RIV: RECURSIVE INTROSPECTION MASK DIFFUSION VISION LANGUAGE MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Mask Diffusion-based Vision Language Models (MDVLMs) have achieved remarkable progress in multimodal understanding tasks. However, these models are unable to correct errors in generated tokens, meaning they lack self-correction capability. In this paper, we propose Recursive Introspection Mask Diffusion Vision Language Model (RIV), which equips the model with self-correction ability through two novel mechanisms. The first is Introspection Training, where an Introspection Model is introduced to identify errors within generated sequences. Introspection Training enables the model to detect not only grammatical and spelling mistakes, but more importantly, logical errors. The second is Recursive Inference. Beginning with the standard unmasking step, the learned Introspection Model helps to identify errors in the output sequence and remask them. This alternating (unmask \rightarrow introspection \rightarrow remask) process is repeated recursively until reliable results are obtained. Experimental results on multiple benchmarks demonstrate that the proposed RIV achieves state-of-the-art performance, outperforming most existing MDVLMs. Code and models will be released as open source.

1 Introduction

With the rapid developments of Large Language Models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020; Touvron et al., 2023a;b; Grattafiori et al., 2024; Yang et al., 2024; Li et al., 2023b; Bi et al., 2024; DeepSeek-AI et al., 2025a;b; Yang et al., 2025a), artificial intelligence has made remarkable progress in understanding and generating human language, paving the way for more advanced multimodal systems. Vision-Language Models (VLMs) represent an important step toward Artificial General Intelligence (AGI). For a long time, autoregressive (AR) models have been the dominant approach for VLMs (Liu et al., 2023; 2024a; Li et al., 2024; OpenAI, 2024; Team et al., 2023; Bai et al., 2023; Wang et al., 2024). Recently, the emergence of masked diffusion language models (Nie et al., 2025; Zhu et al., 2025; Gong et al., 2024; Ye et al., 2025; Wu et al., 2025; Liu et al., 2025) has introduced a strong contender in the field of vision-language modeling. Models based on masked diffusion have demonstrated impressive performance on multimodal tasks (e.g., LLaDA-V, MMaDA, Dimple, LaViDa (You et al., 2025; Yang et al., 2025b; Yu et al., 2025; Li et al., 2025)). Notably, these models offer several theoretical advantages, such as parallel decoding, enhanced controllability, and the ability to leverage bidirectional attention. These strengths make masked diffusion-based models a compelling choice for advancing the capabilities of vision-language systems.

Although MDVLMs have shown tremendous potential, they also inherit certain limitations from masked diffusion models (Ou et al., 2024; Sahoo et al., 2024; Shi et al., 2024). During the denoising process, MD-VLMs gradually unmask [MASK] tokens into general tokens. However, once a token is unmasked, it cannot be modified, even if it contains errors. This issue, known in the community as a lack of self-correction capability (Wang et al., 2025), has attracted increasing attention. Recent studies have attempted to address this limitation. ReMDM (Wang et al., 2025) introduced a remasking sampler for mask diffusion models,

enabling iterative refinement. However, it is sensitive to hyperparameters and lacks robustness. Seed Diffusion (Song et al., 2025) incorporated an edit-based perturbation process during training, allowing all tokens to be re-evaluated and thereby granting the model self-correction capabilities. Generalized Interpolation Discrete Diffusion (von Rütte et al., 2025) proposed a hybrid approach that combines masking and uniform noise, unlocking the ability for the model to correct its own mistakes. While these methods can handle basic grammatical and spelling mistakes, they rely on artificially injected perturbations and are less effective at correcting intricate reasoning errors.

To equip models with stronger self-correction capability, we propose RIV, introducing innovations at both the training and inference stages. Specifically, we present a novel Introspection Training, where an Introspection Model is integrated with the Instruction Model (the model that has undergone SFT (Wei et al., 2022) and is commonly referred to as the instruction model) to identify erroneous tokens. Compared to previous methods that rely on artificially injected perturbations, the Introspection Model is trained on real errors produced by the Instruction Model, enabling it to more effectively learn to identify subtle logical errors. Additionally, we introduce an innovative Recursive Inference. The process begins with standard unmasking, followed by the Introspection Model re-examining the output sequence to identify erroneous tokens, which are then remasked. Such recursive process enables iterative self-correction. The approach is similar to a student reviewing their answers after a test, finding mistakes, and correcting them, alternating between review and correction until the final answers are accurate. We evaluate RIV on multiple benchmarks and achieve state-of-the-art performance. In summary, our technical contributions lie in the following two-fold:

- Introspection Training: We introduce an Introspection Model to identify errors in the outputs, using erroneous tokens generated during training as the source of training data. This approach enables the model to detect not only basic grammatical and spelling mistakes, but more importantly, subtle errors in reasoning and logic.
- Recursive Inference: During inference, the model alternates among unmasking, introspection, and remasking steps, recursively refining its generated responses to support self-correction.

2 RELATED WORK

2.1 MASK DIFFUSION VLM

The recent rapid development of MDVLMs has challenged the dominance of autoregressive paradigms in multimodal understanding and has led to impressive results. Similar to vision-language models under the autoregressive paradigm (Liu et al., 2023; 2024a; Li et al., 2024), most MDVLMs adopt an architecture that includes a vision encoder, a mask diffusion large language model, and an adapter. For example, LLaDA-V (You et al., 2025) has achieved performance comparable to LLaMA3-V using this architecture. Dimple (Yu et al., 2025) introduced a confident decoding strategy that dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. MMaDA (Yang et al., 2025b) unified multimodal understanding and generation within the mask diffusion paradigm, enhancing performance through a mixed long chain-of-thought fine-tuning strategy and UniGRPO. LaViDa (Li et al., 2025) built two vision-language models based on LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), respectively, improving training efficiency through complementary masking and boosting inference efficiency with a prefix KV cache. Although these methods achieve strong performance through innovative designs, they inevitably lack self-correction capabilities.

2.2 Self-Correction

Currently, research on self-correction is mainly focused on masked diffusion-based large language models. ReMDM (Wang et al., 2025) built on a solid theoretical foundation and designed a novel remasking sampler

that enables the updating of previously generated tokens. Seed Diffusion (Song et al., 2025) introduced manually designed edit-based perturbations during the second stage of training, allowing all tokens to be re-evaluated and thereby achieving more robust error correction. GIDD (von Rütte et al., 2025) explored a hybrid approach that combines masking and uniform noise, unlocking the ability of models to correct errors. Although these methods have shown promising results, they do not fully take advantage of the errors encountered during training to improve the ability to recognize mistakes. In self-correction tasks, generating samples through manually injected perturbations may cause valuable logical error samples to be overshadowed by a large number of low-level error samples.

3 METHOD

We propose RIV, a large-scale Mask Diffusion Vision Language Model (MDVLM) that supports Self-Correction. First, in Section 3.1, we introduce the background information of MDVLMs, consisting of the modeling approach and learning objectives . Then, in Section 3.2, we describe the overall architecture of RIV. In Section 3.3, we present the training methods, with a particular focus on Introspection Training. Finally, in Section 3.4, we introduce Recursive Inference.

3.1 PRELIMINARY

MDVLMs consist of a forward noising process (replacing original tokens with [MASK]) and a learnable reverse denoising process (unmasking [MASK] tokens back to the original tokens) (Austin et al., 2021; Ou et al., 2024; Nie et al., 2025; Ye et al., 2025). Let $\{\mathbf{p_m}, \mathbf{x_0}\} \sim q_{\text{data}}$ represent a sample pair, where $\mathbf{p_m}$ denotes the multimodal prompt, and $\mathbf{x_0}$ represents the response containing L tokens, $[x_0^1, x_0^2, \ldots, x_0^L]$. The forward process begins with clean data $\mathbf{x_0}$ and progressively replaces the tokens in $\mathbf{x_0}$ with [MASK], eventually producing a sequence $\mathbf{x_1}$ composed entirely of [MASK] tokens. Let $\mathbf{x_t}$ denote the sequence at time step t, where $t \in [0,1]$. The learnable reverse process starts from $\mathbf{x_1}$ and gradually unmasks to recover the clean data $\mathbf{x_0}$. The learning objective of the model θ can be optimized using Equation 1.

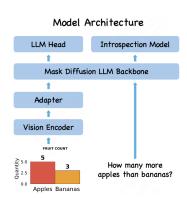


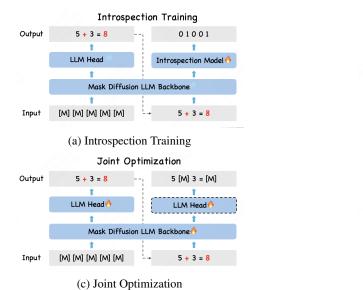
Figure 1: RIV Model Architecture. We integrated the Introspection Model into the Instruction Model to identify errors.

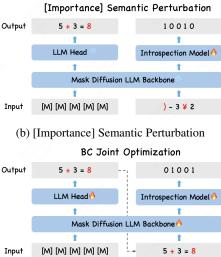
$$L_U(\theta) = -\mathbb{E}_{t,\mathbf{x}_0,\mathbf{x}_t} w(t) \sum_{i=1}^{L} \mathbf{1}[x_t^i = [\text{MASK}]] \log p_{\theta}(x_0^i | \mathbf{p_m}, \mathbf{x}_t). \tag{1}$$

Here, the indicator function $\mathbf{1}[x_t^i = [\text{MASK}]]$ restricts the loss calculation to only those positions where tokens are masked. The term $w(t) \in (0,1]$ serves as a time-dependent weighting factor.

3.2 Model Architecture

Our proposed RIV, as illustrated in Figure 1, consists of four modules: a mask diffusion-based language model, a vision encoder, an adapter, and an Introspection Model for identifying erroneous tokens. Specifically, we use the high-performing Dream (Ye et al., 2025) as the LLM backbone. For the vision encoder, we use QwenViT (Bai et al., 2025), which supports dynamic resolution and efficiently handles visual inputs of varying sizes. The adapter is implemented as a two-layer MLP, whose primary function is to align the feature space of QwenViT with the mask diffusion paradigm. The Introspection Model is designed to identify erroneous tokens generated during the denoising process. This model consists of a transformer block and a linear layer as the output head for token classification.





(d) Binary Classification Joint Optimization

Figure 2: Comparison of Different Training Methods. The supervised ground truth in the figure is 5-3=2. [M] denotes [MASK] token. Introspection Training is shown in 2a, where the output of the Instruction Model is used as the training data for the Introspection Model. Erroneous tokens in the output sequence are highlighted in red. The Introspection Model performs binary classification on sequences containing erroneous tokens, outputting 1 for errors and 0 otherwise. In Introspection Training, we only train the Introspection Model, while the Instruction Model is frozen. Subfigure 2b presents an ablation experiment, where sequences with random perturbations are used as inputs to the Introspection Model, and the model is responsible for identifying which tokens have been perturbed. In 2c and 2d, we jointly optimize the two objectives of unmasking and identifying erroneous tokens. In 2c, tokens that are considered erroneous are directly replaced with [MASK] in the output. In 2d, the model predicts the confidence scores of the erroneous tokens, which is consistent with subfigure 2a.

3.3 Training Strategy

To equip the model with robust multimodal understanding capabilities, we carefully designed four training stages.

Stage 1 Visual Alignment. The objective is to align QwenViT with the feature space of the mask diffusion paradigm. In this stage, both the adapter and ViT are trained simultaneously using 4.4 million caption data.

Stage 2 Instruction Fine-tuning. The goal is to enhance the basic instruction-following ability of model. During this stage, we unfreeze the LLM blocks, vision encoder, and adapter. The training data consists of 10 million Mammoth (Guo et al., 2024) and 3.2 million in-house SFT data. The distribution of the in-house SFT data is shown in B.

Stage 3 CoT Fine-tuning. This stage aims to further enhance the reasoning ability and comprehensive multimodal understanding of model. The training parameters remain the same as Stage 2. In this stage, we use 76,000 high-quality internal chain-of-thought (CoT) (Wei et al., 2023) data samples (resampled 5 times), along with 10% of the data sampled from Stage 2. The first three stages are trained using L_U (see Equation 1). For convenience, we refer to the model obtained in Stage 3 as the Instruction Model.

Stage 4 Introspection Training. The above three training stages are basically consistent with the conventional VLM training process. In Stage 4, as shown in the Figure 2a, we only train the Introspection Model to identify erroneous tokens. In our view, the key lies in a high-quality correction pair training set, which consists of sequences with erroneous tokens and their corresponding correct and reasonable sequences. The erroneous tokens in these correction pairs should not be entirely random but should instead be meaningful errors to some extent, as this helps the model identify complex logical errors. Specifically, during the training process, we sample t from a uniform distribution $t \sim \mathcal{U}(0,1)$ and add noise to the clean data $\mathbf{x_0}$, replacing tokens in $\mathbf{x_0}$ with [MASK] at a probability of t, thereby generating $\mathbf{x_t}$. Taking $\{\mathbf{p_m}, \mathbf{x_t}\}$ as the input of Instruction Model, the output is denoted as $\mathbf{x_{pred}}$. The $\mathbf{x_{pred}}$ may contain erroneous tokens. Subsequently, $\{\mathbf{p_m}, \mathbf{x_{pred}}\}$ is fed into the model, and the features from the penultimate layer of the LLM backbone are extracted as the input for the Introspection Model. The Introspection Model is required to predict whether each token in $\mathbf{x_{pred}}$ is an erroneous token. Naturally, tokens in $\mathbf{x_{pred}}$ that differ from $\mathbf{x_0}$ are treated as positive samples with ground truth $y_t^i = 1$, while identical tokens are treated as negative samples with ground truth $y_t^i = 0$, as shown in Equation 2.

$$y_t^i = \begin{cases} 1, x_{pred}^i \neq x_0^i, \\ 0, x_{pred}^i = x_0^i. \end{cases}$$
 (2)

We optimize this objective using a binary cross-entropy loss function L_I , as described in Equation 3.

$$L_I(\theta) = -\frac{1}{L} \sum_{i=1}^{L} \left[\log p_{\theta}(y_t^i | \mathbf{p_m}, \mathbf{x}_{\text{pred}}) \right].$$
 (3)

This method directly leverages the erroneous outputs generated during the regular training process as training data, in contrast to artificially injected perturbations that lack semantic significance. Compared to manually designed perturbations, Introspection Training significantly improves error identification, making it possible to detect not only basic grammatical and spelling mistakes but also more complex logical errors. We conduct a comparative analysis between Introspection Training and manual perturbation training in Section 4.4.

In Stage 4, the transformer blocks in the Introspection Model are initialized using the final layer of the LLM blocks from the Instruction Model, while the output head is randomly initialized. The Instruction Model from Stage 3 remains frozen, enabling the Introspection Model to be optimized independently while preserving the abilities of the Instruction Model. This strategy prevents mutual interference between traditional unmasking learning and introspection learning, and we refer to it as Decoupled Optimization. In Section 4.4, we validate the necessity of Decoupled Optimization through ablation experiments. The training data used in this stage is the same as that used in Stage 3.

Additionally, a dynamic length training strategy is employed throughout all training stages to improve the robustness in generating responses of varying lengths. Specifically, we set a maximum response length L_{\max} . For each sample with an answer length L', if $L' < L_{\max}$, we uniformly sample a response length L from the interval $[L', L_{\max}]$, and pad the response with EOS tokens until it reaches length L. Further details on the training setup are provided in Section 4.1

3.4 RECURSIVE INFERENCE

Recursive Inference is designed to enable iterative refinement, as shown in Figure 3. Specifically, $\{\mathbf{p_m}, \mathbf{x_1}\}$ is first fed into the model, and the Instruction Model is used to perform S steps of denoising until all tokens are unmasked, thereby generating $\mathbf{x_{pred}}$. Next, $\{\mathbf{p_m}, \mathbf{x_{pred}}\}$ is fed into the model, and the penultimate layer features from the LLM are used as input to the Introspection Model, which produces $\mathbf{x_I}$. Here, $\mathbf{x_I}$ represents the confidence that each token contains an error, with higher values indicating a greater likelihood of error. Tokens with confidence scores exceeding a predefined confidence threshold c are replaced with [MASK].

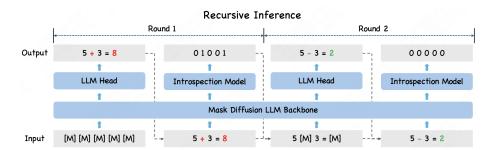


Figure 3: Recursive Inference

Let the number of erroneous tokens be denoted as e, and we update S as S=e//2+1. If e is zero, the model considers the sentence error-free and the inference process terminates, completing one round of inference. A maximum recursion depth R is set, and this process is repeated until no errors are detected or the recursion limit is reached. The pseudocode for this procedure is provided in Appendix D, and a discussion of the time cost for Recursive Inference can be found in Appendix H.

Table 1: Benchmark Results. We compared VLMs with language model parameter sizes ranging from 7B to 8B. The AR-based models include: Qwen2-VL 7B, Qwen2.5-VL 7B (Wang et al., 2024; Bai et al., 2025), while the MD-based models include: MMaDA, Dimple, LaViDa-D, LLaDA-V (Yang et al., 2025b; Yu et al., 2025; Li et al., 2025; You et al., 2025).(-) denote results not reported.

Model	MMMU val	MMB en-dev	MME-P	MMStar	MathVista mini	MathVerse mini-vision		SeedB image	RealworldQA	ChartQA	DocVQA val	InfoVQA val
AR Models												
Qwen2-VL 7B	54.1	-	-	60.7	58.2	-	83.0	-	70.1	83.0	-	-
Qwen2.5-VL 7B	58.6	-	-	63.9	68.2	49.2	83.9	-	68.5	87.3	-	-
MD Models												
MMaDA	30.2	68.5	1410.7	-	-	-	-	-	-	-	-	-
Dimple	45.2	-	1514.0	-	42.3	-	-	-	-	63.4	-	-
LaViDa-D	42.6	73.8	1463.5	-	42.1	24.1	69.0	-	-	61.0	56.1	36.2
LLaDA-V	48.6	82.9	1507.0	60.1	59.7	28.5	77.8	74.8	63.2	78.3	83.9	66.3
RIV	54.3	82.6	1647.7	58.3	60.7	36.2	80.3	73.1	65.9	83.9	89.5	72.3

4 EXPERIMENT

In this section, we first describe the training setup in Section 4.1. Next, Sections 4.2 and 4.3 present the evaluation setup and benchmark results, respectively. Finally, Section 4.4 reports three ablation studies, namely the impact of Self-Correction on performance, the effectiveness of Introspection Training, and the necessity of Decoupled Optimization.

4.1 Training Setup

Throughout all training stages, we set the maximum response length $L_{\rm max}$ to 512. For QwenViT (Bai et al., 2025), the token number range is set from 200 to 1337. Weight decay is set to 0, with a warmup period of 600 steps, and the learning rate schedule follows a cosine decay strategy. To reduce memory usage and improve training efficiency, we employ DeepSpeed ZeRO Stage 2. The total computational resources required for

the entire training process amount to 8,672 H800 hours. The training hyperparameters for each stage are summarized in Table 6.

4.2 EVALUATION SETUP

To comprehensively evaluate the effectiveness of our proposed RIV, we conduct experiments on a range of benchmarks, including multimodal reasoning and knowledge tasks such as MMMU (Yue et al., 2024), MMStar (Chen et al., 2024), MME (Fu et al., 2023), SeedBench (Li et al., 2023a), MMBench (Liu et al., 2024b), MathVerse (Zhang et al., 2024), and MathVista (Lu et al., 2023). We also test RIV on document and chart understanding tasks, including AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021), and InfoVQA (Mathew et al., 2022), as well as real-world understanding tasks such as RealworldQA (x.ai, 2024). During inference, the default maximum recursion depth is set to 2, and the confidence threshold c is set to 0.4. For reasoning-intensive tasks like MathVerse and MathVista, we increase the maximum recursion depth to 3. We use VLMEvalKit (Duan et al., 2025) to evaluate the model.

4.3 BENCHMARK RESULT

The evaluation results are presented in Table 1. As shown, RIV outperforms all mask diffusion VLM models, including LLaDA-V (You et al., 2025), Dimple (Yu et al., 2025), MMaDA (Yang et al., 2025b), and LaViDa-D (Li et al., 2025). RIV demonstrates significant advantages in document and chart understanding tasks. For instance, it achieves scores of 83.9 on ChartQA, 89.5 on DocVQA, and 72.3 on InfoVQA, substantially outperforming models like Dimple (Yu et al., 2025) and LaViDa-D (Li et al., 2025) that utilize the same language model. In reasoning-intensive tasks, RIV also exhibits strong performance, with scores of 54.3 on MMMU, 36.2 on MathVerse, and 60.7 on MathVista, surpassing other mask-based diffusion VLM models of similar scale. The Self-Correction capability plays a significant role in achieving these outstanding results. Regrettably, due to limitations in training resources and data, RIV still lags behind the advanced Qwen2.5-VL (Bai et al., 2025) in terms of performance.

4.4 ABLATION EXPERIMENT

Ablation Study on Self-Correction. We perform ablation experiments to evaluate the effect of self-correction. Specifically, we compare the performance of the Instruction Model (without self-correction) and RIV (with self-correction). As shown in Table 2, RIV consistently outperforms the Instruction Model across most benchmarks, with particularly notable improvements in reasoning-intensive tasks and certain question-answering scenarios. This demonstrates that RIV is capable of autonomously identifying and correcting logically inconsistent segments in the output sequence. These advances can be attributed to Introspection Training and Recursive Inference. For some tasks, such as MMBench (Liu et al., 2024b) and MME (Fu et al., 2023), no performance improvement is observed, as the model can directly provide answers and there is limited opportunity for further refinement. Additionally, we conduct a qualitative analysis of the unmasking, introspection, and remasking processes, which is detailed in Appendix E.

Table 2: Ablation Study on Self-Correction. SC denotes Self-Correction. (wo) indicates inference without SC, while (w) indicates inference with SC.

Model	SC	MMMU val	MMB en-dev	MME-P	MMStar	MathVista mini	MathVerse mini-vision	AI2D	SeedB image	RealworldQA	ChartQA	DocVQA val	InfoVQA val
Instruction Model	wo	53.8	82.6	1647.7	58.3	60.0	34.3	80.2	73.1	65.6	83.1	88.5	71.2
RIV	w	54.3	82.6	1647.7	58.3	60.7	36.2	80.3	73.1	65.9	83.9	89.5	72.3

We also investigate how the maximum recursion depth affects model performance. Specifically, we evaluate RIV on two reasoning-intensive tasks, MathVista (Lu et al., 2023) and MathVerse (Zhang et al., 2024), using maximum recursion depths of $R = \{1, 3, 6\}$. In this context, R = 1 corresponds to disabling the

Self-Correction, making it equivalent to using only the Instruction Model. As shown in Table 3, increasing the maximum recursion depth beyond 3 does not yield further performance gains, since the model typically produces the correct answer after two rounds of refinement.

Table 3: The Impact of Maximum Recursion Depth on Model Performance.

	$MathVista_{mini} \\$	$MathVerse_{mini\text{-}vision}$
R = 1	60.0	34.3
R = 3	60.7	36.2
R = 6	60.6	36.4

Ablation Study on Introspection Training. To demonstrate that Introspection Training is more effective than manually designe perturbations in helping the model identify subtle reasoning logic errors, we designed two sets of comparative experiments. These two experiments simulate potential reasoning errors during inference through manually designed perturbations.

Semantic Perturbation. In this experiment, the Introspection Model is trained without Introspection Training. Instead, random tokens are directly used to replace tokens in the input sequence, as shown in the Figure 2b.

Importance Semantic Perturbation. In the Semantic Perturbation Experiment, each token is replaced with an equal probability. We further consider the importance of words in the sentence. We assign importance scores to each word, with more important tokens having a higher probability of being replaced, As illustrated in the Figure 2b.

We select a model without Self-Correction capability as the baseline and train the Introspection Model on a small dataset using three different methods: Semantic Perturbation, Importance Semantic Perturbation, and Introspection Training. The three models are evaluated on the MathVista (Lu et al., 2023), with the results shown in Table 4. It can be observed that our proposed Introspection Training method achieves higher performance metrics compared to the baseline, while the other two manually injected perturbation methods show no improvement over the baseline.

Table 4: Ablation Study on Introspection Training

	Baseline	Semantic Perturbation	Importance Semantic Perturbation	Introspection Training
MathVistamini	56.3	56.2	56.4	57.2

We observe the model's output results from the Semantic Perturbation Experiment and find that it could only correct basic grammatical issues and common spelling errors but failed to identify subtle logical errors. This limitation is closely related to the training strategy, as valuable logical error data is overwhelmed by a large amount of low-level error data. Although Importance Semantic Perturbation introduce an additional model to score the importance of tokens, it still fell short of capturing scenarios where the model is likely to make real errors, resulting in no significant improvement. In contrast, the Introspection Training effectively leverages the incorrect tokens generated during training, helping the model specifically learn to identify subtle logical errors. For more details, please refer to Appendix F.

Ablation Study on Decoupled Optimization. We validate the necessity of Decoupled Optimization through two control experiments. Using a model without Self-Correction capability as the baseline, we simultaneously optimize the two objectives of unmasking and error identification, as described below.

Joint Optimization. Joint Optimization does not introduce additional parameters compared to the baseline but instead directly extends the capabilities of the baseline. The training process is illustrated in the Figure 2c.

BC(Binary Classification) Joint Optimization. To ensure a fair comparison with Decoupled Optimization, the Introspection Model is also incorporated into the baseline, as shown in the Figure 2d. To mitigate the adverse impact of the Introspection Model's cold start on the Instruction Model, we first independently

optimize the Instruction Model using 10% of the data, and then proceed with joint training alongside the Introspection Model.

We initialize the model with parameters from the baseline and train it on a small dataset using three approaches: Joint Optimization, BC Joint Optimization, and Decoupled Optimization. In Joint Optimization and BC Joint Optimization, the LLM blocks, vision encoder, adapter, and output head are updated. In contrast, the Decoupled Optimization experiment adopted a two-step training process: first training the Instruction Model, and then independently training the Introspection Model, as shown in the Figure 2a.

Table 5: Ablation Study on Decoupled Optimization. (w) indicates inference with Self-Correction, while (wo) indicates inference without Self-Correction.

	Baseline	Joint Optimization	BC Joint Optimization	Decoupled Optimization
MathVista _{mini}	58.1(wo)	57(w)	55.3(w)	58.8(w)
	36.1(wu)	56.7(wo)	55.2(wo)	58.2(wo)

We evaluate the three models on the MathVista (Lu et al., 2023) and find that Decoupled Optimization achieves superior performance, as shown in Table 5. Additionally, during the evaluation, we disabled the Self-Correction. The results showed that, without Self-Correction, the performance of Joint Optimization and BC Joint Optimization is worse than the baseline. We speculate that this may be due to the differing optimization spaces for the ability to identify erroneous tokens and the ability to decode tokens. Simultaneously optimizing these two objectives might introduce interference. For more details, please refer to Appendix G.

5 Limitations & Future Discussion

In this paper, we focus on equipping the model with self-correction capabilities, where the introduced Recursive Inference results in a slight increase in inference time (see H). In future work, this issue could be addressed by incorporating inference acceleration techniques specifically designed for MDMs (Wu et al., 2025; Liu et al., 2025; Ma et al., 2025; Hu et al., 2025).

6 Conclusion

We propose RIV, a Masked Diffusion-based Vision Language Model that supports self-correction. Our Introspection Training is more effective than manually designed perturbations, enabling the model to identify complex reasoning errors rather than just basic grammatical and spelling mistakes. Furthermore, our Decoupled Optimization approach allows the model to focus on error detection while preserving the performance of the instruction model. Finally, with our proposed Recursive Inference, the model fully supports self-correction. RIV achieves state-of-the-art results on multiple benchmarks, offering the research community a new perspective for exploration.

7 ETHICS STATEMENT

This study strictly adheres to relevant ethical guidelines and legal regulations. All data used in the study do not contain any personally identifiable information or sensitive information. As this study does not involve human subjects, ethical committee approval is not required. We acknowledge the potential risks of misuse associated with vision-language models, such as generating harmful or misleading content. To mitigate these risks, we have implemented appropriate safeguards in the model design and data processing workflows. The authors declare no conflicts of interest.

8 REPRODUCIBILITY STATEMENT

We place a high value on the reproducibility of our research findings. The code and model weights used in this study will be released in an open-source format.

REFERENCES

- Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems, 34: 17981–17993, 2021.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv:2308.12966, 2023.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL https://arxiv.org/abs/2502.13923.
- Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint arXiv:2401.02954, 2024.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *arXiv:2403.20330*, 2024.
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang

471

472

473

474

475

476

477 478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498 499

500

501

502503

504

505

506

507

508

509 510

511

512

513 514

515

Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.19437.

Haodong Duan, Xinyu Fang, Junming Yang, Xiangyu Zhao, Yuxuan Qiao, Mo Li, Amit Agarwal, Zhe Chen, Lin Chen, Yuan Liu, Yubo Ma, Hailong Sun, Yifan Zhang, Shiyin Lu, Tack Hwa Wong, Weiyun Wang, Peiheng Zhou, Xiaozhe Li, Chaoyou Fu, Junbo Cui, Jixuan Chen, Enxin Song, Song Mao, Shengyuan Ding, Tianhao Liang, Zicheng Zhang, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai Chen. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models, 2025. URL https://arxiv.org/abs/2407.11691.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multimodal large language models. *arXiv:2306.13394*, 2023.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
- Maarten Grootendorst. Keybert: Minimal keyword extraction with bert., 2020. URL https://doi.org/10.5281/zenodo.4461265.
 - Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig, Wenhu Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction tuning at scale. arXiv preprint arXiv:2412.05237, 2024.
 - Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S. Abdelfattah, Jae sun Seo, Zhiru Zhang, and Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided diffusion, 2025. URL https://arxiv.org/abs/2505.21467.
 - Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images. In *ECCV*, 2016.
 - Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326, 2024.
 - Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023a.
 - Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka, Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language model for multimodal understanding, 2025. URL https://arxiv.org/abs/2505.16839.
 - Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. Textbooks are all you need ii: phi-1.5 technical report. *arXiv preprint arXiv:2309.05463*, 2023b.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024a.
 - Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.
 - Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching. *arXiv* preprint arXiv:2506.06295, 2025.
 - Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating math reasoning in visual contexts with gpt-4v, bard, and other large multimodal models. *CoRR*, 2023.
 - Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion language models, 2025. URL https://arxiv.org/abs/2505.15781.

- Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. *arXiv:2203.10244*, 2022.
 - Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2200–2209, 2021.
 - Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar. Infographicvqa. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 1697–1706, 2022.
 - Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*, 2025.
 - OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o.
 - Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv preprint arXiv:2406.03736*, 2024.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
 - Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 - Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexander M Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=L4uaAR4ArM.
 - Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and generalized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.
 - Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang, Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, and Hao Zhou. Seed diffusion: A large-scale diffusion language model with high-speed inference, 2025. URL https://arxiv.org/abs/2508.02193.
 - Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.
 - Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas Hofmann. Generalized interpolating discrete diffusion, 2025. URL https://arxiv.org/abs/2503.04482.

- Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete diffusion models with inference-time scaling, 2025. URL https://arxiv.org/abs/2503.00307.
 - Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv:2409.12191*, 2024.
 - Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL https://openreview.net/forum?id=gEZrGCozdqR.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.
 - Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache and parallel decoding. *arXiv preprint arXiv:2505.22618*, 2025.
 - x.ai. Grok-1.5 vision preview. 2024. URL https://x.ai/news/grok-1.5v/. https://x.ai/news/grok-1.5v/.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.
 - Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada: Multimodal large diffusion language models, 2025b. URL https://arxiv.org/abs/2505.15809.
 - Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.
 - Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan Li. Lladav: Large language diffusion models with visual instruction tuning, 2025. URL https://arxiv.org/abs/2505.16933.
 - Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language model with parallel decoding, 2025. URL https://arxiv.org/abs/2505.16990.
 - Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer, 2024.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for large language diffusion models. *arXiv preprint arXiv:2505.19223*, 2025.

A THE USE OF LARGE LANGUAGE MODELS

In this study, we did not use LLM. All related work is entirely based on our own algorithms.

B DATA

The distribution of our in-house SFT data is shown in the Figure 4.

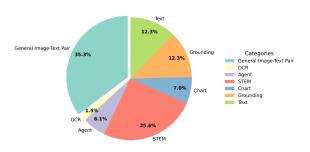


Figure 4: In-House SFT Data Distribution

C DETAILS OF TRAINING SETUP

The hyperparameters for all training stages can be found in Table 6.

Table 6: Training Setup of RIV

	Stage 1	Stage 2	Stage 3	Stage 4
train param	vision encoder adapter	vision encoder adapter llm blocks	vision encoder adapter llm blocks	Introspection Model
data num	4.4m	13.2m	1.7m	1.7m
global batch size	256	256	256	256
max seqence length	4096	5120	5120	5120
adapter lr	1e-3	1e-5	1e-6	0
vision merger lr	1e-6	2e-6	1e-6	0
vision encoder lr	1e-6	2e-6	1e-6	0
llm blocks lr	0	2e-6	1e-6	0
Introspection Model lr	0	0	0	1e-4

D RECURSIVE INFERENCE PSEUDOCODE

Algorithm 1 Recursive Inference Pseudocode

752

753 754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778 779

780 781

782 783

784

785

795 796

797 798

```
Input: maximum recursion depth R, denoise steps S
      Instruction Model \theta_I, Introspection Model \theta_I
      confidence threshold c, response sequence \mathbf{x}_t
      multimodal prompt \mathbf{p}_m
      Output: x_{pred}
 1: \mathbf{x}_t \leftarrow \{[\text{MASK}], ..., [\text{MASK}]\}
 2: for r \in \{R, R-1, \ldots, 1\} do
          for s \in \{0, 1, \dots, S - 1\} do
 3:
             \mathbf{x}_t \leftarrow \theta(\mathbf{p}_m, \mathbf{x}_t)
 4:
          end for
 5:
 6:
          \mathbf{x}_{\text{pred}} \leftarrow \mathbf{x}_t
          if r=1 then
 7:
             break
 8:
          end if
 9:
10:
          \mathbf{x}_I \leftarrow \theta_I(\theta(\mathbf{p}_m, \mathbf{x}_{\text{pred}}))
          erroneoustokens \leftarrow \{i | x_I^i > c\}
11:
          if erroneoustokens = \emptyset then
12:
13:
             break
14:
          end if
15:
          for i \in \text{erroneoustokens do}
16:
              x_{\text{pred}}^{i} \leftarrow [\text{MASK}]
17:
          end for
18:
          \mathbf{x}_t \leftarrow \mathbf{x}_{\text{pred}}
          S \leftarrow \text{UpdateStepByErr}(\text{erroneoustokens})
19:
20: end for
```

E CASE QUALITATIVE ANALYSIS

We conduct a qualitative analysis of cases from the evaluation process, as outlined below.

• Example 1. The example is taken from the 946th question in MathVista (Lu et al., 2023). Given an image 5, the task is to calculate the age difference between the two individuals in the image, with the correct answer being 16.

Figure 5: MathVista-946

The model performed a total of 88 inference steps. From the intermediate inference process (see 6), we can see that in step 79, the model incorrectly used the year 1965 and provided an incorrect answer of 20

years. The Introspection Model identified this error and first corrected the year to 1961. During the second check, it further noticed that $1961-1945 \neq 20$, prompting a second correction. Ultimately, it arrived at the correct answer of 16 years. RIV effectively optimizes its answers by reevaluating the generated results and verifying factual content, thereby producing more accurate and coherent outputs.

Step	Model Output
	<think> The person on the left is Aung San Suu Kyi, and the person on right is</think>
79	Barack Obama. Aung San Suu Kyi was born in 1945, and Barack Obama was
19	born in 1961. Therefore, the age gap is $196\frac{1}{9}$ - $1945 = \frac{20}{9}$ years.
	<answer> The answer is \$\\boxed{20}\$ </answer>
	<think> The person on the left is Aung San Suu Kyi, and the</think>
80	person <mark>< mask >< mask ></mark> is Barack Obama. Aung San Suu Kyi was born in 1945,
80	and Barack Obama was born in 1961. Therefore, the age gap is 196 <mark>< mask ></mark> -
	1945 = <mark>20</mark> years. <answer> The answer is \$\\boxed{<mark>20</mark>}\$ </answer>
	<think> The person on the left is Aung San Suu Kyi, and the person on right is</think>
82	Barack Obama. Aung San Suu Kyi was born in 1945, and Barack Obama was
02	born in 1961. Therefore, the age gap is $196\frac{1}{1}$ - $1945 = \frac{20}{1}$ years.
	<answer> The answer is \$\\boxed{20}\$ </answer>
	<think> The person on the left is Aung San Suu Kyi, and the</think>
	person <mark>< mask >< mask ></mark> is Barack Obama. Aung San Suu Kyi was born in 1945,
83	and Barack Obama was born in 1961. Therefore, the age gap is 196 ${ extstyle 1}$ -
	194 <mark>< mask ></mark> = <mark>< mask >< mask ></mark> years. <answer> The answer is</answer>
	\$\\boxed{ <mark>< mask >< mask ></mark> }\$
	<think> The person on the left is Aung San Suu Kyi, and the person on right is</think>
87	Barack Obama. Aung San Suu Kyi was born in 1945, and Barack Obama was
07	born in 1961. Therefore, the age gap is $196\frac{1}{1}$ - $1945 = \frac{16}{1}$ years.
	<answer> The answer is \$\\boxed{16}\$ </answer>

Figure 6: Case Qualitative Analysis 1. "Step" represents the inference step index, starting from 0, and "Model Output" shows the model's output at the corresponding inference step. Incorrect words are highlighted in red, words identified as incorrect by the Introspection Model and remasked as < | mask | > are shown in blue, and the corrected words are displayed in green.

• Example 2. The example is taken from the 2215th question in MathVerse (Zhang et al., 2024). Given an image 7, the task is to calculate $\cos a$ in the image, with the correct answer being $-\frac{21}{29}$.

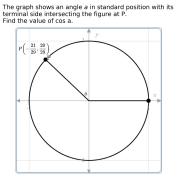


Figure 7: MathVerse-2215

The model performed a total of 168 inference steps. From the intermediate inference process (see 8), we can see that in step 159, the model incorrectly added an extra "—" sign, which led to an incorrect result. In step 162, the "—" sign is correctly removed, but the answer is still not corrected at that point. In step 167, the final answer is revised to be correct.

Step	Model Output					
	<think> The point P on the circumference of the unit circle has coordinates \\((-</think>					
	\\frac=21}{29}, \\frac{20}{29})\\). In the unit circle, the x-coordinate of a point					
159	gives the cosine of the angle. Therefore, the x-coordinate of point P is					
	$\(\frac{21}{29}\), which is \(\cos a\). The answer is$					
	\$\\boxed{\\frac <mark>!</mark> 21}{29}}\$					
	<think> The point P on the circumference of the unit circle has coordinates</think>					
	$\(\langle mask \rangle ^2 mask \rangle ^2 ^2 ^2 ^2 ^2 ^2 ^2 ^2 ^2 ^2$					
160	coordinate of a point gives the cosine of the angle. Therefore, the x-coordinate					
	of point P is \\(\\frac{21}{29}\\), which $<$ mask >\\(\\cos a\\). <answer></answer>					
	The answer is \$\\boxed{\\frac <mark>21}{29}}\$ </mark>					
	<think> The point P on the circumference of the unit circle has coordinates \\((-</think>					
	$\frac{21}{29}$, $\frac{20}{29}$)\\). In the unit circle, the x-coordinate of a point					
162	gives the cosine of the angle. Therefore, the x-coordinate of point P is					
	$\\(\\ a\\). < answer> The answer is$					
	\$\\boxed{\\frac <mark>t</mark> 21}{29}}\$					
	<think> The point P on the circumference of the unit circle has coordinates \\((-</think>					
	$\frac{21}{29}$, $\frac{20}{29}$)\\). In the unit circle, the x-coordinate of a point					
163	gives the cosine of the angle. Therefore, the x-coordinate of point P is					
100	\\(\\ <mark>< mask >< mask ></mark> 21}{29}\\), which <mark>< mask ></mark> \\(\\cos a\\).					
	<answer> The answer is</answer>					
	\$\\boxed <mark>< mask ></mark> frac <mark>< mask >< mask ></mark> 1}{29}}\$					
	<think> The point P on the circumference of the unit circle has coordinates $\((-$</think>					
	$\frac{21}{29}$, $\frac{20}{29}$)\\). In the unit circle, the x-coordinate of a point					
167	gives the cosine of the angle. Therefore, the x-coordinate of point P is $\\ P = \$					
	21}(29}\\), which is \\(\\cos a\\). <answer> The answer is</answer>					
	\$\\boxed{\\frac <mark>{-</mark> 21}{29}}\$					

Figure 8: Case Qualitative Analysis 2. "Step" represents the inference step index, starting from 0, and "Model Output" shows the model's output at the corresponding inference step. Incorrect words are highlighted in red, words identified as incorrect by the Introspection Model and remasked as < | mask | > are shown in blue, and the corrected words are displayed in green.

• Example 3. The example is taken from the 610th question in MathVerse (Zhang et al., 2024). Given an image 9, the task is to calculate the height of the cone, with the correct answer being D.

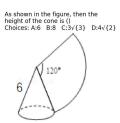


Figure 9: MathVerse-610

The model performed a total of 167 inference steps. From the intermediate reasoning process (see 10), we can see that in step 159, the model incorrectly calculated $\sqrt{32}$ as $4\sqrt{3}$. In step 160, the Introspection Model identified the error and remasked the incorrect token. In step 166, the final correct answer is provided.

Ste	Model Output
	<think> To find the height of the cone, we can use the properties of the sector.</think>
	The central angle of the sector is 120°, which is 1/3 of a full circle (360°). The
	radius of the sector is 6, so the arc of the sector is $1/3 * 2\pi * 6 = 4\pi$. This arc
15	becomes the circumference of the base of the cone. Let the circumference of the
	base be $2\pi r$, where r is the radius of the base of the cone. So, $2\pi r = 4\pi$. Solving
	this, we get $r=2$. Now, the height of the cone is $\sqrt{(6^2-r^2)}=\sqrt{(36-4)}=\sqrt{(32-r^2)}$
	= 4 √ <mark>3</mark> . <answer> The answer is \$\\boxed{<mark>C</mark>}\$ </answer>
	<think> To find the height of the cone, we can use the < mask > of the sector.</think>
	The central angle of the sector is 120°, which is 1/3 of a full circle (360°). The
	radius of the sector is 6, so the $< mask > < mask >$ the sector is $1/3 * 2\pi * 6 = 4\pi$.
	This arc becomes the circumference of the base of the cone. Let the
16	circumference of the base be $2\pi r$, where r is the radius of the base of the
	cone. , $2\pi r = 4\pi$. Solving this, we get $r = 2$. Now, the height of the cone
	is $\sqrt{(6^2 - r^2)} = \sqrt{(36 - 4)} = \sqrt{\frac{ \text{mask} }{ \text{mask} }} = \sqrt{\frac{ \text{mask} }{ \text{mask} }}$
	<answer> The answer is <answer> The answer is</answer></answer>
	\$\\boxed{< <mark> mask ></mark> }\$
	<think> To find the height of the cone, we can use the properties of the sector.</think>
	The central angle of the sector is 120°, which is 1/3 of a full circle (360°). The
	radius of the sector is 6, so the arc of the sector is $1/3 * 2\pi * 6 = 4\pi$. This arc
16	
	base be $2\pi r$, where r is the radius of the base of the cone. So, $2\pi r = 4\pi$. Solving
	this, we get $r = 2$. Now, the height of the cone is $\sqrt{(6^2 - r^2)} = \sqrt{(36 - 4)} = \sqrt{32}$
	which is 4 √ 2. <answer> The answer is \$\\boxed{D}\$ </answer>

Figure 10: Case Qualitative Analysis 3. "Step" represents the inference step index, starting from 0, and "Model Output" shows the model's output at the corresponding inference step. Incorrect words are highlighted in red, words identified as incorrect by the Introspection Model and remasked as < | mask | > are shown in blue, and the corrected words are displayed in green.

F ABLATION STUDY ON INTROSPECTION TRAINING

• Semantic Perturbation Experiment. During training, semantic perturbation are injected into the model input. Specifically, for a given token $x_0^i \in \mathbf{x_0}$, we compute the cosine similarity between the embedding vector of x_0^i and the embedding vectors of other tokens in the vocabulary \mathbf{V} . Then, we normalize these similarities using the softmax function to obtain a distribution $s(x_0^i)$, see 4.

$$s(x_0^i) = \frac{e^{\cos(Embed(x_0^i), Embed(x_0^j))}}{\sum_{i=1}^{V} e^{\cos(Embed(x_0^i), Embed(x_0^j))}}, x_0^j \neq x_0^i, i \in \{1, 2...L\}, j \in \{1, 2...V\}.$$

$$(4)$$

For each token in the sequence $\mathbf{x_0}$, we apply perturbations with a probability of pp=0.1. If a token x_0^i is selected for perturbation, we randomly sample a new token from the distribution $s(x_0^i)$ to replace x_0^i , thereby generating a correction data pair $\{\mathbf{x_0},\mathbf{x_0'}\}$. The perturbed sequence $\mathbf{x_0'}$ is then fed into the model. The model is required to learn to identify the perturbed tokens in $\mathbf{x_0'}$. For perturbed tokens, the ground truth y_{pp}^i is 1; otherwise, y_{pp}^i is 0. The supervision is performed using the following loss function 5.

$$L_{I}^{'}(\theta) = -\frac{1}{L} \sum_{i=1}^{L} \left[\log p_{\theta}(y_{pp}^{i} | \mathbf{p_{m}}, \mathbf{x_{0}'}) \right].$$
 (5)

• Importance Semantic Perturbation. In Semantic Perturbation, each token has an equal probability pp of being perturbed. In Importance Semantic Perturbation, we further consider the importance of words in the sentence. By utilizing KeyBERT (Grootendorst, 2020), we pre-compute the importance score $I(x_0^i)$ for each word in the training data. We design the perturbation probability $pp(x_0^i)$ of each token as shown in Equation 6. Similar to Semantic Perturbation, if a token is selected for perturbation, a replacement token is sampled from the distribution $s(x_0^i)$. This approach ensures that semantically more important tokens

are more likely to be perturbed, and we expect the model to pay more attention to errors in key tokens. This experiment uses the same loss function as Semantic Perturbation, as shown in Equation 5.

$$pp(x_0^i) = \frac{e^{I(x_0^i)}}{\sum_{j=1}^V e^{I(x_0^j)}}, i \in \{1, 2...L\}, j \in \{1, 2...V\}.$$
(6)

G ABLATION STUDY ON DECOUPLED OPTIMIZATION

• Joint Optimization. In this experiment, we still use the cross-entropy loss function $L_M(\theta)$ to optimize the objective of error identification. When x_{pred}^i is the same as x_0^i , the ground truth y_t^i is x_0^i ; otherwise, the ground truth y_t^i is [MASK]. The overall loss function can be expressed as Equation 7.

$$L(\theta) = L_U(\theta) + \alpha \cdot L_M(\theta). \tag{7}$$

where α is the weight of $L_M(\theta)$, we use $\alpha=0.5$ by default.

• BC Joint Optimization. In this experiment, we used the same loss function as Decoupled Optimization to optimize the second objective. The overall loss is also a weighted sum of $L_U(\theta)$ and $L_I(\theta)$.

H TIME COST OF RIV

 RIV performs Self-Correction in a recursive manner, but the increase in inference time is minimal. Specifically, during evaluation, we calculate the percentage increase in inference time with Self-Correction compared to without Self-Correction .

Table 7: Time Cost of RIV. The values in the table represent the percentage increase in inference time under the corresponding R compared to R=1 (without Self-Correction).

	MathVista	MathVerse
	mini	mini-vision
R=3	8.10%	10.60%
R = 6	10.30%	12.40%

As shown in 7, when the maximum recursion depth is set to 3, the inference time on all questions in Math-Vista (Lu et al., 2023) increased by 8.1%. When the maximum recursion depth is set to 6, the increase is only 10.3%, which remains within a manageable range.