Under review as a conference paper at ICLR 2026

RIV: RECURSIVE INTROSPECTION MASK DIFFUSION VI-
SION LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Mask Diffusion-based Vision Language Models (MDVLMs) have achieved remarkable
progress in multimodal understanding tasks. However, these models are unable to correct
errors in generated tokens, meaning they lack self-correction capability. In this paper, we
propose Recursive Introspection Mask Diffusion Vision Language Model (RIV), which
equips the model with self-correction ability through two novel mechanisms. The first
is Introspection Training, where an Introspection Model is introduced to identify errors
within generated sequences. Introspection Training enables the model to detect not only
grammatical and spelling mistakes, but more importantly, logical errors. The second is Re-
cursive Inference. Beginning with the standard unmasking step, the learned Introspection
Model helps to identify errors in the output sequence and remask them. This alternating
(unmask — introspection — remask) process is repeated recursively until reliable results
are obtained. Experimental results on multiple benchmarks demonstrate that the proposed
RIV achieves state-of-the-art performance, outperforming most existing MDVLMs. Code
and models will be released as open source.

1 INTRODUCTION

With the rapid developments of Large Language Models (LLMs) (Radford et al.l 2018}, |2019; Brown et al.|
2020; Touvron et al., [2023ajb; |Grattafiori et al., 2024; [Yang et al., 2024; [Li et al.l 2023bj Bi et al., 2024;
DeepSeek-Al et al.| [2025azb; [Yang et al, [2025a)), artificial intelligence has made remarkable progress in
understanding and generating human language, paving the way for more advanced multimodal systems.
Vision-Language Models (VLMs) represent an important step toward Artificial General Intelligence (AGI).
For a long time, autoregressive (AR) models have been the dominant approach for VLMs (Liu et al.| [2023;
2024aj |Li et al. 2024 (OpenAl, |2024; Team et al., 2023} [Bai et al., [2023; Wang et al.| 2024). Recently, the
emergence of masked diffusion language models (Nie et al., [2025} Zhu et al.| 2025} (Gong et al., 2024; |Ye
et al.,[2025;Wu et al.| 2025} Liu et al.}[2025) has introduced a strong contender in the field of vision-language
modeling. Models based on masked diffusion have demonstrated impressive performance on multimodal
tasks (e.g., LLaDA-V, MMaDA, Dimple, LaViDa (You et al.l 2025} |Yang et al., 2025b; |Yu et al.l 2025;
Li et al [2025)). Notably, these models offer several theoretical advantages, such as parallel decoding,
enhanced controllability, and the ability to leverage bidirectional attention. These strengths make masked
diffusion-based models a compelling choice for advancing the capabilities of vision-language systems.

Although MDVLMs have shown tremendous potential, they also inherit certain limitations from masked
diffusion models (Ou et al., 2024; Sahoo et al., [2024; [Shi et al., 2024). During the denoising process, MD-
VLMs gradually unmask [MASK] tokens into general tokens. However, once a token is unmasked, it cannot
be modified, even if it contains errors. This issue, known in the community as a lack of self-correction
capability (Wang et al.| [2025), has attracted increasing attention. Recent studies have attempted to address
this limitation. ReMDM (Wang et al., |2025)) introduced a remasking sampler for mask diffusion models,
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enabling iterative refinement. However, it is sensitive to hyperparameters and lacks robustness. Seed Diffu-
sion (Song et al., [2025) incorporated an edit-based perturbation process during training, allowing all tokens
to be re-evaluated and thereby granting the model self-correction capabilities. Generalized Interpolation
Discrete Diffusion (von Riitte et al.,[2025) proposed a hybrid approach that combines masking and uniform
noise, unlocking the ability for the model to correct its own mistakes. While these methods can handle basic
grammatical and spelling mistakes, they rely on artificially injected perturbations and are less effective at
correcting intricate reasoning errors.

To equip models with stronger self-correction capability, we propose RIV, introducing innovations at both the
training and inference stages. Specifically, we present a novel Introspection Training, where an Introspection
Model is integrated with the Instruction Model (the model that has undergone SFT (Wei et al., [2022)) and is
commonly referred to as the instruction model) to identify erroneous tokens. Compared to previous methods
that rely on artificially injected perturbations, the Introspection Model is trained on real errors produced by
the Instruction Model, enabling it to more effectively learn to identify subtle logical errors. Additionally,
we introduce an innovative Recursive Inference. The process begins with standard unmasking, followed
by the Introspection Model re-examining the output sequence to identify erroneous tokens, which are then
remasked. Such recursive process enables iterative self-correction. The approach is similar to a student
reviewing their answers after a test, finding mistakes, and correcting them, alternating between review and
correction until the final answers are accurate. We evaluate RIV on multiple benchmarks and achieve state-
of-the-art performance. In summary, our technical contributions lie in the following two-fold:

¢ Introspection Training: We introduce an Introspection Model to identify errors in the outputs, using
erroneous tokens generated during training as the source of training data. This approach enables the
model to detect not only basic grammatical and spelling mistakes, but more importantly, subtle errors in
reasoning and logic.

* Recursive Inference: During inference, the model alternates among unmasking, introspection, and re-
masking steps, recursively refining its generated responses to support self-correction.

2 RELATED WORK

2.1 MASK DIFFUSION VLM

The recent rapid development of MDVLMs has challenged the dominance of autoregressive paradigms in
multimodal understanding and has led to impressive results. Similar to vision-language models under the
autoregressive paradigm (Liu et al., 2023} |2024a} |Li et al.| 2024)), most MDVLMs adopt an architecture that
includes a vision encoder, a mask diffusion large language model, and an adapter. For example, LLaDA-
V (You et al. [2025) has achieved performance comparable to LLaMA3-V using this architecture. Dim-
ple (Yu et al.l 2025)) introduced a confident decoding strategy that dynamically adjusts the number of tokens
generated at each step, significantly reducing the number of generation iterations. MMaDA (Yang et al.|
2025b) unified multimodal understanding and generation within the mask diffusion paradigm, enhancing
performance through a mixed long chain-of-thought fine-tuning strategy and UniGRPO. LaViDa (Li et al.|
2025) built two vision-language models based on LLaDA (Nie et al.,[2025) and Dream (Ye et al., [2025)), re-
spectively, improving training efficiency through complementary masking and boosting inference efficiency
with a prefix KV cache. Although these methods achieve strong performance through innovative designs,
they inevitably lack self-correction capabilities.

2.2  SELF-CORRECTION

Currently, research on self-correction is mainly focused on masked diffusion-based large language models.
ReMDM (Wang et al.,|2025) built on a solid theoretical foundation and designed a novel remasking sampler
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that enables the updating of previously generated tokens. Seed Diffusion (Song et al., [2025) introduced
manually designed edit-based perturbations during the second stage of training, allowing all tokens to be
re-evaluated and thereby achieving more robust error correction. GIDD (von Riitte et al., [2025) explored
a hybrid approach that combines masking and uniform noise, unlocking the ability of models to correct
errors. Although these methods have shown promising results, they do not fully take advantage of the
errors encountered during training to improve the ability to recognize mistakes. In self-correction tasks,
generating samples through manually injected perturbations may cause valuable logical error samples to be
overshadowed by a large number of low-level error samples.

3 METHOD

We propose RIV, a large-scale Mask Diffusion Vision Language Model

(MDVLM) that supports Self-Correction. First, in Section[3.1} we intro- Model Architecture
duce the background information of MDVLMs, consisting of the model-

ing approach and learning objectives . Then, in Section[3.2] we describe LD i) HliEeEtiEn (]

the overall architecture of RIV. In Section [3.3] we present the training
methods, with a particular focus on Introspection Training. Finally, in
Section 3.4] we introduce Recursive Inference.

Mask Diffusion LLM Backbone

Adapter
3.1 PRELIMINARY Vision Encoder
MDVLMs consist of a forward noising process (replacing original to- s O
kens with [MASK]) and a learnable reverse denoising process (unmask- %, 3 . How many more
3 pples than bananas?

ing [MASK] tokens back to the original tokens) (Austin et al., 2021}, |Ou
et al.,[2024; |Nie et al.,|2025; |Ye et al., 2025). Let {pPm, X0} ~ Qdata TEDP-
resent a sample pair, where py, denotes the multimodal prompt, and x¢ Figure 1: RIV Model Architec-
represents the response containing L tokens, [33(1), :c%, ... ,J;(ﬂ. The for- ture. We integrated the Introspec-
ward process begins with clean data x¢ and progressively replaces the tion Model into the Instruction
tokens in xo with [MASK], eventually producing a sequence x3 com- Model to identify errors.

posed entirely of [MASK] tokens. Let x¢ denote the sequence at time

step t, where ¢ € [0, 1]. The learnable reverse process starts from x; and

gradually unmasks to recover the clean data x¢. The learning objective

of the model # can be optimized using Equation
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Apples Bananas

L
Ly (6) = ~Et oo, w(t) Y L[z; = [MASK]}log py (2)|pm, x:)- ey

i=1
Here, the indicator function 1[z¢ = [MASK]] restricts the loss calculation to only those positions where

tokens are masked. The term w(t) € (0, 1] serves as a time-dependent weighting factor.

3.2 MODEL ARCHITECTURE

Our proposed RIV, as illustrated in Figure |1} consists of four modules: a mask diffusion-based language
model, a vision encoder, an adapter, and an Introspection Model for identifying erroneous tokens. Specifi-
cally, we use the high-performing Dream (Ye et al., 2025) as the LLM backbone. For the vision encoder, we
use QwenViT (Bai et al., [2025)), which supports dynamic resolution and efficiently handles visual inputs of
varying sizes. The adapter is implemented as a two-layer MLP, whose primary function is to align the fea-
ture space of QwenViT with the mask diffusion paradigm. The Introspection Model is designed to identify
erroneous tokens generated during the denoising process. This model consists of a transformer block and a
linear layer as the output head for token classification.
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Figure 2: Comparison of Different Training Methods. The supervised ground truth in the figure is 5 — 3 = 2.
[M] denotes [MASK] token. Introspection Training is shown in where the output of the Instruction
Model is used as the training data for the Introspection Model. Erroneous tokens in the output sequence
are highlighted in red. The Introspection Model performs binary classification on sequences containing
erroneous tokens, outputting 1 for errors and 0 otherwise. In Introspection Training, we only train the
Introspection Model, while the Instruction Model is frozen. Subfigure 2b] presents an ablation experiment,
where sequences with random perturbations are used as inputs to the Introspection Model, and the model
is responsible for identifying which tokens have been perturbed. In [2c| and we jointly optimize the
two objectives of unmasking and identifying erroneous tokens. In[2c| tokens that are considered erroneous
are directly replaced with [MASK] in the output. In[2d] the model predicts the confidence scores of the
erroneous tokens, which is consistent with subﬁgure

3.3 TRAINING STRATEGY

To equip the model with robust multimodal understanding capabilities, we carefully designed four training
stages.

Stage 1 Visual Alignment. The objective is to align QwenViT with the feature space of the mask diffusion
paradigm. In this stage, both the adapter and ViT are trained simultaneously using 4.4 million caption data.

Stage 2 Instruction Fine-tuning. The goal is to enhance the basic instruction-following ability of model.
During this stage, we unfreeze the LLM blocks, vision encoder, and adapter. The training data consists of
10 million Mammoth (Guo et al., 2024) and 3.2 million in-house SFT data. The distribution of the in-house
SFT data is shown in

Stage 3 CoT Fine-tuning. This stage aims to further enhance the reasoning ability and comprehensive
multimodal understanding of model. The training parameters remain the same as Stage 2. In this stage, we
use 76,000 high-quality internal chain-of-thought (CoT) (Wei et al.| 2023)) data samples (resampled 5 times),
along with 10% of the data sampled from Stage 2. The first three stages are trained using Ly (see Equation
[). For convenience, we refer to the model obtained in Stage 3 as the Instruction Model.
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Stage 4 Introspection Training. The above three training stages are basically consistent with the conven-
tional VLM training process. In Stage 4, as shown in the Figure [2a] we only train the Introspection Model
to identify erroneous tokens. In our view, the key lies in a high-quality correction pair training set, which
consists of sequences with erroneous tokens and their corresponding correct and reasonable sequences. The
erroneous tokens in these correction pairs should not be entirely random but should instead be meaningful er-
rors to some extent, as this helps the model identify complex logical errors. Specifically, during the training
process, we sample ¢ from a uniform distribution ¢ ~ (0, 1) and add noise to the clean data xq, replacing
tokens in xo with [MASK] at a probability of ¢, thereby generating x¢. Taking {pm,x¢} as the input of
Instruction Model, the output is denoted as Xpred. The Xpreq may contain erroneous tokens. Subsequently,
{Pm, xpred} is fed into the model, and the features from the penultimate layer of the LLM backbone are
extracted as the input for the Introspection Model. The Introspection Model is required to predict whether
each token in Xpreq is an erroneous token. Naturally, tokens in Xpeq that differ from xg are treated as positive
samples with ground truth 3! = 1, while identical tokens are treated as negative samples with ground truth
yi = 0, as shown in Equation 2}

o @
We optimize this objective using a binary cross-entropy loss function Ly, as described in Equation 3]
1< .
Li(0) = - [log pe (4} Pm > Xpred)] - 3)

i=1
This method directly leverages the erroneous outputs generated during the regular training process as training
data, in contrast to artificially injected perturbations that lack semantic significance. Compared to manually
designed perturbations, Introspection Training significantly improves error identification, making it possible
to detect not only basic grammatical and spelling mistakes but also more complex logical errors. We conduct
a comparative analysis between Introspection Training and manual perturbation training in Section .4}

In Stage 4, the transformer blocks in the Introspection Model are initialized using the final layer of the LLM
blocks from the Instruction Model, while the output head is randomly initialized. The Instruction Model
from Stage 3 remains frozen, enabling the Introspection Model to be optimized independently while pre-
serving the abilities of the Instruction Model. This strategy prevents mutual interference between traditional
unmasking learning and introspection learning, and we refer to it as Decoupled Optimization. In Section
M.4] we validate the necessity of Decoupled Optimization through ablation experiments. The training data
used in this stage is the same as that used in Stage 3.

Additionally, a dynamic length training strategy is employed throughout all training stages to improve the
robustness in generating responses of varying lengths. Specifically, we set a maximum response length L,x.
For each sample with an answer length L', if L' < Ly, we uniformly sample a response length L from the
interval [L’, Lin,y], and pad the response with EOS tokens until it reaches length L. Further details on the
training setup are provided in Section 41|

3.4 RECURSIVE INFERENCE

Recursive Inference is designed to enable iterative refinement, as shown in Figure Specifically, {pPm, X1}
is first fed into the model, and the Instruction Model is used to perform S steps of denoising until all tokens
are unmasked, thereby generating Xpreq. Next, {Pm; xpred} is fed into the model, and the penultimate layer
features from the LLM are used as input to the Introspection Model, which produces x;. Here, X represents
the confidence that each token contains an error, with higher values indicating a greater likelihood of error.
Tokens with confidence scores exceeding a predefined confidence threshold c are replaced with [MASK].
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Figure 3: Recursive Inference

Let the number of erroneous tokens be denoted as e, and we update S as S = e//2+1. If e is zero, the model
considers the sentence error-free and the inference process terminates, completing one round of inference. A
maximum recursion depth R is set, and this process is repeated until no errors are detected or the recursion
limit is reached. The pseudocode for this procedure is provided in Appendix D] and a discussion of the time
cost for Recursive Inference can be found in Appendix [H]

Table 1: Benchmark Results. We compared VLMs with language model parameter sizes ranging from 7B to
8B. The AR-based models include: Qwen2-VL 7B, Qwen2.5-VL 7B (Wang et al.| [2024; Bai et al., [2025),
while the MD-based models include: MMaDA, Dimple, LaViDa-D, LLaDA-V (Yang et al.,|2025b} Yu et al.|
2025; |Li et al., 2025} [You et al., [2025)).(-) denote results not reported.

Model MMMU MMB e b \ivister MathVista MathVerse ) SeedB g o100 140A. Chartga DOSVQA InfoVQA
val  en-dev mini  mini-vision image val val
Qwen2-VL 7B 54.1 - - 60.7 58.2 - 83.0 - 70.1 83.0 - -
Qwen2.5-VL7B  58.6 - - 63.9 68.2 49.2 83.9 - 68.5 87.3 - -
MMaDA 302 685 14107 - - - - - - - - -
Dimple 45.2 - 1514.0 - 423 - - - - 63.4 - -
LaViDa-D 426 738 14635 - 42.1 24.1 69.0 - - 61.0 56.1 36.2
LLaDA-V 48.6 82.9 1507.0 60.1 59.7 28.5 77.8 748 63.2 78.3 83.9 66.3
RIV 543 82,6 1647.7 583 60.7 36.2 80.3 73.1 65.9 83.9 89.5 72.3

4 EXPERIMENT

In this section, we first describe the training setup in Section Next, Sections and present the
evaluation setup and benchmark results, respectively. Finally, Section {.4] reports three ablation studies,
namely the impact of Self-Correction on performance, the effectiveness of Introspection Training, and the
necessity of Decoupled Optimization.

4.1 TRAINING SETUP

Throughout all training stages, we set the maximum response length Ly« to 512. For QwenViT (Bai et al.
2025)), the token number range is set from 200 to 1337. Weight decay is set to 0, with a warmup period of 600
steps, and the learning rate schedule follows a cosine decay strategy. To reduce memory usage and improve
training efficiency, we employ DeepSpeed ZeRO Stage 2. The total computational resources required for
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the entire training process amount to 8,672 H800 hours. The training hyperparameters for each stage are
summarized in Table

4.2 EVALUATION SETUP

To comprehensively evaluate the effectiveness of our proposed RIV, we conduct experiments on a range
of benchmarks, including multimodal reasoning and knowledge tasks such as MMMU (Yue et al., 2024)),
MMStar (Chen et al., [2024), MME (Fu et al., [2023)), SeedBench (L1 et al.| [2023a), MMBench (Liu et al.|
2024b), MathVerse (Zhang et al., [2024)), and MathVista (Lu et al., 2023). We also test RIV on document
and chart understanding tasks, including AI2D (Kembhavi et al.l 2016), ChartQA (Masry et al., 2022),
DocVQA (Mathew et al., 2021), and InfoVQA (Mathew et al., 2022), as well as real-world understanding
tasks such as RealworldQA (x.ai,|2024)). During inference, the default maximum recursion depth is set to 2,
and the confidence threshold c is set to 0.4. For reasoning-intensive tasks like MathVerse and MathVista, we
increase the maximum recursion depth to 3. We use VLMEvalKit (Duan et al.,2025) to evaluate the model.

4.3 BENCHMARK RESULT

The evaluation results are presented in Table As shown, RIV outperforms all mask diffusion VLM models,
including LLaDA-V (You et al., 2025)), Dimple (Yu et al.,2025), MMaDA (Yang et al., 2025b)), and LaViDa-
D (Li et al.;|2025)). RIV demonstrates significant advantages in document and chart understanding tasks. For
instance, it achieves scores of 83.9 on ChartQA, 89.5 on DocVQA, and 72.3 on InfoVQA, substantially
outperforming models like Dimple (Yu et al.; 2025) and LaViDa-D (L1 et al.l 2025) that utilize the same
language model. In reasoning-intensive tasks, RIV also exhibits strong performance, with scores of 54.3 on
MMMU, 36.2 on MathVerse, and 60.7 on MathVista, surpassing other mask-based diffusion VLM models of
similar scale. The Self-Correction capability plays a significant role in achieving these outstanding results.
Regrettably, due to limitations in training resources and data, RIV still lags behind the advanced Qwen2.5-
VL (Bai et al.} 2025) in terms of performance.

4.4  ABLATION EXPERIMENT

Ablation Study on Self-Correction. We perform ablation experiments to evaluate the effect of self-
correction. Specifically, we compare the performance of the Instruction Model (without self-correction) and
RIV (with self-correction). As shown in Table[2] RIV consistently outperforms the Instruction Model across
most benchmarks, with particularly notable improvements in reasoning-intensive tasks and certain question-
answering scenarios. This demonstrates that RIV is capable of autonomously identifying and correcting
logically inconsistent segments in the output sequence. These advances can be attributed to Introspection
Training and Recursive Inference. For some tasks, such as MMBench (Liu et al.,|2024b) and MME (Fu et al.,
2023)), no performance improvement is observed, as the model can directly provide answers and there is lim-
ited opportunity for further refinement. Additionally, we conduct a qualitative analysis of the unmasking,
introspection, and remasking processes, which is detailed in Appendix

Table 2: Ablation Study on Self-Correction. SC denotes Self-Correction. (wo) indicates inference without
SC, while (w) indicates inference with SC.

Model sc MMMU MMB ' yie b Vgt MathVista MathVerse ) SeedB 10 04dQA. Chariga PO¢YQA TnfoVQA
val  en-dev mini  mini-vision image val val
Instruction Model wo  53.8  82.6 1647.7 583 60.0 343 80.2 73.1 65.6 83.1 88.5 71.2
RIV w 543 82,6 16477 583 60.7 36.2 80.3 73.1 65.9 83.9 89.5 72.3

We also investigate how the maximum recursion depth affects model performance. Specifically, we evaluate
RIV on two reasoning-intensive tasks, MathVista (Lu et al., |2023) and MathVerse (Zhang et al., 2024),
using maximum recursion depths of R = {1,3,6}. In this context, R = 1 corresponds to disabling the
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Self-Correction, making it equivalent to using only the Instruction Model. As shown in Table [3] increasing
the maximum recursion depth beyond 3 does not yield further performance gains, since the model typically
produces the correct answer after two rounds of refinement.

Table 3: The Impact of Maximum Recursion Depth on Model Performance.

MathVistay,,;  MathVersepini-vision

R=1 60.0 34.3
R=3 60.7 36.2
R=6 60.6 36.4

Ablation Study on Introspection Training. To demonstrate that Introspection Training is more effective
than manually designe perturbations in helping the model identify subtle reasoning logic errors, we designed
two sets of comparative experiments. These two experiments simulate potential reasoning errors during
inference through manually designed perturbations.

Semantic Perturbation. In this experiment, the Introspection Model is trained without Introspection Training.
Instead, random tokens are directly used to replace tokens in the input sequence, as shown in the Figure [2b]

Importance Semantic Perturbation. In the Semantic Perturbation Experiment, each token is replaced with an
equal probability. We further consider the importance of words in the sentence. We assign importance scores
to each word, with more important tokens having a higher probability of being replaced, As illustrated in the

Figure 2]

We select a model without Self-Correction capability as the baseline and train the Introspection Model on a
small dataset using three different methods: Semantic Perturbation, Importance Semantic Perturbation, and
Introspection Training. The three models are evaluated on the MathVista (Lu et al.|[2023)), with the results
shown in Table It can be observed that our proposed Introspection Training method achieves higher
performance metrics compared to the baseline, while the other two manually injected perturbation methods
show no improvement over the baseline.

Table 4: Ablation Study on Introspection Training

Baseline Semantic Perturbation Importance Semantic Perturbation Introspection Training
MathVistamini 56.3 56.2 56.4 57.2

We observe the model’s output results from the Semantic Perturbation Experiment and find that it could
only correct basic grammatical issues and common spelling errors but failed to identify subtle logical errors.
This limitation is closely related to the training strategy, as valuable logical error data is overwhelmed by a
large amount of low-level error data. Although Importance Semantic Perturbation introduce an additional
model to score the importance of tokens, it still fell short of capturing scenarios where the model is likely to
make real errors, resulting in no significant improvement. In contrast, the Introspection Training effectively
leverages the incorrect tokens generated during training, helping the model specifically learn to identify
subtle logical errors. For more details, please refer to Appendix [

Ablation Study on Decoupled Optimization. We validate the necessity of Decoupled Optimization through
two control experiments. Using a model without Self-Correction capability as the baseline, we simultane-
ously optimize the two objectives of unmasking and error identification, as described below.

Joint Optimization. Joint Optimization does not introduce additional parameters compared to the baseline
but instead directly extends the capabilities of the baseline. The training process is illustrated in the Figure

2d

BC(Binary Classification) Joint Optimization. To ensure a fair comparison with Decoupled Optimization,
the Introspection Model is also incorporated into the baseline, as shown in the Figure To mitigate the
adverse impact of the Introspection Model’s cold start on the Instruction Model, we first independently
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optimize the Instruction Model using 10% of the data, and then proceed with joint training alongside the
Introspection Model.

We initialize the model with parameters from the baseline and train it on a small dataset using three ap-
proaches: Joint Optimization, BC Joint Optimization, and Decoupled Optimization. In Joint Optimization
and BC Joint Optimization, the LLM blocks, vision encoder, adapter, and output head are updated. In
contrast, the Decoupled Optimization experiment adopted a two-step training process: first training the In-
struction Model, and then independently training the Introspection Model, as shown in the Figure [2a]

Table 5: Ablation Study on Decoupled Optimization. (w) indicates inference with Self-Correction, while
(wo) indicates inference without Self-Correction.

Baseline Joint Optimization BC Joint Optimization Decoupled Optimization
5 . .
MathVistagn  58.1(wo) W) 55.3w) 58.8(w)
56.7(wo) 55.2(wo) 58.2(wo)

We evaluate the three models on the MathVista (Lu et al., [2023) and find that Decoupled Optimization
achieves superior performance, as shown in Table [5| Additionally, during the evaluation, we disabled the
Self-Correction. The results showed that, without Self-Correction, the performance of Joint Optimization
and BC Joint Optimization is worse than the baseline. We speculate that this may be due to the differing opti-
mization spaces for the ability to identify erroneous tokens and the ability to decode tokens. Simultaneously
optimizing these two objectives might introduce interference. For more details, please refer to Appendix

5 LIMITATIONS & FUTURE DISCUSSION

In this paper, we focus on equipping the model with self-correction capabilities, where the introduced Re-
cursive Inference results in a slight increase in inference time (see . In future work, this issue could be
addressed by incorporating inference acceleration techniques specifically designed for MDMs (Wu et al.|
2025 Liu et al., [2025; [Ma et al., |2025; |Hu et al., [2025]).

6 CONCLUSION

We propose RIV, a Masked Diffusion-based Vision Language Model that supports self-correction. Our In-
trospection Training is more effective than manually designed perturbations, enabling the model to identify
complex reasoning errors rather than just basic grammatical and spelling mistakes. Furthermore, our Decou-
pled Optimization approach allows the model to focus on error detection while preserving the performance
of the instruction model. Finally, with our proposed Recursive Inference, the model fully supports self-
correction. RIV achieves state-of-the-art results on multiple benchmarks, offering the research community
a new perspective for exploration.

7 ETHICS STATEMENT

This study strictly adheres to relevant ethical guidelines and legal regulations. All data used in the study do
not contain any personally identifiable information or sensitive information. As this study does not involve
human subjects, ethical committee approval is not required. We acknowledge the potential risks of misuse
associated with vision-language models, such as generating harmful or misleading content. To mitigate these
risks, we have implemented appropriate safeguards in the model design and data processing workflows. The
authors declare no conflicts of interest.
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8 REPRODUCIBILITY STATEMENT

We place a high value on the reproducibility of our research findings. The code and model weights used in
this study will be released in an open-source format.
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A THE USE OF LARGE LANGUAGE MODELS

In this study, we did not use LLM. All related work is entirely based on our own algorithms.

B DaAtA

The distribution of our in-house SFT data is shown in the Figure ]
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Figure 4: In-House SFT Data Distribution

C DETAILS OF TRAINING SETUP

The hyperparameters for all training stages can be found in Table[6]

Table 6: Training Setup of RIV

Stage 1 Stage 2 Stage 3 Stage 4
train vision encoder vision encoder  vision encoder .
adapter adapter Introspection Model
param adapter llmblocks 1lm blocks
data num 4.4m 13.2m 1.7m 1.7m
global batch size 256 256 256 256
max seqgence length 4096 5120 5120 5120
adapter Ir le-3 le-5 le-6 0
vision merger Ir le-6 2e-6 le-6 0
vision encoder Ir le-6 2e-6 le-6 0
1lm blocks Ir 0 2e-6 le-6 0
Introspection Model Ir 0 0 0 le-4
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D RECURSIVE INFERENCE PSEUDOCODE

Algorithm 1 Recursive Inference Pseudocode

Input: maximum recursion depth R, denoise steps .S
Instruction Model 6, Introspection Model 6
confidence threshold c, response sequence x;
multimodal prompt p,,,
Output: Xpreq
x; + {[MASK], ..., [MASK]}
forre{R,R—1,...,1} do
for s € {0,1,...,5 -1} do
Xt < 0(Pm,X¢)
end for
Xpred < Xt
if r = 1 then
break
end if
10: Xy 01(9(pm,xp,ed))
11:  erroneoustokens < {i|z} > c}
12:  if erroneoustokens = () then

AR S e

2

13: break

14:  end if

15:  for i€ erroneoustokens do
16: Tpreq < [MASK]

17:  end for

18: Xt < Xpred
19: S «+ UpdateStepByErr(erroneoustokens)
20: end for

E CASE QUALITATIVE ANALYSIS

We conduct a qualitative analysis of cases from the evaluation process, as outlined below.

» Example 1. The example is taken from the 946th question in MathVista (Lu et al.,[2023). Given an image
[] the task is to calculate the age difference between the two individuals in the image, with the correct
answer being 16.

Figure 5: MathVista-946

The model performed a total of 88 inference steps. From the intermediate inference process (see [6), we
can see that in step 79, the model incorrectly used the year 1965 and provided an incorrect answer of 20
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years. The Introspection Model identified this error and first corrected the year to 1961. During the second
check, it further noticed that 1961 — 1945 # 20, prompting a second correction. Ultimately, it arrived at
the correct answer of 16 years. RIV effectively optimizes its answers by reevaluating the generated results
and verifying factual content, thereby producing more accurate and coherent outputs.

Step Model Output
<think> The person on the left is Aung San Suu Kyi, and the person on right is
Barack Obama. Aung San Suu Kyi was born in 1945, and Barack Obama was
born in 1961. Therefore, the age gap is 196' - 1945 = . years.
</think><answer> The answer is $\\boxed'$ </answer>
<think> The person on the left is Aung San Suu Kyi, and the
person<|mask|><|mask|> is Barack Obama. Aung San Suu Kyi was born in 1945,
and Barack Obama was born in 1961. Therefore, the age gap is 196<|mask|> -
1945 = . years. </think><answer> The answer is $\\b0xed@$ </answer>
<think> The person on the left is Aung San Suu Kyi, and the person on right is
Barack Obama. Aung San Suu Kyi was born in 1945, and Barack Obama was
born in 1961. Therefore, the age gap is 196 - 1945 = . years.
</think><answer> The answer is $\\boxed{l$ </answer>
<think> The person on the left is Aung San Suu Kyi, and the
person<|mask|><|mask|> is Barack Obama. Aung San Suu Kyi was born in 1945,
83 and Barack Obama was born in 1961. Therefore, the age gap is 1961 -
194<|mask|> = <|mask|><|mask|> years. </think><answer> The answer is
$\\boxed{<|mask|><|mask|>}$ </answer>
<think> The person on the left is Aung San Suu Kyi, and the person on right is
Barack Obama. Aung San Suu Kyi was born in 1945, and Barack Obama was
born in 1961. Therefore, the age gap is 1961 - 1945 = 16 years.
</think><answer> The answer is $\\boxed{16}$ </answer>

79

80

82

87

Figure 6: Case Qualitative Analysis 1. ”Step” represents the inference step index, starting from 0, and
”Model Output” shows the model’s output at the corresponding inference step. Incorrect words are high-
lighted in red, words identified as incorrect by the Introspection Model and remasked as < |mask | > are
shown in blue, and the corrected words are displayed in green.

* Example 2. The example is taken from the 2215th question in MathVerse (Zhang et al.,[2024). Given an
image 7] the task is to calculate cos a in the image, with the correct answer being — %.

The graph shows an angle a in standard position with its
terminal side intersecting the figure at P.
Find the value of cos a.

o

Figure 7: MathVerse-2215

The model performed a total of 168 inference steps. From the intermediate inference process (see[8), we
can see that in step 159, the model incorrectly added an extra ”—” sign, which led to an incorrect result.
In step 162, the ”—" sign is correctly removed, but the answer is still not corrected at that point. In step
167, the final answer is revised to be correct.
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Step

Model Output

159

<think> The point P on the circumference of the unit circle has coordinates \\((-
\\fracl21}{29), \\frac{20{29})\\). In the unit circle, the x-coordinate of a point
gives the cosine of the angle. Therefore, the x-coordinate of point P is
\\(\\frac{21K291\), which is \\(\\cos a\\). </think><answer> The answer is
$\\boxed{\\frac|21}(29))$ </answer>

160

<think> The point P on the circumference of the unit circle has coordinates
\\((K|mask|>frac<|mask|>21}29}, \\frac{2029)\\). In the unit circle, the x-
coordinate of a point gives the cosine of the angle. Therefore, the x-coordinate
of point P is \\(\\frac{21{29}\\), which<|mask|> \\(\\cos a\\). </think><answer>
The answer is $\\boxed(\\frac|21}{29)}$ </answer>

162

<think> The point P on the circumference of the unit circle has coordinates \((-
\\frac{21X29}, \\frac{20K29})\\). In the unit circle, the x-coordinate of a point
gives the cosine of the angle. Therefore, the x-coordinate of point P is
\\(\\frac{21K291\), which is \\(\\cos a\\). </think><answer> The answer is
$\\ooxed{\fradf21}{29))$ </answer>

163

<think> The point P on the circumference of the unit circle has coordinates \\((-
\\fracf21}{29}, \\frac{20{29})\\). In the unit circle, the x-coordinate of a point
gives the cosine of the angle. Therefore, the x-coordinate of point P is
\\(\<|mask|><|mask|>21}29}\\), which<|mask|> \\(\\cos a\\).
</think><answer> The answer is
$\\boxed<|mask|>frac<|mask|><|mask|>1}29}}$ </answer>

167

<think> The point P on the circumference of the unit circle has coordinates \\((-
\\fracf21}29}, \\frac{20{29})\\). In the unit circle, the x-coordinate of a point
gives the cosine of the angle. Therefore, the x-coordinate of point P is \\(\\frac{-
21H291\\), which is \\(\\cos a\\). </think><answer> The answer is
$\\boxed{\\frac{z21{29}}$ </answer>

Figure 8: Case Qualitative Analysis 2. ”Step” represents the inference step index, starting from 0, and
”Model Output” shows the model’s output at the corresponding inference step. Incorrect words are high-
lighted in red, words identified as incorrect by the Introspection Model and remasked as < |mask | > are

shown in blue, and the corrected words are displayed in green.

* Example 3. The example is taken from the 610th question in MathVerse (Zhang et al.| 2024). Given an
image[9] the task is to calculate the height of the cone, with the correct answer being D.

The model performed a total of 167 inference steps.From the intermediate reasoning process (see [I0), we

can see that in step 159, the model incorrectly calculated v/32 as 41/3. In step 160, the Introspection Model
identified the error and remasked the incorrect token. In step 166, the final correct answer is provided.

As shown in the figure, then the
height of the cone is ()
Choices: A:6 B:8 C:3v{3} D:4v{2}

Figure 9: MathVerse-610
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Step Model Output
<think> To find the height of the cone, we can use the properties of the sector.
The central angle of the sector is 120°, which is 1/3 of a full circle (360°). The
radius of the sector is 6, so the arc of the sector is 1/3 » 2t 6 = 4. This arc
159 | becomes the circumference of the base of the cone. Let the circumference of the
base be 2mr, where r is the radius of the base of the cone. So, 2rtr = 41. Solving
this, we get r = 2. Now, the height of the cone is V (62 - r2) = V(36 - 4) = V(32
=4 ‘/I. </think><answer> The answer is $\\boxeda}$ </answer>
<think> To find the height of the cone, we can use the<|mask|> of the sector.
The central angle of the sector is 120°, which is 1/3 of a full circle (360°). The
radius of the sector is 6, so the<|mask|><|mask|> the sector is 1/3 * 21t * 6 = 4.
This arc becomes the circumference of the base of the cone. Let the
160 circumference of the base be 2mtr, where r is the radius of the base of the
cone.<|mask|>, 2rtr = 4m. Solving this, we get r = 2. Now, the height of the cone
is V(62 - r2) = V(36 - 4) = V <|mask|><|mask|><|mask|><|mask|>
<|mask|> V <|mask|>. </think><answer> The answer is
$\\boxed{<|mask|>}$ </answer>
<think> To find the height of the cone, we can use the properties of the sector.
The central angle of the sector is 120°, which is 1/3 of a full circle (360°). The
radius of the sector is 6, so the arc of the sector is 1/3 » 2t 6 = 4. This arc
166 | becomes the circumference of the base of the cone. Let the circumference of the
base be 2mr, where r is the radius of the base of the cone. So, 2rtr = 41 Solving
this, we get r = 2. Now, the height of the cone is V (62 - r2) = V(36 - 4) = V32
which is 4V 2. </think><answer> The answer is $\\boxed{D}$ </answer>

Figure 10: Case Qualitative Analysis 3. ”Step” represents the inference step index, starting from 0, and
”Model Output” shows the model’s output at the corresponding inference step. Incorrect words are high-
lighted in red, words identified as incorrect by the Introspection Model and remasked as < |mask | > are
shown in blue, and the corrected words are displayed in green.

F ABLATION STUDY ON INTROSPECTION TRAINING

¢ Semantic Perturbation Experiment. During training, semantic perturbation are injected into the model
input. Specifically, for a given token x{, € xo, we compute the cosine similarity between the embedding
vector of x(i) and the embedding vectors of other tokens in the vocabulary V. Then, we normalize these
similarities using the softmax function to obtain a distribution s(z), see

ecos(Embed(zg),Embed(zg))

A
S\T = - -
( 0) Z;'/:l ecos(Embed(z}), Embed(z})) ’

w) #ahie {1,2..L},j € {1,2..V}. 4)

For each token in the sequence xo, we apply perturbations with a probability of pp = 0.1. If a token 3;8
is selected for perturbation, we randomly sample a new token from the distribution s(zf) to replace x),

thereby generating a correction data pair {xo, x;)}. The perturbed sequence x;) is then fed into the model.

The model is required to learn to identify the perturbed tokens in x;,. For perturbed tokens, the ground
truth yy,, is 1; otherwise, y,,, is 0. The supervision is performed using the following loss function

L
LI Z |:10gp9 ypplpm?xo) (5)

* Importance Semantic Perturbation. In Semantic Perturbation, each token has an equal probability pp of
being perturbed. In Importance Semantic Perturbation, we further consider the importance of words in the
sentence. By utilizing KeyBERT (Grootendorst, 2020) , we pre-compute the importance score I () for
each word in the training data. We design the perturbation probability pp(z}) of each token as shown in
Equation[6] Similar to Semantic Perturbation, if a token is selected for perturbation, a replacement token
is sampled from the distribution s(z{). This approach ensures that semantically more important tokens
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are more likely to be perturbed, and we expect the model to pay more attention to errors in key tokens.
This experiment uses the same loss function as Semantic Perturbation, as shown in Equation@

()

— e {l1,2.L},je{1,2.V}. 6
S e € 2 Lhi € (.27} ©

pp(zf) =

G ABLATION STUDY ON DECOUPLED OPTIMIZATION

* Joint Optimization. In this experiment, we still use the cross-entropy loss function L () to optimize the

objective of error identification. When z}, 4 is the same as z{, the ground truth y; is z{; otherwise, the

ground truth y! is [MASK]. The overall loss function can be expressed as Equation

L(9) = Lu(0) + - L (6). @
where « is the weight of Ly, (), we use a = 0.5 by default.

* BC Joint Optimization. In this experiment, we used the same loss function as Decoupled Optimization to
optimize the second objective. The overall loss is also a weighted sum of Ly (6) and L (0).

H TiME COST OF RIV

RIV performs Self-Correction in a recursive manner, but the increase in inference time is minimal. Specif-
ically, during evaluation, we calculate the percentage increase in inference time with Self-Correction com-
pared to without Self-Correction .

Table 7: Time Cost of RIV. The values in the table represent the percentage increase in inference time under
the corresponding R compared to R = 1 (without Self-Correction).

MathVista MathVerse

mini mini-vision
R=3 8.10% 10.60%
R=6 10.30% 12.40%

As shown in[7} when the maximum recursion depth is set to 3, the inference time on all questions in Math-
Vista (Lu et al., 2023) increased by 8.1%. When the maximum recursion depth is set to 6, the increase is
only 10.3%, which remains within a manageable range.
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