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ABSTRACT

Machine learning (ML) models are increasingly explored in fluid dynamics as a
promising way to generate high-fidelity computational fluid dynamics data more
efficiently. A common strategy is to use low-fidelity data as computational-
efficient inputs, and employ ML techniques to reconstruct high-fidelity flow
fields. However, existing work typically assumes that low-fidelity data is artifi-
cially downsampled from high-fidelity sources, which limits model performance.
In real-world applications, low-fidelity data is generated directly by numerical
solvers with a lower initial state resolution, resulting in large deviations from
high-fidelity data. To address this gap, we propose PG-Diff, a novel diffusion
model for reconstructing high-fidelity flow fields, where both low- and high-
fidelity data are generated from numerical solvers. Our experiments reveal that
state-of-the-art models struggle to recover fine-grained high-fidelity details when
using solver-generated low-fidelity inputs, due to distribution shift. To overcome
this challenge, we introduce an Importance Weight strategy during training as
self-guidance and a training-free Residual Correction method during inference
as physical inductive bias, guiding the diffusion model toward higher-quality re-
constructions. Experiments on four 2D turbulent flow datasets demonstrate the
effectiveness of our proposed method. Code and further details are available here.

1 INTRODUCTION

High-fidelity simulations of computational fluid dynamics (CFD) are crucial for understanding fluid
interactions in engineering systems, greatly impacting design and application outcomes (Wang et al.,
2024; McGreivy & Hakim, 2024). Traditional approaches such as Direct Numerical Simulation
(DNS) (Orszag, 1970) offer high-resolution solutions. However, they are computationally expen-
sive, especially for complex dynamics such as turbulence with high Reynolds numbers (Zhang et al.,
2023). Therefore, learning neural-based simulators from data become attractive alternatives, balanc-
ing between efficiency and simulation fidelity (Huang et al., 2023).

One popular strategy is to reconstruct high-fidelity data from low-fidelity inputs, which usually
reduces the discretization grid size in the spatial domain to improve computational efficiency (Shu
et al., 2023; Pradhan & Duraisamy, 2021). Various machine learning models, including those based
on Convolutional Neural Networks (CNNs) (Fukami et al., 2019), Generative Adversarial Networks
(GANs) (Li & McComb, 2022), and Diffusion Models (Shu et al., 2023), have been developed to
reconstruct high-fidelity CFD data from low-fidelity inputs. Majority of them are categorized as
direct mapping models, which require both low- and high-fidelity data for training and can only
capture the relationship between particular low-fidelity and high-fidelity pairs. In contrast, diffusion
models only require high-fidelity data during training and can reconstruct from out-of-distribution
low-fidelity data during inference, by treating them as intermediate samples in the denoising stage.

Motivation: one fundamental drawback in existing studies is that they assume low-fidelity data is ar-
tificially downsampled from high-fidelity data at the same timestamp. Such data inherently has more
information compared to solver-generated low-fidelity data in reality, where coarser discretization
grids are used in numerical solvers for saving computational resources. As illustrated in Figure 1,
the former follows “integrate then downsample”, which starts from the high-fidelity initial states to
rollout trajectories, and then downsample at each timestamp. The latter follows “downsample then
integrate”, which downsamples the high-fidelity initial state to obtain coarser discretization grids
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as starting points and rollout trajectories through numerical solvers. Therefore, models trained in
the downsampled settings can lead to inferior performance during inference when given the solver-
generated data in reality, as solver-generated low-fidelity data has large deviations/distribution shifts
from high-fidelity data. This is illustrated by the visualization of low-fidelity data generated from
the two: the downsampled one contains more fine-grained details than the solver-based one.

High-fidelity
Initial State (t0)

Downsampled
Low-fidelity at t

Solver-generated
Low-fidelity at t

High-fidelity at t
（Ground Truth）

Solver
Integate Downsample

Downsample Solver
Integrate

ExampleExample

Example

Figure 1: Comparison between downsampled
(black line) and solver-generated (red line) flow
fields. Solver-generated low-fidelity data re-
tain less information, especially for fined-grained
high-fidelity details.

To address this, we study reconstructing high-
fidelity CFD data from solver-generated low-
fidelity data with initial coarser discretiza-
tion grids (Sarkar et al., 2023; Ogoke et al.,
2024). Problem: Our experiments reveal
that state-of-the-art models struggle to recover
fine-grained high-fidelity details given solver-
generated low-fidelity inputs, due to the large
distribution shifts. In response to this chal-
lenge, we present a novel diffusion model,
PG-Diff, which features an Importance Weight
strategy during training as self-guidance to lo-
cate fine-grained high-fidelity details, and a
training-free Residual Correction module dur-
ing inference for injecting physical inductive
bias. The two moduli jointly guide the dif-
fusion model toward higher-quality reconstruc-
tions. Specifically, the Importance Weight mod-
ule assigns importance scores to different components in the flow field through Discrete Wavelet
Transformation (DWT) (Daubechies, 1992a), which are integrated into the loss function for guiding
the diffusion model to better reconstruct detailed and accurate structures. The Residual Correction
module projects the reconstructed samples onto the solution subspace of the data governing equa-
tions, ensuring that the generated outputs also adhere to physical constraints such as Navier-Stokes
Equations (Navier, 1823). We achieve this by applying gradient descent of the residuals of the gov-
erning equations at certain diffusion steps, to refine the generated high-fidelity data. We also explore
different scheduling strategies on which diffusion steps to apply such correction. Our findings sug-
gest that applying residual corrections at both the beginning and the end of diffusion steps strikes
the ideal balance between reconstruction L2 error and the physical coherence measured by PDE
residual.

Our key contributions are summarized as follows:

• We study a novel problem on reconstructing high-fidelity flow fields with solver-generated
low-fidelity data, benefiting real-world applications. Our experiments reveal that state-
of-the-art reconstruction models fail to generate high-quality outputs due to loss of fine-
grained detail in low-fidelity data.

• We propose PG-Diff, a novel diffusion model for reconstructing high-quality outputs
through the guidance of an Importance Weight strategy during training as self-guidance and
a training-free Residual Correction method during inference as physical inductive bias.

• We present empirical evidence of PG-Diff’s state-of-the-art performance in a variety of 2D
turbulent flow over 4 datasets. It yields a significant improvement in terms of predictive
accuracy physical consistency, and perceptual quality.

2 PRELIMINARIES AND RELATED WORK

We consider a machine learning model fθ : X → Y with parameters θ, which transforms a data
sample from low-fidelity domain x ∈ X ∈ Rm×m to high-fidelity domain y ∈ Y ∈ Rn×n(m < n).
The distributions of the training and test sets for low-fidelity data are denoted by ptrain

X and ptest
X ,

respectively, and for high-fidelity data as ptrain
Y and ptest

Y . The training and testing distribution for
low and high-fidelity data are not necessarily identical. The objective is to develop fθ such that
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it can effectively map samples from X test to their corresponding high-fidelity counterparts Y test1.
As diffusion model operates on the same input and output grid, we upsample the low-fidelity data
uniformly to the same resolution as the target.

2.1 AI FOR COMPUTATIONAL FLUID DYNAMICS (CFD)

Recent advances in machine learning have led to various learning-based surrogate models for accel-
erating scientific discoveries (Sanchez-Gonzalez et al., 2020; Li et al., 2020; 2021). In the field of
high-fidelity CFD reconstruction, researchers have developed powerful models rooted from image
super-resolution domain in computer vision. Specifically, GANs (Ledig et al., 2016; Wang et al.,
2019) and normalizing flows (Lugmayr et al., 2020) have achieved impressive results for image re-
construction. Later on, diffusion models (Saharia et al., 2021) have challenged the long-standing
dominance of GANs. Various physical inductive biases (Raissi et al., 2019; Bai et al., 2020; Chen
et al., 2021) have been injected into these methods for CFD reconstructions, which enhances the
robustness and accuracy of the reconstruction task. For example, (Erichson et al., 2020; Pradhan
& Duraisamy, 2021) developed super-resolution models based on Multi-Layer Perceptrons (MLPs).
Fukami et al. (2019) introduced a CNN-based hybrid Downsampled Skip-Connection Multi-Scale
(DSC/MS) model, while Fukami et al. (2021) adapted existing CNN models for use with moving
sensors. Li & McComb (2022) further advanced the field by proposing physics-informed GANs
for super-resolving multiphase fluid simulations. Additionally, Fu et al. (2023) proposed a porposal
and refinement network to address the issue with limited high-fidelity data. Ren et al. (2023); Jiang
et al. (2020) also leveraged CNN for spatial-temporal super resolution. These models rely on low-
and high-fidelity data pairs during training and can only capture specific relationships between these
pairs. As a result, when the test data deviates significantly from the training data, their performance
degrades. To overcome this limitation, Gao et al. (2021) utilizes physical properties of the fluid
such as conservation laws and boundary conditions for super resolution. Shu et al. (2023) lever-
aged diffusion model, which is trained exclusively on high-fidelity data and enables reconstruction
from any type of low-fidelity input. However, these methods assume the low-fidelity data is arti-
ficially downsampled from high-fidelity sources, which limits their performance during inference
when reconstructing from solver-generated low-fidelity data in reality.

2.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Diffusion models have become a prominent class of deep generative models, demonstrating state-
of-the-art performance across various domains such as image generation (Meng et al., 2022; Saharia
et al., 2021; Ho et al., 2020), video synthesis (Yang & Hong, 2022; Yu et al., 2022), 3D shape
creation (Zhou et al., 2021; Zeng et al., 2022), and applications in scientific fields (Shu et al., 2023;
Yang & Sommer, 2023; Qiu et al., 2024). Denoising Diffusion Probabilistic Models (DDPMs) are
grounded in a stochastic diffusion process, akin to those found in thermodynamics. It contains a
forward and reverse process, where a data sample is gradually corrupted with noise via a Markov
chain, and a neural network is trained to reverse this, progressively removing the noise. To generate
new samples, a fully noisy input is denoised by the model step by step.

Formally, in the forward diffusion process, the input data x0 is gradually corrupted with Gaussian
noises as q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI)(t = 1, 2, · · ·T ), where β1, . . . , βT are fixed

variance schedule that control the amount of noise introduced at each step, T is the number of
total diffusion steps and q(xt|xt−1) is the Markov transition probability. Let ᾱt :=

∏t
s=1 1 − βs,

we have xt =
√
αtx0 +

√
1− αtϵt, which describes how to generate noisy states xt from input

x0. The reverse process is defined as pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where µθ and
Σθ are learned by neural networks parameterized by θ, and pθ(xt−1|xt) is the denoising transition
probability, undoing the transformation in the forward process.

Training DDPM involves minimizing a variational bound on the negative log-likelihood of q(x0).
Ho et al. (2020) showed that it can be simplified as predicting the noise at each step:

Lsimple = Et,x0,ϵ

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
, (1)

1For direct mapping models, the training takes low- and high-fidelity pairs as inputs. For diffusion models,
the training only requires high-fidelity data, and low-fidelity data is used as input during testing.
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where ϵθ(·) is the predicted noise from DDPM’s denoiser neural network. The denoiser takes noised
sample xt =

√
ᾱtx0 +

√
1− ᾱtϵt and diffusion timestamp t as input to predict noise at each times-

tamp. ϵt ∼ N (0, I) is the standard Gaussian noise sampled at time t. In this paper, we implement the
backbone diffusion model proposed by Ho et al. (2020) and apply accelerated sampling techniques
introduced by Song et al. (2020).

y xt xTq(x1 ∣ x0 = y) q(xt ∣ xt−1) q(xt+1 ∣ xt) q(xT ∣ xT−1)

LIW = #t,y,ϵ [a ⊙ ϵt − ϵθ ( ᾱt y + 1 − ᾱt ϵt, t)
2

]
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2 Second Order Method

Let R(x) denote the Res. function and x 2 Rbatch size,3,256,256. Let x⇤ denote
the ground truth solution and x̂ denote the approximated solution.

R(x⇤) = R(x̂) +
dR
dx

(x⇤ � x̂) + O(kx� x0k2)

0 = R(x̂) +
dR
dx

�

� = �(
dR
dx

)�1R(x̂)

(dR
dx )�1 2 Rbatch size,3,256,256,batch size,3,256,256. We approximate the Jacobian

with its diagonal elements.

xtguide
=

p
↵tguide

x (1)

+
p

1� ↵tguide
✏tguide

(2)

2

2 Second Order Method

Let R(x) denote the Res. function and x 2 Rbatch size,3,256,256. Let x⇤ denote
the ground truth solution and x̂ denote the approximated solution.

R(x⇤) = R(x̂) +
dR
dx

(x⇤ � x̂) + O(kx� x0k2)

0 = R(x̂) +
dR
dx

�

� = �(
dR
dx

)�1R(x̂)

(dR
dx )�1 2 Rbatch size,3,256,256,batch size,3,256,256. We approximate the Jacobian

with its diagonal elements.

xtguide
=

p
↵tguide

x (1)

+
p

1� ↵tguide
✏tguide

(2)

x
tguide

0

xtguide�1

tguide

p✓(xtguide�1 | xtguide
)

2

2 Second Order Method

Let R(x) denote the Res. function and x 2 Rbatch size,3,256,256. Let x⇤ denote
the ground truth solution and x̂ denote the approximated solution.

R(x⇤) = R(x̂) +
dR
dx

(x⇤ � x̂) + O(kx� x0k2)

0 = R(x̂) +
dR
dx

�

� = �(
dR
dx

)�1R(x̂)

(dR
dx )�1 2 Rbatch size,3,256,256,batch size,3,256,256. We approximate the Jacobian

with its diagonal elements.

xtguide
=

p
↵tguide

x (1)

+
p

1� ↵tguide
✏tguide

(2)

x
tguide

0

xtguide�1

tguide

p✓(xtguide�1 | xtguide
)

2

2 Second Order Method

Let R(x) denote the Res. function and x 2 Rbatch size,3,256,256. Let x⇤ denote
the ground truth solution and x̂ denote the approximated solution.

R(x⇤) = R(x̂) +
dR
dx

(x⇤ � x̂) + O(kx� x0k2)

0 = R(x̂) +
dR
dx

�

� = �(
dR
dx

)�1R(x̂)

(dR
dx )�1 2 Rbatch size,3,256,256,batch size,3,256,256. We approximate the Jacobian

with its diagonal elements.

xtguide
=

p
↵tguide

x (1)

+
p

1� ↵tguide
✏tguide

(2)

x
tguide

0

xtguide�1

tguide

p✓(xtguide�1 | xtguide
)

2

2 Second Order Method

Let R(x) denote the Res. function and x 2 Rbatch size,3,256,256. Let x⇤ denote
the ground truth solution and x̂ denote the approximated solution.

R(x⇤) = R(x̂) +
dR
dx

(x⇤ � x̂) + O(kx� x0k2)

0 = R(x̂) +
dR
dx

�

� = �(
dR
dx

)�1R(x̂)

(dR
dx )�1 2 Rbatch size,3,256,256,batch size,3,256,256. We approximate the Jacobian

with its diagonal elements.

xtguide
=

p
↵tguide

x (1)

+
p

1� ↵tguide
✏tguide

(2)

x
tguide

0

xtguide�1

tguide

p✓(xtguide�1 | xtguide
)

2

Figure 2: Training and inference pipeline of PG-Diff. Training with high-fidelity data only, guided
by importance weight strategy to locate fine-grained high-fidelity details. During inference, low-
fidelity data is used for reconstruction, and residual correction is applied at intermediate diffusion
steps to improve physical coherence. We follow Ho et al. (2020) and use U-net as our denoiser.

3 METHOD:PG-DIFF

We present a novel diffusion framework PG-Diff for reconstructing high-fidelity CFD from solver-
generated low-fidelity input, which has larger distribution shifts and more information loss compared
to artificially downsampled low-fidelity inputs. PG-Diff features an Importance Weight strategy that
scores different components in the flow fields through the loss function as self-guidance, forcing
the model to recover more fine-grained high-fidelity details during training. In addition, a training-
free Residual Correction module applies physics-informed correction during inference, ensuring
physical coherence in reconstructed samples. The two moduli jointly guide the model towards high-
quality reconstruction from wide-range of low-fidelity inputs. The overall framework is depicted in
Figure 2. We now introduce each component in detail.

Model Setup. PG-Diff follows the guided data synthesis setting for CFD reconstruction as in (Shu
et al., 2023): we train the model via recovering high-fidelity sources only, and condition on low-
fidelity inputs as intermediate diffusion step during inference. This allows the model to 1.) exert
control over the data generation process (reverse diffusion) during inference. Instead of starting from
random noises, starting from low-fidelity inputs as intermediate diffusion steps; and 2.) reconstruct
from any form of low-fidelity data, as the training does not depend on low- and high-fidelity pairs.

Formally, during the training forward process, we obtain intermediate diffusion states via the fol-
lowing, where y ∼ ptrain

Y := x0 is the high-fidelity CFD that we want to recover. Here ϵt is sampled
from a standard Gaussian distribution. ᾱt :=

∏t
s=1 1− βs as introduced in Sec 2.2.

xt =
√
αtx0 +

√
1− αtϵt =

√
αty +

√
1− αtϵt, t = 1, 2, · · ·T. (2)
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During the inference stage, we first obtain the intermediate diffusion state xtguide(0 < tguide < T ) by
sequentially adding noises to the conditioned low-fidelity data x ∼ ptest

X as

xtguide =
√
αtguidex+

√
1− αtguideϵtguide . (3)

We then use xtguide as the starting point for the reverse process to reconstruct the high-fidelity sources.
Equivalently, this means the reverse diffusion starts from tguide instead of T . The reverse diffusion
process progressively produces a refined high-fidelity reconstruction that aligns with the low-fidelity
conditioning data, using the following DDIM (Song et al., 2020) sampling formula for acceleration.

xt−1 =
√
ᾱt−1x

t
0 +

√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σ2
t ϵt, 0 < t < tguide (4)

where xt0 = xt−
√
1−ᾱtϵθ(xt,t)√

ᾱt
is the predicted reconstruction at each reverse diffusion step t. We

use U-net as in Ho et al. (2020) to serve as our denosier, detailed in Appendix C.2.

3.1 IMPORTANCE WEIGHT DURING TRAINING

Existing diffusion models can fail to capture high-fidelity fine-grained details when conditioned on
solver-generated low-fidelity data. We therefore introduce an importance weighting mechanism dur-
ing training as self-guidance to address this limitation. Specifically, we transform the high-fidelity
data into the wavelet domain using the DWT and assign importance scores to different components
of fluid fields within the diffusion loss function. DWT has great abilities to locate information
both in spatial and frequency domains (Daubechies, 1992b; Akansu & Haddad, 1992), thus allow-
ing the model to capture fine-grained structures more effectively. Formally, we decompose fluid
fields y ∈ Rn×n into frequency subdomains, and compute the sum of squares of the high-frequency
modes – namely HL (high-low), LH (low-high) and HH (high-high) subdomains as below, where
HL,LH,HH,F ∈ Rn

2 ×n
2 . HL captures horizontal high-frequency signals, while LH captures ver-

tical high-frequency signals. HH captures high-frequency signals in both directions, corresponding
to diagonal details such as intersections. Details about DWT are described in Appendix C.1.

F = HL2 + LH2 +HH2. (5)

To compute importance scores, we then uniformly upsample F to F̂ ∈ Rn×n and linearly map
F̂i,j to an importance weight ai,j as below, where α, β are the minimum and maximum importance
weight value respectively, Qθ(F̂ ) ∈ R is the θ quantile of all F̂ values.

ai,j =

{
α+ (β − α)

F̂i,j−Qθ(F̂ )

max F̂−Qθ(F̂ )
if F̂i,j > Qθ(F̂ )

1 otherwise
(6)

If F̂i,j exceeds the θ quantile of all F̂ values, the corresponding component is considered high-
frequency, and will be assigned with weight greater than 1. Finally, the diffusion loss function in
Eqn 1 is updated to incorporate the importance weighting as follows:

LIW = Et,y,ϵ

[
a⊙

∥∥ϵt − ϵθ
(√
ᾱt y +

√
1− ᾱt ϵt, t

)∥∥2
]
, (7)

where ϵθ represents the predicted noise by the denoiser, ϵt is the ground truth noise at time t, and ⊙
denotes element-wise multiplication.

Importance Weight Design Choice. Our importance weight strategy is incorporated exclusively
during training, ensuring that the model focuses on regions with high-frequency details. The DWT-
based calculation avoids the large computational complexity often associated with attention mech-
anisms. It efficiently emphasizes important features by leveraging the intrinsic properties of the
wavelet transform, resulting in a more targeted learning process.

3.2 RESIDUAL CORRECTION DURING INFERENCE

In addition, we introduce a physics-informed residual correction module to enhance the physical
coherence of the reconstructed data during inference. In the reverse diffusion process, we apply such
correction to refine the reconstructed high-fidelity data at certain diffusion steps t determined by a
scheduling policy. Since we use DDIM (Song et al., 2020) for acceleration, we represent the sampled

5
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diffusion states as xτ , and its corresponding reconstruction as xτ0(τ < tguide) in the following. Note
that we do not apply correction on the noisy state xτ (τ < tguide) directly. The correction is to
perform gradient descent based on the residuals of the governing PDEs, detailed in Appendix D.1.
The key parameters in this process are the residual correction schedule policy (the specific diffusion
steps at which the correction is applied), the number of gradient descent steps N , and the step size
η, which we study their impacts in Exp 4.5. Our findings suggest that applying residual corrections
at both the beginning and the end of diffusion steps strikes the ideal balance between reconstruction
L2 error and the physical coherence. We utilize the Adam algorithm Kingma & Ba (2015) for the
gradient descent and summarize the physics-guided inference procedure using DDIM (Song et al.,
2020) in Algorithm 1.

One existing work proposes a conditional diffusion model (Shu et al., 2023), where residual at every
training diffusion step is concatenated with the current state to generate the diffusion state at next
timestamp, serving as the condition. One key advantage of PG-Diff is that it is training-free, allow-
ing the correction process to be applied without additional learning to the original diffusion model.
Also, our approach offers the flexibility to adjust the residual correction schedule dynamically. This
adaptability enables an optimal balance between predictive accuracy and physical consistency of
the reconstructed sample. We empirically show our method achieves better performance in Sec 4.3.
Additionally, diffusion model guided generation has been widely studied in Chung et al. (2023);
Huang et al. (2024); Zhu et al. (2023); Shysheya et al. (2024), our Residual Correction differs by ap-
plying guidance to denoised samples instead of noisy samples. Our physical guidance also involves
multiple steps of Adam gradient descent at selected backward diffusion steps, in contrast to a single
step of gradient descent applied at every backward diffusion step in other works.

Algorithm 1 Physics-informed Training-free Correction with DDIM during Inference.
Require: x ∈ X test (guide), tguide (tguide < T ), τ = {τ0, τ1, ..., τK} (sampled diffusion times-
tamp sequence, where τ0 = 0, · · · τK = tguide. ϵθ (a trained DDPM model), R(·) (residual of the
governing PDE), N (number of gradient descent steps), η (step size).

1: ϵτK ∼ N (0, I) # τK = tguide
2: xτK =

√
ᾱτKx+

√
1− ᾱτK ϵτK # Adding noises to low-fidelity input via forward diffusion

3: for i = K,K − 1, . . . , 1, 0 do # Reverse diffusion from τK (τK = tguide)

4: xτi0 =
xτi

−
√

1−ᾱτi
ϵθ(xτi

,τi)√
ᾱτi

# Predicted reconstruction (x0) at τi
5: if correction is performed at time τi−1 then
6: # Residual-Based Correction
7: repeat
8: xτi0 = xτi0 − η · Adam(∇R(xτi0 ))
9: until N times

10: end if
11: xτi−1

=
√
ᾱτi−1

xτi0 +
√
1− ᾱτi−1

− σ2
τiϵθ(xτi , τi) + σ2

τiϵτi . # xτi−1
∼ pθ(xτi−1

|xτi)
12: end for
13: return y = x0

4 EXPERIMENTS

4.1 DATASET

We generated four 2D turbulent flow datasets with different characteristics: 1.) Taylor Green Vortex,
featuring how vortices diminish in turbulent flows, where large-scale vortices gradually break down
into smaller turbulent structures; 2.) Decaying Turbulence, describing turbulence that evolves natu-
rally without external forces. As time progresses, the turbulence weakens due to viscous effects; 3.)
Kolmogorov Flow, which portrays turbulence influenced by a sinusoidal external force combined
with a drag component; 4.) McWilliams Flow (Mcwilliams, 1984), which describes the behavior
of isolated vortices in turbulent conditions. It is the most challenging one, demanding accurate
modeling of inverse energy transfer and multi-scale vortex interactions.
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The four datasets are generated by the incompressible Navier-Stokes equations following (Li et al.,
2021; Kochkov et al., 2021)

∂ω(x, t)

∂t
+ u(x, t) · ∇ω(x, t) = 1

Re
∇2ω(x, t) + f(x),

∇ · u(x, t) = 0, ω(x, 0) = ω0(x),

where ω represents the vorticity, u denotes the velocity field, Re is the Reynolds number, and
f(x) is an external forcing term. ω0 represents the initial vorticity distribution. The PDE is nu-
merically solved by pseudo-spectral solver (Orszag, 1972) on equispaced discretization grids. The
high-fidelity data are generated with 2048× 2048 discretization grid and then uniformly downsam-
pled to 256 × 256, while those on the lower-resolution grids are considered low-fidelity. For each
dataset, we use 80% of the trajectories for training. 10% for validation, and 10% for testing. More
details can be found in Appendix D. Note that PG-Diff also utilizes the PDE for residual correction
discussed in Sec 3.2.

4.2 EXPERIMENT SETTINGS

Task Setup and Baselines. We evaluate two reconstruction settings with different low-fidelity res-
olutions: 64 × 64 → 256 × 256 (4× upsampling) and 32 × 32 → 256 × 256 (8× upsampling).
To benchmark our approach, we compared against both direct mapping models and diffusion mod-
els: bicubic interpolation (Gonzalez & Woods, 2007), a CNN-based model (Fukami et al., 2019),
a GAN-based model (Li & McComb, 2022), the vanilla diffusion model (Diff) and its conditional
variant (Cond Diff) from Shu et al. (2023). In addition, we perform two ablation studies, namely PG-
Diff w/o IW and PG-Diff w/o Cor , where we remove Importance Weight and Residual Correction
respectively. More implementation details are provided in Appendix C.2.

Evaluation Metrics. We assess the reconstructed flow fields using three key metrics. We first
use two standard metrics suggested by Shu et al. (2023): L2 norm for measuring the pointwise
error between prediction and ground truth; unnormalized residuals of the governing equation (Res.)
for assessing adherence to the underlying physics. In addition, we conduct a novel multi-scale
evaluation using DWT: we transform the predicted and ground truth flow fields into wavelet space
and decompose them into four subdomains: LL (low-low), LH (low-high), HL (high-low), and HH
(high-high). The LL subdomain captures large-scale, low-frequency information, while LH, HL,
and HH encompass higher-frequency details like turbulent structures. By calculating the L2 norm
in each subdomain, we gain a comprehensive understanding of the model’s performance across
different scales, ensuring accurate reconstruction of both global flow features and fine-scale details.

4.3 RECONSTRUCTION RESULTS

Table 1 reports the mean and standard deviation of L2 and PDE residual across datasets and models.
For both upsampling scales (32×32 → 256×256 and 64×64 → 256×256), PG-Diff consistently
outperforms baselines, showing its effectiveness. Notably, it achieves 3.5% to 7.7% performance
gain against baselines in the 4× upsampling setting. The lower L2 achieved by PG-Diff indicates
that PG-Diffeffectively captures the essential features and dynamics of the turbulent flows, while
the significantly reduced PDE residuals demonstrate that PG-Diff’s predictions adhere more closely
to the underlying physical laws governing fluid dynamics. Reconstructions from direct mapping
models (GAN, CNN) exhibit significant deviations in physical coherence. For complex datasets
dominated by fine-grained details, such as Kolmogorov Flow and McWilliams Flow, PG-Diff consis-
tently outperforms baselines by a big margin, showing better reconstruction accuracy and physical
coherence. Through ablation studies, we demonstrate that both Importance Weight and Residual
Correction contribute significantly in improving model’s performance, underscoring the effective-
ness of our design choices in capturing the complex behaviors of turbulent flows.

Multi-Scale Evaluation. In addition, we assess the model’s ability to capture flow structures at dif-
ferent scales using DWT. As shown in Figure 12, PG-Diff demonstrates superior performance in the
LL, LH, and HL subdomains, achieving the best or near-best results among all methods. Excelling
in the LL subdomain indicates a strong capability in capturing large-scale, low-frequency compo-
nents of the turbulent flows. The superior performance in the LH and HL subdomains suggests the
effectiveness of PG-Diff in capturing small-scale vortices and transitions between scales. While

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Bicubic∗ CNN GAN Diff Cond PG-Diff PG-Diff PG-Diff w/o
Diff w/o Cor IW

Ta
yl

or
G

re
en

Vo
rt

ex

L2 6.08 3.10±0.07 3.36±0.08 3.28±0.01 4.50±0.04 3.18±0.01 3.20±1e-4 3.22±0.01
Res. 2.18e4 1.40e5±3.6e4 4.54e4±1.3e4 4.17e4±3.3e3 1.36e3±42 5.31e3±40 7.44e4±1.4e4 6.95e3±569

L2 3.04 2.99±0.06 2.83±0.3 1.68±2e-3 3.57±0.02 1.55±9e-3 1.57±0.02 1.59±6e-3
Res. 1.05e4 1.37e5±3.6e4 4.18e4±1.1e4 3.06e4±4.3e3 1.47e5±1.9e4 4.39e3±3 6.67e4±8.4e3 6.09e3±9

D
ec

ay
in

g
Tu

rb
ul

en
ce

L2 3.62 1.81±0.1 2.09±0.02 1.84±1e-3 2.02±8e-4 1.78±1e-3 1.78±2e-3 1.79±3e-3
Res. 3.41e3 3.05e3±500 7.63e2±111 9.97e3±460 3.49e4±1.7e4 1.65e2±11 9.86e2±165 2.84e2±22

L2 1.74 1.66±0.1 2.06±0.05 0.85±6e-4 1.34±7e-4 0.82±1e-3 0.83±6e-3 0.83±4e-3
Res. 1.31e3 3.16e3±781 6.65e2±59 4.33e3±164 1.52e4±161 85±0.9 2.76e3±1.5e3 1.87e2±37

K
ol

m
og

or
ov

F
lo

w

L2 4.71 3.02±8e-3 3.14±0.04 3.09±1e-3 3.13±1e-3 2.78±8e-3 2.82±1e-3 2.93±5e-4
Res. 2.63e3 3.52e3±125 3.30e2±87 1.80e2±22 80±2 40.12±0.3 6.68e2±10 1.40e2±83

L2 3.22 2.22±0.01 3.02±0.04 1.79±1e-3 1.79±1e-3 1.66±4e-3 1.69±8e-4 1.73±1e-3
Res. 1.86e4 7.30e2±49 3.03e2±92 3.09e2±29 1.65e2±7 39±0.06 9.27e2±1 3.33e2±145

M
cW

ill
ia

m
s

F
lo

w

L2 3.19 2.00±0.07 2.03±0.05 2.23±4e-3 2.24±5e-4 2.04±2e-4 2.06±3e-5 2.16±3e-4
Res. 3.35e2 6.50e2±180 2.86e2±51 16±0.9 12±1 5.5±4e-3 66±1 7.8±0.2

L2 2.17 1.75±0.1 1.96±0.08 1.29±3e-4 1.30±4e-4 1.24±9e-5 1.27±1e-4 1.30±2e-4
Res. 2.17e2 3.64e2±127 2.42e2±35 21±4 31±4 6.36±2e-3 88±0.7 12±0.06

Table 1: Quantitative performance comparison over four datasets on L2 and Res. Results are re-
peated three times. Metrics are reported for both 32×32 → 256×256 ( grey ) and 64×64 → 256×256
tasks. Bold values indicate the best performance and underlined values represent the second-best.
∗ Bicubic interpolation is a deterministic algorithm, which has zero standard deviation.

direct mapping models (CNN, GAN) exhibit better performance in the HH subdomain, PG-Diff’s
results are close to those best-performing methods. The balanced performance across all subdo-
mains demonstrates that PG-Diff can reconstruct both large-scale structures and fine-grained details
essential for turbulent flows. Additional details on other datasets are presented in the Appendix E.2.

Runtime Comparison. We report the runtime comparison of different methods in Appendix E.8.
PG-Diff only increases small inference time while achieving superior performance improvement
against baselines. The total runtime of using the numerical solvers to generate low-fidelity data, and
then reconstructing with PG-Diff is considerably faster than the time required to produce samples
with similar error, demonstrating the effectiveness of PG-Diff.

Sensitivity Analysis. We study the effects of three key hyperparameters in calculating the impor-
tance weight in Sec 3.1: the maximum importance weight β, minimum importance weight α, and
the threshold parameter θ. The results in Appendix E.5 show that increasing β reduces both L2 and
PDE residuals, indicating a broader range of importance weights is beneficial. Smaller α values
improve performance, while setting α to 1 is suboptimal. This can be understood as it decreases the
difference between high-frequency and low-frequency regions, as the weight for the latter one is set
to 1. Additionally, a larger θ (0.7 or 0.8) helps the model focus on important details.

4.4 VISUALIZATIONS

We visualize the reconstructed high-fidelity data conditioned on low-fidelity inputs in Figure 3. PG-
Diff consistently captures more fine-grained details, resulting in a closer resemblance to the high-
fidelity ground truth compared to other methods. This is particularly evident in regions with complex
vortical structures and turbulent features, where competing models often smooth out finer details. An
example is the reconstructions from CNN and GAN on the McWilliams FLow dataset. While direct
mapping methods can achieve a low L2 norm, their reconstructed samples often merge small fine-
grained regions into one large blurred region, leading to information loss and significant divergence
from the original high-fidelity data. By comparison, PG-Diff is able to recover the sharp edges,
turbulence, and subtle variations in the flow field. We additionally show the strong reconstruction
ability of our model variants compared to baselines in Appendix E.3. We also use the Learned
Perceptual Image Patch Similarity (LPIPS) score (Zhang et al., 2018) to measure the perceptual
quality of reconstructed samples in Appendix E.4.
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Figure 3: Visualization of reconstructed high-fidelity data across datasets. We highlight fine-grained
details where PG-Diff achieves better performance than baseline diffusion models.

4.5 PHYSICAL GUIDANCE

Schedule 32×32 → 256×256 64×64 → 256×256

L2 Res. L2 Res.

Uniform 4 2.7910 26.32 1.6645 23.50
Start 3 End 1 2.7906 30.00 1.6617 32.51
Start 2 End 2 2.7897 40.12 1.6609 39.97
Start 1 End 3 2.7896 59.79 1.6617 59.39
Start 4 Space 1 2.7889 101.60 1.6587 105.84
Start 4 Space 2 2.7888 98.32 1.6590 102.14
Start 4 Space 3 2.7887 95.36 1.6594 95.08
End 4 Space 1 2.7930 19.30 1.6668 21.97
End 4 Space 2 2.7932 17.55 1.6747 20.96
End 4 Space 3 2.7924 19.26 1.6730 23.57

Table 2: Scheduling policy comparison on Kolmogorov
Flow. We emphasize that applying residual correction
at the end leads to a reduced PDE residual, while plac-
ing it at the beginning achieves a lower L2 loss.

We conduct a systematic study on how to
schedule the residual correction during in-
ference towards the best performance.

Scheduling Policy. We first explore what
would be the optimal schedule policy
by comparing against: 1.) Uniform N:
Distributing N residual correction steps
evenly across diffusion steps; 2.) Start M,
End N Placing M consecutive correction
steps at the start and N at the end of the
diffusion process; 3.) Start N, Space S:
Placing N correction steps at the start with
a spacing of S; 4.) End N, Space S: Placing
N correction steps at the end with a spac-
ing of S. Results in Table 2 suggest that
applying correction steps at the beginning
achieves the lowest L2, while applying at
the end has the lowest PDE residuals. To
balance between L2 and PDE residual, we
adopt the Start N End N schedule, which places N correction steps at both the beginning and the
end of the diffusion process. We next study the optimal number of N .

Number of Correction Steps. We vary the number of N in the Start N, End N policy as shown
in Figure 4. We observe that increasing N leads to enhanced physical coherence measured by PDE
residuals. However, L2 does not continuously decrease with larger N . It reaches a minimum when
N = 2. This suggests that while more correction steps improve models’ adherence to physical laws,
an excessive number may interfere with the model’s ability to accurately capture the intricate details
of the turbulent flow. Therefore, we use Start 2, End 2 as the optimal balance in our method.

4.6 MODEL GENERALIZATION

We observe that PG-Diff generalizes well even beyond its training distributions. Specifically, we
conduct evaluations over three generalization settings: time discretization in numerical solver, spa-
tial domain size, and Reynolds number as shown in Table 3. We train PG-Diff on the original
Kolmogorov Flow dataset configurations, which has solver integration timestep as dt = 1/32, spa-
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Figure 4: Varying number of N using the Start N, End N correction schedule on the Kolmogorov
Flow dataset. Showing both L2 and Residual across upsampling settings.

tial domain size ranging from 2π × 2π, and Reynolds number as Re = 1000. We then directly test
these new configurations on the trained model, without any additional retraining or fine-tuning. We
compare the performance against models directly trained one each new configuration.

Variation Model L2 Res.

Time Discretization Variations

dt = 1/40 Trained on Original Data 2.8144 34.29
Trained on dt = 1/40 Data 2.8136 34.52

dt = 1/50 Trained on Original Data 2.7761 37.11
Trained on dt = 1/50 Data 2.7795 30.60

Spatial Domain Size Variations

1π × 1π Trained on Original Data 1.9045 262.42
Trained on 1π × 1π Data 1.7672 190.99

1.5π × 1.5π Trained on Original Data 2.3573 80.66
Trained on 1.5π × 1.5π Data 2.3028 88.88

Reynolds Number Variations

Re = 500 Trained on Original Data 2.3694 24.11
Trained on Re = 500 Data 2.3542 26.96

Re = 2000 Trained on Original Data 3.2739 21.21
Trained on Re = 2000 Data 3.2914 22.48

Table 3: Generalization results on Kolmogorov Flow dataset
with 32× 32 → 256× 256 setting.

The results reveal that the per-
tained PG-Diff performs comparably
to trained ones directly on each new
configuration. This underscores our
model’s strong generalization capa-
bilities across different flow condi-
tions. Such generalization ability can
due to the fact that both our impor-
tance weight mechanism and resid-
ual correction modules are training-
free. They enable our model to lo-
cate fine-grained high-fidelity details
and adhere to physical laws indepen-
dent of training data, showing their
strong superiority. A similar trend is
also observed in 4× upsampling ex-
periments, shown in Appendix E.7.

5 CONCLUSION

We study a novel problem of re-
constructing high-fidelity CFD from
solver-generated low-fidelity inputs
in a practical setting across scientific
domains. We present a novel diffu-
sion model PG-Diff, which achieves high-quality reconstruction guided by the proposed Importance
Weight and Residual Correction modulus jointly, yielding state-of-the-art performance across four
2D turbulent flow datasets.
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A LIMITATIONS

Our current research on super-resolution in computational fluid dynamics (CFD) focuses exclusively
on vorticity data. However, future work can broaden its scope to include the reconstruction of high-
fidelity velocity and pressure fields. These additional physical quantities are critical for capturing a
more comprehensive representation of fluid dynamics.

B BROADER IMPACTS

By enhancing the accuracy of CFD simulations, this approach can significantly reduce the compu-
tational costs associated with high-resolution simulations, which are often prohibitively expensive
in terms of both time and resources. This has implications for a wide range of industries, includ-
ing aerospace, automotive design, and environmental engineering, where high-fidelity simulations
are essential for optimizing performance, safety, and sustainability. Additionally, by improving the
quality of low-resolution CFD data, our work could enable more accessible, efficient research and
development processes, allowing smaller organizations and research teams to leverage advanced
simulation capabilities.
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C MODEL DETAILS

C.1 DISCRETE WAVELET TRANSFORMATION

The Discrete Wavelet Transform (DWT) decomposes an image I ∈ Rn×n into different frequency
components by successively applying low-pass and high-pass filters. Given an image I , the DWT
first applies a low-pass filter g[n] and a high-pass filter h[n] along each row, producing two sub-
bands: Ilow[i, j] =

∑
k I[i, k] · g[2j − k] and Ihigh[i, j] =

∑
k I[i, k] · h[2j − k], each downsampled

by a factor of 2 along the columns, resulting in matrices of shape n× n
2 .

Next, the same filters are applied to each column of Ilow and Ihigh, generating four sub-bands:

LL[i, j] =
∑

k

Ilow[k, j] · g[2i− k], LH[i, j] =
∑

k

Ilow[k, j] · h[2i− k],

HL[i, j] =
∑

k

Ihigh[k, j] · g[2i− k], HH[i, j] =
∑

k

Ihigh[k, j] · h[2i− k].

The resulting sub-bandsLL, LH ,HL, andHH each have dimensions n
2× n

2 , capturing the low-low,
low-high, high-low, and high-high frequency components, respectively, of the original image.

• LL: This sub-band captures the approximation or low-frequency content of the image
in both the horizontal and vertical directions. It retains most of the important structural
information of the image.

• LH: This sub-band captures the vertical high-frequency components (edges and fine de-
tails) of the image. It primarily highlights vertical details like vertical edges.

• HL: This sub-band captures the horizontal high-frequency components of the image. It
emphasizes horizontal edges or features.

• HH: This sub-band captures the high-frequency content in both horizontal and vertical
directions, corresponding to diagonal details such as corners, intersections, and textures.

These sub-bands collectively represent the image in both spatial and frequency domains. higher
values in the LH , HL, and HH sub-bands correspond to regions with higher frequency variations
(such as edges or fine details) in the respective subdomains. Higher values in the LL sub-band
correspond to regions with higher intensity or brightness in the original image but represent low-
frequency content.

C.2 IMPLEMENTATION DETAILS

We implement all models in PyTorch and show their implementation details below.

Bicubic Bicubic interpolation is a widely used image scaling technique that enhances the resolution
of low-resolution images by using a weighted average of pixels in a 4x4 neighborhood around each
pixel. Bicubic interpolation uses 16 neighboring pixels to produce smoother and more accurate
results. This method is deterministic and does not involve any machine learning or training.

CNN We modify the hybrid Downsampled Skip-Connection Multi-Scale (DSC/MS) architecture
proposed by Fukami et al. (2019). In the original implementation of the DSC/MS model, the model
operates on a single frame of velocity field. We modify the model to work in our settings, where
the input consists of three consecutive frames of low-fidelity vorticity data, upsampled to 256 ×
256. The DSC component starts by compressing the input through a series of convolutional layers,
effectively capturing multi-scale features. Skip connections are then introduced at various stages to
preserve spatial information, ensuring that the network retains fine details from earlier layers. The
MS component consists of three parallel convolutional paths that capture features at different scales
and combine them to produce the high-resolution output of three consecutive frames of 256 × 256
vorticity data. The training process uses the L2 loss function, running for 300 epochs with a learning
rate of 1e− 5.

GAN We modify the physics-informed GAN proposed by Li & McComb (2022). In the original im-
plementation of the physics-informed GAN, the input was low-resolution phase fraction data from a
multiphase fluid simulation, and the output was a high-resolution phase fraction representation. Our
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adaptation uses low-fidelity vorticity data upsampled to 256 × 256 as input and high-fidelity vor-
ticity data as output. The generator consisted of multiple convolutional layers and residual blocks,
while the discriminator had a series of convolutional layers followed by dense layers. The physics-
informed loss function combined a mean squared error (MSE) term with an additional term designed
to enforce conservation of mass, ensuring the generated data remained consistent with fluid dynam-
ics principles. The model was trained for 300 epochs with a learning rate of 1e− 5.

Diffusion The unconditional diffusion model in Shu et al. (2023) is trained only on high-fidelity
CFD data without requiring low-fidelity data during training. The model uses a U-Net architecture
with hierarchical convolutional blocks, multi-level skip connections, and a self-attention mechanism
in the bottleneck layer to capture complex features of the high-fidelity data. The training process
spans 300 epochs, where the model learns to predict and remove noise added during the forward
diffusion process. During inference, the model starts with a guided reverse diffusion process from
an intermediate timestep t < T instead of starting with complete random Gaussian noise. The low-
fidelity input data is first upsampled to the target resolution and then combined with Gaussian noise
to form the initial input for the reverse diffusion process. This noisy data serves as guidance for
generating the high-fidelity output.

Conditional Diffusion The conditional diffusion model proposed in Shu et al. (2023) incorporates
physics-informed guidance during both training and inference by utilizing the gradient of the PDE
residual with respect to the noised sample. During training, at each step of the forward diffusion
process, the residual of the governing PDE is computed based on the current noised sample. The
gradient of this residual is calculated and concatenated with the noised sample as input to the U-Net.
During inference, the same process is applied: the model computes the gradient of the PDE residual
at each reverse diffusion step and concatenates it with the noised sample.

PG-Diff Starting with xt, which represents an intermediate denoised state at time-step t, the denois-
ing process utilizes a U-Net model to estimate ϵθ. The UNet architecture starts with an initial 3x3
convolution that maps the in channels:3 to ch:128. The encoder progressively downsamples
at each level, using a channel multiplier ch mult:[1, 1, 1, 2], which means the channels
stay at 128 for three levels and then double to 256. Attention blocks are applied at resolutions to
capture long-range dependencies. The decoder mirrors the encoder, using upsampling layers to re-
store spatial resolution and skip connections to preserve details. The output is transformed back to
the original out ch:3 channels through a final 3x3 convolution. The estimated ϵθ is then inte-
grated into a sampling process, outlined in detail by Steps 5 of Algorithm 1, to iteratively generate
xt−1. In this approach, the inference phase is governed by several critical hyperparameters: t, which
defines where the partial backward diffusion sampling begins; K, the total number of DDIM back-
ward diffusion steps performed; and the set {βt}Tt=1, which dictates the scaling factors controlling
noise variance throughout the forward diffusion stages. We adopt the same hyperparameters used
in Shu et al. (2023). The training algorithm for our PG-Diff is presented in Algorithm 2. The PG-
Diff training procedure involves iteratively updating the denoiser ϵθ using high-fidelity training data
Y train. In each training iteration, a sample y is drawn from the high-fidelity training dataset, and
a time-step t is randomly selected from a uniform distribution over {1, . . . , T}. Gaussian noise ϵt
is then sampled from N (0, I). The high-fidelity data y is transformed into the wavelet domain to
compute an importance weight a. The model’s parameters θ are updated through a gradient descent
step using the gradient ∇θa⊙∥ϵt−ϵθ(

√
ᾱty+

√
1− ᾱtϵt, t)∥2. This process repeats until the model

converges, enabling the denoiser to learn to reconstruct fine-grained details in the high-fidelity data
effectively.

D DATASET

All datasets are generated using pseudo-spectral solver implemented by Li et al. (2020). Our dataset
will be released upon publication of our paper and be free to use.

The time-stepping method employed is a combination of the Crank-Nicholson scheme and Heun’s
method. The Crank-Nicholson scheme is an implicit, second-order accurate method, and it is applied
to the viscous term. This allows the solver to be stable even for relatively large time steps when
handling viscous diffusion. Heun’s method, a second-order Runge-Kutta technique, is used to handle
the non-linear advection term. The combination of these two methods provides an efficient and
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Algorithm 2 PG-Diff Model Training.
Require: Y train ∼ ptrain

Y (High-fidelity data used for training), ϵθ (Denoiser to be trained)
1: repeat
2: y ∈ Y train

3: t ∼ Uniform({1, . . . , T})
4: ϵt ∼ N (0, I)
5: Transform y into the wavelet domain and compute the importance weight a
6: Take a step of gradient descent on θ with the following gradient:

∇θa⊙ ∥ϵt − ϵθ(
√
ᾱty +

√
1− ᾱtϵt, t)∥2

7: until converged

accurate way to evolve the vorticity field over time, with the implicit Crank-Nicholson step ensuring
stability for stiff viscous terms, and Heun’s method capturing the non-linearity of the advection.

For numerical stability, the solver uses an adaptive time-stepping approach governed by the Courant-
Friedrichs-Lewy (CFL) condition. The CFL condition ensures that the time step remains sufficiently
small relative to the velocity field and the external forcing, preventing instabilities that can arise from
rapid changes in the solution. Additionally, the dealiasing procedure, using the 2/3 rule, removes
high-frequency components from the Fourier spectrum, ensuring that non-physical aliasing effects
are avoided.

Algorithm 3 Pseudo-spectral Navier-Stokes Solver

1: Input: Initial vorticity ω0, forcing f , Reynolds number Re, total time T , timestep ∆t, domain
size L1, L2, grid size s1, s2, adaptivity flag

2: Output: Vorticity ω at time T
3: Initialize: Compute wavenumbers, Laplacian, and dealiasing mask
4:
5: while t < T do
6: if adaptive then
7: Compute velocity field u = ∇⊥ψ
8: Update timestep ∆t based on CFL
9: end if

10: Compute non-linear term in Fourier space
11: Predictor and corrector steps using Crank-Nicholson + Heun
12: Apply dealiasing mask
13: Update time t = t+∆t
14: end while
15: return Vorticity ω

Taylor Green Vortex The initial vorticity field is based on the analytical solution of the TGV, and to
generate different trajectories, we added random perturbations from a Gaussian random field. These
perturbations introduce variability to the initial conditions while maintaining the overall vortex struc-
ture. No external forcing was applied during the simulation, and the spatial domain is [0, 32π]

2with a
fixed Reynolds number of 1000. The simulation used a time step dt = 1

32 , and 100 trajectories were
generated each with a total duration of T = 6 seconds. The initial vorticity field is based on the
analytical solution for the two-dimensional periodic domain. The vorticity field ω is initialized as
ω = −2U0k sin(kx) sin(ky), where U0 is the initial velocity amplitude, and k is the wave number
that determines the size of the vortices. To introduce variability and generate different trajectories,
a Gaussian Random Field is added as a perturbation to the initial vorticity.

Decaying Turbulence The spatial domain is [0, 1]2, with periodic boundary conditions and a fixed
Reynolds number of 450. The simulation used a time step dt = 1

32 , and 400 trajectories were
generated, each with a total duration of T = 2 seconds. The initial conditions for the decaying
turbulence dataset are generated by superimposing randomly positioned vortices of varying intensity
and size. Each vortex is characterized by a randomly selected core size and maximum rotational
velocity, allowing for a diverse range of initial flow structures. The vortices are distributed randomly
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throughout the domain, and their periodic images are added to ensure the proper enforcement of
periodic boundary conditions.

Kolmogorov Flow The initial vorticity field is generated using a Gaussian random field, and the
system is subjected to a forcing term of the form f(x) = −4 cos(4x2) − 0.1ω(x, t). This forcing
drives the flow in the y-direction while introducing a drag force that dissipates energy. The spatial
domain is [0, 2π]2, with a fixed Reynolds number of 1000. The simulation used a time step dt = 1

32 ,
and 50 trajectories were generated, each with a total duration of T = 10 seconds. The initial vorticity
field is produced by sampling from a Gaussian Random Field. As the external forcing continually
adds energy to the system, the initially simple vorticity evolves into intricate and turbulent structures.
The vorticity is allowed to evolve over a 5-second period, and the final state at the end of this interval
is used as the initial condition for our dataset.

McWilliams Flow The phenomenon illustrates the emergence of order from initially disordered
turbulent motion, driven by viscous dissipation and the self-organization of the flow. No external
forcing is applied during the simulation, allowing for a natural decay and evolution of the turbulence.
The spatial domain is [0, 2π]2, with periodic boundary conditions and a Reynolds number of 2000,
providing a high degree of turbulence. The simulation used a time step dt = 1

32 , and 50 trajectories
were generated, each with a total duration of T = 10 seconds. The initial vorticity field for the
McWilliams Flow is generated following the method described by Mcwilliams (1984). The process
begins by constructing a Fourier mesh over the spatial domain, where the wavenumbers kx and ky
are calculated. A scalar wavenumber function is prescribed, and the ensemble variance is determined
to ensure that the energy distribution in Fourier space follows the desired spectral shape. Random
Gaussian perturbations are applied to each Fourier component of the stream function, producing a
random realization of the vorticity field. To ensure the stream function has a zero mean, a spectral
filter is applied, and the field is normalized based on the kinetic energy. Finally, the vorticity field is
computed in physical space by taking the inverse Laplacian of the stream function in Fourier space,
resulting in a turbulent flow field that evolves naturally without external forcing.

We show the visualization of the four datasets below.

Figure 5: Example trajectory of the Taylor Green Vortex dataset. The first row is the high-fidelity
data with 256×256 discretization grid. The second and third rows are low fidelity data with 64×64
and 32 × 32 discretization grids, respectively. For visualization, we upsample the low–fidelity data
to 256× 256 discretization grid.

D.1 RESIDUAL CALCULATION

The PDE residual of the governing equation R(ω) is defined as

R(ω) =
1

N

∑

i,j

[LHS(ω)i,j − RHS(ω)i,j ]
2
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Figure 6: Example trajectory of the Decaying Turbulence dataset. The first row is the high-fidelity
data with 256×256 discretization grid. The second and third rows are low fidelity data with 64×64
and 32 × 32 discretization grids, respectively. For visualization, we upsample the low–fidelity data
to 256× 256 discretization grid.

Figure 7: Example trajectory of the Kolmogorov Flow dataset. The first row is the high-fidelity data
with 256 × 256 discretization grid. The second and third rows are low fidelity data with 64 × 64
and 32 × 32 discretization grids, respectively. For visualization, we upsample the low–fidelity data
to 256× 256 discretization grid.
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Figure 8: Example trajectory of the McWilliams Flow dataset. The first row is the high-fidelity data
with 256 × 256 discretization grid. The second and third rows are low fidelity data with 64 × 64
and 32 × 32 discretization grids, respectively. For visualization, we upsample the low–fidelity data
to 256× 256 discretization grid.

where LHS(ω) and RHS(ω) represent the left-hand side and right-hand side expressions of the
PDE, respectively. ω represents the vorticity. N represents the number of grid points. For the
incompressible navier stokes equation tested in this paper, the residual is defined as

R(ω) =
1

N

∑

i,j

[
∂ω(x, t)

∂t
+ u(x, t) · ∇ω(x, t)− 1

Re
∇2ω(x, t)− f(x)

]2

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 DWT VISUALIZATION

Figure 9 presents sample importance masks identified as high-frequency features using the DWT.
These masks highlight the regions where our model focuses to capture intricate details. The samples
clearly demonstrate that our method effectively captures the fine-grained structures in the turbulent
flow, validating its ability to reconstruct small-scale vortices and turbulence that are often missed by
conventional approaches.

High Fidelity

Vorticity Field

High Fidelity

Vorticity Field

Importance

Mask

Importance

Mask

Figure 9: High frequenct components in the Kolmogorov Flow field identified by discrete wavelet
transformation. We compare the high fidelity vorticity field with the importance mask.

E.2 MULTI-SCALE EVALUATION

To comprehensively evaluate the model’s ability to capture both overall flow dynamics and intri-
cate details, we performed a multi-scale analysis by transforming the predicted and ground truth
flow fields into the wavelet domain. This transformation produced four subdomains: LL (low-low),
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LH (low-high), HL (high-low), and HH (high-high). The LL subdomain represents broad, low-
frequency components, while the LH, HL, and HH subdomains capture increasingly finer, high-
frequency features, including turbulent structures. We then assessed the L2 norm across these sub-
domains to gain deeper insights into the model’s effectiveness in reconstructing both large-scale
patterns and fine-grained details.
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Figure 10: Wavelet subdomain L2 for the Taylor Green Vortex dataset.
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Figure 11: Wavelet subdomain L2 for the Decaying Turbulence dataset.

E.3 RECONSTRUCTION VISUALIZATION

We present visualizations of the reconstructed high-fidelity data using PG-DIFF w/o Cor across
different methods and datasets. As shown in Figure 14 and Figure 15, PG-Diff consistently produces
impressive qualitative results.
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Figure 12: Wavelet subdomain L2 norm for the Kolmogorov Flow dataset.
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Figure 13: Wavelet subdomain L2 for the McWilliams Flow dataset.
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Figure 14: Visualization comparison of reconstruction on the Kolmogorov Flow from PG-Diff w/o
Cor. The first column displays the low-fidelity input data upscaled to a resolution of 256 × 256,
while the last column shows the high-fidelity ground truth.

E.4 LPIPS SCORES

Direct mapping models are effective at minimizing L2 loss. However, these models tend to produce
samples that appear smooth and blurry, often missing the intricate details. This is because the
L2 loss emphasizes pixel-wise accuracy, which can lead to averaging effects and the loss of fine-
grained details. To address this issue, we use the LPIPS (Learned Perceptual Image Patch Similarity)
metric, which focuses on perceptual differences and provides a more qualitative assessment of the
reconstructed flow fields, capturing the texture and small-scale structures. The results are presented
in Table 4

Although LPIPS is trained on the ImageNet dataset, which consists of natural images, it remains a
valuable metric for evaluating perceptual quality in CFD applications. This is because LPIPS lever-
ages features from deep neural networks that are effective at capturing multi-scale patterns, textures,
and perceptual similarities, regardless of the specific domain. Fluid dynamics data often have com-
plex structures and turbulent patterns that share characteristics with textures found in natural images,
making LPIPS suitable for assessing the fidelity of reconstructed flow fields. Thus, despite being
trained on ImageNet, LPIPS can still effectively quantify how well the reconstructed samples re-
tain important perceptual details, making it a robust metric for evaluating the visual quality of CFD
reconstructions.

E.5 IMPORTANCE WEIGHT SENSITIVITY ANALYSIS

We present a sensitivity analysis to explore how different hyperparameter settings affect the per-
formance of the Importance Weight Strategy. The importance weight strategy is governed by three
main parameters: β (the maximum importance weight), α (the minimum importance weight), and θ
(the importance threshold). We adjust these parameters sequentially. The results are summarized in
Figure 16.
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Figure 15: Visualization comparison of reconstruction on the McWilliams Flow from PG-Diff w/o
Cor. The first column displays the low-fidelity input data upscaled to a resolution of 256 × 256,
while the last column shows the high-fidelity ground truth.

Bicubic CNN GAN Diff Cond Diff PG-Diff

Kolmogorov
Flow

0.5421 0.5358 0.5109 0.2848 0.2869 0.2781
0.2919 0.4065 0.4082 0.1215 0.1229 0.1097

McWilliams
Flow

0.5736 0.4921 0.4505 0.3524 0.3540 0.2936
0.3417 0.3948 0.3948 0.1457 0.1604 0.1298

Decaying
Turbulence

0.2221 0.1448 0.1991 0.4215 0.1688 0.1397
0.0794 0.1521 0.1407 0.3608 0.2259 0.0637

Taylor Green
Vortex

0.3715 0.3331 0.4175 0.2525 0.1750 0.1704
0.1594 0.3057 0.3137 0.1494 0.2362 0.1339

Table 4: LPIPS scores for each dataset. Metrics are reported for both 32×32 → 256×256 ( grey )
and 64×64 → 256×256 tasks.

E.6 COMPARISON OF RESIDUAL CORRECTION AND POST PROCESSING

We compared the performance of residual correction and post-processing technique in Table 5. The
post-processing applies a single residual correction to the reconstructed high-fidelity samples in the
end. The results indicate that while post-processing achieves very low PDE residuals, it significantly
increases the L2 loss. In contrast, our Residual Correction method strikes a better balance between
L2 loss and PDE residual.
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Figure 16: Sensitivity analysis of key parameters for the Importance Weight. Experiments are con-
ducted on the Kolmogorov Flow. The top row presents the results for the maximum importance
weight, β. The middle row displays the results for the minimum importance weight, α, and the
bottom row shows the results for the importance threshold, θ. These three hyperparameters were
tuned in sequence, and the optimal combination (β = 6, α = 1.25, and θ = 0.8) is selected.
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32×32 → 256×256 64×64 → 256×256
L2 PDE Residual L2 PDE Residual

Residual Correction 2.7897 40.12 1.6609 39.97
Post Processing 3.0019 5.42 1.7737 7.16

Table 5: Comparison between our proposed Residual Correction and Post Processing methods. Ex-
periments are conducted on the Kolmogorov Flow.

E.7 GENERALIZATION

We show the generalization ability of our model across various settings. The original Kolmogorov
Flow dataset is generated using timestep dt = 1/32, spatial domain size 2π × 2π, and Reynolds
number Re = 1000.

Table 6: Generalization results on Kolmogorov Flow dataset with 64× 64 → 256× 256 setting.

Variation Model L2 PDE Residual
Time Discretization Variations

dt = 1/40 Trained on Original Data 1.6782 31.49
Trained on dt = 1/40 Data 1.6723 30.91

dt = 1/50 Trained on Original Data 1.6484 33.49
Trained on dt = 1/50 Data 1.6489 26.66

Spatial Domain Size Variations
Domain Size 1π × 1π Trained on Original Data 1.0255 263.23

Trained on 1π × 1π Data 0.9443 207.03

Domain Size 1.5π × 1.5π Trained on Original Data 1.3212 84.24
Trained on 1.5π × 1.5π Data 1.2918 94.87

Reynolds Number Variations
Re = 500 Trained on Original Data 1.3112 21.57

Trained on Re = 500 Data 1.2998 22.96

Re = 2000 Trained on Original Data 1.9647 24.07
Trained on Re = 2000 Data 1.9694 24.22

E.8 RUNTIME COMPARISON

Table 9 presents the time required for the numerical solver to generate a single frame of low- and
high-fidelity samples for each dataset. The results indicate that generating even 64× 64 low-fidelity
data is significantly faster than producing high-fidelity data, emphasizing the value of using ML
approach for accelerating high-fidelity simulations.

Dataset 256× 256 64× 64 32× 32
Kolmogorov Flow 138.49 0.44 0.04
McWilliams Flow 98.99 1.23 0.12
Decaying Turbulence 93.82 1.01 0.06
Taylor Green Vortex 139.35 1.49 0.22

Table 7: Run time of numerical solver to generate one frame for each dataset across different grid
resolutions with a batch size of 10. All times are measured in seconds.

Table 8 shows the time comparison across ML models for reconstructing high-fidelity data from
low-fidelity inputs.
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Method 32×32 → 256×256 64×64 → 256×256

Bicubic 1.43e-5 1.4e-5
CNN 0.005 0.005
GAN 0.008 0.008
Diff 6.10 3.06
Cond Diff 6.20 3.38
PG-Diff 6.37 3.27

PG-Diff w/o Cor 6.10 3.06
PG-Diff w/o IW 6.37 3.27

Table 8: Runtime comparison of various methods across different resolution levels using a batch
size of 10, with all times measured in seconds. These results are based on the McWilliams Flow
dataset.

Dataset Same error with 64× 64 Same error with 32× 32
Kolmogorov Flow 35.36 15.15
McWilliams Flow 39.08 17.81
Decaying Turbulence 21.51 17.41
Taylor Green Vortex 33.23 15.49

Table 9: Run time of numerical solver to generate one frame for each dataset with approximately
same error compared to PG-Diff with a batch size of 10. All times are measured in seconds.

E.9 EMBEDDING SUPER RESOLUTION WITHIN SOLVER

For longer rollouts on coarser grids, low-fidelity data becomes qualitatively different from high-
fidelity data, making simple postprocessing with super-resolution models insufficient to recover the
trajectory. However, we demonstrate that when integrated into the solver, PG-Diffenhances numer-
ical simulations on coarse grids. Our approach follows the pipeline: ”solver → super resolution →
downsample → solver.” Specifically, we begin with a numerical solver to perform one-step predic-
tions on a coarse grid. Next, we apply PG-Diff for super-resolution, downsample the output back
to the coarse grid, and use it as input for the next simulation step. We present the visual results in
Figure 17.

E.10 PSNR AND SSIM RESULTS

Table 10: Kolmogorov Flow

Model 4x Upsampling 8x Upsampling
PSNR SSIM PSNR SSIM

Bicubic 21.1257 0.4769 18.3063 0.2479
CNN 24.8310 0.5190 22.9806 0.3712
GAN 20.6210 0.4160 20.2323 0.3695
Diffusion 25.4049 0.6487 21.5818 0.4072
Conditional Diffusion 25.2389 0.6456 20.2067 0.3425
PG-Diff 26.1733 0.6781 24.0754 0.4409
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Figure 17: Visualization of reconstructed high-fidelity data when PG-Diffis integrated within the
numerical solver.

Table 11: McWilliams Flow

Model 4x Upsampling 8x Upsampling
PSNR SSIM PSNR SSIM

Bicubic 25.1992 0.4834 21.9313 0.2519
CNN 28.6248 0.5897 27.4487 0.5164
GAN 28.6720 0.4621 27.7062 0.4477
Diffusion 29.71018 0.6686 25.2200 0.3884
Conditional Diffusion 29.6757 0.6665 25.1475 0.3823
PG-Diff 30.0540 0.6722 28.1972 0.4643

Table 12: Taylor Green Vortex

Model 4x Upsampling 8x Upsampling
PSNR SSIM PSNR SSIM

Bicubic 25.4811 0.7211 19.4033 0.5041
CNN 26.6066 0.7657 26.3448 0.7422
GAN 28.1370 0.7597 25.0551 0.7633
Diffusion 30.7706 0.8438 24.8698 0.6678
Conditional Diffusion 23.2154 0.6767 21.3979 0.5959
PG-Diff 31.5277 0.8713 26.7503 0.7562
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Table 13: Decaying Turbulence

Model 4x Upsampling 8x Upsampling
PSNR SSIM PSNR SSIM

Bicubic 41.7820 0.8888 35.1032 0.7098
CNN 41.0336 0.8849 42.1580 0.9200
GAN 39.2718 0.9055 38.9931 0.8863
Diffusion 47.2289 0.9571 40.8901 0.8622
Conditional Diffusion 46.0675 0.9138 40.1089 0.8456
PG-Diff 48.0321 0.9601 43.0276 0.9295
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