growth of the signal and
[{r € [m], (w29 w4 vy) > 0}|/m > 1/3. Then for 7, > z, > C > 0, it holds that

Nifulf | Noflutva3, _ 1 ¢ D.(1)
WD) S (2 2 2 L ,
yf( ;%) > ¢ 02 d + CT]%,Qd ) - Teo1 m ;U«Wfl,r ,€))

_72 W17,u+V2>)

log(12mn/é) - oo|lu + val|2
04N1Hu||§ No|[u+ val[3

_ 1 D,(t)
> . ,
2 oI PR - DY (i)
log(12mn/é) - og|lu + vall2 — 277Hu—|—v2|\2/m
o ¢ oNul3 N2Hu+V2H2

_ w? (t)

2o T o 2

Here, the first inequality is by the condition of o¢, 7 in Condition 3.1, and Z;_; > C, the third inequality is still by the

condition of &g, i in Condition 4.1 which indicates that g(aNl lul | N2‘|u+v2”2 ‘Tp—1 — 44/log(12mn /) - op||lu+
Up p 2d

vall2 — 2njlu + v2||3/m > 0. We denote by h(&) = 2 > | o((w_ i(i), )). By Theorem 5.2.2 in Vershynin (2018),
we have

cx?
P(h(§) —Eh(§) 2 x) <exp | ——5 5 | -
Up,2||h||Lip
Here ¢’ is some constant. By

o N1 ||uH2 + N2HU+V2H2
d S Cl p 1 < p2
1
+ No

5
Ip.1

for some sufficiently large C; and Proposition E.5, we directly have

aNi[[ul3 = Naflu+vs|3

_ Op,2 D,(t)
C . 1> Eh(€) = p ,
( opad * 0 2d )T Z w512

D,(t) =D,(t) 1 ~D,(t)
where wau 2 < @<Up11d1?21v11/z Zie[Nl] Pjrin T op2dl/ZN;1/2 Zie[Nz] pj,r,i,2)'
Now using methods in equation F.3 we get that

Pyf(WP®, x) <0)
<P <h( Z y(u+va)) Op’ Z w2 ||2>

! o WDr(t)7yll+V _ Opo2 m D
< xp | L iyt v2))) = e S w2 )

2
m D,(t
02 (S0 IwHillz)
2
(S o (wh Ot +va)))
2
m D,
o2 (20 w2l

042N1 Hu||2 + N2 Hu+vQ||2

O' O'

< exp —Cza 2

< exp(c”/(2m)) exp | -

p,2

+ N,

2N1

O'
p,1
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Here, C5 = O(1) is some constant. The first inequality is directly by equation F.2, the second inequality is by equation
F.3 and the last inequality is by Proposition E.2 which directly gives the lower bound of signal learning and Proposition

E.5 which directly gives the scale of ||w (8 )H2 Combined the results with equation F.1, we have

o’ N2| N3 lutvall}

‘uHQ +
P(yf(WP®, x) < 0) < exp [‘ Cpo—Tml
d a2‘7 2N1
0.27'1 + N2
P,

p,2

Next, for the third result, we have
Py (y # sign(fF(WP 0 x)) =Py op (yf (WP x) <0).
= P(x.4)~D ( S o(wWe)) = 3 o((whi® g))

T T

> 3 ol v) = (w2t v )

T

S o (w20, 6) - Y o(twi®, >>\

T T

> 0.5P(x7y),\,7_)(

> max { Z a((wfl(r)7 (u+v2))), Z U((W?isi), (u+ v2)>)}) )

s T

where Cg is a constant, the inequality holds since if

> (<wfl(f €)= >, o((w ?i(?,@)’is too large that we can

always pick a corresponding y given £ to make a wrong prediction. Let (&) = >, a((w?r(t), £)—>.,.0( (w?if?, )).
Denote the set

Q:= {s\|g<s>| > max { Y (Wi, (w+v2)), 3 o((w? D), <u+v2>>>}}-

T T

By plugging the definition of (2, we have
Prxyyon (yf (WP x) < 0) > 0.5P(Q2)
Next, we will give a lower bound of P(£2). We will prove that for a vector &’ with ||&'||2 < 0.020, 2
> l90i€ +€) = 9(G€)) = 4max { 3w (a4 va)). YWD, (a+va)) |
7 T T
Therefore, by pigeon’s hole principle, there must exist one of the &, £ + &/, —&, —€ + £’ belongs Q.
P(Q) —P(Q—-¢)| = \]P’gw\/(o o2 Id)(E €Q)— PgNN(g’,aggld)(ﬁ € Q)|
< TV(N(Oa O—p,2Id)v (6 aO—Z,QId))
!
< 1€l

T 20p2
< 0.01,

where the first inequality is by the definition of Total variation (TV) distance, the second inequality is by Lemma E.11.
Therefore, P(§2) > 0.24 and then, it holds that

Py~ (yf (WP x) <0) > 0.1.

aNillull3/(o2 1d)+Nallutvall3/(oh 2d)
aUP2N1/Up 1+N2

Now, all that’s left is to prove the existence of £’. Define A = C

5/:)\. Z 1(.%:

1€[Na2]

and &’ as
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Then, we have

[€]l2=© alNi|luf3/(o7 1d) + Naflu+ va|[3/(07 »d) >
? OZUP’QNl/O'p’l + Ny D,

N2 - 0, 2d> S 0.020'1)72,

where the last inequality is by the condition

a2N1H N2‘|“+V2||2

0'

u”2
d > C p

2
@ op12N1

P,2

+ N,

2
Ip,1

Here, we use the fact that a® + b? < (a + b)? < 2a? + 2b? for positive a,b > 0, and we have for any sequences
Ay by Cry diy > 0, (@ + b1)?/(cn + dpn)? = O((aZ + b2)/(c2 + d2)). By the construction of &', we have almost
surely that

<<wfi<?,e+e'>>— o((wii) )
+o((whil g+ &) - o((Wh D, —g))

> (wii'),¢)
>A{ZP+1M Zﬁfl(:wQ )}7 (E.20)
yi=1

where the first inequality is by the convexity of ReLU, and the second inequality is by Lemma C.2. Similarly, for
7 = —1, we have

a(w2 D g 1+ €)) — a((w2 D, 8))
(w2 g+ &) — a((W D, —¢))

< 2|(w2 D ¢
<2>\[Zle(izl+ZpD1(trz2 )]’ (E'ZI)
y;=1 y;=1

where the first inequality is by the Lipschitz continuity of ReLU, and the second inequality is by Lemma C.2. Combining
equation E.20 and equation E.21, we have

GETE)—g€) +a(-E+8)—g(-¢ [Z S0 m 3 S P m - o) E22)

r o y;=1 r o yi=1
> (M2)- 32 D (Praih/m+Prnia/m). (E.23)
r y;i=1
On the other side, we know that
So(whiWutva)/m= > o(whil utva))/m+ 3 o(whi utva))/m (E.24)
T 1<r<am am<r<m
N N 2 Y
< a( 1” H2 lo ( )+ 2|‘u2+ V2||2) + (1 _a) 2||11—|—V2||21 g( ) (E.25)
1d 0, 0d 2d
N1||UH2 Na[u+ va3
= (a + ) log(T™). (E.26)
ol.d 02 od
Comparing equation E.23 and equation E.26, by selecting A = C o |\u|\2/;0;2‘12d])\:j\(’;l!11:;2Hg/(amd) , we have
g€ +¢&)—g(&) +9(—&+8&) —g(—€) > 42 (Wi utva)) /m
Since then, we complete the proof. O
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F OTHER EXPERIMENTS

We give additional experimental results about inherited parameters extracted from ViT models, which is shown
in Figure 4. We also conduct experiments in Table 2, where the upstream task is image segmentation and the
downstream task is image classification. For the upstream segmentation task, we use two models, deeplabv3_resnet50
and deeplabv3_mobilenet_v3_large, whose backbones are resnet50 and mobilenet_v3_large, respectively. For the
downstream classification task, we use resnet50, resnet34, and mobilenet_v3_large. The results show that cross-task
parameter transfer can also be beneficial, indicating the presence of shared knowledge across different tasks.

Test Accl Comparison Test Accl Comparison

—e— Scratch base L12 801 —e— Scratch base L12
90— VanillaLG base L12 — VanillaLG base L12

Test Accl
o
8
Test Accl

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs

(a) CIFAR-10 (b) CIFAR-100

Figure 4: We adapt ViT models as the upstream model and downstream models. The upstream model is pre-trained on
ImageNet-1K and the downstream models are trained on CIFAR-10 and CIFAR-100, separately.

Table 2: Transferring segmentation-pretrained backbones to CIFAR image classification. Upstream models (DeepLabV3
series) are pretrained on a COCO subset; downstream models are trained on CIFAR-10/100 with (w/ PL) and without
(w/o PL) parameter transfer. Accuracy (%) is reported for each upstream—downstream pair.

Dataset Upstream Model Downstream Model | Acc (w/o PL) | Acc (w/ PL)
deeplabv3_resnet50 resnet50 89.25 94.67
CIFAR10 deeplabv3_resnet50 resnet34 90.80 93.39
deeplabv3_mobilenet_v3_large | mobilenet_v3_large 83.06 89.45
deeplabv3_resnet50 resnet50 70.45 75.31
CIFAR100 deeplabv3_resnet50 resnet34 68.35 73.96
deeplabv3_mobilenet_v3_large | mobilenet_v3_large 66.64 72.24

G DISCUSSION ABOUT TRANSFER LEARNING APPLICATIONS

Transfer Learning Applications: Transfer learning (TL) has emerged as a powerful paradigm in machine learning,
aiming to leverage knowledge from a source domain to improve learning performance in a related but different target
domain. Tan et al. (2015) introduces an intermediate domain to bridge source and target domains using non-negative
matrix tri-factorization, enabling label propagation across heterogeneous spaces. Li et al. (2013) augments source and
target features by projecting them into a common subspace while preserving domain-specific information, enabling
knowledge transfer across different dimensions. Tsai et al. (2016) learns a transformation matrix to project source
data into a PCA-based target subspace, aligning both marginal and conditional distributions for heterogeneous domain
adaptation. Ye et al. (2021) rectifies heterogeneous model parameters by learning a semantic mapping function,
enabling transfer of prior knowledge from source to target even with differing label spaces. In recent years, transfer
Learning has found widespread applications across domains. Gardner et al. (2024) demonstrates how large-scale
pretraining on a diverse tabular corpus enables strong zero-shot and few-shot generalization to unseen tabular tasks,
effectively transferring knowledge across domains without task-specific fine-tuning. Wang et al. (2025) proposes
a minimax-optimal transfer learning algorithm for nonparametric contextual dynamic pricing under covariate shift,
leveraging source data to improve target-domain pricing decisions. Garau-Luis et al. (2024) presents a multi-modal
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transfer learning framework that effectively bridges pre-trained DNA, RNA, and protein encoders to predict RNA
isoform expression. (Wang et al., 2022) selects certain layers as learngene based on gradient information observed in
the upstream model, and subsequently stacks these learngene layers with some randomly initialized layers to initialize
downstream models. Li et al. (2023) proposes a scalable surrogate-model framework that learns linear relevance scores
to predict which source tasks will cause negative transfer, enabling efficient subset selection that outperforms existing
multi-task learning methods across weak supervision, NLP and fairness benchmarks. Imani et al. (2021) introduces
the notion of the degree of alignment and investigates its relationship with transfer learning performance. It argues
that neural networks automatically adjust their representations during training so that the top singular vectors align
with the task labels, which is validated by the experiments. Instead, our work provides a theoretical explanation for the
underlying dynamics. We obtain some similar findings with proof: a neural network memorizes both signal and noise
during training, as shown in Lemma A.1 and Lemma A.2. The transferred parameters therefore retain the shared signal
between the two tasks. When the norm of the shared signal becomes too small, negative transfer emerges. Our work
theoretically characterizes and explains this dynamical process, while Imani et al. (2021) proposes the conjectures and
then verifies it from an empirical perspective. The core viewpoints are different but share conceptual similarities.

H DISCUSSION ABOUT CONNECTIONS BETWEEN THEORY AND PRACTICE

In this section, we would like to give more discussion on the connection between our theory and the practice. Our
intention is not to position theory as dominating practice, but to highlight how the two can develop hand in hand. For
instance: the nagative transfer was first observed in practical applications, and Proposition 4.4 now provides a theoretical
characterization that confirms its existence and explains when it arises. This illustrates how empirical phenomena can
motivate theoretical inquiry, and how theory can, in turn, contextualize those empirical observations. By making this
connection clearer, we hope to support a more integrated and mutually informative relationship between theory and
practice. Moreover, our theoretical analysis could indicate several concrete inspirations for algorithm design.

* Selecting task-specific neurons for transfer. The dynamics reveal that neurons activated by the task-specific
signal dominate the effective transfer. This suggests a more targeted strategy in practice: instead of transferring all
parameters, one can identify neurons that are strongly activated by the downstream task (for example, via activation
statistics or gradient-based criteria) and preferentially transfer or fine-tune only these neurons. Such neuron-level
selection aims to retain parameters that encode task-relevant structure while mitigating the influence of noise, thereby
improving the robustness of transfer.

» Estimating transferability. Our results indicate that transfer performance is primarily governed by the correlation
between the structural components of the upstream and downstream tasks. In practice, this correlation can be
estimated using a small downstream validation set by monitoring the early-stage learning curves under different
initialization scales or different subsets of transferred parameters. Consistently slower or noisier initial improvements
signal weak structural correlation and thus a higher risk of negative transfer, in which case one may reduce the amount
of transferred parameters or fall back to training from scratch.

Regarding more realistic constraints such as layer-wise exposure or fixed adapter interfaces: fully analyzing multi-layer
networks is mathematically challenging because interaction in different layers leads to unstable and complicated
dynamics. However, the mechanisms revealed in the two layer case could also offer valuable insight. When the
upstream task has high quality data with strong signal and large sample size, deeper models are expected to preserve
and propagate this useful structure across layers. Our real data experiments results also support this conclusion aligning
with our theoretical analysis. From this example, we would like to point out the core spirits of feature learning theory.
Theoretical models in feature learning intentionally use simplified architectures to capture universal phenomenon in
representation learning, rather than to replicate every detail of practical systems. Despite their simplicity, these models
have repeatedly shown that early learned features or noise can strongly influence downstream performance, even in
deep networks with high capacity and nonlinear expressiveness. Such results explain why shallow analyses remain
valuable. They isolate core principles of signal learning, noise memorization, and transfer quality that extend to more
complex architectures, though in more intricate forms which are harder to characterize with full mathematical rigor.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed an LLM to refine the writing of the entire manuscript and to ensure its grammatical correctness.
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