

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS UNDERSTANDING FEATURE LEARNING IN PARAMETER TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter transfer is a central paradigm in transfer learning, enabling knowledge reuse across tasks and domains by sharing model parameters between upstream and downstream models. However, when only a subset of parameters from the upstream model is transferred to the downstream model, there remains a lack of theoretical understanding of the conditions under which such partial parameter reuse is beneficial and of the factors that govern its effectiveness. To address this gap, we analyze a setting in which both the upstream and downstream models are ReLU convolutional neural networks (CNNs). Within this theoretical framework, we characterize how the inherited parameters act as carriers of universal knowledge and identify key factors that amplify their beneficial impact on the target task. Furthermore, our analysis provides insight into why, in certain cases, transferring parameters can lead to lower test accuracy on the target task than training a new model from scratch. **To our best knowledge, our theory is the first to provide a dynamic analysis for parameter transfer and also the first to prove the existence of negative transfer theoretically.** Numerical experiments and real-world data experiments are conducted to empirically validate our theoretical findings.

1 INTRODUCTION

Transfer learning has become the workhorse of modern deep learning, because it breaks the traditional curse of having to train a gigantic model from scratch for every new problem (Pan and Yang, 2009; Dai et al., 2009; Torrey and Shavlik, 2010; Imani et al., 2021). By reusing knowledge acquired in a source domain, practitioners can reach higher accuracy with orders-of-magnitude less labeled data and compute (Yosinski et al., 2014; Ruder et al., 2019). The dominant instantiation of this idea is the pre-train–fine-tune pipeline: an upstream model is first optimized on a large-scale, often self-supervised task and is subsequently adapted to a downstream objective (Devlin et al., 2019; Radford et al., 2021; He et al., 2020). Yet the real world seldom offers a perfect one-to-one architectural match between the two stages (Zhuang et al., 2020). Upstream backbones may be deeper, include modality-specific components, or be released as black-box feature extractors (Jiang et al., 2022), while downstream tasks can impose new input resolutions, output spaces, memory budgets, or even deployment hardware that forbid a literal copy of every weight (Bommasani et al., 2021). Parameter transfer emerges as an elegant remedy to this mismatch. Because it requires no raw data from the upstream domain and places almost no constraints on network topology, it combines the sample efficiency of transfer learning with the flexibility of modular design, fueling its rapid adoption across vision, speech, language, and multi-modal applications (Houlsby et al., 2019; Liu et al., 2022).

Despite these advances, existing theoretical studies have focused on static generalization bounds (Maurer et al., 2016; Kumagai, 2016; Wu et al., 2024), without addressing how transfer learning evolves during the training dynamics. Such a dynamic perspective is essential, since transfer is not only about the final generalization guarantee but also about the trajectory through which knowledge is acquired and reused across tasks. Parameter transfer is intrinsically a question of network dynamics. In particular, while empirical works have repeatedly reported the phenomenon of negative transfer (Wang et al., 2019; Zhang et al., 2022; Zu et al., 2025), a rigorous theoretical characterization has been missing. Our work fills this gap: we provide, to the best of our knowledge, the first theoretical analysis of training dynamics in parameter transfer. Importantly, our framework not only proves when and why transfer is beneficial, but also reveals, for the first time in theory, the precise conditions under which negative transfer arises. These findings significantly broaden the theoretical landscape of transfer learning and underscore the necessity of dynamic analysis for the principled design of parameter transfer.

More specifically, we aim to address two fundamental questions: (i) why parameter transfer can enhance test performance compared to random initialization, and (ii) why naive transfer learning may sometimes fail or even lead to negative transfer. In this paper, we conduct a theoretical analysis of parameter transfer within a nonlinear dynamical system (Huang et al., 2024; Zhang et al., 2025) where both the upstream model and the downstream model are two layer neural networks. We explicitly model the universal knowledge (also known as meta-knowledge) and the task-specific knowledge between the source task and the target task. It is assumed that an α -proportion of the upstream model’s weights are inherited by the downstream model. For the downstream model, the remaining weights are randomly initialized. To our best knowledge, we are the first one to give the training dynamics of parameter transfer and prove the **existence of negative transfer in mathematics**. Based on the above modeling, we analyze the roles of the three crucial factors: (1) the universal knowledge between the source task and the target tasks; (2) the training sample size for the upstream model; (3) the noise level in the source task. It shows that more inherited parameters, larger training sample size for the upstream model, and less noise in the upstream task can improve the performance of the downstream model. The results are consistent with the empirical performance of parameter transfer, providing theoretical support for its effectiveness. The contributions of our paper are as follows.

- To our best knowledge, this work is the first to give the training dynamics of parameter transfer. Specifically, we prove that when the training sample size, signal strength, noise level, and dimension of both the upstream and downstream models satisfy a certain condition, the test error rate approaches the Bayes optimal. The condition is tight. In opposite of this condition, we prove that the test error remains a constant away from the Bayes optimal. These results together demonstrate the sharpness of our theory and provide a rigorous explanation for the empirical success of parameter transfer.
- We provide theoretical explanation when parameter transfer outperforms direct training from random initialization. Specifically, we identify the critical roles of three factors in determining its effectiveness: the norm of the universal knowledge between the source task and target tasks, the sample size of the source task, and the noise level present in the source data. Our analysis reveals how these factors jointly influence the success of parameter transfer. In particular, we show that parameter transfer allows the downstream model to inherit universal knowledge of guaranteed strength, thereby improving generalization and mitigating the effect of noise memorization in the target tasks. These results offer a rigorous characterization of the advantage of inherited parameters over random initialization and provide practical guidance for their application.
- Our theoretical framework also sheds light on why parameter transfer can sometimes lead to a degradation in test accuracy compared to direct training. Recent studies have reported such phenomena (Zhang et al., 2022; Go et al., 2023; Zu et al., 2025), but the underlying mechanisms remain theoretically underexplored. In this work, we theoretically proved the existence of the negative transfer. Particularly, when the shared signal between the source and target tasks is very weak, even a well-trained upstream model with a large sample size or low noise level can harm the target task. The key mechanism is that the weight norm learned from the upstream model becomes excessively large. When transferred, these over-amplified weights fail to enhance the weak shared signal in the target task but instead magnify task-specific noise, hence degrading test performance. Our results thus offer rigorous theoretical guidance for the effective application of the parameter transfer methodology: parameter transfer should be designed to extract and transfer strong shared features, which necessitates careful selection of the source dataset to ensure sufficient relevance and signal quality.

2 RELATED WORK

Transfer Learning Theory: Transfer learning has long been the subject of rigorous theoretical scrutiny. The seminal bias-learning framework introduced by Baxter (2000) first quantified the benefits of a shared inductive bias across tasks. Later works refined this picture, establishing finite-sample guarantees for representation-based transfer (Maurer et al., 2016), information-theoretic upper bounds on the joint risk (Wang, 2018; Wu et al., 2024), and minimax-optimal sample-complexity characterisations in linear regimes (Tripuraneni et al., 2020). Yi et al. (2023) proves that conditional independence from spurious attributes given the label is sufficient for OOD robustness under correlation shift, and introduces the Conditional Spurious Variation (CSV) metric that directly controls the OOD generalization error. Besides, existing theoretical work on parameter transfer is quite limited, Kumagai (2016) assumes the parameter-transfer learnability of the parametric feature mapping and provides static generalization bounds without consideration of optimization for parameter transfer. Hu and Zhang (2023) assumes that different models may share common knowledge in their parameters and prove that transferring parameters via model averaging can improve the prediction performance of the target model. For discussion on transfer learning application, please refer to Section G.

Neural Tangent Kernel and Feature Learning: With the advancement of deep learning, analyzing the dynamics underlying neural networks has become increasingly meaningful. [Jacot et al. \(2018\)](#) introduce the Neural Tangent Kernel (NTK) regime, which effectively characterizes the dynamics of sufficiently over-parameterized neural networks and explains how they fit data during training. Building on this, [Cao and Gu \(2019; 2020\)](#) further investigated the generalization capabilities of neural networks in the over-parameterized regime. At the core of these studies is the observation that, under sufficiently over-parameterization, neural network weights can be well-approximated by a linear system ([Yu et al., 2023](#); [Benjamin et al., 2024](#); [Fu and Wang, 2024](#)) and remain close to their initialization throughout training. This phenomenon is known as lazy training ([Chizat et al., 2019](#); [Ghorbani et al., 2019](#); [Zhu et al., 2023](#)), which cannot explain the superior performance of neural networks well. Besides NTK regime, another line of studies explores benign overfitting in neural network, which is called feature learning ([Zou et al., 2023](#); [Cao et al., 2022](#); [Meng et al., 2025](#)). Feature learning theory typically assumes a specific data generation model and estimates how the weights learn the signals and noise present in the data. Feature learning theory differs from NTK in two key aspects: 1) Feature learning theory employs small initializations, which allow the learning process to dominate and avoid lazy training. 2) Feature learning system can be a highly nonlinear system, and its dynamics are closer to those of real neural networks. For example, [Allen-Zhu and Li \(2023\)](#) characterizes ensemble learning and knowledge distillation. [Meng et al. \(2024\)](#) investigates that CNNs can learn XOR problem efficiently. [Shang et al. \(2024\)](#) investigate the two layer neural networks and discover that the initialization of second layers matters in the generalization.

3 PROBLEM SETTING

Notations. For sequences $\{x_n\}$ and $\{y_n\}$, the relation $x_n = O(y_n)$ indicates the existence of absolute constants $C_1 > 0$ and $N > 0$ such that $|x_n| \leq C_1|y_n|$ holds uniformly for all $n \geq N$. Similarly, we write $x_n = \Omega(y_n)$ if $y_n = O(x_n)$, and we denote $x_n = \Theta(y_n)$ when both $x_n = O(y_n)$ and $x_n = \Omega(y_n)$ hold. We adopt $\tilde{O}(\cdot)$, $\tilde{\Omega}(\cdot)$, and $\tilde{\Theta}(\cdot)$ to hide some logarithmic terms. For any event \mathcal{E} , we denote its indicator function by $\mathbf{1}(\mathcal{E})$, which equals 1 if \mathcal{E} occurs and 0 otherwise. Furthermore, for non-negative quantities x_1, \dots, x_k , we use the shorthand $y = \text{poly}(x_1, \dots, x_k)$ to express that y is bounded above by a positive power of $\max\{x_1, \dots, x_k\}$, i.e., $y = O(\max\{x_1, \dots, x_k\}^D)$ for some constant $D > 0$. $y = \text{polylog}(x)$ indicates that y grows polynomially with respect to $\log x$.

Then, we introduce the data generation model, the network model we adapt and the algorithm of parameter transfer. Let $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^d$ be three fixed signal vectors with $\mathbf{u} \perp \mathbf{v}_1$ and $\mathbf{u} \perp \mathbf{v}_2$. The data is given in the following definition.

Definition 3.1 (Data in Task 1). *Each data point (\mathbf{x}, y) with $\mathbf{x} = (\mathbf{x}^{(1)\top}, \mathbf{x}^{(2)\top})^\top \in \mathbb{R}^{2d}$ is generated from the following distribution \mathcal{D}_1 : 1. The data label $y \in \{\pm 1\}$ is generated as a Rademacher random variable. 2. A noise vector ξ is generated from the Gaussian distribution $\mathcal{N}(\mathbf{0}, \sigma_{p,1}^2(\mathbf{I} - \mathbf{u}\mathbf{u}^\top/\|\mathbf{u}\|_2^2 - \mathbf{v}_1\mathbf{v}_1^\top/\|\mathbf{v}_1\|_2^2))$. 3. One of $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ is randomly selected and assigned as $y \cdot (\mathbf{u} + \mathbf{v}_1)$ which is the signal part, and the other is assigned as ξ which is the noise part.*

Definition 3.2 (Data in Task 2). *Each data point (\mathbf{x}, y) with $\mathbf{x} = (\mathbf{x}^{(1)\top}, \mathbf{x}^{(2)\top})^\top \in \mathbb{R}^{2d}$ is generated from the following distribution \mathcal{D}_2 : 1. The data label $y \in \{\pm 1\}$ is generated as a Rademacher random variable. 2. A noise vector ξ is generated from the Gaussian distribution $\mathcal{N}(\mathbf{0}, \sigma_{p,2}^2(\mathbf{I} - \mathbf{u}\mathbf{u}^\top/\|\mathbf{u}\|_2^2 - \mathbf{v}_2\mathbf{v}_2^\top/\|\mathbf{v}_2\|_2^2))$. 3. One of $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ is randomly selected and assigned as $y \cdot (\mathbf{u} + \mathbf{v}_2)$ which is the signal part, and the other is assigned as ξ which is the noise part.*

We divide the data input into the signal and noise patch. Such data generation model has been widely used ([Allen-Zhu and Li, 2023](#); [Cao et al., 2022](#); [Jelassi and Li, 2022](#); [Kou et al., 2023](#); [Meng et al., 2024](#)). For the signal patch, the datasets in Task 1 and Task 2 share a universal signal vector denoted by \mathbf{u} , while also containing task-specific signal vectors \mathbf{v}_1 and \mathbf{v}_2 respectively. For the noise patch, we assume that it is orthogonal to the signal patch for simplicity. Although this orthogonality assumption simplifies the analysis, it can be naturally extended to more general cases where the noise may have a non-trivial correlation with the signal part. We show later that the universal knowledge is crucial for parameter transfer. In addition, the noise variances in Task 1 and Task 2 are $\sigma_{p,1}$ and $\sigma_{p,2}$; the sample sizes for Task 1 and Task 2 are N_1 and N_2 ; the data samples for Task 1 is denoted by $\{\mathbf{x}_{i,1}, y_{i,1}\}_{i=1}^{N_1}$ and the data samples for Task 2 is denoted by $\{\mathbf{x}_{i,2}, y_{i,2}\}_{i=1}^{N_2}$.

We consider adapt two-layer convolutional neural networks (CNN) for both the upstream model and the downstream model. The CNN filters are applied to both the signal part and the noise part. Specifically, the network is defined as

$$f(\mathbf{W}; \mathbf{x}) = F_{+1}(\mathbf{W}; \mathbf{x}) - F_{-1}(\mathbf{W}; \mathbf{x}), \quad F_j(\mathbf{W}; \mathbf{x}) = \frac{1}{m} \sum_{r=1}^m [\sigma(\langle \mathbf{w}_{j,r}, \mathbf{x}^{(1)} \rangle) + \sigma(\langle \mathbf{w}_{j,r}, \mathbf{x}^{(2)} \rangle)].$$

162 **Algorithm 1:** Algorithm of Parameter Transfer.

163 **Input:** Data on Task 1 $\{\mathbf{x}_{i,1}, y_{i,1}\}_{i=1}^{N_1}$ and data on Task 2 $\{\mathbf{x}_{i,2}, y_{i,2}\}_{i=1}^{N_2}$. The upstream model f^A and the
164 downstream model f^D . The ratio of inherited parameters α .

165
166 1 Initialize f^A : $\mathbf{w}_{j,r}^{A,(0)} \sim N(\mathbf{0}, \sigma_0^2)$, $j \in \{+1, -1\}$, $r \in [m]$;
167 2 **for** $t \leq T^*$ **do**
168 3 | Update $\mathbf{w}_{j,r}^{A,(t)}$ as: $\mathbf{w}_{j,r}^{A,(t+1)} = \mathbf{w}_{j,r}^{A,(t)} - \eta \nabla_{\mathbf{w}_{j,r}^A} L_{Task1}(\mathbf{W}^{A,(t)})$; $t = t + 1$;
169 4 **end**
170 5 Initialize f^D : $\mathbf{w}_{j,r}^{D,(0)} = \mathbf{w}_{j,r}^{A,(T^*)}$ if $1 \leq r \leq \alpha m$, and $\mathbf{w}_{j,r}^{D,(0)} \sim N(\mathbf{0}, \sigma_0^2)$ if $\alpha m < r \leq m$.
171 6 **for** $t \leq T^*$ **do**
172 7 | Update $\mathbf{w}_{j,r}^{D,(t)}$ as: $\mathbf{w}_{j,r}^{D,(t+1)} = \mathbf{w}_{j,r}^{D,(t)} - \eta \nabla_{\mathbf{w}_{j,r}^D} L_{Task1}(\mathbf{W}^{D,(t)})$; $t = t + 1$;
173 8 **end**

174

175 **Algorithm 2:** Standard training.

176 **Input:** Data on Task 2 $\{\mathbf{x}_{i,2}, y_{i,2}\}_{i=1}^{N_2}$. The downstream model f^D .

177

178 1 Initialize f^D : $\mathbf{w}_{j,r}^{D,(0)} \sim N(\mathbf{0}, \sigma_0^2)$, $j \in \{+1, -1\}$, $r \in [m]$;
179 2 **for** $t \leq T^*$ **do**
180 3 | Update $\mathbf{w}_{j,r}^{D,(t)}$ as: $\mathbf{w}_{j,r}^{D,(t+1)} = \mathbf{w}_{j,r}^{D,(t)} - \eta \nabla_{\mathbf{w}_{j,r}^D} L_{Task1}(\mathbf{W}^{D,(t)})$; $t = t + 1$;
181 4 **end**

182

183 Here, m is the number of convolutional filters, and $\sigma(z) = \max\{0, z\}$ is the activation function. Moreover, $\mathbf{w}_{j,r}$
184 denotes the weight for r -th filter, \mathbf{W}_j is the weight matrices associated with F_j , and \mathbf{W} collects all the weight matrices
185 $\mathbf{w}_{j,r}$ for $j \in \{\pm 1\}$. Such convolutional neural network is widely used in feature learning theory. Then, define the
186 cross-entropy loss function $\ell(z) = \log(1 + \exp(-z))$, the training loss for Task 1 and Task 2 can be written as

187
$$L_{Task1}(\mathbf{W}) = \frac{1}{N_1} \sum_{i \in [N_1]} \ell(y_{i,1} f(\mathbf{W}; \mathbf{x}_{i,1})); \quad L_{Task2}(\mathbf{W}) = \frac{1}{N_2} \sum_{i \in [N_2]} \ell(y_{i,2} f(\mathbf{W}; \mathbf{x}_{i,2})).$$

188

189 With a well-defined training objective, we present the parameter transfer training procedure in Algorithm 1, alongside
190 the standard training baseline in Algorithm 2. The parameter transfer algorithm used in this work randomly sample
191 weights from the upstream model. In contrast, most existing methods are typically designed to extract and transfer
192 strong shared features. In addition, it is worth noting that in the upstream model, practitioners often leverage larger
193 datasets and more complex model architectures to extract transferable knowledge. Such pretraining processes may incur
194 substantial computational costs, sometimes exceeding the capacity of local computing resources. Furthermore, as we
195 will discuss in the following section, transferring parameters from the upstream model to the downstream task is not
196 universally beneficial. In some stringent scenarios, inappropriate inheritance of parameters can even degrade the test
197 performance of the downstream model, which is also reported in literature.
198

199 **4 MAIN RESULTS**

200

201 In this section, we present our main results. Our main results aim to show the theoretical guarantees with probability
202 at least $1 - \delta$ for some small $\delta > 0$. With such probability, we show that the training loss will converge below some
203 arbitrarily small $\varepsilon > 0$, while the test accuracy can have different performance based on the training sample size N_1, N_2 ,
204 the dimension d and the inherited parameters α etc. We define $T^* = \eta^{-1} \text{poly}(n, d, \varepsilon, m)$ be the maximum admissible
205 number of training iterations. To establish the results, we require several conditions that are summarized below.

206 **Condition 4.1.** Define $n = \max\{N_1, N_2\}$. Suppose there exists a sufficiently large constant C , such that the following
207 hold with $\mathbf{v} = \mathbf{v}_1$ or \mathbf{v}_2 , and $\sigma_p = \sigma_{p,1}$ or $\sigma_{p,2}$:

208 1. Dimension d satisfies: $d = \tilde{\Omega}(\max\{n\sigma_p^{-2} \|\mathbf{u} + \mathbf{v}\|_2^2, n^2\})$.
209 2. Training sample size n and neural network width satisfy: $n \geq C \log(n/\delta)$, $n \geq C \log(m/\delta)$.
210

216 3. The norm of the signal satisfies $\|\mathbf{u} + \mathbf{v}\|_2^2 = \Omega(\sigma_p^2 \log(n/\delta))$.
 217 4. The standard deviation of Gaussian initialization σ_0 is appropriately chosen such that
 218

$$219 \quad 220 \quad \sigma_0 = O\left(\left(\max\left\{\sigma_p d / \sqrt{n}, \sqrt{\log(m/\delta)} \cdot \|\mathbf{u} + \mathbf{v}\|_2\right\}\right)^{-1}\right).$$

221 5. The learning rate η satisfies
 222

$$223 \quad 224 \quad \eta \leq O\left(\left(\max\left\{\sigma_p^2 d^{3/2} / (n^2 m \sqrt{\log(m/\delta)}), \sigma_p^2 d / n, \|\mathbf{u} + \mathbf{v}\|_2^2 / m\right\}\right)^{-1}\right).$$

226 The first two conditions on d , n , and m are imposed to ensure the desired concentration results hold, accounting
 227 for randomness in both the data distribution and random initialization. The assumption on the width d ensures that
 228 the learning dynamics operate in the over-parameterized regime. Similar assumptions have been adopted in a series
 229 of recent works (Allen-Zhu and Li, 2023; Cao et al., 2022; Kou et al., 2023; Meng et al., 2024). The condition on
 230 the initialization scale σ_0 requires it to be sufficiently small, so that the impact of initialization on training remains
 231 negligible. This allows the learning dynamics to dominate the training process, moving beyond the Neural Tangent
 232 Kernel (NTK) regime. Finally, the smallness condition on the learning rate η is a standard technical assumption,
 233 ensuring the stability of the analysis. Under Condition 4.1, we have the following theorem.

234 **Theorem 4.2** (With parameter transfer). *Suppose that percentage α ($0 < \alpha \leq 1$) of the upstream model's weights are
 235 inherited. For any $\varepsilon, \delta > 0$, if Condition 4.1 holds, then there exist constants $C_1, C_2, C_3 > 0$, such that with probability
 236 at least $1 - 2\delta$, the following results hold at $T = \Omega(N_2 m / (\eta \varepsilon \sigma_{p,2}^2))$:*

237 1. The training loss is below ε : $L_S(\mathbf{W}^{(t)}) \leq \varepsilon$.
 238 2. If $d \leq C_1(\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}) / (\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2)$, the test error is close to the optimum. For any new data
 239 (\mathbf{x}, y)

$$240 \quad \mathbb{P}(y f(\mathbf{W}^{(t)}; \mathbf{x}) < 0) \leq \exp\left[-C_2(\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}) / (\frac{\alpha^2 \sigma_{p,2}^2 N_1 d}{\sigma_{p,1}^2} + N_2 d)\right];$$

241 3. If $d \geq C_3(\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}) / (\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2)$, the test error has a gap from the optimum:
 242 $\mathbb{P}(y f(\mathbf{W}^{(t)}; \mathbf{x}) < 0) \geq 0.1$.

243 Theorem 4.2 reveals a phase transition of the generalization performance. It highlights the critical role of universal
 244 knowledge in parameter transfer, as well as the influence of inherited parameters, the sample size of the source task,
 245 and the signal-to-noise ratio. Specifically, the theorem shows that in the upstream model, generalization performance
 246 improves when the sample size of the source task, the amount of inherited parameters, and the strength of universal
 247 knowledge are sufficiently large, and when the noise level in the upstream model is small. Conversely, in the absence of
 248 universal knowledge, inherited parameters, or with a small sample size, such benefits do not emerge, regardless of other
 249 factors.

250 **Theorem 4.3** (Without parameter transfer, Previous results in Kou et al. (2023)). *For any $\varepsilon, \delta > 0$, if Condition 3.1
 251 holds, then there exist constants $C'_1, C'_2, C'_3 > 0$, such that with probability at least $1 - 2\delta$, the following results hold at
 252 $T = \Omega(N_2 m / (\eta \varepsilon \sigma_{p,2}^2))$:*

253 1. The training loss converges below ε , i.e., $L(\mathbf{W}^{(T)}) \leq \varepsilon$.
 254 2. If $N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^4 \geq C'_1 \sigma_{p,2}^4 d$, then the CNN trained by gradient descent can achieve near Bayes-optimal test error:
 255 $\mathbb{P}(y f(\mathbf{W}^{(t)}; \mathbf{x}) < 0) \leq \exp(-C'_2 N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^4 / (\sigma_{p,2}^4 d))$.
 256 3. If $N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^4 \leq C'_1 \sigma_{p,2}^4 d$, then the CNN trained by gradient descent can only achieve sub-optimal error rate:
 257 $\mathbb{P}(y f(\mathbf{W}^{(t)}; \mathbf{x}) < 0) \geq 0.1$.

258 Theorem 4.3 characterizes the generalization performance of networks without parameter transfer. We define the
 259 following key quantity $\Gamma = \frac{\alpha^2 N_1 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^2 \sigma_{p,2}^2 d}$. Under Condition 4.1, we observe in the theorem above that large value of Γ is a
 260 sufficient condition in determining the success of parameter transfer. By comparing the conditions of the two theorems,
 261 we can draw the following conclusions.

262 **Proposition 4.4.** *Under the condition of Theorem 4.2 and 4.3:*

270 1. If $\Gamma \geq C$ for some sufficient large $C > 0$, when $d > C'_1(N_2\|\mathbf{u} + \mathbf{v}_2\|_2^4)/(\sigma_{p,2}^4)$, **inherited parameters** improves the
 271 performance of downstream models:

272 • Without **parameter transfer**, the error rate is sub-optimal: $\mathbb{P}(yf(\mathbf{W}^{(t)}; \mathbf{x}) < 0) \geq 0.1$;
 273 • With **parameter transfer**, the error rate is near optimal: $\mathbb{P}(yf(\mathbf{W}^{(t)}; \mathbf{x}) < 0) \leq c$ for c small enough.

274 When $d < C'_3(N_2\|\mathbf{u} + \mathbf{v}_2\|_2^4)/(\sigma_{p,2}^4)$, using parameter transfer or not both are near optimal error rate.

275 2. When $\frac{\|\mathbf{u} + \mathbf{v}_2\|_2^2}{\|\mathbf{u}\|_2^2} \geq \alpha N_1 \sigma_{p,2}^2 / (N_2 \sigma_{p,1}^2) \geq C_4$ for C_4 large enough, which means that the norm of the universal signal
 276 is much smaller than that of the task-specific signal, parameter transfer is detrimental to the downstream model, i.e.,
 277 negative transfer.

278 For the first term, the value of Γ should not be regarded as a necessary condition for determining the failure of parameter
 279 transfer. The key reason is that even when Γ is small, a sufficiently large sample size N_2 or high data quality in Task 2
 280 can still ensure the success of parameter transfer. As shown in Proposition 4.4, when Γ is large, parameter transfer
 281 will not degrade performance if Task 2 itself achieves good generalization. Conversely, if Task 2 suffers from poor
 282 test performance, parameter transfer can leverage its knowledge transfer to improve overall accuracy. For the second
 283 term, theoretical analysis reveals that under very stringent conditions, parameter transfer can be detrimental to the
 284 performance of downstream models, i.e., negative transfer. The conditions indicate that negative transfer occurs only
 285 when the norm of the universal signal is much smaller than that of the task-specific signal.

286 5 PROOF SKETCH

287 In this section, we give a concise proof outline of Theorem 4.2 and full proof can be found in the appendix. Define the
 288 maximum admissible iterations for two training systems as $T^*, T^{**} = \eta^{-1} \text{poly}(n, d, \varepsilon, m)$, where T^* is the maximum
 289 training iterations in the upstream model and T^{**} is the maximum training iterations in the downstream model. The
 290 CNN filters' training dynamics are analyzed via the decomposition of weights:

$$291 \mathbf{w}_{j,r}^{(t)} = \mathbf{w}_{j,r}^{(0)} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\mathbf{u}\|_2^{-2} \cdot \mathbf{u} + j \cdot \gamma_{j,r,1}^{(t)} \cdot \|\mathbf{v}_1\|_2^{-2} \cdot \mathbf{v}_1 + j \cdot \gamma_{j,r,2}^{(t)} \cdot \|\mathbf{v}_2\|_2^{-2} \cdot \mathbf{v}_2 \\ 292 + \sum_{i=1}^{N_1} \rho_{j,r,i,1}^{(t)} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,1} + \sum_{i=1}^{N_2} \rho_{j,r,i,2}^{(t)} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,2}.$$

302 Here, γ and ρ track signal learning and noise memorization, respectively. The analysis proceeds in two systems (Task 1
 303 and Task 2).

304 **System 1:** We define $\bar{x}_t^A, \underline{x}_t^A$ as solutions to:

$$305 \bar{x}_t^A + \bar{b}^A e^{\bar{x}_t^A} = \bar{c}^A t + \bar{b}^A, \quad \underline{x}_t^A + \underline{b}^A e^{\underline{x}_t^A} = \underline{c}^A t + \underline{b}^A,$$

306 with parameters $\bar{b}^A, \underline{b}^A$, and $\bar{c}^A, \underline{c}^A$ depending on $\eta, \sigma_{p,1}, d, N_1, m$. The key lemma bounds the coefficients:

307 **Lemma 5.1.** Under Condition 4.1, it holds that

$$308 \frac{\eta \|\mathbf{u}\|_2^2}{\bar{c}m} \bar{x}_{t-2}^A - \frac{2\eta \|\mathbf{u}\|_2^2}{m} \leq \gamma_{j,r}^{A,(t)} \leq \frac{\eta \|\mathbf{u}\|_2^2}{\underline{c}m} \underline{x}_{t-1}^A - \frac{2\eta \|\mathbf{u}\|_2^2}{m}, \\ 309 \frac{\eta \|\mathbf{v}_1\|_2^2}{\bar{c}m} \bar{x}_{t-2}^A - \frac{2\eta \|\mathbf{v}_1\|_2^2}{m} \leq \gamma_{j,r,1}^{A,(t)} \leq \frac{\eta \|\mathbf{v}_1\|_2^2}{\underline{c}m} \underline{x}_{t-1}^A - \frac{2\eta \|\mathbf{v}_1\|_2^2}{m}.$$

310 Moreover, for the noise memorization it holds that

$$311 \frac{N_1}{12} (\bar{x}_{t-2}^A - \bar{x}_1^A) \leq \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t)} \leq 5N_1 \underline{x}_{t-1}^A.$$

312 These bounds are established via the *balanced loss property* and continuous approximations.

313 **System 2:** We transfer the analysis by defining $\gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)}$, isolating the effect of new initialization. Define
 314 $\bar{x}_t^D, \underline{x}_t^D$ analogously, yielding:

Figure 1: Test accuracy under varying conditions of the source task. "w/o PT" corresponds to standard training without parameter transfer. We compare three key factors that influence the effectiveness of parameter transfer: (a) training sample size of Task 1 N_1 ; (b) the noise level of Task 1; (c) the universal signal strength $\|u\|_2$ while fixing $\|u + v_2\|_2$. All scenarios include a baseline setting without parameter transfer.

Figure 2: (a) is the heatmap of test accuracy under different dimensions d and the universal signal strength $\|u\|_2$ with fixex $\|u + v_2\|_2$. The x-axis is the value of $\|u\|_2$ and the y-axis is the dimension d . (b) and (c) display the truncated heatmap of test accuracy. The accuracy smaller than 0.65 (0.70) is set as 0 (yellow) and the other is set as 1 (blue).

Lemma 5.2. Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, it holds that

$$\begin{aligned} \frac{\eta\|u\|_2^2}{\underline{c}^D m} \underline{x}_{t-2}^D - \frac{2\eta\|u\|_2^2}{m} &\leq \gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)} \leq \frac{\eta\|u\|_2^2}{\bar{c}^D m} \bar{x}_{t-1}^D - \frac{2\eta\|u\|_2^2}{m}, \\ \frac{\eta\|v\|_2^2}{\underline{c}^D m} \underline{x}_{t-2}^D - \frac{2\eta\|v_2\|_2^2}{m} &\leq \gamma_{j,r,2}^{D,(t)} \leq \frac{\eta\|v\|_2^2}{\bar{c}^D m} \bar{x}_{t-1}^D - \frac{2\eta\|v_2\|_2^2}{m}. \end{aligned}$$

Moreover, for the noise memorization term, it holds that

$$\frac{N_2}{12} (\underline{x}_{t-2}^D - \underline{x}_1^D) \leq \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} \leq 5N_2 \bar{x}_{t-1}^D.$$

Finally, test accuracy and training loss are evaluated by comparing inner products $\langle \mathbf{w}_{j,r}^{(t)}, \mathbf{u} + \mathbf{v}_2 \rangle$ and $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle$, leveraging the established bounds on γ and ρ . This yields the desired generalization and convergence guarantees.

6 NUMERICAL EXPERIMENTS

In this section, we conduct experiments on the synthesized data. Our experiments choose training sample size N_1, N_2 , noise level $\sigma_{p,1}, \sigma_{p,2}$, the universal signal strength $\|u\|_2$. The test sample size is 1000 for all experiments. Given the dimension d and the signal $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2$, the data in Task 1 and Task 2 is generated according to Definition 3.1 and 3.2. Specifically, We set $d = 2000$ and the signal are constructed via the Gram-Schmidt orthogonalization process to ensure mutual orthogonality in the vector space. Then, we generated the nosie vector $\boldsymbol{\xi}$ from Gaussian distribution.

We adapt the two-layer CNN model defined in section 3 for both upstream model and downstream model. The number of filters is $m = 40$. All models are trained with gradient descent with a learning rate $\eta = 0.01$. For all weights without

378 Table 1: **Effect of varying N_1 on CIFAR-10 and CIFAR-100.** "w/o PT" corresponds to standard training without
 379 parameter transfer, while "w/ PT" refers to the proposed parameter transfer methodology.
 380

	Upstream	Downstream	w/o PT	w/ PT (vary N_1/N_2)		
				2	3	4
CIFAR-10	ResNet-101	ResNet-34	90.80	94.20	96.90	97.20
		ResNet-50	89.25	94.25	97.25	97.85
	VGG-16	VGG-11	82.05	91.85	94.25	96.80
		VGG-13	85.90	89.80	92.65	95.20
CIFAR-100	ResNet-101	ResNet-34	68.35	70.95	74.10	80.35
		ResNet-50	70.45	74.95	76.55	81.20
	VGG-16	VGG-11	62.05	64.30	65.65	66.60
		VGG-13	63.75	64.35	65.35	65.65

394 using parameter transfer, it is initialized as $N(0, \sigma_0^2)$, where $\sigma_0 = 0.01$. We set the learning rate as 0.01. The upstream
 395 models are trained for $T_1 = 800$ epochs while the downstream models are trained for $T_2 = 400$ epochs. Our goal is to
 396 explain the effect of parameter transfer under different settings.
 397

1. In the first setting, we fix the noise level $\sigma_{p,1} = \sigma_{p,2} = 5$ and the sample size of the target dataset $N_2 = 100$. Then, we compare the test accuracy under different sample sizes of the target dataset N_1 and the results are shown in Figure 1a.
2. In the second setting, we fix $N_1 = N_2 = 100$ and the noise level of Task 2 $\sigma_{p,2} = 5$. Then, we compare the test accuracy under noise level of Task 1 $\sigma_{p,1}$ and the results are shown in Figure 1b.
3. In the third setting, we fix $N_1 = 1000, N_2 = 100$, the noise level of all data $\sigma_{p,1} = \sigma_{p,2} = 15$ and $\|\mathbf{u} + \mathbf{v}_2\|_2 = 3$. Then, we compare the test accuracy under different $\|\mathbf{u}\|_2$ and the results are shown in Figure 1c. Note that it is important to fix $\|\mathbf{u} + \mathbf{v}_2\|_2$ instead of $\|\mathbf{v}_2\|_2 = 3$. Otherwise, the performance improvement may be attributed to a stronger signal rather than parameter transfer.
4. In the fourth setting, we set $N_1 = 1000, N_2 = 100, \sigma_{p,1} = \sigma_{p,2} = 15, \alpha = 0.5$ so that the inherited weights plays a dominant role in Task 2. According to Theorem 4.2, the phase transition happens when $\|\mathbf{u}\|_2$ and d break the balance. We plot the heatmap of test accuracy under different d and $\|\mathbf{u}\|_2$ in Figure 2a. Moreover, the truncated heatmaps are also shown in Figure 2b and 2c.

412 Figure 1 demonstrates that increasing training sample size for the upstream model, reducing the noise in Task 1, or
 413 enhancing the universal knowledge in the signal can all improve the performance of parameter transfer. Especially, in
 414 Figure 1c, we find that when $\|\mathbf{u}\|_2 = 0$, parameter transfer lead to a degradation in test accuracy. This implies that there
 415 is few universal knowledge in the signal, it may lead to negative transfer, thereby impairing the model’s performance on
 416 new tasks. As shown in Figure 2, increasing $\|\mathbf{u}\|_2$ or decreasing d will improve the effect of parameter transfer. The
 417 universal knowledge in the signal is critical for the success of parameter transfer. These conclusions are intuitive and
 418 consistent with our theoretical analysis.

419 7 REAL DATA EXPERIMENTS

420 In this section, we perform real data experiments to show that parameter transfer is effective and is impacted by several
 421 factors: the training sample size of Task 1 and the noise level in Task 1.

422 **Experiments on Varying N_1 .** We investigated the impact of the training sample size of Task 1 on the efficacy of the
 423 inherited parameters. Specifically, We randomly select 2 classes from CIFAR-10 (or 20 classes from CIFAR-100) as
 424 Task 2, and then randomly choose k classes from the remaining categories as Task 1. For example, when $N_1/N_2 = 3$,
 425 we select 6 (or 60) classes from CIFAR-10 (or CIFAR-100) as Task 1. We use ResNet-101 as the upstream model and
 426 use ResNet-34 and ResNet-50 as the downstream models. As presented in Tab. 1, the results indicate that as the number
 427 of samples in Task 1 increases, parameter transfer demonstrates progressively greater performance improvements
 428 relative to a from-scratch training baseline. For example, employing a ResNet-101 upstream model and a ResNet-34
 429 downstream model on CIFAR-100, the performance increment due is 2.6% when the source tasks are 40 classes. This
 430 increment rise to 12% when the source tasks are 80 classes.
 431

Figure 3: **Effect of varying $\sigma_{p,2}$ on CIFAR-10 and CIFAR-100.** Test accuracy of ResNet-34 and ResNet-50 as downstream models on (a) CIFAR-10 and (b) CIFAR-100 under different noise level $\sigma_{p,2}$. "w/" and "w/o" denote models trained with and without parameter transfer, respectively.

Experiments on Varying $\sigma_{p,2}$. Furthermore, we explore the effect of different proportions of added noise on the target tasks. Initially, both Task 1 and Task 2 inherently contain intrinsic noise. Subsequently, we designed an experiment where we progressively introduced noise into Task 2, as illustrated in Fig. 3. Specifically, we add Gaussian noise $\xi \sim N(0, \sigma_{p,2}^2)$ to the original image. We use ResNet-101 as the upstream model and use ResNet-34 and ResNet-50 as the downstream models. The experimental results indicate that as noise is continuously added to Task 2, the performance of inherited parameters consistently surpasses that of methods without parameter transfer. As presented in Fig. 3a, where the noise values gradually increase from 1 to 20, the advantage of parameter transfer not only persists but also tends to widen over time.

Experiments on Vision Transformers. We adopt DeiT (Touvron et al., 2021) as the architecture for both the upstream and downstream models. Specifically, both models are DeiT-Base, which consists of 12 multi-head attention blocks and 12 layers, totaling approximately 86M parameters. The upstream model is pretrained on ImageNet-2012 (Deng et al., 2009), achieving an accuracy of 81.8%. We select the 9th, 10th, and 11th layers from the upstream model as inherited parameters and transfer them to the downstream models. The downstream models are then fine-tuned on CIFAR-10 and CIFAR-100, respectively. We compare the performance of downstream models with parameter transfer against those with random initialization. The results are presented in Figure 4 in the appendix.

8 DISCUSSION

In this paper, we present a rigorous theoretical analysis of the parameter transfer mechanism within the framework of a two-layer ReLU convolutional neural network. Our analysis provides theoretical evidence that several key factors, such as the strength of universal signals shared between the upstream and downstream models, the sample size of the source task, and the noise level in the source task, play crucial roles in determining the effectiveness of parameter transfer. These theoretical findings are further supported by numerical simulations. Additionally, we conduct extensive real-world experiments on CIFAR-10 and CIFAR-100, employing modern neural architectures such as ResNet, VGG, and ViT, all of which consistently validate our theoretical predictions. A possible limitation of our theoretical framework is its focus on shallow neural networks. Nevertheless, even in this simplified setting, the theoretical understanding of parameter transfer remains highly non-trivial. Without first establishing a rigorous foundation for shallow networks, it would be challenging to develop solid theoretical insights for deeper and more complex architectures. This work thus serves as a necessary first step, and several promising directions remain for future research. One important direction is to extend our theoretical analysis to deep neural networks, which involves understanding more intricate dynamical systems arising from their training processes. Another interesting direction is to design regularization techniques that can guide the inherited model to select more effective weights rather than random transfer. Developing a theoretical framework to understand how regularization influences weight selection in parameter transfer remains an open and important question.

486 REFERENCES
487

488 ALLEN-ZHU, Z. and LI, Y. (2023). Towards understanding ensemble, knowledge distillation and self-distillation in
489 deep learning. In *The International Conference on Learning Representations*.

490 BAXTER, J. (2000). A model of inductive bias learning. *Journal of artificial intelligence research* **12**.

491

492 BENJAMIN, A., PEHLE, C.-G. and DARUWALLA, K. (2024). Continual learning with the neural tangent ensemble.
493 *Advances in Neural Information Processing Systems* **37**.

494

495 BOMMASANI, R. ET AL. (2021). On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*

496

497 CAO, Y., CHEN, Z., BELKIN, M. and GU, Q. (2022). Benign overfitting in two-layer convolutional neural networks.
498 *Advances in neural information processing systems* **35**.

499

500 CAO, Y. and GU, Q. (2019). Generalization bounds of stochastic gradient descent for wide and deep neural networks.
501 *Advances in neural information processing systems* **32**.

502

503 CAO, Y. and GU, Q. (2020). Generalization error bounds of gradient descent for learning over-parameterized deep relu
504 networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 34.

505

506 CHIZAT, L., OYALLON, E. and BACH, F. (2019). On lazy training in differentiable programming. *Advances in neural*
507 *information processing systems* **32**.

508

509 DAI, W., JIN, O., XUE, G.-R., YANG, Q. and YU, Y. (2009). Eigentransfer: a unified framework for transfer learning.
510 In *International Conference on Machine Learning*.

511

512 DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K. and FEI-FEI, L. (2009). Imagenet: A large-scale hierarchical
513 image database. In *IEEE conference on computer vision and pattern recognition*.

514

515 DEVLIN, J., CHANG, M.-W., LEE, K. and TOUTANOVA, K. (2019). Bert: Pre-training of deep bidirectional
516 transformers for language understanding. In *Proceedings of the conference of the North American chapter of the*
517 *association for computational linguistics: human language technologies*.

518

519 DEVROYE, L., MEHRABIAN, A. and REDDAD, T. (2018). The total variation distance between high-dimensional
520 gaussians with the same mean. *arXiv preprint arXiv:1810.08693*.

521

522 FU, S. and WANG, D. (2024). Theoretical analysis of robust overfitting for wide dnns: An ntk approach. In *The Twelfth*
523 *International Conference on Learning Representations*.

524

525 GARAU-LUIS, J. J., BORDES, P., GONZALEZ, L., ROLLER, M., DE ALMEIDA, B., BLUM, C., HEXEMER, L.,
526 LAURENT, S., LANG, M., PIERROT, T. ET AL. (2024). Multi-modal transfer learning between biological foundation
527 models. *Advances in Neural Information Processing Systems* **37**.

528

529 GARDNER, J., PERDOMO, J. C. and SCHMIDT, L. (2024). Large scale transfer learning for tabular data via language
530 modeling. *Advances in Neural Information Processing Systems* **37**.

531

532 GHORBANI, B., MEI, S., MISIAKIEWICZ, T. and MONTANARI, A. (2019). Limitations of lazy training of two-layers
533 neural network. *Advances in Neural Information Processing Systems* **32**.

534

535 GO, H., LEE, Y., LEE, S., OH, S., MOON, H. and CHOI, S. (2023). Addressing negative transfer in diffusion models.
536 *Advances in Neural Information Processing Systems* **36**.

537

538 HE, K., FAN, H., WU, Y., XIE, S. and GIRSHICK, R. (2020). Momentum contrast for unsupervised visual representa-
539 tion learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*.

540

541 HOULSBY, N., GIURGIU, A., JASTRZEBSKI, S., MORRONE, B., DE LAROUSSILHE, Q., GESMUNDO, A., ATTARIYAN,
542 M. and GELLY, S. (2019). Parameter-efficient transfer learning for nlp. In *International Conference on Machine*
543 *Learning*.

544

545 HU, X. and ZHANG, X. (2023). Optimal parameter-transfer learning by semiparametric model averaging. *Journal of*
546 *Machine Learning Research* **24**.

540 HUANG, W., HAN, A., CHEN, Y., CAO, Y., XU, Z. and SUZUKI, T. (2024). On the comparison between multi-modal
 541 and single-modal contrastive learning. *Advances in Neural Information Processing Systems* **37**.

542

543 IMANI, E., HU, W. and WHITE, M. (2021). Representation alignment in neural networks. *arXiv preprint*
 544 *arXiv:2112.07806*.

545

546 JACOT, A., GABRIEL, F. and HONGLER, C. (2018). Neural tangent kernel: Convergence and generalization in neural
 547 networks. *Advances in neural information processing systems* **31**.

548

549 JELASSI, S. and LI, Y. (2022). Towards understanding how momentum improves generalization in deep learning. In
 550 *International Conference on Machine Learning*.

551

552 JIANG, J., SHU, Y., WANG, J. and LONG, M. (2022). Transferability in deep learning: A survey. *arXiv preprint*
 553 *arXiv:2201.05867*.

554

555 KOU, Y., CHEN, Z., CHEN, Y. and GU, Q. (2023). Benign overfitting in two-layer relu convolutional neural networks.
 556 In *International Conference on Machine Learning*.

557

558 KUMAGAI, W. (2016). Learning bound for parameter transfer learning. *Advances in neural information processing*
 559 *systems* **29**.

560

561 LI, D., NGUYEN, H. L. and ZHANG, H. R. (2023). Identification of negative transfers in multitask learning using
 562 surrogate models. *arXiv preprint arXiv:2303.14582*.

563

564 LI, W., DUAN, L., XU, D. and TSANG, I. W. (2013). Learning with augmented features for supervised and semi-
 565 supervised heterogeneous domain adaptation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*
 566 **36**.

567

568 LIU, X., JI, K., FU, Y., TAM, W., DU, Z., YANG, Z. and TANG, J. (2022). P-tuning: Prompt tuning can be comparable
 569 to fine-tuning across scales and tasks. In *Proceedings of the Annual Meeting of the Association for Computational*
 570 *Linguistics (Volume 2: Short Papers)*.

571

572 MAURER, A., PONTIL, M. and ROMERA-PAREDES, B. (2016). The benefit of multitask representation learning.
 573 *Journal of Machine Learning Research* **17**.

574

575 MENG, X., CAO, Y. and ZOU, D. (2025). Per-example gradient regularization improves learning signals from noisy
 576 data. *Machine Learning* **114**.

577

578 MENG, X., ZOU, D. and CAO, Y. (2024). Benign overfitting in two-layer relu convolutional neural networks for xor
 579 data. In *International Conference on Machine Learning*.

580

581 PAN, S. J. and YANG, Q. (2009). A survey on transfer learning. *IEEE Transactions on knowledge and data engineering*
 582 **22**.

583

584 RADFORD, A., KIM, J. W., HALLACY, C., RAMESH, A., GOH, G., AGARWAL, S., SASTRY, G., ASKELL, A.,
 585 MISHKIN, P., CLARK, J., KRUEGER, G. and SUTSKEVER, I. (2021). Learning transferable visual models from
 586 natural language supervision. In *International Conference on Machine Learning*.

587

588 RUDER, S., PETERS, M. E., SWAYAMDIPTA, S. and WOLF, T. (2019). Transfer learning in natural language processing.
 589 *Proceedings of the Conference of the North American Chapter of the ACL: Tutorials* .

590

591 SHANG, S., MENG, X., CAO, Y. and ZOU, D. (2024). Initialization matters: On the benign overfitting of two-layer
 592 relu cnn with fully trainable layers. *arXiv preprint arXiv:2410.19139* .

593

594 TAN, B., SONG, Y., ZHONG, E. and YANG, Q. (2015). Transitive transfer learning. In *Proceedings of the ACM*
 595 *SIGKDD International Conference on Knowledge Discovery and Data Mining*.

596

597 TORREY, L. and SHAVLIK, J. (2010). Transfer learning. In *Handbook of Research on Machine Learning Applications*
 598 and Trends. IGI Global.

599

600 TOUVRON, H., CORD, M., DOUZE, M., MASSA, F., SABLAYROLLES, A. and JÉGOU, H. (2021). Training data-
 601 efficient image transformers & distillation through attention. In *International conference on machine learning*.

594 TRIPURANENI, N., JORDAN, M. and JIN, C. (2020). On the theory of transfer learning: The importance of task
 595 diversity. *Advances in neural information processing systems* **33**.

596

597 TSAI, Y.-H. H., YEH, Y.-R. and WANG, Y. J. (2016). Learning cross-domain landmarks for heterogeneous domain
 598 adaptation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*.

599

600 VERSHYNIN, R. (2018). *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge
 601 Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

602

603 WANG, F., JIANG, F., ZHAO, Z. and YU, Y. (2025). Transfer learning for nonparametric contextual dynamic pricing.
 604 In *International Conference on Machine Learning*.

605

606 WANG, Q.-F., GENG, X., LIN, S.-X., XIA, S.-Y., QI, L. and XU, N. (2022). Learngene: From open-world to your
 607 learning task. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 36.

608

609 WANG, Z. (2018). Theoretical guarantees of transfer learning. *arXiv preprint arXiv:1810.05986* .

610

611 WANG, Z., DAI, Z., PÓCZOS, B. and CARBONELL, J. (2019). Characterizing and avoiding negative transfer. In
 612 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*.

613

614 WU, X., MANTON, J. H., AICKELIN, U. and ZHU, J. (2024). On the generalization for transfer learning: An
 615 information-theoretic analysis. *IEEE Transactions on Information Theory*.

616

617 YE, H.-J., ZHAN, D.-C., JIANG, Z. and ZHOU, Z.-H. (2021). Heterogeneous few-shot model rectification with
 618 semantic mapping. *IEEE Transactions on Pattern Analysis and Machine Intelligence* **43**.

619

620 YI, M., WANG, R., SUN, J., LI, Z. and MA, Z.-M. (2023). Breaking correlation shift via conditional invariant
 621 regularizer. In *The International Conference on Learning Representations*.

622

623 YOSINSKI, J., CLUNE, J., BENGIO, Y. and LIPSON, H. (2014). How transferable are features in deep neural networks?
 624 In *Advances in Neural Information Processing Systems*.

625

626 YU, A., YANG, Y. and TOWNSEND, A. (2023). Tuning frequency bias in neural network training with nonuniform
 627 data. In *The International Conference on Learning Representations*.

628

629 ZHANG, C., MENG, X. and CAO, Y. (2025). Transformer learns optimal variable selection in group-sparse classification.
 630 *arXiv preprint arXiv:2504.08638* .

631

632 ZHANG, W., DENG, L., ZHANG, L. and WU, D. (2022). A survey on negative transfer. *IEEE/CAA Journal of
 633 Automatica Sinica* **10**.

634

635 ZHU, Z., LIU, F., CHRYSOS, G., LOCATELLO, F. and CEVHER, V. (2023). Benign overfitting in deep neural networks
 636 under lazy training. In *International Conference on Machine Learning*.

637

638 ZHUANG, F., QI, Z., DUAN, K., XI, D., ZHU, Y., ZHU, H., XIONG, H. and HE, Q. (2020). A comprehensive survey
 639 on transfer learning. *Proceedings of the IEEE* **109**.

640

641

642

643

644

645

646

647

ZOU, D., CAO, Y., LI, Y. and GU, Q. (2023). Understanding the generalization of adam in learning neural networks
 with proper regularization. In *The International Conference on Learning Representations*.

ZU, Y., XIA, S., YANG, X., WANG, Q., ZHANG, H. and GENG, X. (2025). Inheriting generalized learnngene for
 efficient knowledge transfer across multiple tasks. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 vol. 39.

648 **A PROOF SKETCH**

650 In this section, we briefly give the proof sketch of Theorem 4.2. We define $T^*, T^{**} = \eta^{-1} \text{poly}(n, d, \varepsilon, m)$ be the
 651 maximum admissible number of training iterations in system 1 and 2. Readers may refer to Section B for the calculation
 652 of gradient, and the meaning of the notations.

653 Our proof is based on a rigorous analysis of the training dynamics of CNN filters. Note that the activation functions are
 654 always non negative, hence $F_{+1}(\mathbf{W}; \mathbf{x})$ always contribute to the class +1, and $F_{-1}(\mathbf{W}; \mathbf{x})$ always contribute to the
 655 class -1. Our test error is calculated by rigorously comparing the output between $F_{+1}(\mathbf{W}; \mathbf{x})$ and $F_{-1}(\mathbf{W}; \mathbf{x})$. By the
 656 definition of F_{+1} or F_{-1} , it is clear that the inner product of $\mathbf{w}_{j,r}$ and the signal $\mathbf{u} + \mathbf{v}_2$ in task 2 plays a key role in
 657 achieving high test accuracy.

658 Our analysis focused on the training dynamics of $\mathbf{w}_{j,r}^{(t)}$. By gradient calculation, $\mathbf{w}_{j,r}^{(t)}$ in the downstream model can be
 659 decomposed as

$$\begin{aligned} \mathbf{w}_{j,r}^{(t)} &= \mathbf{w}_{j,r}^{(0)} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\mathbf{u}\|_2^{-2} \cdot \mathbf{u} + j \cdot \gamma_{j,r,1}^{(t)} \cdot \|\mathbf{v}_1\|_2^{-2} \cdot \mathbf{v}_1 + j \cdot \gamma_{j,r,2}^{(t)} \cdot \|\mathbf{v}_2\|_2^{-2} \cdot \mathbf{v}_2 \\ &+ \sum_{i=1}^{N_1} \rho_{j,r,i,1}^{(t)} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,1} + \sum_{i=1}^{N_2} \rho_{j,r,i,2}^{(t)} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,2}. \end{aligned}$$

660 This is because the update direction of $\mathbf{w}_{j,r}^{(t)}$ is in the space of $\text{span}\{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \boldsymbol{\xi}_{i,1}, \boldsymbol{\xi}_{i,2}\}$, Readers may refer to Section B
 661 for the detail. From the algorithm in Section 3, all the coefficients experienced two different systems. We proceed the
 662 analysis in the first system. With the precise characterization in the first system, we then transfer the whole analysis into
 663 the second system. readers may refer to Lemma B.2 for the two systems.

664 The following lemma constitutes the core technical results in our analysis of signal learning dynamics and noise
 665 memorization behavior in the first system. It is clear from the decomposition above that the coefficients γ (i.e $\gamma_{j,r}$) are related to the growth of signal learning in the neural networks, and the coefficients ρ (i.e $\rho_{j,r,i,1}$) are related to the
 666 growth of noise memorization. We would like to define \bar{x}_t and \underline{x}_t which help us give the precise characterization of
 667 signal learning and noise memorization. Let

$$\kappa_A = \frac{4C_2 N_1 \|\mathbf{u} + \mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + (4C_1 + 64) N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*) + 8 \sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d}.$$

668 and define $\bar{x}_t^A, \underline{x}_t^A$ be the unique solution of

$$\begin{aligned} \bar{x}_t^A + \bar{b}^A e^{\bar{x}_t^A} &= \bar{c}^A t + \bar{b}^A, \\ \underline{x}_t^A + \underline{b}^A e^{\underline{x}_t^A} &= \underline{c}^A t + \underline{b}^A, \end{aligned}$$

669 where $\bar{b}^A = e^{-\kappa_A/2}$, $\bar{c}^A = \frac{3\eta\sigma_{p,1}^2 d}{2N_1 m}$, $\underline{b}^A = e^{\kappa_A/2}$ and $\underline{c}^A = \frac{\eta\sigma_{p,1}^2 d}{5N_1 m}$. We have the following lemmas.

670 **Lemma A.1.** *Under Condition 4.1, it holds that*

$$\begin{aligned} \frac{\eta \|\mathbf{u}\|_2^2}{\bar{c}m} \bar{x}_{t-2}^A - \frac{2\eta \|\mathbf{u}\|_2^2}{m} &\leq \gamma_{j,r}^{A,(t)} \leq \frac{\eta \|\mathbf{u}\|_2^2}{\underline{c}m} \underline{x}_{t-1}^A - \frac{2\eta \|\mathbf{u}\|_2^2}{m}, \\ \frac{\eta \|\mathbf{v}_1\|_2^2}{\bar{c}m} \bar{x}_{t-2}^A - \frac{2\eta \|\mathbf{v}_1\|_2^2}{m} &\leq \gamma_{j,r,1}^{A,(t)} \leq \frac{\eta \|\mathbf{v}_1\|_2^2}{\underline{c}m} \underline{x}_{t-1}^A - \frac{2\eta \|\mathbf{v}_1\|_2^2}{m}. \end{aligned}$$

671 Moreover, for the noise memorization it holds that

$$\frac{N_1}{12} (\bar{x}_{t-2}^A - \bar{x}_1^A) \leq \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t)} \leq 5N_1 \underline{x}_{t-1}^A.$$

672 The proof of Lemma A.1 is structured through Lemmas D.8 and D.9, which separately characterize the dynamics of
 673 signal learning and noise memorization. A key step in establishing Lemma A.1 lies in demonstrating the balanced
 674 nature of the per-sample training losses, namely that the ratio $\ell_i^{(t)}/\ell_{i'}^{(t)}$ remains uniformly bounded by a constant for
 675 all iterations t and any $i, i' \in [N_1]$. Readers may refer to the proof of Proposition D.5 for a detailed argument on this
 676 balancing property. With the balanced loss established, we proceed to apply continuous approximation techniques,
 677 following a similar approach to that of Meng et al. (2024), and obtain the lemma above.

With the precise characterization of γ and ρ in system 1, we then transfer the analysis into the second system. The main challenges in second system are related to the analysis of the system with different initializations. In our analysis of the second system, for the universal part of $\gamma_{j,r}^{D,(t)}$, we directly define a new term $\gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)}$, and analysis is directly performed on this term. Combing the analysis in system 1, we define

$$\kappa_D = \frac{4C_2 N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}) + \frac{4C_2 N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + 16 \sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} \\ + (4C_1 + 64)(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}).$$

With the transfer from system 1 into system 2, we give the characterization of noise memorization and signal learning in the system 2. Let $\bar{x}_t^D, \underline{x}_t^D$ be the unique solution of

$$\bar{x}_t^D + \bar{b}^D e^{\bar{x}_t^D} = \bar{c}^D t + \bar{b}^D, \\ \underline{x}_t^D + \underline{b}^D e^{\underline{x}_t^D} = \underline{c}^D t + \underline{b}^D,$$

where $\bar{b}^D = e^{-\kappa_D/2}$, $\bar{c}^D = \frac{3\eta\sigma_{p,2}^2 d}{2N_2 m}$, $\underline{b}^D = e^{\kappa_D/2}$ and $\underline{c}^D = \frac{\eta\sigma_{p,2}^2 d}{5N_2 m}$. The coefficient in system 2 can be characterized as in the following lemma.

Lemma A.2. *Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, it holds that*

$$\frac{\eta \|\mathbf{u}\|_2^2}{\underline{c}^D m} \underline{x}_{t-2}^D - \frac{2\eta \|\mathbf{u}\|_2^2}{m} \leq \gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)} \leq \frac{\eta \|\mathbf{u}\|_2^2}{\bar{c}^D m} \bar{x}_{t-1}^D - \frac{2\eta \|\mathbf{u}\|_2^2}{m}, \\ \frac{\eta \|\mathbf{v}\|_2^2}{\underline{c}^D m} \underline{x}_{t-2}^D - \frac{2\eta \|\mathbf{v}_2\|_2^2}{m} \leq \gamma_{j,r,2}^{D,(t)} \leq \frac{\eta \|\mathbf{v}\|_2^2}{\bar{c}^D m} \bar{x}_{t-1}^D - \frac{2\eta \|\mathbf{v}_2\|_2^2}{m}.$$

Moreover, for the noise memorization term, it holds that

$$\frac{N_2}{12} (\underline{x}_{t-2}^D - \underline{x}_1^D) \leq \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} \leq 5N_2 \bar{x}_{t-1}^D.$$

With Lemma A.1 and A.2, our analysis then focuses on how much the training data noises ξ_i have been memorized by the CNN filters, and then the training loss and the test error can be calculated and bounded based on their definitions. Specifically, for the test accuracy, we can directly achieve the rate of $\langle \mathbf{w}_{j,r}^{D,(t)}, y_{\text{new}}(\mathbf{u} + \mathbf{v}_2) \rangle$ and $\langle \mathbf{w}_{j,r}^{D,(t)}, \xi \rangle$ for the new data sample point $(\mathbf{u} + \mathbf{v}_2, \xi)$ by the expression of $\mathbf{w}_{j,r}^{(t)}$. Direct comparison will achieve our desired results. For the training loss, the inner product of $\mathbf{w}_{j,r}^{(t)}$ and $\xi_{i,2}$ will make the output of neural networks large, leading to small training loss.

B GRADIENT CALCULATION

In this section, we give the signal-noise decomposition of the weights and the update rule of each part in the weights. Moreover, we give the iterative equations for Task 1 and Task 2 separately. We use the superscript A for the upstream model in Task 1 and the superscript D for the downstream model in Task 2.

Definition B.1. *Let $\mathbf{w}_{j,r}^{(t)}$ for $j \in \{+1, -1\}$ and $r \in \{1, 2, \dots, m\}$ be the convolution filters of the CNN at the t -th iteration of gradient descent. Then there exist unique coefficients $\gamma_{j,r}^{(t)}, \gamma_{j,r,1}^{(t)}, \gamma_{j,r,2}^{(t)} \geq 0$, $\rho_{j,r,i,1}^{(t)}$ and $\rho_{j,r,i,2}^{(t)}$ such that,*

$$\mathbf{w}_{j,r}^{(t)} = \mathbf{w}_{j,r}^{(0)} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\mathbf{u}\|_2^{-2} \cdot \mathbf{u} + j \cdot \gamma_{j,r,1}^{(t)} \cdot \|\mathbf{v}_1\|_2^{-2} \cdot \mathbf{v}_1 + j \cdot \gamma_{j,r,2}^{(t)} \cdot \|\mathbf{v}_2\|_2^{-2} \cdot \mathbf{v}_2 \\ + \sum_{i=1}^{N_1} \rho_{j,r,i,1}^{(t)} \cdot \|\xi_{i,1}\|_2^{-2} \cdot \xi_{i,1} + \sum_{i=1}^{N_2} \rho_{j,r,i,2}^{(t)} \cdot \|\xi_{i,2}\|_2^{-2} \cdot \xi_{i,2}. \quad (\text{B.1})$$

Further denote

$$\bar{\rho}_{j,r,i,s}^{(t)} := \rho_{j,r,i,s}^{(t)} \mathbf{1} \left(\rho_{j,r,i,s}^{(t)} \geq 0 \right), \quad \rho_{j,r,i,s}^{(t)} := \rho_{j,r,i,s}^{(t)} \mathbf{1} \left(\rho_{j,r,i,s}^{(t)} \leq 0 \right).$$

756 Then

$$\begin{aligned}
758 \quad \mathbf{w}_{j,r}^{(t)} &= \mathbf{w}_{j,r}^{(0)} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\mathbf{u}\|_2^{-2} \cdot \mathbf{u} + j \cdot \gamma_{j,r,1}^{(t)} \cdot \|\mathbf{v}_1\|_2^{-2} \cdot \mathbf{v}_1 + j \cdot \gamma_{j,r,2}^{(t)} \cdot \|\mathbf{v}_2\|_2^{-2} \cdot \mathbf{v}_2 \\
759 \\
760 &+ \sum_{i=1}^{N_1} \bar{\rho}_{j,r,i,1}^{(t)} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,1} + \sum_{i=1}^{N_2} \bar{\rho}_{j,r,i,2}^{(t)} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,2} \\
761 \\
763 &+ \sum_{i=1}^{N_1} \rho_{j,r,i,1}^{(t)} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,1} + \sum_{i=1}^{N_2} \rho_{j,r,i,2}^{(t)} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^{-2} \cdot \boldsymbol{\xi}_{i,2}. \tag{B.2}
764 \\
765
\end{aligned}$$

766 Based on the above definition of the signal-noise decomposition of the weights, we will prove the unique of the
767 coefficients and give the iterative equations in the next lemma.
768

769 **Lemma B.2** (Update Rule). *The coefficients are defined as Definition B.1. Note that We use the superscript A for the
770 upstream model in Task 1 and the superscript D for the downstream model in Task 2. The coefficients in Task 1 are
771 unique and satisfy the following iterative equations:*

$$\begin{aligned}
773 \quad \gamma_{j,r}^{A,(0)}, \gamma_{j,r,1}^{A,(0)}, \bar{\rho}_{j,r,i,1}^{A,(0)}, \rho_{j,r,i,1}^{A,(0)}, \gamma_{j,r,2}^{A,(0)}, \bar{\rho}_{j,r,i,2}^{A,(0)}, \rho_{j,r,i,2}^{A,(0)} &= 0, \\
774 \\
775 \quad \gamma_{j,r}^{A,(t+1)} &= \gamma_{j,r}^{A,(t)} - \frac{\eta}{N_1 m} \sum_{i \in [N_1]} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, y_{i,1} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{u}\|_2^2, \\
776 \\
777 \quad \gamma_{j,r,2}^{A,(t+1)} &= \gamma_{j,r,2}^{A,(t)}, \quad \bar{\rho}_{j,r,i,2}^{A,(t+1)} = \bar{\rho}_{j,r,i,2}^{A,(t)}, \quad \rho_{j,r,i,2}^{A,(t+1)} = \rho_{j,r,i,2}^{A,(t)}, \\
778 \\
779 \quad \gamma_{j,r,1}^{A,(t+1)} &= \gamma_{j,r,1}^{A,(t)} - \frac{\eta}{N_1 m} \sum_{i \in [N_1]} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, y_{i,1} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{v}_1\|_2^2, \\
780 \\
781 \quad \bar{\rho}_{j,r,i,1}^{A,(t+1)} &= \bar{\rho}_{j,r,i,1}^{A,(t)} - \frac{\eta}{N_1 m} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \cdot \mathbf{1}\{y_{i,1} = j\}, \\
782 \\
783 \quad \rho_{j,r,i,1}^{A,(t+1)} &= \rho_{j,r,i,1}^{A,(t)} + \frac{\eta}{N_1 m} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \cdot \mathbf{1}\{y_{i,1} = -j\}, \\
784 \\
785 \quad \text{for all } r \in [m], j \in \{\pm 1\} \text{ and } i \in [N_1]. \text{ For the coefficients in task 2 are also unique and satisfy the following iterative} \\
786 \text{equations:} \\
787 \\
788 \quad \gamma_{j,r}^{D,(t+1)} &= \gamma_{j,r}^{D,(t)} - \frac{\eta}{N_2 m} \sum_{i \in [N_2]} \ell_i'^{D,(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{u}\|_2^2, \\
789 \\
790 \quad \gamma_{j,r,1}^{D,(t+1)} &= \gamma_{j,r,1}^{D,(t)}, \quad \bar{\rho}_{j,r,i,1}^{D,(t+1)} = \bar{\rho}_{j,r,i,1}^{D,(t)}, \quad \rho_{j,r,i,1}^{D,(t+1)} = \rho_{j,r,i,1}^{D,(t)}, \\
791 \\
792 \quad \gamma_{j,r,2}^{D,(t+1)} &= \gamma_{j,r,2}^{D,(t)} - \frac{\eta}{N_2 m} \sum_{i \in [N_2]} \ell_i'^{D,(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{v}_2\|_2^2, \\
793 \\
794 \quad \bar{\rho}_{j,r,i,2}^{D,(t+1)} &= \bar{\rho}_{j,r,i,2}^{D,(t)} - \frac{\eta}{N_2 m} \ell_i'^{D,(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \cdot \mathbf{1}\{y_{i,2} = j\}, \\
795 \\
796 \quad \rho_{j,r,i,2}^{D,(t+1)} &= \rho_{j,r,i,2}^{D,(t)} + \frac{\eta}{N_2 m} \ell_i'^{D,(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \cdot \mathbf{1}\{y_{i,2} = -j\}, \\
797 \\
798 \quad \text{for all } r \in [m], j \in \{\pm 1\} \text{ and } i \in [N_2]. \\
799 \\
800 \quad \text{Proof of Lemma B.2.} \text{ In Task 1, by the definition of data generation model in Definition 3.1 and the Gaussian initializa-} \\
801 \text{tion of the network weights, it is obvious that all the vectors (signals, noise and weights) are linearly independent with} \\
802 \text{probability 1. So the decomposition equation B.2 is unique in Task 1. The update iterative equations can be calculated} \\
803
\end{aligned}$$

810 directly by $\mathbf{w}_{j,r}^{A,(t+1)} = \mathbf{w}_{j,r}^{A,(t)} - \eta \nabla_{\mathbf{w}_{j,r}^A} L_{Task1}(\mathbf{W}^{A,(t)})$. That is shown as following

$$811 \quad \gamma_{j,r}^{(t+1)} = \gamma_{j,r}^{(t)} - \frac{\eta}{N_1 m} \sum_{i \in [N_1]} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i,1} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{u}\|_2^2,$$

$$812 \quad \gamma_{j,r,1}^{(t+1)} = \gamma_{j,r,1}^{(t)} - \frac{\eta}{N_1 m} \sum_{i \in [N_1]} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i,1} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{v}_1\|_2^2,$$

$$813 \quad \rho_{j,r,i,1}^{(t+1)} = \rho_{j,r,i,1}^{(t)} - \frac{\eta}{N_1 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \xi_{i,1} \rangle) \cdot \|\xi_{i,1}\|_2^2 \cdot j y_{i,1}.$$

814 Note that $\gamma_{j,r,2}^{(t)}$ and $\rho_{j,r,i,2}^{(t)}$ remain unchanged. Furthermore, denoted by $\bar{\rho}_{j,r,i,1}^{(t)} = \rho_{j,r,i,1}^{(t)} \mathbf{1}(\rho_{j,r,i,1}^{(t)} \geq 0)$ and $\underline{\rho}_{j,r,i,1}^{(t)} =$
815 $\rho_{j,r,i,1}^{(t)} \mathbf{1}(\rho_{j,r,i,1}^{(t)} \leq 0)$, we have

$$816 \quad \bar{\rho}_{j,r,i,1}^{(t+1)} = \bar{\rho}_{j,r,i,1}^{(t)} - \frac{\eta}{N_1 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \xi_{i,1} \rangle) \cdot \|\xi_{i,1}\|_2^2 \cdot \mathbf{1}\{y_{i,1} = j\},$$

$$817 \quad \underline{\rho}_{j,r,i,1}^{(t+1)} = \underline{\rho}_{j,r,i,1}^{(t)} + \frac{\eta}{N_1 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \xi_{i,1} \rangle) \cdot \|\xi_{i,1}\|_2^2 \cdot \mathbf{1}\{y_{i,1} = -j\}.$$

818 Next, we prove the results for Task 2. Note that partial weights ($\alpha m \leq r \leq m$) are re-initialized at the start of Task 2.
819 Then, by the definition of data generation model in Definition 3.2 and the Gaussian initialization of the re-initialized
820 weights, it is obvious that all the vectors (signals, noise and weights) are also linearly independent with probability 1.
821 So the decomposition equation B.2 is unique in Task 2. The update iterative equations can be calculated directly by
822 $\mathbf{w}_{j,r}^{D,(t+1)} = \mathbf{w}_{j,r}^{D,(t)} - \eta \nabla_{\mathbf{w}_{j,r}^D} L_{Task2}(\mathbf{W}^{D,(t)})$. That is shown as following

$$823 \quad \gamma_{j,r}^{(t+1)} = \gamma_{j,r}^{(t)} - \frac{\eta}{N_2 m} \sum_{i \in [N_2]} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i,2} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{u}\|_2^2,$$

$$824 \quad \gamma_{j,r,2}^{(t+1)} = \gamma_{j,r,2}^{(t)} - \frac{\eta}{N_2 m} \sum_{i \in [N_2]} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i,2} \cdot \mathbf{x}_1 \rangle) \cdot \|\mathbf{v}_2\|_2^2,$$

$$825 \quad \rho_{j,r,i,2}^{(t+1)} = \rho_{j,r,i,2}^{(t)} - \frac{\eta}{N_2 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2 \cdot j y_{i,2}.$$

826 Note that $\gamma_{j,r,1}^{(t)}$ and $\rho_{j,r,i,1}^{(t)}$ remain unchanged in Task 2. Furthermore, denoted by $\bar{\rho}_{j,r,i,2}^{(t)} = \rho_{j,r,i,2}^{(t)} \mathbf{1}(\rho_{j,r,i,2}^{(t)} \geq 0)$ and
827 $\underline{\rho}_{j,r,i,2}^{(t)} = \rho_{j,r,i,2}^{(t)} \mathbf{1}(\rho_{j,r,i,2}^{(t)} \leq 0)$, we have

$$828 \quad \bar{\rho}_{j,r,i,2}^{(t+1)} = \bar{\rho}_{j,r,i,2}^{(t)} - \frac{\eta}{N_1 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2 \cdot \mathbf{1}\{y_{i,2} = j\},$$

$$829 \quad \underline{\rho}_{j,r,i,2}^{(t+1)} = \underline{\rho}_{j,r,i,2}^{(t)} + \frac{\eta}{N_1 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2 \cdot \mathbf{1}\{y_{i,2} = -j\}.$$

830 Then, we complete the proof. \square

C PRELIMINARY LEMMAS

831 In this section, we introduce some basic technical lemmas, which can describe important properties of the data the
832 weights at initialization.

833 **Lemma C.1.** *Suppose that $\delta > 0$ and $d = \Omega(\log(4 \max\{N_1, N_2\}/\delta))$, the following results hold with probability at
834 least $1 - 3\delta$. In Task 1, for all $i, i' \in [N_1]$, we have*

$$835 \quad \sigma_{p,1}^2 d/2 \leq \|\xi_{i,1}\|_2^2 \leq 3\sigma_{p,1}^2 d/2,$$

$$836 \quad |\langle \xi_{i,1}, \xi_{i',1} \rangle| \leq 2\sigma_{p,1}^2 \cdot \sqrt{d \log(4N_1^2/\delta)}.$$

837 In Task 2, for all $i, i' \in [N_2]$, we have

$$838 \quad \sigma_{p,2}^2 d/2 \leq \|\xi_{i,2}\|_2^2 \leq 3\sigma_{p,2}^2 d/2,$$

$$839 \quad |\langle \xi_{i,2}, \xi_{i',2} \rangle| \leq 2\sigma_{p,2}^2 \cdot \sqrt{d \log(4N_2^2/\delta)}.$$

864 Moreover, for all $i \in [N_1], i' \in [N_2]$, we have

$$865 \quad 866 \quad |\langle \xi_{i,1}, \xi_{i',2} \rangle| \leq 2\sigma_{p,1}\sigma_{p,2} \cdot \sqrt{d \log(4 \max\{N_1^2, N_2^2\}/\delta)}. \\ 867$$

868 *Proof of Lemma C.1.* For Task 1, by Bernstein's inequality, it holds with probability at least $1 - \delta/(2N_1)$

$$869 \quad 870 \quad \left| \|\xi_{i,1}\|_2^2 - \sigma_{p,1}^2 d \right| \leq O(\sigma_{p,1}^2 \cdot \sqrt{d \log(4N_1/\delta)}).$$

871 By setting $d = \Omega(\log(4 \max\{N_1, N_2\}/\delta))$, we have

$$872 \quad 873 \quad \sigma_{p,1}^2 d/2 \leq \|\xi_{i,1}\|_2^2 \leq 3\sigma_{p,1}^2 d/2.$$

874 For the second result for Task 1, for $i \neq i'$, $\langle \xi_{i,1}, \xi_{i',1} \rangle$ has mean zero. Then by Bernstein's inequality, it holds with
875 probability at least $1 - \delta/(2N_1^2)$

$$876 \quad 877 \quad |\langle \xi_{i,1}, \xi_{i',1} \rangle| \leq 2\sigma_{p,1}^2 \cdot \sqrt{d \log(4N_1^2/\delta)}.$$

878 The proof for Task 2 is similar and we omit it here. For $i \in [N_1], i' \in [N_2]$, by Bernstein's inequality, it holds with
879 probability at least $1 - \delta/(2N_1 N_2)$

$$880 \quad 881 \quad |\langle \xi_{i,1}, \xi_{i',2} \rangle| \leq 2\sigma_{p,1}\sigma_{p,2} \cdot \sqrt{d \log(4 \max\{N_1^2, N_2^2\}/\delta)}.$$

882 Finally, by union bound, we complete the proof. \square

883 **Lemma C.2** (Meng et al. (2024)). *Suppose that $d = \Omega(\log(m \max N_1, N_2/\delta))$, $m = \Omega(\log(1/\delta))$. Then with
884 probability at least $1 - \delta$,*

$$885 \quad 886 \quad \sigma_0^2 d/2 \leq \|\mathbf{w}_{j,r}^{(0)}\|_2^2 \leq 3\sigma_0^2 d/2, \\ 887 \quad |\langle \mathbf{w}_{j,r}^{(0)}, \boldsymbol{\mu} \rangle| \leq \sqrt{2 \log(12m/\delta)} \cdot \sigma_0 \|\boldsymbol{\mu}\|_2, \\ 888 \quad |\langle \mathbf{w}_{j,r}^{(0)}, \xi_i \rangle| \leq 2\sqrt{\log(12mn/\delta)} \cdot \sigma_0 \sigma_p \sqrt{d},$$

889 for all $r \in [m], j \in \{\pm 1\}, i \in [n], \xi_i \in \{\xi_{i,1}, \xi_{i,2}\}$ and $\boldsymbol{\mu} \in \{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2\}$. Moreover,

$$890 \quad \sigma_0 \|\boldsymbol{\mu}\|_2/2 \leq \max_{r \in [m]} \langle \mathbf{w}_{j,r}^{(0)}, \boldsymbol{\mu} \rangle \leq \sqrt{2 \log(12m/\delta)} \cdot \sigma_0 \|\boldsymbol{\mu}\|_2, \\ 891 \quad \sigma_0 \sigma_p \sqrt{d}/4 \leq \max_{r \in [m]} \langle \mathbf{w}_{j,r}^{(0)}, \xi_i \rangle \leq 2\sqrt{\log(12mn/\delta)} \cdot \sigma_0 \sigma_p \sqrt{d},$$

892 for all $j \in \{\pm 1\}, i \in [n], (\xi_i, \sigma_p) \in \{(\xi_{i,1}, \sigma_{p,1}), (\xi_{i,2}, \sigma_{p,2})\}$ and $\boldsymbol{\mu} \in \{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2\}$.

893 **Lemma C.3** (Kou et al. (2023)). *Suppose that $\delta > 0$, $m = \Omega(\log(2 \max\{N_1, N_2\}/\delta))$. Define $S_i^{A,(t)} = \{r \in [m] : \langle \mathbf{w}_{y_{i,1},r}^{(t)}, \xi_{i,1} \rangle > 0\}$ and $S_i^{D,(t)} = \{r \in [m] : \langle \mathbf{w}_{y_{i,2},r}^{(t)}, \xi_{i,2} \rangle > 0\}$. Then, with probability at least $1 - \delta$,*

$$894 \quad |S_i^{A,(0)}| \geq 0.4m \quad \text{and} \quad |S_i^{D,(0)}| \geq 0.4m$$

895 for all $i \in [n]$.

896 *Proof of Lemma C.3.* By definition, we know that $S_i^{A,(0)} = \{r \in [m] : \langle \mathbf{w}_{y_{i,1},r}^{(0)}, \xi_{i,1} \rangle > 0\}$. At initialization, it is
897 obvious that $P(\langle \mathbf{w}_{y_{i,1},r}^{(0)}, \xi_{i,1} \rangle > 0) = 0.5$. By Hoeffding's inequality, it holds with probability at least $1 - \delta/(2N_1)$
898 that

$$899 \quad 900 \quad \left| \frac{|S_i^{A,(0)}|}{m} - 0.5 \right| \leq \sqrt{\frac{\log(4N_1/\delta)}{2m}}.$$

901 So, the proof will be completed by applying union bound as if $\sqrt{\log(4N_1/\delta)/2m} \leq 0.1$, i.e., $m \geq 50 \log(4N_1/\delta)$.
902 The condition is satisfied. The proof for $|S_i^{D,(0)}| \geq 0.4m$ is similar and we omit it here. \square

903 **Lemma C.4** (Meng et al. (2024)). *Suppose that a sequence $a_t, t \geq 0$ follows the iterative formula*

$$904 \quad 905 \quad a_{t+1} = a_t + \frac{c}{1 + be^{a_t}},$$

906 for some $1 \geq c \geq 0$ and $b \geq 0$. Then it holds that

$$907 \quad 908 \quad x_t \leq a_t \leq \frac{c}{1 + be^{a_0}} + x_t$$

909 for all $t \geq 0$. Here, x_t is the unique solution of

$$910 \quad 911 \quad x_t + be^{x_t} = ct + a_0 + be^{a_0}.$$

918 **D THE FIRST SYSTEM**

919
 920 Note that the downstream model maintains an identical architecture to the upstream model but inherits only half of the
 921 first-layer parameters from the upstream model. The remaining half undergoes re-initialization, effectively creating a
 922 hybrid initialization scheme. To rigorously distinguish the training epochs between the upstream model's performance
 923 on Task 1 and the downstream model's performance on Task 2, we formally define T^* as the transition point marking
 924 the boundary between the two tasks. The upstream model (Task 1): Training occurs over the interval $[0, T^*]$; the
 925 downstream model (Task 2): Training proceeds from $[T^*, T^{**}]$.

926 Lemma B.2 clearly gives us the update rule in both system. Note that in parameter transfer, some values of $\mathbf{w}_{j,r}$ are
 927 changed into the initialized normal distribution, we will later incorporate such change in the second system and analyze
 928 the test error.

930 **D.1 COEFFICIENT SCALE ANALYSIS**

931 We denote the results from the upstream model (Task 1) with a superscript notation A.

932 **Proposition D.1.** *Under Condition 4.1, for $0 \leq t \leq T^*$, it holds that*

933
$$0 \leq \bar{\rho}_{j,r,i,1}^{A,(t)} \leq 4 \log(T^*), \quad (\text{D.1})$$

934
$$0 \geq \underline{\rho}_{j,r,i,1}^{A,(t)} \geq -2 \sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} - C_1 \sqrt{\frac{\log\left(\frac{4N_1^2}{\delta}\right)}{d}} N_1 \log(T^*) \geq -4 \log(T^*), \quad (\text{D.2})$$

935
$$0 \leq \gamma_{j,r}^{A,(t)} \leq \frac{C_2 N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*), \quad (\text{D.3})$$

936
$$0 \leq \gamma_{j,r,1}^{A,(t)} \leq \frac{C_2 N_1 \|\mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d} \log(T^*), \quad (\text{D.4})$$

937 for all $r \in [m], j \in \{\pm 1\}, i \in [N_1]$, where C_1 and C_2 are two absolute constant.

938 We will prove Proposition D.1 by induction. Before that we give some important technical lemmas used in the proof.

939 **Lemma D.2.** *Under Condition 4.1, for $0 < t < T^*$, suppose equation D.1, equation D.2, equation D.3, equation D.4
 940 hold at iteration t. Then, for all $r \in [m], j \in \{\pm 1\}, i \in [N_1]$, it holds that*

941
$$\left| \langle \mathbf{w}_{j,r}^{A,(t)} - \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle - \underline{\rho}_{j,r,i,1}^{A,(t)} \right| \leq 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*), \quad j \neq y_{i,1}; \quad (\text{D.5})$$

942
$$\left| \langle \mathbf{w}_{j,r}^{A,(t)} - \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle - \bar{\rho}_{j,r,i,1}^{A,(t)} \right| \leq 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*), \quad j = y_{i,1}. \quad (\text{D.6})$$

943 *Proof of Lemma D.2.* By equation B.2, we have

944
$$\langle \mathbf{w}_{j,r}^{A,(t)} - \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle = \sum_{i'=1}^{N_1} \bar{\rho}_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle + \sum_{i'=1}^{N_1} \underline{\rho}_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle. \quad (\text{D.7})$$

945 When $j \neq y_{i,1}$, we have $\bar{\rho}_{j,r,i',1}^{A,(t)} = 0$ and the equation equation D.7 can be turned into

946
$$\langle \mathbf{w}_{j,r}^{A,(t)} - \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle = \underline{\rho}_{j,r,i,1}^{A,(t)} + \sum_{i' \neq i} \underline{\rho}_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle. \quad (\text{D.8})$$

947 Then we bound the remainder as

948
$$\begin{aligned} \left| \sum_{i' \neq i} \underline{\rho}_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle \right| &\leq \sum_{i' \neq i} |\underline{\rho}_{j,r,i',1}^{A,(t)}| \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot |\langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle| \\ 949 &\leq 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*). \end{aligned}$$

972 We finish the proof of equation D.5. When $j = y_{i,1}$, we have $\rho_{j,r,i',1}^{A,(t)} = 0$ and the equation equation D.7 can be turned
 973 into

$$974 \quad 975 \quad \langle \mathbf{w}_{j,r}^{A,(t)} - \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle = \bar{\rho}_{j,r,i,1}^{A,(t)} + \sum_{i' \neq i} \bar{\rho}_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle.$$

976 Then we bound the remainder as

$$977 \quad \left| \sum_{i' \neq i} \bar{\rho}_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle \right| \leq \sum_{i' \neq i} |\bar{\rho}_{j,r,i',1}^{A,(t)}| \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot |\langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle| \\ 978 \quad 979 \quad \leq 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*).$$

982 We finish the proof of equation D.6. \square

984 Next, we will give the bound for the output of the network. Before that, we define κ_A as

$$986 \quad 987 \quad \kappa_A = \frac{4C_2N_1\|\mathbf{u} + \mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + (4C_1 + 64)N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*) + 8\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0\sigma_{p,1}\sqrt{d}.$$

988 By the condition of d in Condition 4.1, we have $\kappa_A \leq 0.1$.

989 **Lemma D.3.** *Under Condition 4.1, for $0 < t < T^*$, suppose equation D.1, equation D.2, equation D.3, equation D.4
 990 hold at iteration t . Then, it holds that*

$$992 \quad F_{-y_{i,1}}(\mathbf{W}_{-y_{i,1}}^{A,(t)}, \mathbf{x}_{i,1}) \leq \kappa_A/4, \quad -\kappa_A/4 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)} \leq F_{y_{i,1}}(\mathbf{W}_{y_{i,1}}^{A,(t)}, \mathbf{x}_{i,1}) \leq \kappa_A/4 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)} \\ 993 \quad 994 \quad -\kappa_A/2 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)} \leq y_{i,1}f(\mathbf{W}^{A,(t)}, \mathbf{x}_{i,1}) \leq \kappa_A/2 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)}.$$

998 *Proof.* Recall that the definition of $F_j(\mathbf{W}_j^{A,(t)}, \mathbf{x}_{i,1})$ as

$$1000 \quad F_j(\mathbf{W}_j^{A,(t)}, \mathbf{x}_{i,1}) = \frac{1}{m} \sum_{r=1}^m [\sigma(\langle \mathbf{w}_{j,r}, y_{i,1}(\mathbf{u} + \mathbf{v}_1) \rangle) + \sigma(\langle \mathbf{w}_{j,r}, \boldsymbol{\xi}_{i,1} \rangle)].$$

1002 When $j = -y_{i,1}$, we have

$$1003 \quad F_{-y_{i,1}}(\mathbf{W}_{-y_{i,1}}^{A,(t)}, \mathbf{x}_{i,1}) \leq \frac{1}{m} \sum_{r=1}^m [|\langle \mathbf{w}_{j,r}, y_{i,1}\mathbf{u} \rangle| + |\langle \mathbf{w}_{j,r}, y_{i,1}\mathbf{v}_1 \rangle| + |\langle \mathbf{w}_{j,r}, \boldsymbol{\xi}_{i,1} \rangle|] \\ 1004 \quad 1005 \quad \leq \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)} + \bar{\rho}_{j,r,i,1}^{A,(t)} + 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*) \\ 1006 \quad 1007 \quad \leq \frac{C_2N_1\|\mathbf{u} + \mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + 2\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0\sigma_{p,1}\sqrt{d} \\ 1008 \quad 1009 \quad + C_1N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*) + 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*),$$

1013 where the first inequality uses triangle inequality, the second inequality is by Lemma D.2, the third inequality is by
 1014 equation D.2, equation D.3, equation D.4 and the fact that $\mathbf{u} \perp \mathbf{v}_1$. When $j = y_{i,1}$, we have

$$1016 \quad 1017 \quad \left| F_{y_{i,1}}(\mathbf{W}_{y_{i,1}}^{A,(t)}, \mathbf{x}_{i,1}) - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)} \right| \\ 1018 \quad 1019 \quad \leq \frac{1}{m} \sum_{r=1}^m [|\langle \mathbf{w}_{j,r}, y_{i,1}\mathbf{u} \rangle| + |\langle \mathbf{w}_{j,r}, y_{i,1}\mathbf{v}_1 \rangle| + |\langle \mathbf{w}_{j,r}, \boldsymbol{\xi}_{i,1} \rangle - \bar{\rho}_{j,r,i,1}^{A,(t)}|] \\ 1020 \quad 1021 \quad \leq \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)} + 2\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0\sigma_{p,1}\sqrt{d} + 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*) \\ 1022 \quad 1023 \quad \leq \frac{C_2N_1\|\mathbf{u} + \mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + 2\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0\sigma_{p,1}\sqrt{d} + 16N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*),$$

1026 where the first inequality uses triangle inequality, the second inequality is by Lemma D.2, the third inequality is by
 1027 equation D.2, equation D.3, equation D.4, and the last inequality uses the fact that $\mathbf{u} \perp \mathbf{v}_1$. At last, because
 1028

$$1029 \quad 1030 \quad y_{i,1}f(\mathbf{W}^{A,(t)}, \mathbf{x}_{i,1}) = F_{y_{i,1}}(\mathbf{W}_{y_{i,1}}^{A,(t)}, \mathbf{x}_{i,1}) - F_{-y_{i,1}}(\mathbf{W}_{-y_{i,1}}^{A,(t)}, \mathbf{x}_{i,1}),$$

1031 we complete the proof. \square
 1032

1034 **Lemma D.4.** *Under Condition 4.1, suppose equation D.1, equation D.2, equation D.3, equation D.4 hold for any
 1035 iteration $0 < t < T^*$. Then, the following results hold for any iteration t :*

$$1037 \quad 1038 \quad 1. \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,1},r,i,1}^{A,(t)} - \bar{\rho}_{r,k,i,1}^{A,(t)} \right] \leq \log(12) + \kappa_A + \sqrt{\log(2N_1/\delta)/m} \text{ for all } i, k \in [N_1].$$

$$1039 \quad 1040 \quad 2. S_i^{A,(0)} \subseteq S_i^{A,(t)}, \text{ where } S_i^{A,(t)} = \{r \in [m] : \langle \mathbf{w}_{y_{i,r}}^{A,(t)}, \boldsymbol{\xi}_{i,1} \rangle > 0\}.$$

$$1041 \quad 1042 \quad 3. S_{j,r}^{A,(0)} \subseteq S_{j,r}^{A,(t)}, \text{ where } S_{j,r}^{A,(t)} = \{i \in [N_1] : y_{i,1} = j, \langle \mathbf{w}_{j,r}^{A,(t)}, \boldsymbol{\xi}_{i,1} \rangle > 0\}.$$

$$1043 \quad 1044 \quad 4. \ell_i'^{(t)} / \ell_k'^{(t)} \leq 13.$$

$$1045 \quad 1046 \quad 5. A \text{ refined estimation of } \frac{1}{m} \sum_{r=1}^m \rho_{y_{i,1},r,i,1}^{A,(t)} \text{ and } \ell_i'^{(t)}. It \text{ holds that}$$

$$1047 \quad 1048 \quad \underline{x}_t^A \leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(t)} \leq \bar{x}_t^A + \bar{c}^A / (1 + \bar{b}^A),$$

$$1049 \quad 1050 \quad \frac{1}{1 + \bar{b}^A e^{\underline{x}_t^A}} \leq -\ell_i'^{(t)} \leq \frac{1}{1 + \bar{b}^A e^{\bar{x}_t^A}},$$

1051 where $\bar{x}_t^A, \underline{x}_t^A$ are the the unique solution of

$$1052 \quad 1053 \quad \bar{x}_t^A + \bar{b}^A e^{\bar{x}_t^A} = \bar{c}^A t + \bar{b}^A,$$

$$1054 \quad 1055 \quad \underline{x}_t^A + \bar{b}^A e^{\underline{x}_t^A} = \underline{c}^A t + \bar{b}^A,$$

$$1056 \quad 1057 \quad \text{and } \bar{b}^A = e^{-\kappa_A/2}, \bar{c}^A = \frac{3\eta\sigma_{p,1}^2 d}{2N_1 m}, \bar{b}^A = e^{\kappa_A/2} \text{ and } \underline{c}^A = \frac{\eta\sigma_{p,1}^2 d}{5N_1 m}.$$

1060 *Proof.* We prove it by induction. When $t = 0$, all results hold obviously. Now, we suppose there exists \hat{t} and all the
 1061 results hold for $t \leq \hat{t} - 1$. Next, we prove these results hold at $t = \hat{t}$.

1064 First, we prove the first result. With Lemma D.3, for $t \leq \hat{t} - 1$, we have

$$1065 \quad 1066 \quad -\kappa_A/2 \leq y_{i,1}f(\mathbf{W}^{A,(t)}, \mathbf{x}_{i,1}) - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)} \leq \kappa_A/2,$$

$$1067 \quad 1068 \quad -\kappa_A/2 \leq y_{k,1}f(\mathbf{W}^{A,(t)}, \mathbf{x}_{k,1}) - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,k,1}^{A,(t)} \leq \kappa_A/2.$$

1069 By subtracting the two equations, we have

$$1070 \quad 1071 \quad \left| \left[y_{i,1}f(\mathbf{W}^{A,(t)}, \mathbf{x}_{i,1}) - y_{k,1}f(\mathbf{W}^{A,(t)}, \mathbf{x}_{k,1}) \right] - \left[\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(t)} - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,k,1}^{A,(t)} \right] \right| \leq \kappa_A. \quad (\text{D.9})$$

1080 When $\frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{r,k,i,1}^{A,(\hat{t}-1)}] \leq \log(12) + \kappa_A$, we have
 1081

$$\begin{aligned}
 1082 \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t})}] &= \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t}-1)}] - \frac{\eta}{N_1 m} \cdot \frac{1}{m} \sum_{r=1}^m [\ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{i,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \\
 1083 &\quad \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 - \ell_k'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{k,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{k,1} \rangle) \cdot \|\boldsymbol{\xi}_{k,1}\|_2^2] \\
 1084 &\leq \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t}-1)}] - \frac{\eta}{N_1 m} \cdot \frac{1}{m} \sum_{r=1}^m \ell_i'^{(\hat{t}-1)} \\
 1085 &\quad \cdot \sigma'(\langle \mathbf{w}_{y_{i,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2,
 \end{aligned} \tag{D.10}$$

1086 where the first equality is by the update rule in Lemma B.2, the second inequality uses the fact $\ell_k'^{(\hat{t}-1)} < 0$. Next, we
 1087 bound the second term as
 1088

$$\begin{aligned}
 1089 \left| \frac{\eta}{N_1 m} \cdot \frac{1}{m} \sum_{r=1}^m \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{i,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \right| &\leq \frac{\eta}{N_1 m} \cdot \frac{1}{m} \sum_{r=1}^m |\ell_i'^{(\hat{t}-1)}| \cdot \sigma'(\langle \mathbf{w}_{y_{i,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 1090 &\leq \frac{\eta}{N_1 m^2} \cdot |S_i^{A,(\hat{t}-1)}| \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 1091 &\leq \frac{\eta \sigma_{p,1}^2 d}{2N_1 m} \\
 1092 &\leq \sqrt{\log(2N_1/\delta)/m},
 \end{aligned}$$

1093 where the first inequality is by triangle inequality, the second inequality uses the fact $-1 < \ell_i'^{(\hat{t}-1)} < 0$ and the definition
 1094 of $S_i^{A,(\hat{t}-1)}$, the third inequality is by Lemma C.1, and the forth inequality is by the condition of η in Condition 4.1.
 1095 Therefore, we have

$$\begin{aligned}
 1096 \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t})}] &\leq \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t}-1)}] + \sqrt{\log(2N_1/\delta)/m} \\
 1097 &\leq \log(12) + \kappa_A + \sqrt{\log(2N_1/\delta)/m}.
 \end{aligned}$$

1098 On the other side, When $\frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{r,k,i,1}^{A,(\hat{t}-1)}] \geq \log(12) + \kappa_A$, with equation D.9, we have
 1099

$$\begin{aligned}
 1100 y_{i,1} f(\mathbf{W}^{A,(\hat{t}-1)}, \mathbf{x}_{i,1}) - y_{k,1} f(\mathbf{W}^{A,(\hat{t}-1)}, \mathbf{x}_{k,1}) &\geq \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{r,k,i,1}^{A,(\hat{t}-1)}] - \kappa_A \\
 1101 &\geq \log(12),
 \end{aligned}$$

1102 where the first inequality uses equation D.9. Then, it holds that
 1103

$$\frac{-\ell_i'^{(\hat{t}-1)}}{-\ell_k'^{(\hat{t}-1)}} \leq e^{-y_{i,1} f(\mathbf{W}^{A,(\hat{t}-1)}, \mathbf{x}_{i,1}) + y_{k,1} f(\mathbf{W}^{A,(\hat{t}-1)}, \mathbf{x}_{k,1})} < \frac{1}{12}. \tag{D.11}$$

1104 Then, we have
 1105

$$\begin{aligned}
 1106 \frac{-\sum_{r=1}^m \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{i,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2}{-\sum_{r=1}^m \ell_k'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{k,1},r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{k,1} \rangle) \cdot \|\boldsymbol{\xi}_{k,1}\|_2^2} &= \frac{-\ell_i'^{(\hat{t}-1)} \cdot |S_i^{A,(\hat{t}-1)}| \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2}{-\ell_k'^{(\hat{t}-1)} \cdot |S_k^{A,(\hat{t}-1)}| \cdot \|\boldsymbol{\xi}_{k,1}\|_2^2} \\
 1107 &< \frac{1}{4} \cdot \frac{|S_i^{A,(\hat{t}-1)}|}{|S_k^{A,(\hat{t}-1)}|} \\
 1108 &\leq 1,
 \end{aligned}$$

1109 where the first inequality uses equation D.11 and Lemma C.1, and the second inequality uses the fact that $|S_i^{\hat{t}-1}| \leq m$,
 1110 the induction $|S_k^0| \leq |S_k^{A,(\hat{t}-1)}|$ and $|S_k^{A,(0)}| \geq m/4$. Then, with equation D.10, it holds that
 1111

$$\begin{aligned}
 1112 \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t})}] &\leq \frac{1}{m} \sum_{r=1}^m [\bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \bar{\rho}_{y_{k,1},r,k,1}^{A,(\hat{t}-1)}] \\
 1113 &\leq \log(12) + \kappa_A + \sqrt{\log(2N_1/\delta)/m}.
 \end{aligned}$$

1134 Next, we prove the second result and the third result together. When $j = y_{i,1}$, by Lemma B.2, it holds that
1135

$$\begin{aligned}
1136 \quad \langle \mathbf{w}_{j,r}^{A,(\hat{t})}, \boldsymbol{\xi}_{i,1} \rangle &= \langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle - \frac{\eta}{N_1 m} \sum_{i' \in [N_1]} \ell_{i'}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i',1} \rangle) \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle \\
1137 \\
1138 &= \langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle - \frac{\eta}{N_1 m} \ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
1139 \\
1140 &\quad - \frac{\eta}{N_1 m} \sum_{i' \neq i} \ell_{i'}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i',1} \rangle) \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,1} \rangle \\
1141 \\
1142 &\geq \langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle + \frac{\eta \sigma_{p,1}^2 d}{2N_1 m} \ell_i'(\hat{t}-1) - \frac{26\eta \sigma_{p,1}^2 \sqrt{d \log(4N_1^2/\delta)}}{m} \ell_i'(\hat{t}-1) \\
1143 \\
1144 &\geq \langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle,
\end{aligned}$$

1145 where the first inequality is by Lemma C.1 and the induction $\ell_k'(\hat{t}-1)/\ell_i'(\hat{t}-1) \leq 13$, and the second inequality is by the
1146 condition of d in Condition 4.1. Then, we know that $S_i^{A,(0)} \subseteq S_i^{A,(\hat{t}-1)} \subseteq S_i^{A,(\hat{t})}$ and $S_{j,r}^{A,(0)} \subseteq S_{j,r}^{A,(\hat{t}-1)} \subseteq S_{j,r}^{A,(\hat{t})}$ by
1147 induction.
1148

1149 Next, we prove the forth result. With equation D.9, it holds that
1150

$$\begin{aligned}
1151 \quad \frac{\ell_i'(\hat{t})}{\ell_k'(\hat{t})} &\leq e^{-y_{i,1} f(\mathbf{W}^{A,(\hat{t})}, \mathbf{x}_{i,1}) + y_{k,1} f(\mathbf{W}^{A,(\hat{t})}, \mathbf{x}_{k,1})} \\
1152 \\
1153 &\leq e^{-\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,1}^{A,(\hat{t})} + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,k,1}^{A,(\hat{t})} + \kappa_A} \\
1154 \\
1155 &\leq e^{\log(12) + 2\kappa_A + \sqrt{\log(2N_1/\delta)/m}} = 12 + o(1) \leq 13.
\end{aligned}$$

1156 Next, we prove the fifth result. From Lemma B.2, we know that
1157

$$\begin{aligned}
1158 \quad \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})} &= \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \frac{\eta}{N_1 m} \cdot \frac{1}{m} \sum_{r=1}^m \ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{y_{i,1},r}^{A,(\hat{t})}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
1159 \\
1160 &= \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \frac{\eta}{N_1 m} \cdot \frac{|S_i^{A,(\hat{t}-1)}|}{m} \cdot \ell_i'(\hat{t}-1) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2.
\end{aligned}$$

1161 Here, with Lemma D.3, the gradient $\ell_i'(\hat{t}-1)$ can be bounded as
1162

$$\frac{-1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \kappa_A/2}} \leq \ell_i'(\hat{t}-1) = \frac{-1}{1 + e^{y_{i,1} f(\mathbf{W}^{A,(\hat{t}-1)}, \mathbf{x}_{i,1})}} \leq \frac{-1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \kappa_A/2}}.$$

1163 Then, we have
1164

$$\begin{aligned}
1165 \quad \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})} &\leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \frac{\eta}{N_1 m} \cdot \frac{|S_i^{A,(\hat{t}-1)}|}{m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \kappa_A/2}} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
1166 \\
1167 &\leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \frac{3\eta \sigma_{p,1}^2 d}{2N_1 m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} - \kappa_A/2}}; \\
1168 \\
1169 \quad \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})} &\geq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \frac{\eta}{N_1 m} \cdot \frac{|S_i^{A,(\hat{t}-1)}|}{m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \kappa_A/2}} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
1170 \\
1171 &\geq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \frac{\eta \sigma_{p,1}^2 d}{5N_1 m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t}-1)} + \kappa_A/2}}.
\end{aligned}$$

1172 So, the estimation of $\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(\hat{t})}$ can be approximated by solving the continuous-time iterative equation
1173

$$\frac{dx_t^A}{dt} = \frac{a}{1 + be^{x_t^A}} \quad \text{and} \quad x_0 = 0.$$

1188 The result is shown in Lemma C.4. For the gradient counterparts, with Lemma D.3, the gradient $\ell_i'^{(\hat{t}-1)}$ can be bounded
 1189 as
 1190

$$1191 \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1}, r, i, 1}^{A, (\hat{t}-1)} + \kappa_A / 2}} \leq -\ell_i'^{(\hat{t}-1)} = \frac{1}{1 + e^{y_{i,1} f(\mathbf{W}^{A, (\hat{t}-1)}, \mathbf{x}_{i,1})}} \leq \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1}, r, i, 1}^{A, (\hat{t}-1)} - \kappa_A / 2}}.$$

1193 The result is obvious since that $1/m \sum_{r=1}^m \bar{\rho}_{y_{i,1}, r, i, 1}^{A, (\hat{t}-1)}$ is bounded. Since then we complete the proof. \square
 1194
 1195

1196 *Proof of Proposition D.1.* We prove it by induction. When $t = 0$, all results hold obviously. Now, we suppose there
 1197 exists \hat{t} and all the results hold for $t \leq \hat{t} - 1$. Next, we prove these results hold at $t = \hat{t}$.
 1198

1199 First, for the first result, when $j \neq y_{i,1}$, we have $\bar{\rho}_{j, r, i, 1}^{A, (\hat{t})} = 0$. When $j = y_{i,1}$, by the update rule, it holds that
 1200

$$1201 \bar{\rho}_{j, r, i, 1}^{A, (\hat{t})} = \bar{\rho}_{j, r, i, 1}^{A, (\hat{t}-1)} - \frac{\eta}{N_1 m} \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j, r}^{A, (\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2. \quad (D.12)$$

1203 If $\bar{\rho}_{j, r, i, 1}^{A, (\hat{t}-1)} \leq 2 \log(T^*)$, we have
 1204

$$1205 \bar{\rho}_{j, r, i, 1}^{A, (\hat{t})} \leq \bar{\rho}_{j, r, i, 1}^{A, (\hat{t}-1)} + \frac{\eta}{N_1 m} \frac{3\sigma_{p,1}^2 d}{2} \\ 1206 \leq 2 \log(T^*) + \log(T^*) \leq 4 \log(T^*),$$

1209 where the first inequality uses the fact $-1 \leq \ell_i'^{(\hat{t}-1)} \leq 0$ and Lemma C.1, and the second inequality is by the condition
 1210 of η in Condition 4.1. If $\bar{\rho}_{j, r, i, 1}^{A, (\hat{t}-1)} \geq 2 \log(T^*)$, from equation D.12 we know that $\bar{\rho}_{j, r, i, 1}^{A, (\hat{t})}$ increases with t . Therefore,
 1211 suppose that $t_{j, r, i, 1}$ is the last time satisfying $\bar{\rho}_{j, r, i, 1}^{A, (t_{j, r, i, 1})} \leq 2 \log(T^*)$. Now, we want to show that the increment of $\bar{\rho}$
 1212 from $t_{j, r, i, 1}$ to \hat{t} does not exceed $2 \log(T^*)$.
 1213

$$1214 \bar{\rho}_{j, r, i, 1}^{A, (\hat{t})} = \bar{\rho}_{j, r, i, 1}^{A, (t_{j, r, i, 1})} - \frac{\eta}{N_1 m} \ell_i'^{(t_{j, r, i, 1})} \cdot \sigma'(\langle \mathbf{w}_{j, r}^{A, (t_{j, r, i, 1})}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\ 1215 - \sum_{t_{j, r, i, 1} < t \leq \hat{t}-1} \frac{\eta}{N_1 m} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j, r}^{A, (t)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2. \quad (D.13)$$

1219 Here, the second term can be bounded as
 1220

$$1221 \left| \frac{\eta}{N_1 m} \ell_i'^{(t_{j, r, i, 1})} \cdot \sigma'(\langle \mathbf{w}_{j, r}^{A, (t_{j, r, i, 1})}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \right| \leq \frac{3\eta\sigma_{p,1}^2 d}{2N_1 m} \leq \log(T^*),$$

1223 where the first inequality is by Lemma C.1 and the second inequality is by the condition of η in Condition 4.1. For the
 1224 third term, note that when $t > t_{j, r, i, 1}$,
 1225

$$1226 \langle \mathbf{w}_{y_{i,1}, r}^{A, (t)}, \boldsymbol{\xi}_{i,1} \rangle \geq \langle \mathbf{w}_{y_{i,1}, r}^{A, (0)}, \boldsymbol{\xi}_{i,1} \rangle + \bar{\rho}_{j, r, i, 1}^{A, (\hat{t})} - 4N_1 \sqrt{\frac{\log(4N_1^2 / \delta)}{d}} \log(T^*) \\ 1227 \geq -2\sqrt{\log(12mN_1 / \delta)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} + 2 \log(T^*) - 4N_1 \sqrt{\frac{\log(4N_1^2 / \delta)}{d}} \log(T^*) \\ 1228 \geq 1.8 \log(T^*), \quad (D.14)$$

1232 where the first inequality is by Lemma D.2, the second inequality is by Lemma C.2 and the third inequality is by
 1233 $\sqrt{\log(12mN_1 / \delta)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} \leq 0.1 \log(T^*)$, $4N_1 \sqrt{\frac{\log(4N_1^2 / \delta)}{d}} \log(T^*) \leq 0.1 \log(T^*)$ from the Condition 4.1. Then,
 1234 the gradient can be bounded as
 1235

$$1236 |\ell_i^{(t)}| = \frac{1}{1 + e^{-y_{i,1} [F_{+1}(\mathbf{W}_{+1}^{A, (t)}, \mathbf{x}_{i,1}) - F_{-1}(\mathbf{W}_{-1}^{A, (t)}, \mathbf{x}_{i,1})]}} \\ 1237 \leq e^{-y_{i,1} F_{y_{i,1}}(\mathbf{W}_{+1}^{A, (t)}, \mathbf{x}_{i,1}) + 0.1} \\ 1238 = e^{-\frac{1}{m} \sum_{r=1}^m \sigma'(\langle \mathbf{w}_{y_{i,1}, r}^{A, (t)}, \boldsymbol{\xi}_{i,1} \rangle) + 0.1} \\ 1239 \leq e^{0.1} \cdot e^{-1.8 \log(T^*)} \leq 2e^{-1.8 \log(T^*)},$$

1242 where the first inequality is by Lemma D.3 that $\kappa_A \leq 0.2$, the second inequality is by equation D.14. Based on these
 1243 results, we can bound the third term in equation D.13 as
 1244

$$\begin{aligned} 1245 \sum_{t_{j,r,i,1} < t \leq \hat{t}-1} \frac{\eta}{N_1 m} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 &\leq \frac{\eta T^*}{N_1 m} \cdot 2e^{-1.8 \log(T^*)} \cdot \frac{3\sigma_{p,1}^2 d}{2} \\ 1248 &\leq \frac{T^*}{(T^*)^{1.8}} \cdot \frac{3\eta\sigma_{p,1}^2 d}{N_1 m} \\ 1249 &\leq 1 \leq \log(T^*), \\ 1250 \\ 1251 \end{aligned}$$

1252 where the first inequality is by the bound of $|\ell_i^{(t)}|$ and Lemma C.1, the second inequality is by the fact that
 1253 $e^{-x} \leq 1/x, x > 0$ and the third inequality is by the selection of η in Condition 4.1. Since then, we prove that
 1254 $\underline{\rho}_{j,r,i,1}^{A,(\hat{t})} \leq 4 \log(T^*)$.
 1255

1256 Next, we prove the second result. When $j = y_{i,2}$, we have $\underline{\rho}_{j,r,i,1}^{A,(\hat{t})} = 0$. If $\underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} \leq -2\sqrt{\log(\frac{12mN_1}{\delta})} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} - (C_1 - 4)N_1 \sqrt{\frac{\log(\frac{4N_1^2}{\delta})}{d}} \log(T^*)$, by Lemma D.2, it holds that

$$1262 \left| \langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)} - \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle - \underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} \right| \leq 4N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*). \\ 1263$$

1264 Rearrange the inequality, we get

$$1266 \langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle \leq \langle \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,1} \rangle + \underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} + 4N_1 \sqrt{\frac{\log(4N_1^2/\delta)}{d}} \log(T^*) \\ 1267 \leq 0. \\ 1268$$

1269 Then, by the update rule, it holds that
 1270

$$1271 \underline{\rho}_{j,r,i,1}^{A,(\hat{t})} = \underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} + \frac{\eta}{N_1 m} \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\ 1272 = \underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} \geq -2\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} - C_1 N_1 \sqrt{\frac{\log\left(\frac{4N_1^2}{\delta}\right)}{d}} \log(T^*). \\ 1273 \\ 1274$$

1275 If $\underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} \geq -2\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} - (C_1 - 4)N_1 \sqrt{\frac{\log\left(\frac{4N_1^2}{\delta}\right)}{d}} e \log(T^*)$, by the update rule, it holds that
 1276

$$1277 \underline{\rho}_{j,r,i,1}^{A,(\hat{t})} = \underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} + \frac{\eta}{N_1 m} \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\ 1278 \geq \underline{\rho}_{j,r,i,1}^{A,(\hat{t}-1)} - \frac{3\eta\sigma_{p,1}^2 d}{2N_1 m} \\ 1279 \\ 1280 \geq -2\sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} - C_1 N_1 \sqrt{\frac{\log\left(\frac{4N_1^2}{\delta}\right)}{d}} \log(T^*), \\ 1281 \\ 1282$$

1283 where the first inequality uses the fact $-1 \leq \ell_i'^{(\hat{t}-1)} \leq 0$ and Lemma C.1, and the second inequality is by the condition
 1284 of η in Condition 4.1.
 1285

1286 Next, we prove the third result. We prove a stronger conclusion that for any $i^* \in S_{j,r}^{A,(0)}$, it holds that
 1287

$$1288 \frac{\gamma_{j,r}^{A,(t)}}{\underline{\rho}_{j,r,i^*}^{A,(t)}} \leq \frac{26N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d}. \\ 1289 \\ 1290$$

1296 Recall the update rule that

$$\begin{aligned}
 1298 \quad \gamma_{j,r}^{A,(\hat{t})} &= \gamma_{j,r}^{A,(\hat{t}-1)} - \frac{\eta}{N_1 m} \sum_{i \in [N_1]} \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, y_{i,1} \cdot (\mathbf{u} + \mathbf{v}_1) \rangle) \cdot \|\mathbf{u}\|_2^2 \\
 1299 &\leq \gamma_{j,r}^{A,(\hat{t}-1)} - \frac{\eta}{N_1 m} \cdot 13n \cdot \ell_i'^{A,(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, y_{i,1} \cdot (\mathbf{u} + \mathbf{v}_1) \rangle) \cdot \|\mathbf{u}\|_2^2,
 \end{aligned}$$

1300 where the inequality follows by $\ell_i'^{(t)}/\ell_k'^{(t)} \leq 13$ in Lemma D.4, and

$$1305 \quad \bar{\rho}_{j,r,i^*,1}^{A,(\hat{t})} = \bar{\rho}_{j,r,i^*,1}^{A,(\hat{t}-1)} - \frac{\eta}{N_1 m} \ell_{i^*}'^{A,(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \xi_{i^*,1} \rangle) \cdot \|\xi_{i^*,1}\|_2^2 \cdot \mathbf{1}\{y_{i^*,1} = j\}.$$

1306 Compare the gradient, we have

$$\begin{aligned}
 1309 \quad \frac{\gamma_{j,r}^{A,(\hat{t})}}{\bar{\rho}_{j,r,i^*,1}^{A,(\hat{t})}} &\leq \max \left\{ \frac{\gamma_{j,r}^{A,(\hat{t}-1)}}{\bar{\rho}_{j,r,i^*,1}^{A,(\hat{t}-1)}}, \frac{13N_1 \cdot \ell_{i^*}^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, y_{i^*,1} \cdot (\mathbf{u} + \mathbf{v}_1) \rangle) \cdot \|\mathbf{u}\|_2^2}{\ell_{i^*}^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(\hat{t}-1)}, \xi_{i^*,1} \rangle) \cdot \|\xi_{i^*,1}\|_2^2} \right\} \\
 1310 &\leq \max \left\{ \frac{\gamma_{j,r}^{A,(\hat{t}-1)}}{\bar{\rho}_{j,r,i^*,1}^{A,(\hat{t}-1)}}, \frac{13N_1 \|\mathbf{u}\|_2^2}{\|\xi_{i^*,1}\|_2^2} \right\} \\
 1311 &\leq \max \left\{ \frac{\gamma_{j,r}^{A,(\hat{t}-1)}}{\bar{\rho}_{j,r,i^*,1}^{A,(\hat{t}-1)}}, \frac{26N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \right\} \\
 1312 &\leq \frac{26N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d},
 \end{aligned}$$

1321 where the first inequality is from two update rules, the second inequality is by $i^* \in S_{j,r}^{A,(0)}$, the third inequality is
 1322 by Lemma C.1 and the last inequality use the induction $\frac{\gamma_{j,r}^{A,(\hat{t}-1)}}{\bar{\rho}_{j,r,i^*,1}^{A,(\hat{t}-1)}} \leq \frac{26N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d}$. Similarly, it holds that $\frac{\gamma_{j,r,1}^{A,(\hat{t})}}{\bar{\rho}_{j,r,i^*,1}^{A,(\hat{t})}} \leq \frac{26N_1 \|\mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d}$. \square

1327 **Proposition D.5.** Under Condition 4.1, for $0 \leq t \leq T^*$, it holds that

$$1329 \quad 0 \leq \bar{\rho}_{j,r,i,1}^{A,(t)} \leq 4 \log(T^*), \tag{D.15}$$

$$1331 \quad 0 \geq \rho_{j,r,i,1}^{A,(t)} \geq -2 \sqrt{\log\left(\frac{12mN_1}{\delta}\right)} \cdot \sigma_0 \sigma_{p,1} \sqrt{d} - C_1 N_1 \sqrt{\frac{\log\left(\frac{4N_1^2}{\delta}\right)}{d}} \log(T^*) \geq -4 \log(T^*), \tag{D.16}$$

$$1334 \quad 0 \leq \gamma_{j,r}^{A,(t)} \leq \frac{C_2 N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*), \tag{D.17}$$

$$1337 \quad 0 \leq \gamma_{j,r,1}^{A,(t)} \leq \frac{C_2 N_1 \|\mathbf{v}_1\|_2^2}{\sigma_{p,1}^2 d} \log(T^*), \tag{D.18}$$

1339 for all $r \in [m], j \in \{\pm 1\}, i \in [N_1]$, where C_1 and C_2 are two absolute constant. Besides, we also have the following
 1340 results:

$$1342 \quad 1. \quad \frac{1}{m} \sum_{r=1}^m \left[\rho_{y_{i,1},r,i,1}^{A,(t)} - \bar{\rho}_{r,k,i,1}^{A,(t)} \right] \leq \log(12) + \kappa_A + \sqrt{\log(2N_1/\delta)/m} \text{ for all } i, k \in [N_1].$$

$$1344 \quad 2. \quad S_i^{A,(0)} \subseteq S_i^{A,(t)}, \text{ where } S_i^{A,(t)} = \{r \in [m] : \langle \mathbf{w}_{y_{i,r}}^{A,(t)}, \xi_{i,1} \rangle > 0\}.$$

$$1346 \quad 3. \quad S_{j,r}^{A,(0)} \subseteq S_{j,r}^{A,(t)}, \text{ where } S_{j,r}^{A,(t)} = \{i \in [N_1] : y_{i,1} = j, \langle \mathbf{w}_{j,r}^{A,(t)}, \xi_{i,1} \rangle > 0\}.$$

$$1348 \quad 4. \quad \ell_i'^{(t)}/\ell_k'^{(t)} \leq 13.$$

1350 5. A refined estimation of $\frac{1}{m} \sum_{r=1}^m \rho_{y_{i,1},r,i,1}^{A,(t)}$ and $\ell_i'^{(t)}$. It holds that

$$1353 \quad \underline{x}_t^A \leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,1},r,i,1}^{A,(t)} \leq \bar{x}_t^A + \bar{c}^A / (1 + \bar{b}^A),$$

$$1356 \quad \frac{1}{1 + \underline{b}^A e^{\underline{x}_t^A}} \leq -\ell_i'^{(t)} \leq \frac{1}{1 + \bar{b}^A e^{\bar{x}_t^A}},$$

1359 where $\bar{x}_t^A, \underline{x}_t^A$ are the unique solution of

$$1361 \quad \bar{x}_t^A + \bar{b}^A e^{\bar{x}_t^A} = \bar{c}^A t + \bar{b}^A,$$

$$1363 \quad \underline{x}_t^A + \underline{b}^A e^{\underline{x}_t^A} = \underline{c}^A t + \underline{b}^A,$$

1365 and $\bar{b}^A = e^{-\kappa_A/2}, \bar{c}^A = \frac{3\eta\sigma_{p,1}^2 d}{2N_1 m}, \underline{b}^A = e^{\kappa_A/2}$ and $\underline{c}^A = \frac{\eta\sigma_{p,1}^2 d}{5N_1 m}$.

1367 **Lemma D.6** (Meng et al. (2024)). It holds that

$$1370 \quad \log \left(\frac{\eta\sigma_{p,1}^2 d}{8N_1 m} t + \frac{2}{3} \right) \leq \bar{x}_t^A \leq \log \left(\frac{2\eta\sigma_{p,1}^2 d}{N_1 m} t + 1 \right),$$

$$1373 \quad \log \left(\frac{\eta\sigma_{p,1}^2 d}{8N_1 m} t + \frac{2}{3} \right) \leq \underline{x}_t^A \leq \log \left(\frac{2\eta\sigma_{p,1}^2 d}{N_1 m} t + 1 \right),$$

1376 for the defined $\bar{b}^A, \bar{c}^A, \underline{b}^A, \underline{c}^A$.

1379 D.2 SIGNAL LEARNING AND NOISE MEMORIZATION

1382 In this part, we will give detailed analysis of signal learning and noise memorization.

1383 **Lemma D.7.** Under Condition 4.1, for $0 \leq t \leq T^*$, $\langle \mathbf{w}_{j,r}^{A,(t)}, j(\mathbf{u} + \mathbf{v}) \rangle$ increases with t .

1388 *Proof.* By Lemma B.1, it holds that

$$1390 \quad \langle \mathbf{w}_{j,r}^{A,(t)}, j(\mathbf{u} + \mathbf{v}) \rangle = \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)}.$$

1392 By the update rule in Lemma B.2, we know that $\gamma_{j,r}^{A,(t)}$ and $\gamma_{j,r,1}^{A,(t)}$ increase with t . So $\langle \mathbf{w}_{j,r}^{A,(t)}, j(\mathbf{u} + \mathbf{v}) \rangle$ increases with t . \square

1398 **Lemma D.8.** Under Condition 4.1, for $0 \leq t \leq T^*$, it holds that

$$1400 \quad \frac{\eta \|\mathbf{u}\|_2^2}{\bar{c}m} \bar{x}_{t-2}^A - \frac{2\eta \|\mathbf{u}\|_2^2}{m} \leq \gamma_{j,r}^{A,(t)} \leq \frac{\eta \|\mathbf{u}\|_2^2}{\underline{c}m} \underline{x}_{t-1}^A - \frac{2\eta \|\mathbf{u}\|_2^2}{m},$$

$$1402 \quad \frac{\eta \|\mathbf{v}_1\|_2^2}{\bar{c}m} \bar{x}_{t-2}^A - \frac{2\eta \|\mathbf{v}_1\|_2^2}{m} \leq \gamma_{j,r,1}^{A,(t)} \leq \frac{\eta \|\mathbf{v}_1\|_2^2}{\underline{c}m} \underline{x}_{t-1}^A - \frac{2\eta \|\mathbf{v}_1\|_2^2}{m}.$$

1404 *Proof.* By the update rule, it holds that

$$\begin{aligned}
\gamma_{j,r}^{A,(t+1)} + \gamma_{j,r,1}^{A,(t+1)} &= \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)} - \frac{\eta}{N_1 m} \sum_{i'=1}^{N_1} \ell_{i'}^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, y_i(\mathbf{u} + \mathbf{v}_1) \rangle) \|\mathbf{u} + \mathbf{v}_1\|_2^2 \\
&\leq \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \frac{1}{1 + \underline{b}^A e^{\underline{x}_t^A}} \\
&\leq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \sum_{s=0}^t \frac{1}{1 + \underline{b}^A e^{\underline{x}_s^A}} \\
&\leq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \int_{s=0}^t \frac{1}{1 + \underline{b}^A e^{\underline{x}_s^A}} ds \\
&\leq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \int_{s=0}^t \frac{1}{\underline{c}^A} d\underline{x}_s^A \\
&\leq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{\underline{c}^A m} \underline{x}_t^A - \frac{2\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \\
&\leq \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{\underline{c}^A m} \underline{x}_t^A - \frac{2\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m},
\end{aligned}$$

1424 where the first inequality is by the fifth result in Lemma D.4, the second inequality is by summation and the forth
1425 inequality is by the definition of \underline{x}_s^A . On the other side, we have

$$\begin{aligned}
\gamma_{j,r}^{A,(t+1)} + \gamma_{j,r,1}^{A,(t+1)} &= \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)} - \frac{\eta}{N_1 m} \sum_{i'=1}^{N_1} \ell_{i'}^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, y_i(\mathbf{u} + \mathbf{v}_1) \rangle) \|\mathbf{u} + \mathbf{v}_1\|_2^2 \\
&\geq \gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \frac{1}{1 + \bar{b}^A e^{\bar{x}_t^A}} \\
&\geq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \sum_{s=0}^t \frac{1}{1 + \bar{b}^A e^{\bar{x}_s^A}} \\
&\geq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \int_{s=0}^{t-1} \frac{1}{1 + \bar{b}^A e^{\bar{x}_s^A}} ds \\
&\geq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \int_{s=0}^{t-1} \frac{1}{\bar{c}^A} d\bar{x}_s^A \\
&\geq \gamma_{j,r}^{A,(0)} + \gamma_{j,r,1}^{A,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{\bar{c}^A m} \bar{x}_{t-1}^A - \frac{2\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m} \\
&\geq \frac{\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{\bar{c}^A m} \bar{x}_{t-1}^A - \frac{2\eta \|\mathbf{u} + \mathbf{v}_1\|_2^2}{m},
\end{aligned}$$

1444 where the first inequality is by the fifth result in Lemma D.4, the second inequality is by summation and the forth
1445 inequality is by the definition of \bar{x}_s^A . Since that $\mathbf{u} \perp \mathbf{v}_1$, we have

$$\begin{aligned}
\gamma_{j,r}^{A,(t)} &= \frac{\|\mathbf{u}\|_2^2}{\|\mathbf{u} + \mathbf{v}_1\|_2^2} (\gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)}), \\
\gamma_{j,r,1}^{A,(t)} &= \frac{\|\mathbf{v}_1\|_2^2}{\|\mathbf{u} + \mathbf{v}_1\|_2^2} (\gamma_{j,r}^{A,(t)} + \gamma_{j,r,1}^{A,(t)}).
\end{aligned}$$

1452 Then, we complete the proof. □

1454 **Lemma D.9.** *Under Condition 4.1, for $0 \leq t \leq T^*$, it holds that*

$$\frac{N_1}{12} (\bar{x}_{t-2}^A - \bar{x}_1^A) \leq \sum_{i \in [N_1]} \bar{\rho}_{j,r,i}^{A,(t)} \leq 5N_1 \underline{x}_{t-1}^A.$$

1458 *Proof.* For $j = y_i$, it holds that
 1459

$$\begin{aligned}
 \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t+1)} &= \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t)} - \sum_{i \in [N_1]} \frac{\eta}{N_1 m} \ell_i'^{A,(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{A,(t)}, \boldsymbol{\xi}_{i,1} \rangle) \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 &= \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t)} - \sum_{i \in S_{j,r}^{A,(t)}} \frac{\eta}{N_1 m} \ell_i'^{(t)} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 &\geq \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t)} + |S_{j,r}^{A,(0)}| \frac{\eta}{N_1 m} \frac{1}{1 + \bar{b}^A \bar{x}_t^A} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 &\geq \sum_{s=1}^t |S_{j,r}^{A,(0)}| \frac{\eta}{N_1 m} \frac{1}{1 + \bar{b}^A \bar{x}_s^A} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 &\geq \int_{s=1}^{t-1} |S_{j,r}^{A,(0)}| \frac{\eta}{N_1 m} \frac{1}{1 + \bar{b}^A \bar{x}_s^A} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 ds \\
 &\geq \frac{N_1}{12} (\bar{x}_{t-1}^A - \bar{x}_1^A),
 \end{aligned}$$

1476 where the first inequality is by $|S_{j,r}^{A,(t)}| \geq |S_{j,r}^{A,(0)}|$, the second inequality is by rearranging the summation and the last
 1477 inequality is by the definition of \bar{x}_s^A . On the other side, it holds that
 1478

$$\begin{aligned}
 \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t+1)} &\leq \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{A,(t)} + |S_{j,r}^{A,(t)}| \frac{\eta}{N_1 m} \frac{1}{1 + \underline{b}^A \underline{x}_t^A} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 &\leq \sum_{s=1}^t N_1 \frac{\eta}{N_1 m} \frac{1}{1 + \underline{b}^A \underline{x}_s^A} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 \\
 &\leq \int_{s=1}^t N_1 \frac{\eta}{N_1 m} \frac{1}{1 + \underline{b}^A \underline{x}_s^A} \cdot \|\boldsymbol{\xi}_{i,1}\|_2^2 ds \\
 &\leq 5N_1 (\underline{x}_t^A - \underline{x}_1^A) \\
 &\leq 5N_1 \underline{x}_t^A,
 \end{aligned}$$

1490 where the second inequality is by $|S_{j,r}^{A,(t)}| \leq N_1$ and rearranging the summation and the forth inequality is by the
 1491 definition of \underline{x}_s^A . Then, we complete the proof. \square
 1492

1493 E THE SECOND SYSTEM

1496 To clearly distinguish the processes of Task 1 and Task 2, we assume that the upstream model is trained on Task 1
 1497 for T^* epochs. At this point, a subset of the weights (i.e. inherited parameters, $1 \leq r \leq \alpha m$) is transferred to the
 1498 downstream model, while the remaining weights ($\alpha m \leq r \leq m$) are randomly initialized. For simplicity, we assume
 1499 that at $t = T^* + 1$, the downstream model has completed initialization and begins training on Task 2. So we have
 1500

$$\mathbf{w}_{j,r}^{D,(T^*+1)} = \begin{cases} \mathbf{w}_{j,r}^{A,(T^*)} & \text{if } 1 \leq r \leq \alpha m, \\ \tilde{\mathbf{w}}_{j,r}^{D,(T^*)} & \text{if } \alpha m < r \leq m, \end{cases}$$

1504 where $\tilde{\mathbf{w}}_{j,r}^{D,(T^*)}$, $\alpha m < r \leq m$ is the re-initialized weights. To distinguish the weights used in Task 1 from those in
 1505 Task 2, we use the superscript D to denote the weights and coefficients of the downstream model on Task 2. Specially,
 1506 because the coefficients $\gamma_{j,r,1}^{(t)}$, $\bar{\rho}_{j,r,i,1}^{(t)}$ and $\underline{\rho}_{j,r,i,1}^{(t)}$ are updated only on Task 1, we keep the superscript A for them so
 1507 that the readers can find the results of system 1 easily.
 1508

1509 E.1 COEFFICIENT SCALE ANALYSIS

1511 In this section, we give the analysis of coefficient scale on Task 2 for $T^* + 1 \leq t \leq T^{**}$.

1512 **Proposition E.1.** Under Condition 4.1, and define $n = \max\{N_1, N_2\}$, for $T^* + 1 \leq t \leq T^{**}$, it holds that

$$1514 \quad 0 \leq \underline{\rho}_{j,r,i,2}^{D,(t)} \leq 4 \log(T^{**}), \quad (E.1)$$

$$1516 \quad 0 \geq \underline{\rho}_{j,r,i,2}^{D,(t)} \geq -2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} - C_1(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \geq -4 \log(T^{**}), \quad (E.2)$$

$$1519 \quad 0 \leq \gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)} \leq \frac{C_2 N_2 \|\mathbf{u}\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}), \quad (E.3)$$

$$1522 \quad 0 \leq \gamma_{j,r,2}^{D,(t)} \leq \frac{C_2 N_2 \|\mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}), \quad (E.4)$$

1524 for all $r \in [m], j \in \{\pm 1\}, i \in [n]$, where C_1 and C_2 are two absolute constant.

1526 We will prove Proposition E.1 by induction. Before that we give some important technical lemmas used in the proof.

1528 **Lemma E.2.** Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, suppose equation E.1, equation E.2, equation E.3, equation E.4 hold at iteration t . Then, for all $j \in \{\pm 1\}, i \in [N_2]$, it holds that for $1 \leq r \leq \alpha m$

$$1530 \quad \left| \langle \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle \right| \leq 2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} + 16N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}), \quad (E.5)$$

1533 and for $\alpha m < r \leq m$

$$1534 \quad \left| \langle \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle \right| \leq 2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} \quad (E.6)$$

1537 *Proof of Lemma E.2.* When $\alpha m < r \leq m$, because these weights are re-initialized, the result can be directly derived
1538 from Lemma C.2. When $1 \leq r \leq \alpha m$, we have

$$1540 \quad \left| \langle \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle \right| = \left| \langle \mathbf{w}_{j,r}^{A,(T^*)}, \boldsymbol{\xi}_{i,2} \rangle \right| \\ 1541 \quad \leq \left| \langle \mathbf{w}_{j,r}^{A,(0)}, \boldsymbol{\xi}_{i,2} \rangle \right| + \left| \sum_{i'=1}^{N_1} \rho_{j,r,i',1}^{A,(t)} \cdot \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,2} \rangle \right| \\ 1542 \quad \leq 2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} + \left| \sum_{i'=1}^{N_1} \|\boldsymbol{\xi}_{i',1}\|_2^{-2} \cdot \langle \boldsymbol{\xi}_{i',1}, \boldsymbol{\xi}_{i,2} \rangle \right| 4 \log(T^{**}) \\ 1543 \quad \leq 2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} \\ 1544 \quad + N_1 \cdot \frac{2}{\sigma_{p,1}^2 d} \cdot 2\sigma_{p,1} \sigma_{p,2} \cdot \sqrt{d \log(4(N_1^2 + N_2^2)/\delta)} 4 \log(T^{**}) \\ 1545 \quad \leq 2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} + 16N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}),$$

1554 where the first inequality is by triangle inequality, the second inequality is by Lemma C.2, Lemma D.5 and $T^* \leq T^{**}$
1555 and the third inequality is by Lemma C.1. \square

1557 **Lemma E.3.** Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, suppose equation E.1, equation E.2, equation E.3,
1558 equation E.4 hold at iteration t . Then, for all $r \in [m], j \in \{\pm 1\}, i \in [N_2]$, it holds that

$$1560 \quad \left| \langle \mathbf{w}_{j,r}^{D,(t)} - \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle - \underline{\rho}_{j,r,i,2}^{D,(t)} \right| \leq 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}), \quad j \neq y_{i,1}; \quad (E.7)$$

$$1563 \quad \left| \langle \mathbf{w}_{j,r}^{D,(t)} - \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle - \overline{\rho}_{j,r,i,2}^{D,(t)} \right| \leq 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}), \quad j = y_{i,1}; \quad (E.8)$$

1565 *Proof.* The proof is similar to that in Lemma D.2 and uses the fact $N_1^2 + N_2^2 > N_2^2$. So we omit it here. \square

1566 Before we give the next result, we need to define
 1567

$$\begin{aligned} \kappa_D &= \frac{4C_2N_2\|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}) + \frac{4C_2N_1\|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + 16\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0\sigma_{p,2}\sqrt{d} \\ &\quad + (4C_1 + 64)(N_1\frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2)\sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}). \end{aligned}$$

1574 By the condition of d in Condition 4.1, we have $\kappa_D \leq 0.1$.
 1575

1576 **Lemma E.4.** *Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, suppose equation E.1, equation E.2, equation E.3,
 1577 equation E.4 hold at iteration t . Then, it holds that*
 1578

$$\begin{aligned} F_{-y_{i,2}}(\mathbf{W}_{-y_{i,2}}^{D,(t)}, \mathbf{x}_{i,2}) &\leq \kappa_D/4, \quad -\kappa_D/4 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)} \leq F_{y_{i,2}}(\mathbf{W}_{y_{i,2}}^{D,(t)}, \mathbf{x}_{i,2}) \leq \kappa_D/4 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)}, \\ &\quad -\kappa_D/2 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)} \leq y_{i,2}f(\mathbf{W}_j^{D,(t)}, \mathbf{x}_{i,2}) \leq \kappa_D/2 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)}. \end{aligned}$$

1589 *Proof.* Recall that the definition of $F_j(\mathbf{W}_j^{D,(t)}, \mathbf{x}_{i,2})$ as
 1590

$$F_j(\mathbf{W}_j^{D,(t)}, \mathbf{x}_{i,2}) = \frac{1}{m} \sum_{r=1}^m [\sigma(\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2}(\mathbf{u} + \mathbf{v}_2) \rangle) + \sigma(\langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle)].$$

1595 When $j = -y_{i,2}$, we have
 1596

$$\begin{aligned} F_{-y_{i,2}}(\mathbf{W}_{-y_{i,2}}^{D,(t)}, \mathbf{x}_{i,2}) &\leq \frac{1}{m} \sum_{r=1}^m [|\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2}\mathbf{u} \rangle| + |\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2}\mathbf{v}_2 \rangle| + |\langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle|] \\ &\leq \frac{1}{m} \sum_{r=1}^m [\gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)} + |\langle \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle| + |\underline{\rho}_{j,r,i,2}^{D,(t)}| \\ &\quad + 16N_2\sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**})] \\ &\leq \frac{C_2N_2\|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}) + \frac{1}{m} \sum_{r=1}^m \gamma_{j,r}^{D,(T^*+1)} + 4\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0\sigma_{p,2}\sqrt{d} \\ &\quad + (C_1 + 16)(N_1\frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2)\sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \\ &\leq \frac{C_2N_2\|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}) + \frac{C_2N_1\|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + 4\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0\sigma_{p,2}\sqrt{d} \\ &\quad + (C_1 + 16)(N_1\frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2)\sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \\ &\leq \kappa_D/4, \end{aligned}$$

1619 where the first inequality uses triangle inequality, the second inequality is by Lemma E.3 and triangle inequality, the
 1620 third inequality is by equation E.2, equation E.3, equation E.4, Lemma E.2 and $0 \leq \alpha \leq 1$, the forth inequality is by
 1621

equation D.17 and $0 \leq \alpha \leq 1$, and the last inequality is by the definition of κ_D . When $j = y_{i,2}$, we have

$$\begin{aligned}
1622 \quad & \left| F_{y_{i,2}}(\mathbf{W}_{y_{i,2}}^{D,(t)}, \mathbf{x}_{i,1}) - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)} \right| \leq \frac{1}{m} \sum_{r=1}^m \left[|\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2} \mathbf{u} \rangle| + |\langle \mathbf{w}_{j,r}^{D,(t)}, y_{i,2} \mathbf{v}_2 \rangle| + |\langle \mathbf{w}_{j,r}^{D,(t)}, \xi_{i,2} \rangle - \bar{\rho}_{j,r,i,2}^{D,(t)}| \right] \\
1623 \quad & \leq \frac{1}{m} \sum_{r=1}^m \left[\gamma_{j,r}^{D,(t)} + \gamma_{j,r,1}^{D,(t)} + 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \right. \\
1624 \quad & \quad \left. + |\langle \mathbf{w}_{j,r}^{D,(T^*+1)}, \xi_{i,2} \rangle| \right] \\
1625 \quad & \leq \frac{C_2 N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}) + \frac{C_2 N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) \\
1626 \quad & \quad + 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \\
1627 \quad & \quad + 2 \sqrt{\log\left(\frac{12mN_2}{\delta}\right)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} \\
1628 \quad & \leq \kappa_D / 4,
\end{aligned}$$

where the first inequality uses triangle inequality, the second inequality is by Lemma E.3, the third inequality is by equation E.2, equation E.3, equation E.4, equation D.17 and Lemma E.2, and the last inequality is by the definition of κ_D . At last, because

$$y_{i,2} f(\mathbf{W}^{D,(t)}, \mathbf{x}_{i,2}) = F_{y_{i,2}}(\mathbf{W}_{y_{i,2}}^{D,(t)}, \mathbf{x}_{i,2}) - F_{-y_{i,2}}(\mathbf{W}_{-y_{i,2}}^{D,(t)}, \mathbf{x}_{i,2}),$$

we complete the proof. \square

Lemma E.5. *Under Condition 4.1, and define $n = \max\{N_1, N_2\}$, for $T^* \leq t \leq T^{**}$, suppose equation E.1, equation E.2, equation E.3, equation E.4 hold at iteration t . Then, the following results hold for any iteration t :*

$$1. \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(t)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(t)} \right] \leq \log(12) + \kappa_D + \sqrt{\log(2N_2/\delta)/m} \text{ for all } i, k \in [N_2].$$

$$2. S_i^{D,(0)} \subseteq S_i^{D,(t)}, \text{ where } S_i^{D,(t)} = \{r \in [m] : \langle \mathbf{w}_{y_{i,2},r}^{D,(t)}, \xi_{i,2} \rangle > 0\}.$$

$$3. S_{j,r}^{D,(0)} \subseteq S_{j,r}^{D,(t)}, \text{ where } S_{j,r}^{D,(t)} = \{i \in [N_2] : y_{i,2} = j, \langle \mathbf{w}_{j,r}^{D,(t)}, \xi_{i,2} \rangle > 0\}.$$

$$4. \ell_i'^{(t)} / \ell_k'^{(t)} \leq 13.$$

$$5. \text{ A refined estimation of } \frac{1}{m} \sum_{r=1}^m \rho_{y_{i,2},r,i,2}^{D,(t)} \text{ and } \ell_i'^{(t)}. \text{ It holds that}$$

$$\begin{aligned}
1659 \quad & \underline{x}_t^D \leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(t)} \leq \bar{x}_t^D + \bar{c}^D / (1 + \bar{b}^D), \\
1660 \quad & \frac{1}{1 + \bar{b}^D e^{\bar{x}_t^D}} \leq -\ell_i'^{(t)} \leq \frac{1}{1 + \bar{b}^D e^{\bar{x}_t^D}},
\end{aligned}$$

where $\bar{x}_t^D, \underline{x}_t^D$ are the unique solution of

$$\begin{aligned}
1666 \quad & \bar{x}_t^D + \bar{b}^D e^{\bar{x}_t^D} = \bar{c}^D t + \bar{b}^D, \\
1667 \quad & \underline{x}_t^D + \underline{b}^D e^{\underline{x}_t^D} = \underline{c}^D t + \underline{b}^D,
\end{aligned}$$

$$1669 \quad \text{and } \bar{b}^D = e^{-\kappa_D/2}, \bar{c}^D = \frac{3\eta\sigma_{p,2}^2 d}{2N_2 m}, \underline{b}^D = e^{\kappa_D/2} \text{ and } \underline{c}^D = \frac{\eta\sigma_{p,2}^2 d}{5N_2 m}.$$

Proof. We prove it by induction. When $t = 0$, all results hold obviously. Now, we suppose there exists \hat{t} and all the results hold for $t \leq \hat{t} - 1$. Next, we prove these results hold at $t = \hat{t}$.

1674 First, we prove the first result. With Lemma E.4, for $t \leq \hat{t} - 1$, we have
1675

$$\begin{aligned} 1676 \quad -\kappa_D/2 &\leq y_{i,2}f(\mathbf{W}^{D,(t)}, \mathbf{x}_{i,2}) - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)} \leq \kappa_D/2, \\ 1677 \\ 1678 \quad -\kappa_D/2 &\leq y_{k,2}f(\mathbf{W}^{D,(t)}, \mathbf{x}_{k,2}) - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,k,2}^{D,(t)} \leq \kappa_D/2. \\ 1680 \\ 1681 \end{aligned}$$

1682 By subtracting the two equations, we have
1683

$$\left| \left[y_{i,2}f(\mathbf{W}^{D,(t)}, \mathbf{x}_{i,2}) - y_{k,2}f(\mathbf{W}^{D,(t)}, \mathbf{x}_{k,2}) \right] - \left[\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)} - \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,k,2}^{D,(t)} \right] \right| \leq \kappa_D. \quad (\text{E.9})$$

1686 When $\frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)} \right] \leq \log(12) + \kappa_D$, we have
1687

$$\begin{aligned} 1688 \quad \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t})} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t})} \right] &= \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)} \right] - \frac{\eta}{N_2 m} \cdot \frac{1}{m} \sum_{r=1}^m [\ell_i^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{i,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \\ 1689 \\ 1690 \quad &\cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 - \ell_k^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{k,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{k,2} \rangle) \cdot \|\boldsymbol{\xi}_{k,2}\|_2^2] \\ 1691 \\ 1692 \quad &\leq \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)} \right] - \frac{\eta}{N_2 m} \cdot \frac{1}{m} \sum_{r=1}^m \ell_i^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{i,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \\ 1693 \\ 1694 \quad &\cdot \|\boldsymbol{\xi}_{i,2}\|_2^2, \\ 1695 \\ 1696 \end{aligned} \quad (\text{E.10})$$

1697 where the first equality is by the update rule, the second inequality uses the fact $\ell_k^{(\hat{t}-1)} < 0$. Next, we bound the second
1698 term as
1699

$$\begin{aligned} 1700 \quad \left| \frac{\eta}{N_2 m} \cdot \frac{1}{m} \sum_{r=1}^m \ell_i^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{y_{i,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \right| &\leq \frac{\eta}{N_2 m} \cdot \frac{1}{m} \sum_{r=1}^m |\ell_i^{(\hat{t}-1)}| \cdot \sigma'(\langle \mathbf{w}_{y_{i,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 1701 \\ 1702 \quad &\leq \frac{\eta}{N_2 m^2} \cdot |S_i^{D,(\hat{t}-1)}| \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 1703 \\ 1704 \quad &\leq \frac{\eta \sigma_{p,2}^2 d}{2N_2 m} \\ 1705 \\ 1706 \quad &\leq \sqrt{\log(2N_2/\delta)/m}, \\ 1707 \\ 1708 \end{aligned}$$

1709 where the first inequality is by triangle inequality, the second inequality uses the fact $-1 < \ell_i^{(\hat{t}-1)} < 0$ and the
1710 definition of $S_i^{D,(\hat{t}-1)}$, the third inequality is by Lemma C.1 and $|S_i^{D,(\hat{t}-1)}| \leq m$, and the forth inequality is by the
1711 condition of η in Condition 4.1. Therefore, we have
1712

$$\begin{aligned} 1713 \quad \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t})} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t})} \right] &\leq \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)} \right] + \sqrt{\log(2N_2/\delta)/m} \\ 1714 \\ 1715 \quad &\leq \log(12) + \kappa_D + \sqrt{\log(2N_2/\delta)/m}. \\ 1716 \\ 1717 \end{aligned}$$

1718 On the other side, When $\frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)} \right] \geq \log(12) + \kappa_D$, with equation E.9, we have
1719

$$\begin{aligned} 1720 \quad y_{i,2}f(\mathbf{W}^{D,(\hat{t}-1)}, \mathbf{x}_{i,2}) - y_{k,2}f(\mathbf{W}^{D,(\hat{t}-1)}, \mathbf{x}_{k,2}) &\geq \frac{1}{m} \sum_{r=1}^m \left[\bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)} \right] - \kappa_D \\ 1721 \\ 1722 \quad &\geq \log(12), \\ 1723 \\ 1724 \end{aligned}$$

where the first inequality uses equation E.9. Then, it holds that
1725

$$\frac{-\ell_i^{(\hat{t}-1)}}{-\ell_k^{(\hat{t}-1)}} \leq e^{-y_{i,2}f(\mathbf{W}^{D,(\hat{t}-1)}, \mathbf{x}_{i,2}) + y_{k,2}f(\mathbf{W}^{D,(\hat{t}-1)}, \mathbf{x}_{k,2})} < \frac{1}{12}. \quad (\text{E.11})$$

1728 Then, we have

$$\begin{aligned}
 & \frac{-\sum_{r=1}^m \ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{y_{i,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2}{-\sum_{r=1}^m \ell_k'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{y_{k,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{k,2} \rangle) \cdot \|\boldsymbol{\xi}_{k,2}\|_2^2} = \frac{-\ell_i'(\hat{t}-1) \cdot |S_i^{D,(\hat{t}-1)}| \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2}{-\ell_k'(\hat{t}-1) \cdot |S_k^{D,(\hat{t}-1)}| \cdot \|\boldsymbol{\xi}_{k,2}\|_2^2} \\
 & < \frac{1}{4} \cdot \frac{|S_i^{D,(\hat{t}-1)}|}{|S_k^{D,(0)}|} \\
 & \leq 1,
 \end{aligned}$$

1737 where the first inequality uses equation E.11 and Lemma C.1, and the second inequality uses the fact that $|S_i^{D,(\hat{t}-1)}| \leq m$,
1738 the induction $|S_k^{D,(0)}| \leq |S_k^{D,(\hat{t}-1)}|$ and $|S_k^{D,(0)}| \geq m/4$. Then, with equation E.10, it holds that
1739

$$\begin{aligned}
 \frac{1}{m} \sum_{r=1}^m [\rho_{y_{i,2},r,i,2}^{D,(\hat{t})} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t})}] & \leq \frac{1}{m} \sum_{r=1}^m [\rho_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \bar{\rho}_{y_{k,2},r,k,2}^{D,(\hat{t}-1)}] \\
 & \leq \log(12) + \kappa_D + \sqrt{\log(2N_2/\delta)/m}.
 \end{aligned}$$

1740 Next, we prove the second result and the third result together. When $j = y_{i,2}$, by the update rule in Task 2 in Lemma
1741 B.2, it holds that

$$\begin{aligned}
 \langle \mathbf{w}_{j,r}^{D,(\hat{t})}, \boldsymbol{\xi}_{i,2} \rangle &= \langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle - \frac{\eta}{N_2 m} \sum_{i' \in [N_2]} \ell_{i'}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i'} \rangle) \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_i \rangle \\
 &= \langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle - \frac{\eta}{N_2 m} \ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\
 &\quad - \frac{\eta}{N_2 m} \sum_{i' \neq i} \ell_{i'}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i'} \rangle) \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_i \rangle \\
 &\geq \langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle + \frac{\eta \sigma_{p,2}^2 d}{2N_2 m} \ell_i'(\hat{t}-1) - \frac{26\eta\sigma_{p,2}^2 \sqrt{d \log(4N_2^2/\delta)}}{m} \ell_i'(\hat{t}-1) \\
 &\geq \langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle,
 \end{aligned}$$

1750 where the first inequality is by Lemma C.1 and the induction $\ell_k'(\hat{t}-1)/\ell_i'(\hat{t}-1) \leq 13$, and the second inequality is by the
1751 condition of d in Condition 4.1. Then, we know that $S_i^{D,(0)} \subseteq S_i^{D,(\hat{t}-1)} \subseteq S_i^{D,(\hat{t})}$ and $S_{j,r}^{D,(0)} \subseteq S_{j,r}^{D,(\hat{t}-1)} \subseteq S_{j,r}^{D,(\hat{t})}$ by
1752 induction.

1753 Next, we prove the forth result. With equation E.9, it holds that

$$\begin{aligned}
 \frac{\ell_i'(\hat{t})}{\ell_k'(\hat{t})} &\leq e^{-y_{i,2} f(\mathbf{W}^{D,(\hat{t})}, \mathbf{x}_{i,2}) + y_{k,2} f(\mathbf{W}^{D,(\hat{t})}, \mathbf{x}_{k,2})} \\
 &\leq e^{-\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(\hat{t})} + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,k,2}^{D,(\hat{t})} + \kappa_D} \\
 &\leq e^{\log(12) + 2\kappa_D + \sqrt{\log(2N_2/\delta)/m}} = 12 + o(1) \leq 13,
 \end{aligned}$$

1758 where the second inequality is by equation E.9, the third inequality is by the first result of the induction, and the equation
1759 is by the selection of κ_D and m . Next, we prove the fifth result. From Lemma B.2, we know that
1760

$$\begin{aligned}
 \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t})} &= \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \frac{\eta}{N_2 m} \cdot \frac{1}{m} \sum_{r=1}^m \ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{y_{i,2},r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\
 &= \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \frac{\eta}{N_2 m} \cdot \frac{|S_i^{D,(\hat{t}-1)}|}{m} \cdot \ell_i'(\hat{t}-1) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2.
 \end{aligned}$$

1765 Here, with Lemma E.4, the gradient $\ell_i'(\hat{t}-1)$ can be bounded as

$$\frac{-1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \kappa_D/2}} \leq \ell_i'(\hat{t}-1) = \frac{-1}{1 + e^{y_{i,2} f(\mathbf{W}^{D,(\hat{t}-1)}, \mathbf{x}_{i,2})}} \leq \frac{-1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \kappa_D/2}}. \quad (\text{E.12})$$

1782 Then, by the update rule of $\bar{\rho}_{j,r,i,2}^{D,(\hat{t})}$ in Lemma B.2, we have
 1783

$$\begin{aligned}
 1784 \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t})} &\leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \frac{\eta}{N_2 m} \cdot \frac{|S_i^{D,(\hat{t}-1)}|}{m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \kappa_D/2}} \cdot \|\xi_{i,2}\|_2^2; \\
 1785 &\leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \frac{3\eta\sigma_p^2 d}{2N_2 m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \kappa_D/2}}; \\
 1786 \\
 1787 \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t})} &\geq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \frac{\eta}{N_2 m} \cdot \frac{|S_i^{D,(\hat{t})}|}{m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \kappa_D/2}} \cdot \|\xi_{i,2}\|_2^2 \\
 1788 &\geq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \frac{\eta\sigma_p^2 d}{5N_2 m} \cdot \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \kappa_D/2}}.
 \end{aligned}$$

1796 So, the estimation of $\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t})}$ can be approximated by solving the continuous-time iterative equation
 1797

$$\frac{dx_t^D}{dt} = \frac{a}{1 + be^{x_t^D}} \quad \text{and} \quad x_0 = 0.$$

1801 The result is shown in Lemma C.4. For the gradient counterparts, with Lemma D.3, the gradient $\ell_i'^{(\hat{t}-1)}$ can be bounded
 1802 as

$$\frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} + \kappa_D/2}} \leq -\ell_i'^{(\hat{t}-1)} = \frac{1}{1 + e^{y_{i,2} f(\mathbf{W}^{D,(\hat{t}-1)}, \mathbf{x}_{i,2})}} \leq \frac{1}{1 + e^{\frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)} - \kappa_D/2}}.$$

1806 The result is obvious since that $1/m \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(\hat{t}-1)}$ is bounded. Since then we complete the proof. \square
 1807

1808
 1809 *Proof of Proposition E.1.* We prove it by induction. When $t = 0$, all results hold obviously. Now, we suppose there
 1810 exists \hat{t} and all the results hold for $t \leq \hat{t} - 1$. Next, we prove these results hold at $t = \hat{t}$.

1811 First, for the first result, when $j \neq y_{i,2}$, we have $\bar{\rho}_{j,r,i,2}^{D,(\hat{t})} = 0$. When $j = y_{i,2}$, by the update rule, it holds that
 1812

$$\bar{\rho}_{j,r,i,2}^{D,(\hat{t})} = \bar{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} - \frac{\eta}{N_2 m} \ell_i'^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2. \quad (\text{E.13})$$

1816 If $\bar{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \leq 2 \log(T^{**})$, we have
 1817

$$\begin{aligned}
 1818 \bar{\rho}_{j,r,i,2}^{D,(\hat{t})} &\leq \bar{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} + \frac{\eta}{N_2 m} \frac{3\sigma_p^2 d}{2} \\
 1819 &\leq 2 \log(T^{**}) + \log(T^{**}) \leq 4 \log(T^{**}),
 \end{aligned}$$

1822 where the first inequality uses the fact $-1 \leq \ell_i'^{(\hat{t}-1)} \leq 0$ and Lemma C.1, and the second inequality is by the condition
 1823 of η in Condition 4.1. If $\bar{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \geq 2 \log(T^{**})$, from equation E.13 we know that $\bar{\rho}_{j,r,i,2}^{D,(\hat{t})}$ increases with t . Therefore,
 1824 suppose that $t_{j,r,i,2}$ is the last time satisfying $\bar{\rho}_{j,r,i,2}^{D,(\hat{t}_{j,r,i,2})} \leq 2 \log(T^{**})$. Now, we want to show that the increment of
 1825 $\bar{\rho}_{j,r,i,2}^D$ from $t_{j,r,i,2}$ to \hat{t} does not exceed $2 \log(T^{**})$.
 1826

$$\begin{aligned}
 1827 \bar{\rho}_{j,r,i,2}^{D,(\hat{t})} &= \bar{\rho}_{j,r,i,2}^{D,(\hat{t}_{j,r,i,2})} - \frac{\eta}{N_2 m} \ell_i'^{(\hat{t}_{j,r,i,2})} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}_{j,r,i,2})}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2 \\
 1828 &\quad - \sum_{t_{j,r,i,2} < t \leq \hat{t}-1} \frac{\eta}{N_2 m} \ell_i'^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2.
 \end{aligned} \quad (\text{E.14})$$

1833 Here, the second term can be bounded as

$$\left| \frac{\eta}{N_2 m} \ell_i'^{(\hat{t}_{j,r,i,2})} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}_{j,r,i,2})}, \xi_{i,2} \rangle) \cdot \|\xi_{i,2}\|_2^2 \right| \leq \frac{3\eta\sigma_p^2 d}{2N_2 m} \leq \log(T^{**}),$$

1836 where the first inequality is by Lemma C.1 and the second inequality is by the condition of η in Condition 4.1. For the
 1837 third term, note that when $t > t_{j,r,i,2}$,
 1838

$$\begin{aligned}
 1839 \langle \mathbf{w}_{y_{i,2},r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle &\geq \langle \mathbf{w}_{y_{i,2},r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle + \bar{\rho}_{j,r,i,2}^{D,(\hat{t})} - 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \\
 1840 &\geq -2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} + 2 \log(T^{**}) - 16(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \\
 1841 &\geq 1.8 \log(T^{**}),
 \end{aligned} \tag{E.15}$$

1845 where the first inequality is by Lemma E.3, the second inequality is by Lemma E.2 and the third inequality is by
 1846 $\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} \leq 0.1 \log(T^{**})$, $16(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \leq 0.1 \log(T^{**})$ from the
 1847 Condition 4.1. Then, the gradient can be bounded as
 1848

$$\begin{aligned}
 1849 |\ell_i^{(t)}| &= \frac{1}{1 + e^{-y_{i,2}[F_{+1}(\mathbf{W}_{+1}^{D,(t)}, \mathbf{x}_{i,2}) - F_{-1}(\mathbf{W}_{-1}^{D,(t)}, \mathbf{x}_{i,2})]}} \\
 1850 &\leq e^{-y_{i,2}F_{y_{i,2}}(\mathbf{W}_{+1}^{D,(t)}, \mathbf{x}_{i,2}) + 0.1} \\
 1851 &= e^{-\frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{y_{i,2},r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle) + 0.1} \\
 1852 &\leq e^{0.1} \cdot e^{-1.8 \log(T^{**})} \leq 2e^{-1.8 \log(T^{**})},
 \end{aligned}$$

1856 where the first inequality is by Lemma D.3 that $\kappa_D \leq 0.2$, the second inequality is by equation E.15. Based on these
 1857 results, we can bound the third term in equation E.14 as
 1858

$$\begin{aligned}
 1859 \left| \sum_{t_{j,r,i,2} < t \leq \hat{t}-1} \frac{\eta}{N_2 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \right| &\leq \frac{\eta T^{**}}{N_2 m} \cdot 2e^{-1.8 \log(T^{**})} \cdot \frac{3\sigma_{p,2}^2 d}{2} \\
 1860 &\leq \frac{T^{**}}{(T^{**})^{1.8}} \cdot \frac{3\eta\sigma_{p,2}^2 d}{N_2 m} \\
 1861 &\leq 1 \leq \log(T^{**}),
 \end{aligned}$$

1865 where the first inequality is by the bound of $|\ell_i^{(t)}|$ and Lemma C.1, the second inequality is by the fact that
 1866 $e^{-x} \leq 1/x, x > 0$ and the third inequality is by the selection of η in Condition 4.1. Since then, we prove that
 1867 $\underline{\rho}_{j,r,i,2}^{D,(\hat{t})} \leq 4 \log(T^{**})$.
 1868

1870 Next, we prove the second result. When $j = y_{i,2}$, we have $\underline{\rho}_{j,r,i,2}^{D,(\hat{t})} = 0$. When $j \neq y_{i,2}$, If $\underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \leq$
 1871 $-2\sqrt{\log(\frac{12mN_2}{\delta})} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} - (C_1 - 16)(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**})$, by Lemma E.3, it holds
 1872 that
 1873

$$\left| \langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)} - \mathbf{w}_{j,r}^{D,(T^*+1)}, \boldsymbol{\xi}_{i,2} \rangle - \underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \right| \leq 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}).$$

1874 Rearrange the inequality, we get
 1875

$$\begin{aligned}
 1876 \langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle &\leq \langle \mathbf{w}_{j,r}^{D,(0)}, \boldsymbol{\xi}_{i,2} \rangle + \underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} + 16N_2 \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \\
 1877 &\leq 0,
 \end{aligned}$$

1878 where the second inequality is by Lemma E.2 and $\underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \leq -2\sqrt{\log(\frac{12mN_2}{\delta})} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} - (C_1 - 16)(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} +$
 1879 $N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**})$. Then, by the update rule, it holds that
 1880

$$\begin{aligned}
 1881 \underline{\rho}_{j,r,i,2}^{D,(\hat{t})} &= \underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} + \frac{\eta}{N_2 m} \ell_i^{(\hat{t}-1)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\
 1882 &= \underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \geq -2\sqrt{\log(\frac{12mN_2}{\delta})} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} - C_1(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}),
 \end{aligned}$$

1890
1891 If $\underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} \geq -2\sqrt{\log\left(\frac{12mN_2}{\delta}\right)} \cdot \sigma_0\sigma_{p,2}\sqrt{d} - (C_1 - 16)(N_1\frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2)\sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**})$, by the update
1892 rule, it holds that

$$\begin{aligned} 1893 \quad \underline{\rho}_{j,r,i,2}^{D,(\hat{t})} &= \underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} + \frac{\eta}{N_2m}\ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 1894 \quad &\geq \underline{\rho}_{j,r,i,2}^{D,(\hat{t}-1)} - \frac{3\eta\sigma_{p,2}^2 d}{2N_2m} \\ 1895 \quad &\geq -2\sqrt{\log\left(\frac{12mN_2}{\delta}\right)} \cdot \sigma_0\sigma_{p,2}\sqrt{d} - C_1(N_1\frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2)\sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}), \end{aligned}$$

1901
1902 where the first inequality uses the fact $-1 \leq \ell_i'(\hat{t}-1) \leq 0$ and Lemma C.1, and the second inequality is by the condition
1903 of η in Condition 4.1.

1904
1905 Next, we prove the third result. We prove a stronger conclusion that for any $i^* \in S_{j,r}^{D,(0)}$, it holds that
1906

$$\frac{\gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)}}{\bar{\rho}_{j,r,i^*,2}^t} \leq \frac{26N_2\|\mathbf{u}\|_2^2}{\sigma_{p,2}^2 d}.$$

1911 Recall the update rule that

$$\begin{aligned} 1913 \quad \gamma_{j,r}^{D,(\hat{t})} &= \gamma_{j,r}^{D,(\hat{t}-1)} - \frac{\eta}{N_2m} \sum_{i \in [N_2]} \ell_i'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, y_{i,2} \cdot (\mathbf{u} + \mathbf{v}_2) \rangle) \cdot \|\mathbf{u}\|_2^2 \\ 1914 \quad &\leq \gamma_{j,r}^{D,(\hat{t}-1)} - \frac{\eta}{N_2m} \cdot 13N_2 \cdot \ell_{i^*}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, y_{i^*,2} \cdot (\mathbf{u} + \mathbf{v}_2) \rangle) \cdot \|\mathbf{u}\|_2^2 \end{aligned}$$

1918 where the inequality follows by $\ell_i'(\hat{t})/\ell_k'(\hat{t}) \leq 13$ in Lemma D.4, and

$$\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t})} = \bar{\rho}_{j,r,i^*,2}^{D,(\hat{t}-1)} - \frac{\eta}{N_2m}\ell_{i^*}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i^*,2} \rangle) \cdot \|\boldsymbol{\xi}_{i^*,2}\|_2^2 \cdot \mathbf{1}\{y_{i^*,2} = j\}.$$

1923 Compare the gradient, we have

$$\begin{aligned} 1925 \quad \frac{\gamma_{j,r}^{D,(\hat{t})} - \gamma_{j,r}^{D,(T^*+1)}}{\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t})}} &\leq \max \left\{ \frac{\gamma_{j,r}^{D,(\hat{t}-1)} - \gamma_{j,r}^{D,(T^*+1)}}{\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t}-1)}}, \frac{13N_2 \cdot \ell_{i^*}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, y_{i^*} \cdot (\mathbf{u} + \mathbf{v}_1) \rangle) \cdot \|\mathbf{u}\|_2^2}{\ell_{i^*}'(\hat{t}-1) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(\hat{t}-1)}, \boldsymbol{\xi}_{i^*,2} \rangle) \cdot \|\boldsymbol{\xi}_{i^*,2}\|_2^2} \right\} \\ 1926 \quad &\leq \max \left\{ \frac{\gamma_{j,r}^{D,(\hat{t}-1)} - \gamma_{j,r}^{D,(T^*+1)}}{\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t}-1)}}, \frac{13N_2\|\mathbf{u}\|_2^2}{\|\boldsymbol{\xi}_{i^*,2}\|_2^2} \right\} \\ 1927 \quad &\leq \max \left\{ \frac{\gamma_{j,r}^{D,(\hat{t}-1)} - \gamma_{j,r}^{D,(T^*+1)}}{\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t}-1)}}, \frac{26N_2\|\mathbf{u}\|_2^2}{\sigma_{p,2}^2 d} \right\} \\ 1928 \quad &\leq \frac{26N_2\|\mathbf{u}\|_2^2}{\sigma_{p,2}^2 d}, \end{aligned}$$

1938 where the first inequality is from two update rules, the second inequality is by $i^* \in S_{j,r}^{D,(0)}$, the third inequality is
1939 by Lemma C.1 and the last inequality use the induction $\frac{\gamma_{j,r}^{D,(\hat{t}-1)}}{\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t}-1)}} \leq \frac{26N_2\|\mathbf{u}\|_2^2}{\sigma_{p,2}^2 d}$. Similarly, it holds that $\frac{\gamma_{j,r,2}^{D,(\hat{t})}}{\bar{\rho}_{j,r,i^*,2}^{D,(\hat{t})}} \leq$
1940 $\frac{26N_2\|\mathbf{v}_1\|_2^2}{\sigma_{p,2}^2 d}$. \square

1944 **Proposition E.6.** Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, it holds that
 1945

$$1946 \quad 0 \leq \bar{\rho}_{j,r,i,2}^{D,(t)} \leq 4 \log(T^{**}), \quad (\text{E.16})$$

$$1947 \quad 1948 \quad 0 \geq \underline{\rho}_{j,r,i,2}^{D,(t)} \geq -2\sqrt{\log(12mN_2/\delta)} \cdot \sigma_0 \sigma_{p,2} \sqrt{d} - C_1(N_1 \frac{\sigma_{p,2}}{\sigma_{p,1}} + N_2) \sqrt{\frac{\log(4(N_1^2 + N_2^2)/\delta)}{d}} \log(T^{**}) \geq -4 \log(T^{**}), \\ 1949 \quad 1950 \quad 1951 \quad 1952 \quad 1953 \quad 1954 \quad 1955 \quad 1956 \quad 1957$$

$$0 \leq \gamma_{j,r}^{D,(t)} - \tilde{\gamma}_{j,r}^{D,(T^*+1)} \leq \frac{C_2 N_2 \|\mathbf{u}\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}), \quad (\text{E.18})$$

$$0 \leq \gamma_{j,r,2}^{D,(t)} \leq \frac{C_2 N_2 \|\mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^{**}), \quad (\text{E.19})$$

1956 for all $r \in [m], j \in \{\pm 1\}, i \in [N_2]$, where C_1 and C_2 are two absolute constant. Besides, we also have the following
 1957 results:

$$1958 \quad 1. \frac{1}{m} \sum_{r=1}^m \left[\rho_{y_{i,2},r,i,2}^{D,(t)} - \bar{\rho}_{r,k,i,2}^{D,(t)} \right] \leq \log(12) + \kappa_D + \sqrt{\log(2N_2/\delta)/m} \text{ for all } i, k \in [n].$$

$$1960 \quad 2. S_i^{D,(0)} \subseteq S_i^{D,(t)}, \text{ where } S_i^{D,(t)} = \{r \in [m] : \langle \mathbf{w}_{y_i,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle > 0\}.$$

$$1963 \quad 3. S_{j,r}^{D,(0)} \subseteq S_{j,r}^{D,(t)}, \text{ where } S_{j,r}^{D,(t)} = \{i \in [N_2] : y_{i,2} = j, \langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle > 0\}.$$

$$1965 \quad 4. \ell_i'^{(t)} / \ell_k'^{(t)} \leq 13.$$

$$1967 \quad 5. \text{ A refined estimation of } \frac{1}{m} \sum_{r=1}^m \rho_{y_{i,2},r,i,2}^{D,(t)} \text{ and } \ell_i'^{(t)}. \text{ It holds that}$$

$$1969 \quad 1970 \quad 1971 \quad \underline{x}_t^D \leq \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{y_{i,2},r,i,2}^{D,(t)} \leq \bar{x}_t^D + \bar{c}^D / (1 + \bar{b}^D), \\ 1972 \quad 1973 \quad 1974 \quad \frac{1}{1 + \underline{b}^D e^{\underline{x}_t^D}} \leq -\ell_i'^{(t)} \leq \frac{1}{1 + \bar{b}^D e^{\bar{x}_t^D}},$$

1975 where $\bar{x}_t^D, \underline{x}_t^D$ are the the unique solution of

$$1976 \quad \bar{x}_t^D + \bar{b}^D e^{\bar{x}_t^D} = \bar{c}^D t + \bar{b}^D,$$

$$1977 \quad \underline{x}_t^D + \underline{b}^D e^{\underline{x}_t^D} = \underline{c}^D t + \underline{b}^D,$$

$$1979 \quad 1980 \quad \text{and } \bar{b}^D = e^{-\kappa_D/2}, \bar{c}^D = \frac{3\eta\sigma_{p,2}^2 d}{2N_2 m}, \underline{b}^D = e^{\kappa_D/2} \text{ and } \underline{c}^D = \frac{\eta\sigma_{p,2}^2 d}{5N_2 m}.$$

1981 **Lemma E.7** (Meng et al. (2024)). It holds that

$$1982 \quad 1983 \quad \log \left(\frac{\eta\sigma_{p,2}^2 d}{8N_2 m} t + \frac{2}{3} \right) \leq \bar{x}_t^D \leq \log \left(\frac{2\eta\sigma_{p,2}^2 d}{N_2 m} t + 1 \right), \\ 1984 \quad 1985 \quad \log \left(\frac{\eta\sigma_{p,2}^2 d}{8N_2 m} t + \frac{2}{3} \right) \leq \underline{x}_t^D \leq \log \left(\frac{2\eta\sigma_{p,2}^2 d}{N_2 m} t + 1 \right),$$

1988 for the defined $\bar{b}^D, \bar{c}^D, \underline{b}^D, \underline{c}^D$.

1990 E.2 SIGNAL LEARNING AND NOISE MEMORIZATION

1991 In this part, we will give detailed analysis of signal learning and noise memorization of the second system.

1992 **Lemma E.8.** Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, $\langle \mathbf{w}_{j,r}^{D,(t)}, j(\mathbf{u} + \mathbf{v}_2) \rangle$ increases with t .

1993 **Proof.** By Definition B.1, it holds that

$$1997 \quad \langle \mathbf{w}_{j,r}^{D,(t)}, j(\mathbf{u} + \mathbf{v}_2) \rangle = \gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)}.$$

1998 By the update rule in Task 2 in Lemma B.2, we know that $\gamma_{j,r}^{D,(t)}$ and $\gamma_{j,r,2}^{D,(t)}$ increase with t . So $\langle \mathbf{w}_{j,r}^{D,(t)}, j(\mathbf{u} + \mathbf{v}) \rangle$
 1999 increases with t . \square

2000 **Lemma E.9.** *Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, it holds that*

$$\begin{aligned} \frac{\eta \|\mathbf{u}\|_2^2}{\underline{c}^D m} \underline{x}_{t-2}^D - \frac{2\eta \|\mathbf{u}\|_2^2}{m} &\leq \gamma_{j,r}^{D,(t)} - \gamma_{j,r}^{D,(T^*+1)} \leq \frac{\eta \|\mathbf{u}\|_2^2}{\bar{c}^D m} \bar{x}_{t-1}^D - \frac{2\eta \|\mathbf{u}\|_2^2}{m}, \\ \frac{\eta \|\mathbf{v}_2\|_2^2}{\underline{c}^D m} \underline{x}_{t-2}^D - \frac{2\eta \|\mathbf{v}_2\|_2^2}{m} &\leq \gamma_{j,r,2}^{D,(t)} \leq \frac{\eta \|\mathbf{v}_2\|_2^2}{\bar{c}^D m} \bar{x}_{t-1}^D - \frac{2\eta \|\mathbf{v}_2\|_2^2}{m}. \end{aligned}$$

2007 *Proof.* By the update rule, it holds that

$$\begin{aligned} \gamma_{j,r}^{D,(t+1)} + \gamma_{j,r,2}^{D,(t+1)} &= \gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)} - \frac{\eta}{N_2 m} \sum_{i'=1}^{N_2} \ell_{i'}^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, y_i(\mathbf{u} + \mathbf{v}_2) \rangle) \|\mathbf{u} + \mathbf{v}_2\|_2^2 \\ &\leq \gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \frac{1}{1 + \bar{b}^D e^{\bar{x}_t^D}} \\ &\leq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \sum_{s=0}^t \frac{1}{1 + \bar{b}^D e^{\bar{x}_s^D}} \\ &\leq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \int_{s=0}^t \frac{1}{1 + \bar{b}^D e^{\bar{x}_s^D}} ds \\ &\leq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \int_{s=0}^t \frac{1}{\bar{c}^D} d\bar{x}_s^D \\ &\leq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\bar{c}^D m} \bar{x}_t^D - \frac{2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \\ &\leq \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\bar{c}^D m} \bar{x}_t^D - \frac{2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m}, \end{aligned}$$

2026 where the first inequality is by the fifth result in Lemma E.6, the second inequality is by summation and the forth
 2027 inequality is by the definition of \bar{x}_s^D . On the other side, we have

$$\begin{aligned} \gamma_{j,r}^{D,(t+1)} + \gamma_{j,r,2}^{D,(t+1)} &= \gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)} - \frac{\eta}{N_2 m} \sum_{i'=1}^n \ell_{i'}^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, y_i(\mathbf{u} + \mathbf{v}_2) \rangle) \|\mathbf{u} + \mathbf{v}_2\|_2^2 \\ &\geq \gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \frac{1}{1 + \underline{b}^D e^{\underline{x}_t^D}} \\ &\geq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \sum_{s=0}^t \frac{1}{1 + \underline{b}^D e^{\underline{x}_s^D}} \\ &\geq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \int_{s=0}^{t-1} \frac{1}{1 + \underline{b}^D e^{\underline{x}_s^D}} ds \\ &\geq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \int_{s=0}^{t-1} \frac{1}{\underline{c}^D} d\underline{x}_s^D \\ &\geq \gamma_{j,r}^{D,(0)} + \gamma_{j,r,2}^{D,(0)} + \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\underline{c}^D m} \underline{x}_{t-1}^D - \frac{2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \\ &\geq \frac{\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\underline{c}^D m} \underline{x}_{t-1}^D - \frac{2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m}, \end{aligned}$$

2046 where the first inequality is by the fifth result in Lemma D.4, the second inequality is by summation and the forth
 2047 inequality is by the definition of \underline{x}_s^D . Since that $\mathbf{u} \perp \mathbf{v}_2$, we have

$$\begin{aligned} \gamma_{j,r}^{D,(t)} &= \frac{\|\mathbf{u}\|_2^2}{\|\mathbf{u} + \mathbf{v}_2\|_2^2} (\gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)}), \\ \gamma_{j,r,2}^{D,(t)} &= \frac{\|\mathbf{v}_2\|_2^2}{\|\mathbf{u} + \mathbf{v}_2\|_2^2} (\gamma_{j,r}^{D,(t)} + \gamma_{j,r,2}^{D,(t)}). \end{aligned}$$

2052 Then, we complete the proof. \square

2054 **Lemma E.10.** *Under Condition 4.1, for $T^* + 1 \leq t \leq T^{**}$, it holds that*

$$2056 \quad \frac{N_2}{12}(\underline{x}_{t-2}^D - \underline{x}_1^D) \leq \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} \leq 5N_2 \bar{x}_{t-1}^D.$$

2059 *Proof.* For $j = y_i$, it holds that

$$\begin{aligned} 2061 \quad \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t+1)} &= \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} - \sum_{i \in [N_2]} \frac{\eta}{N_2 m} \ell_i^{(t)} \cdot \sigma'(\langle \mathbf{w}_{j,r}^{D,(t)}, \boldsymbol{\xi}_{i,2} \rangle) \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 2062 \quad &= \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} - \sum_{i \in S_{j,r}^{D,(t)}} \frac{\eta}{N_2 m} \ell_i^{(t)} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 2063 \quad &\geq \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} + |S_{j,r}^{D,(0)}| \frac{\eta}{N_2 m} \frac{1}{1 + \underline{b}^D \underline{x}_t^D} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 2064 \quad &\geq \sum_{s=1}^t |S_{j,r}^{D,(0)}| \frac{\eta}{N_2 m} \frac{1}{1 + \underline{b}^D \underline{x}_s^D} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 2065 \quad &\geq \int_{s=1}^{t-1} |S_{j,r}^{D,(0)}| \frac{\eta}{N_2 m} \frac{1}{1 + \underline{b}^D \underline{x}_s^D} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 ds \\ 2066 \quad &\geq \frac{N_2}{12}(\underline{x}_{t-1}^D - \underline{x}_1^D), \end{aligned}$$

2067 where the first inequality is by $|S_{j,r}^{D,(t)}| \geq |S_{j,r}^{D,(0)}|$ and the fifth result in Lemma E.6, the second inequality is by
2068 summation and the forth inequality is by the definition of \underline{x}_s^D . On the other side, it holds that

$$\begin{aligned} 2077 \quad \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t+1)} &\leq \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)} + N_2 \frac{\eta}{N_2 m} \frac{1}{1 + \bar{b}^D \bar{x}_t^D} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 2078 \quad &\leq \sum_{s=1}^t N_2 \frac{\eta}{N_2 m} \frac{1}{1 + \bar{b}^D \bar{x}_s^D} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 \\ 2079 \quad &\leq \int_{s=1}^t N_2 \frac{\eta}{N_2 m} \frac{1}{1 + \bar{b}^D \bar{x}_s^D} \cdot \|\boldsymbol{\xi}_{i,2}\|_2^2 ds \\ 2080 \quad &\leq 5N_2(\bar{x}_t^D - \bar{x}_1^D) \\ 2081 \quad &\leq 5N_2 \bar{x}_t^D, \end{aligned}$$

2082 where the first inequality is by the fifth result in Lemma E.6, the second inequality is by summation and the forth
2083 inequality is by the definition of \bar{x}_s^D . Then, we complete the proof. \square

2084 E.3 TEST ERROR ANALYSIS

2085 **Lemma E.11** (Devroye et al. (2018)). *The TV distance between $\mathcal{N}(0, \sigma_{p,2}^2 \mathbf{I}_d)$ and $\mathcal{N}(\mathbf{v}, \sigma_{p,2}^2 \mathbf{I}_d)$ satisfies*

$$2086 \quad \text{TV}(\mathcal{N}(0, \sigma_{p,2}^2 \mathbf{I}_d), \mathcal{N}(\mathbf{v}, \sigma_{p,2}^2 \mathbf{I}_d)) \leq \frac{\|\mathbf{v}\|_2}{2\sigma_{p,2}}.$$

2087 **Theorem E.12.** *For task1 and task2 with*

$$2088 \quad T_1 = \frac{C_1^* N_1 m}{\eta \sigma_{p,1}^2 d}, T_2 = \frac{C_2^* N_2 m}{\eta \sigma_{p,2}^2 d},$$

2089 where C_1^*, C_2^* are two absolute constants. Then, it holds that:

2090 1. The training loss is below ε : $L_S(\mathbf{W}^{D,(t)}) \leq \varepsilon$.

2106 2. If

$$2108 \quad 2109 \quad 2110 \quad 2111 \quad d \leq C' \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2},$$

2112 the test error converges to 0: For any new data (x, y) ,

$$2113 \quad 2114 \quad 2115 \quad 2116 \quad \mathbb{P}(y f(\mathbf{W}^{D,(t)}, x) < 0) \leq \exp\left\{-C_2 \frac{1}{d} \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2}\right\}.$$

2117 3. If

$$2119 \quad 2120 \quad 2121 \quad 2122 \quad d \geq C'' \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2},$$

2123 the test error only achieves a sub-optimal error rate: For any new data (\mathbf{x}, y) , $\mathbb{P}(y f(\mathbf{W}^{D,(t)}, x) < 0) \geq 0.1$.

2125 Proof. For the first result, by Lemma E.4, we have

$$2127 \quad 2128 \quad 2129 \quad 2130 \quad 2131 \quad 2132 \quad 2133 \quad y_{i,2} f(\mathbf{W}^{D,(t)}, \mathbf{x}_{i,2}) \geq -\kappa_D/2 + \frac{1}{m} \sum_{r=1}^m \bar{\rho}_{j,r,i,2}^{D,(t)} \\ \geq -\kappa_D/2 + \underline{x}_t^D \\ \geq -\kappa_D/2 + \log\left(\frac{\eta \sigma_{p,1}^2 d}{8N_1 m} t + \frac{2}{3}\right),$$

2134 where the first inequality is by Lemma E.4, the second inequality is by Proposition E.6 and the third inequality is by
2135 Lemma E.7. Then, we can calculate the training loss as

$$2136 \quad 2137 \quad 2138 \quad 2139 \quad 2140 \quad 2141 \quad 2142 \quad 2143 \quad 2144 \quad L(\mathbf{W}^{D,(t)}) \leq \log\left(1 + e^{\kappa_D/2 - \log\left(\frac{\eta \sigma_{p,1}^2 d}{8N_1 m} t + \frac{2}{3}\right)}\right) \\ \leq \frac{e^{\kappa_D/2}}{\frac{\eta \sigma_{p,1}^2 d}{8N_1 m} t + \frac{2}{3}} \\ \leq \frac{e^{\kappa_D/2}}{2/\varepsilon + 1.5} \\ \leq \varepsilon,$$

2145 where the second inequality uses the fact that $\log(1 + x) \leq x, x \geq 0$, the third inequality is by $T_2 \geq \Omega(\frac{N_2 m}{\eta \sigma_{p,2}^2 d})$ and the
2146 last inequality is by $\kappa_D \leq 0.1$. Then we complete the proof of the first result.2147 Next, for the second result, for data $(\mathbf{x}, y) \sim \mathcal{D}$, we have

$$2150 \quad 2151 \quad 2152 \quad 2153 \quad 2154 \quad 2155 \quad 2156 \quad 2157 \quad y f(\mathbf{W}^{D,(t)}, \mathbf{x}) \geq \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) \\ - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) \\ \geq -2\sqrt{\log(12m/\delta)} \cdot \sigma_0 \|\mathbf{u} + \mathbf{v}_2\|_2 + c\left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d}\right) \cdot \bar{x}_{t-1} - \frac{2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2}{m} \\ - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle),$$

2160 where the first inequality is by $F_{y,r}(\mathbf{W}^{D,(t)}, \boldsymbol{\xi}) \geq 0$, and the second inequality is by the growth of the signal and
 2161 $|\{r \in [m], \langle \mathbf{w}_{+1,r}^{D,(0)}, \mathbf{u} + \mathbf{v}_2 \rangle > 0\}|/m \geq 1/3$. Then for $\bar{x}_t \geq \underline{x}_t \geq C > 0$, it holds that
 2162

$$\begin{aligned}
 2163 \quad yf(\mathbf{W}^{D,(t)}, \mathbf{x}) &\geq c\left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d}\right) \cdot \bar{x}_{t-1} - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) \\
 2164 &\quad - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) \\
 2165 &\quad - 2\sqrt{\log(12mn/\delta)} \cdot \sigma_0 \|\mathbf{u} + \mathbf{v}_2\|_2 \\
 2166 &\geq c\left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d}\right) \cdot \bar{x}_{t-1} - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) \\
 2167 &\quad - 4\sqrt{\log(12mn/\delta)} \cdot \sigma_0 \|\mathbf{u} + \mathbf{v}_2\|_2 - 2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2/m \\
 2168 &\geq \frac{c}{2} \left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d}\right) \cdot \bar{x}_{t-1} - \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle).
 \end{aligned}$$

2169 Here, the first inequality is by the condition of σ_0, η in Condition 3.1, and $\bar{x}_{t-1} \geq C$, the third inequality is still by the
 2170 condition of σ_0, η in Condition 4.1 which indicates that $\frac{c}{2} \left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d}\right) \cdot \bar{x}_{t-1} - 4\sqrt{\log(12mn/\delta)} \cdot \sigma_0 \|\mathbf{u} + \mathbf{v}_2\|_2 - 2\eta \|\mathbf{u} + \mathbf{v}_2\|_2^2/m \geq 0$. We denote by $h(\boldsymbol{\xi}) = \frac{1}{m} \sum_{r=1}^m \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle)$. By Theorem 5.2.2 in [Vershynin \(2018\)](#),
 2171 we have
 2172

$$P(h(\boldsymbol{\xi}) - Eh(\boldsymbol{\xi}) \geq x) \leq \exp\left(-\frac{c' x^2}{\sigma_{p,2}^2 \|h\|_{\text{Lip}}^2}\right).$$

2173 Here c' is some constant. By
 2174

$$d \leq C_1 \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4 d} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2},$$

2175 for some sufficiently large C_1 and Proposition E.5, we directly have
 2176

$$C\left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d}\right) \cdot \bar{x}_{t-1} \geq Eh(\boldsymbol{\xi}) = \frac{\sigma_{p,2}}{\sqrt{2\pi m}} \sum_{r=1}^m \|\mathbf{w}_{-1,r}^{D,(t)}\|_2,$$

2177 where $\|\mathbf{w}_{-1,r}^{D,(t)}\|_2 \leq \Theta\left(\frac{\alpha}{\sigma_{p,1} d^{1/2} N_1^{1/2}} \sum_{i \in [N_1]} \bar{\rho}_{j,r,i,1}^{D,(t)} + \frac{1}{\sigma_{p,2} d^{1/2} N_2^{1/2}} \sum_{i \in [N_2]} \bar{\rho}_{j,r,i,2}^{D,(t)}\right)$.
 2178

2179 Now using methods in equation F.3 we get that
 2180

$$\begin{aligned}
 2181 \quad P(yf(\mathbf{W}^{D,(t)}, \mathbf{x}) < 0) \\
 2182 &\leq P\left(h(\boldsymbol{\xi}) - Eh(\boldsymbol{\xi}) > \sum_r \sigma(\langle \mathbf{w}_{y,r}^{D,(t)}, y(\mathbf{u} + \mathbf{v}_2) \rangle) - \frac{\sigma_{p,2}}{\sqrt{2\pi m}} \sum_{r=1}^m \|\mathbf{w}_{-1,r}^{D,(t)}\|_2\right) \\
 2183 &\leq \exp\left[-\frac{c''(\sum_r \sigma(\langle \mathbf{w}_{y,r}^{D,(t)}, y(\mathbf{u} + \mathbf{v}_2) \rangle) - \frac{\sigma_{p,2}}{\sqrt{2\pi m}} \sum_{r=1}^m \|\mathbf{w}_{-1,r}^{D,(t)}\|_2)^2}{\sigma_{p,2}^2 \left(\sum_{r=1}^m \|\mathbf{w}_{-1,r}^{D,(t)}\|_2\right)^2}\right] \\
 2184 &\leq \exp(c''/(2\pi)) \exp\left[-\frac{c''\left(\sum_r \sigma(\langle \mathbf{w}_{y,r}^{D,(t)}, y(\mathbf{u} + \mathbf{v}_2) \rangle)\right)^2}{\sigma_{p,2}^2 \left(\sum_{r=1}^m \|\mathbf{w}_{-1,r}^{D,(t)}\|_2\right)^2}\right] \\
 2185 &\leq \exp\left[-C_2 \frac{1}{d} \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2}\right].
 \end{aligned}$$

2214 Here, $C_2 = O(1)$ is some constant. The first inequality is directly by equation F.2, the second inequality is by equation
 2215 F.3 and the last inequality is by Proposition E.2 which directly gives the lower bound of signal learning and Proposition
 2216 E.5 which directly gives the scale of $\|\mathbf{w}_{-1,r}^{D,(t)}\|_2$. Combined the results with equation F.1, we have
 2217

$$2218 \quad 2219 \quad 2220 \quad 2221 \quad P(yf(\mathbf{W}^{D,(t)}, \mathbf{x}) < 0) \leq \exp \left[-C_2 \frac{1}{d} \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2} \right].$$

2222 Next, for the third result, we have
 2223

$$2224 \quad \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}}(y \neq \text{sign}(f(\mathbf{W}^{D,(t)}, \mathbf{x})) = \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}}(yf(\mathbf{W}^{D,(t)}, \mathbf{x}) \leq 0).
 2225 \quad = \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}} \left(\sum_r \sigma(\langle \mathbf{w}_{-y,r}^{D,(t)}, \boldsymbol{\xi} \rangle) - \sum_r \sigma(\langle \mathbf{w}_{y,r}^{D,(t)}, \boldsymbol{\xi} \rangle) \right. \\ 2226 \quad \left. \geq \sum_r \sigma(\langle \mathbf{w}_{y,r}^{D,(t)}, y(\mathbf{u} + \mathbf{v}_2) \rangle) - \sum_r \sigma(\langle \mathbf{w}_{-y,r}^{D,(t)}, y(\mathbf{u} + \mathbf{v}_2) \rangle) \right) \\ 2227 \quad \geq 0.5 \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}} \left(\left| \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) - \sum_r \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) \right| \right. \\ 2228 \quad \left. \geq \max \left\{ \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, (\mathbf{u} + \mathbf{v}_2) \rangle), \sum_r \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, (\mathbf{u} + \mathbf{v}_2) \rangle) \right\} \right),$$

2229 where C_6 is a constant, the inequality holds since if $\left| \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) - \sum_r \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) \right|$ is too large that we can
 2230 always pick a corresponding y given $\boldsymbol{\xi}$ to make a wrong prediction. Let $g(\boldsymbol{\xi}) = \sum_r \sigma(\langle \mathbf{w}_{1,r}^{D,(t)}, \boldsymbol{\xi} \rangle) - \sum_r \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \boldsymbol{\xi} \rangle)$.
 2231 Denote the set
 2232

$$2233 \quad \Omega := \left\{ \boldsymbol{\xi} \mid |g(\boldsymbol{\xi})| \geq \max \left\{ \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, (\mathbf{u} + \mathbf{v}_2) \rangle), \sum_r \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, (\mathbf{u} + \mathbf{v}_2) \rangle) \right\} \right\}.$$

2234 By plugging the definition of Ω , we have
 2235

$$2236 \quad \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}}(yf(\mathbf{W}^{D,(t)}, \mathbf{x}) \leq 0) \geq 0.5 \mathbb{P}(\Omega)$$

2237 Next, we will give a lower bound of $\mathbb{P}(\Omega)$. We will prove that for a vector $\boldsymbol{\xi}'$ with $\|\boldsymbol{\xi}'\|_2 \leq 0.02\sigma_{p,2}$
 2238

$$2239 \quad \sum_j [g(j\boldsymbol{\xi} + \boldsymbol{\xi}') - g(j\boldsymbol{\xi})] \geq 4 \max \left\{ \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, (\mathbf{u} + \mathbf{v}_2) \rangle), \sum_r \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, (\mathbf{u} + \mathbf{v}_2) \rangle) \right\}$$

2240 Therefore, by pigeon's hole principle, there must exist one of the $\boldsymbol{\xi}, \boldsymbol{\xi} + \boldsymbol{\xi}', -\boldsymbol{\xi}, -\boldsymbol{\xi} + \boldsymbol{\xi}'$ belongs Ω .
 2241

$$2242 \quad | \mathbb{P}(\Omega) - \mathbb{P}(\Omega - \boldsymbol{\xi}') | = | \mathbb{P}_{\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma_{p,2}^2 \mathbf{I}_d)}(\boldsymbol{\xi} \in \Omega) - \mathbb{P}_{\boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{\xi}', \sigma_{p,2}^2 \mathbf{I}_d)}(\boldsymbol{\xi} \in \Omega) | \\ 2243 \quad \leq \text{TV}(\mathcal{N}(0, \sigma_{p,2}^2 \mathbf{I}_d), \mathcal{N}(\boldsymbol{\xi}', \sigma_{p,2}^2 \mathbf{I}_d)) \\ 2244 \quad \leq \frac{\|\boldsymbol{\xi}'\|_2}{2\sigma_{p,2}} \\ 2245 \quad \leq 0.01,$$

2246 where the first inequality is by the definition of Total variation (TV) distance, the second inequality is by Lemma E.11.
 2247 Therefore, $\mathbb{P}(\Omega) \geq 0.24$ and then, it holds that
 2248

$$2249 \quad \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}}(yf(\mathbf{W}^{D,(t)}, \mathbf{x}) \leq 0) \geq 0.1.$$

2250 Now, all that's left is to prove the existence of $\boldsymbol{\xi}'$. Define $\lambda = C \frac{\alpha N_1 \|\mathbf{u}\|_2^2 / (\sigma_{p,1}^2 d) + N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2 / (\sigma_{p,2}^2 d)}{\alpha \sigma_{p,2} N_1 / \sigma_{p,1} + N_2}$ and $\boldsymbol{\xi}'$ as
 2251

$$2252 \quad \boldsymbol{\xi}' = \lambda \cdot \sum_{i \in [N_2]} \mathbf{1}(y_i = 1) \boldsymbol{\xi}_i.$$

2268 Then, we have
 2269

$$2270 \quad 2271 \quad 2272 \quad \|\xi'\|_2 = \Theta \left(\frac{\alpha N_1 \|\mathbf{u}\|_2^2 / (\sigma_{p,1}^2 d) + N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2 / (\sigma_{p,2}^2 d)}{\alpha \sigma_{p,2} N_1 / \sigma_{p,1} + N_2} \cdot \sqrt{N_2 \cdot \sigma_{p,2}^2 d} \right) \leq 0.02 \sigma_{p,2},$$

2273 where the last inequality is by the condition
 2274

$$2275 \quad 2276 \quad 2277 \quad d \geq C \frac{\frac{\alpha^2 N_1^2 \|\mathbf{u}\|_2^4}{\sigma_{p,1}^4} + \frac{N_2^2 \|\mathbf{u} + \mathbf{v}_2\|_2^4}{\sigma_{p,2}^4}}{\frac{\alpha^2 \sigma_{p,2}^2 N_1}{\sigma_{p,1}^2} + N_2}.$$

2278 Here, we use the fact that $a^2 + b^2 \leq (a + b)^2 \leq 2a^2 + 2b^2$ for positive $a, b > 0$, and we have for any sequences
 2279 $a_n, b_n, c_n, d_n > 0$, $(a_n + b_n)^2 / (c_n + d_n)^2 = \Theta((a_n^2 + b_n^2) / (c_n^2 + d_n^2))$. By the construction of ξ' , we have almost
 2280 surely that
 2281

$$2282 \quad 2283 \quad 2284 \quad 2285 \quad 2286 \quad 2287 \quad 2288 \quad \begin{aligned} & \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \xi + \xi' \rangle) - \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \xi \rangle) \\ & + \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, -\xi + \xi' \rangle) - \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, -\xi \rangle) \\ & \geq \langle \mathbf{w}_{+1,r}^{D,(t)}, \xi' \rangle \\ & \geq \lambda \left[\sum_{y_i=1} \bar{\rho}_{+1,r,i,1}^{D,(t)} + \sum_{y_i=1} \bar{\rho}_{+1,r,i,2}^{D,(t)} - o(1) \right], \end{aligned} \quad (\text{E.20})$$

2289 where the first inequality is by the convexity of ReLU, and the second inequality is by Lemma C.2. Similarly, for
 2290 $j = -1$, we have
 2291

$$2292 \quad 2293 \quad 2294 \quad 2295 \quad 2296 \quad 2297 \quad 2298 \quad \begin{aligned} & \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \xi + \xi' \rangle) - \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, \xi \rangle) \\ & + \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, -\xi + \xi' \rangle) - \sigma(\langle \mathbf{w}_{-1,r}^{D,(t)}, -\xi \rangle) \\ & \leq 2 |\langle \mathbf{w}_{-1,r}^{D,(t)}, \xi' \rangle| \\ & \leq 2 \lambda \left[\sum_{y_i=1} \rho_{-1,r,i,1}^{D,(t)} + \sum_{y_i=1} \rho_{-1,r,i,2}^{D,(t)} - o(1) \right], \end{aligned} \quad (\text{E.21})$$

2300 where the first inequality is by the Lipschitz continuity of ReLU, and the second inequality is by Lemma C.2. Combining
 2301 equation E.20 and equation E.21, we have

$$2302 \quad 2303 \quad 2304 \quad g(\xi + \xi') - g(\xi) + g(-\xi + \xi') - g(-\xi) \geq \lambda \left[\sum_r \sum_{y_i=1} \bar{\rho}_{1,r,i,1}^{D,(t)} / m + \sum_r \sum_{y_i=1} \bar{\rho}_{1,r,i,2}^{D,(t)} / m - o(1) \right] \quad (\text{E.22})$$

$$2305 \quad 2306 \quad \geq (\lambda/2) \cdot \sum_r \sum_{y_i=1} (\bar{\rho}_{1,r,i,1}^{D,(t)} / m + \bar{\rho}_{1,r,i,2}^{D,(t)} / m). \quad (\text{E.23})$$

2307 On the other side, we know that
 2308

$$2309 \quad 2310 \quad \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) / m = \sum_{1 \leq r \leq \alpha m} \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) / m + \sum_{\alpha m < r \leq m} \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) / m \quad (\text{E.24})$$

$$2311 \quad 2312 \quad 2313 \quad \leq \alpha \left(\frac{N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} \log(T^*) + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \right) + (1 - \alpha) \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \log(T^*) \quad (\text{E.25})$$

$$2314 \quad 2315 \quad 2316 \quad = \left(\alpha \frac{N_1 \|\mathbf{u}\|_2^2}{\sigma_{p,1}^2 d} + \frac{N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2}{\sigma_{p,2}^2 d} \right) \log(T^*). \quad (\text{E.26})$$

2317 Comparing equation E.23 and equation E.26, by selecting $\lambda = C \frac{\alpha N_1 \|\mathbf{u}\|_2^2 / (\sigma_{p,1}^2 d) + N_2 \|\mathbf{u} + \mathbf{v}_2\|_2^2 / (\sigma_{p,2}^2 d)}{\alpha \sigma_{p,2} N_1 / \sigma_{p,1} + N_2}$, we have
 2318

$$2319 \quad 2320 \quad g(\xi + \xi') - g(\xi) + g(-\xi + \xi') - g(-\xi) \geq 4 \sum_r \sigma(\langle \mathbf{w}_{+1,r}^{D,(t)}, \mathbf{u} + \mathbf{v}_2 \rangle) / m$$

2321 Since then, we complete the proof. \square

2322 F OTHER EXPERIMENTS
2323

2324 We give additional experimental results about inherited parameters extracted from ViT models, which is shown
2325 in Figure 4. We also conduct experiments in Table 2, where the upstream task is image segmentation and the
2326 downstream task is image classification. For the upstream segmentation task, we use two models, deeplabv3_resnet50
2327 and deeplabv3_mobilenet_v3_large, whose backbones are resnet50 and mobilenet_v3_large, respectively. For the
2328 downstream classification task, we use resnet50, resnet34, and mobilenet_v3_large. The results show that cross-task
2329 parameter transfer can also be beneficial, indicating the presence of shared knowledge across different tasks.
2330

(a) CIFAR-10

(b) CIFAR-100

2341 Figure 4: We adapt ViT models as the upstream model and downstream models. The upstream model is pre-trained on
2342 ImageNet-1K and the downstream models are trained on CIFAR-10 and CIFAR-100, separately.
2343

2344 Table 2: [Transferring segmentation-pretrained backbones to CIFAR image classification](#). Upstream models (DeepLabV3
2345 series) are pretrained on a COCO subset; downstream models are trained on CIFAR-10/100 with (w/ PL) and without
2346 (w/o PL) parameter transfer. Accuracy (%) is reported for each upstream–downstream pair.
2347

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 Dataset	2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 Upstream Model	2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 Downstream Model	2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 Acc (w/o PL)	2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 Acc (w/ PL)
CIFAR10	deeplabv3_resnet50	resnet50	89.25	94.67
	deeplabv3_resnet50	resnet34	90.80	93.39
	deeplabv3_mobilenet_v3_large	mobilenet_v3_large	83.06	89.45
CIFAR100	deeplabv3_resnet50	resnet50	70.45	75.31
	deeplabv3_resnet50	resnet34	68.35	73.96
	deeplabv3_mobilenet_v3_large	mobilenet_v3_large	66.64	72.24

G DISCUSSION ABOUT TRANSFER LEARNING APPLICATIONS

2363 **Transfer Learning Applications:** Transfer learning (TL) has emerged as a powerful paradigm in machine learning,
2364 aiming to leverage knowledge from a source domain to improve learning performance in a related but different target
2365 domain. Tan et al. (2015) introduces an intermediate domain to bridge source and target domains using non-negative
2366 matrix tri-factorization, enabling label propagation across heterogeneous spaces. Li et al. (2013) augments source and
2367 target features by projecting them into a common subspace while preserving domain-specific information, enabling
2368 knowledge transfer across different dimensions. Tsai et al. (2016) learns a transformation matrix to project source
2369 data into a PCA-based target subspace, aligning both marginal and conditional distributions for heterogeneous domain
2370 adaptation. Ye et al. (2021) rectifies heterogeneous model parameters by learning a semantic mapping function,
2371 enabling transfer of prior knowledge from source to target even with differing label spaces. In recent years, transfer
2372 Learning has found widespread applications across domains. Gardner et al. (2024) demonstrates how large-scale
2373 pretraining on a diverse tabular corpus enables strong zero-shot and few-shot generalization to unseen tabular tasks,
2374 effectively transferring knowledge across domains without task-specific fine-tuning. Wang et al. (2025) proposes
2375 a minimax-optimal transfer learning algorithm for nonparametric contextual dynamic pricing under covariate shift,
leveraging source data to improve target-domain pricing decisions. Garau-Luis et al. (2024) presents a multi-modal

2376 transfer learning framework that effectively bridges pre-trained DNA, RNA, and protein encoders to predict RNA
 2377 isoform expression. (Wang et al., 2022) selects certain layers as learn gene based on gradient information observed in
 2378 the upstream model, and subsequently stacks these learn gene layers with some randomly initialized layers to initialize
 2379 downstream models. Li et al. (2023) proposes a scalable surrogate-model framework that learns linear relevance scores
 2380 to predict which source tasks will cause negative transfer, enabling efficient subset selection that outperforms existing
 2381 multi-task learning methods across weak supervision, NLP and fairness benchmarks. Imani et al. (2021) introduces
 2382 the notion of the degree of alignment and investigates its relationship with transfer learning performance. It argues
 2383 that neural networks automatically adjust their representations during training so that the top singular vectors align
 2384 with the task labels, which is validated by the experiments. Instead, our work provides a theoretical explanation for the
 2385 underlying dynamics. We obtain some similar findings with proof: a neural network memorizes both signal and noise
 2386 during training, as shown in Lemma A.1 and Lemma A.2. The transferred parameters therefore retain the shared signal
 2387 between the two tasks. When the norm of the shared signal becomes too small, negative transfer emerges. Our work
 2388 theoretically characterizes and explains this dynamical process, while Imani et al. (2021) proposes the conjectures and
 2389 then verifies it from an empirical perspective. The core viewpoints are different but share conceptual similarities.
 2390

2391 H DISCUSSION ABOUT CONNECTIONS BETWEEN THEORY AND PRACTICE

2392 In this section, we would like to give more discussion on the connection between our theory and the practice. Our
 2393 intention is not to position theory as dominating practice, but to highlight how the two can develop hand in hand. For
 2394 instance: the negative transfer was first observed in practical applications, and Proposition 4.4 now provides a theoretical
 2395 characterization that confirms its existence and explains when it arises. This illustrates how empirical phenomena can
 2396 motivate theoretical inquiry, and how theory can, in turn, contextualize those empirical observations. By making this
 2397 connection clearer, we hope to support a more integrated and mutually informative relationship between theory and
 2398 practice. Moreover, our theoretical analysis could indicate several concrete inspirations for algorithm design.
 2399

- 2400 • **Selecting task-specific neurons for transfer.** The dynamics reveal that neurons activated by the task-specific
 2401 signal dominate the effective transfer. This suggests a more targeted strategy in practice: instead of transferring all
 2402 parameters, one can identify neurons that are strongly activated by the downstream task (for example, via activation
 2403 statistics or gradient-based criteria) and preferentially transfer or fine-tune only these neurons. Such neuron-level
 2404 selection aims to retain parameters that encode task-relevant structure while mitigating the influence of noise, thereby
 2405 improving the robustness of transfer.
- 2406 • **Estimating transferability.** Our results indicate that transfer performance is primarily governed by the correlation
 2407 between the structural components of the upstream and downstream tasks. In practice, this correlation can be
 2408 estimated using a small downstream validation set by monitoring the early-stage learning curves under different
 2409 initialization scales or different subsets of transferred parameters. Consistently slower or noisier initial improvements
 2410 signal weak structural correlation and thus a higher risk of negative transfer, in which case one may reduce the amount
 2411 of transferred parameters or fall back to training from scratch.

2412 Regarding more realistic constraints such as layer-wise exposure or fixed adapter interfaces: fully analyzing multi-layer
 2413 networks is mathematically challenging because interaction in different layers leads to unstable and complicated
 2414 dynamics. However, the mechanisms revealed in the two layer case could also offer valuable insight. When the
 2415 upstream task has high quality data with strong signal and large sample size, deeper models are expected to preserve
 2416 and propagate this useful structure across layers. Our real data experiments results also support this conclusion aligning
 2417 with our theoretical analysis. From this example, we would like to point out the core spirits of feature learning theory.
 2418 Theoretical models in feature learning intentionally use simplified architectures to capture universal phenomenon in
 2419 representation learning, rather than to replicate every detail of practical systems. Despite their simplicity, these models
 2420 have repeatedly shown that early learned features or noise can strongly influence downstream performance, even in
 2421 deep networks with high capacity and nonlinear expressiveness. Such results explain why shallow analyses remain
 2422 valuable. They isolate core principles of signal learning, noise memorization, and transfer quality that extend to more
 2423 complex architectures, though in more intricate forms which are harder to characterize with full mathematical rigor.
 2424

2425 I THE USE OF LARGE LANGUAGE MODELS (LLMs)

2426 We employed an LLM to refine the writing of the entire manuscript and to ensure its grammatical correctness.
 2427