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ABSTRACT

Diffusion models have excelled in generating natural images and are now being
adapted to a variety of data types, including graphs. However, conventional models
often rely on Gaussian or categorical diffusion processes, which can struggle to ac-
commodate the mixed discrete and continuous components characteristic of graph
data. Graphs typically feature discrete structures and continuous node attributes that
often exhibit rich statistical patterns, including sparsity, bounded ranges, skewed
distributions, and long-tailed behavior. To address these challenges, we introduce
Graph Beta Diffusion (GBD), a generative model specifically designed to handle
the diverse nature of graph data. GBD leverages a beta diffusion process, effec-
tively modeling both continuous and discrete elements. Additionally, we propose a
modulation technique that enhances the realism of generated graphs by stabilizing
critical graph topology while maintaining flexibility for other components. GBD
competes strongly with existing models across multiple general and biochemical
graph benchmarks, showcasing its ability to capture the intricate balance between
discrete and continuous features inherent in real-world graph data. The PyTorch
code is available on GitHub.
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Figure 1: Overview of the forward and reverse diffusion processes of GBD. The multiplicative factors Qt and
Pt are sampled from beta distributions parameterized by the initial graphs G0 and “clean graphs” predicted by
Ĝθ . The neural network Ĝθ is learned through minimizing Equation 8 constituted by Lsampling and Lcorrection.

0.05T 0.1T 0.15T 0.25T 0.5T T

Figure 2: Edge generation process of the GBD model in graph topology (top) and adjacency matrix (bottom)
views. Nodes are sorted by descending degree centrality and color-coded by degree, from yellow (high) to purple
(low). The modulation technique in Section 2.3 enables early emergence of key positions such as community
hubs, enhancing reverse chain stability.
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1 INTRODUCTION

In recent years, there has been a significant surge in interest and activity in the field of graph
generation, particularly with the development of advanced generative models tailored for graphs. This
growing attention is driven by the recognition of graph data’s pervasive presence and utility across
diverse real-world applications, ranging from social network study (Newman et al., 2002; Conti et al.,
2011; Abbe, 2018; Shirzadian et al., 2023) to biochemical molecular research (Jin et al., 2018; Liu
et al., 2018; Bongini et al., 2021; Guo et al., 2024; Li & Yamanishi, 2024). Additionally, the rapid
evolution of machine learning tools has introduced powerful techniques for data generation, among
which diffusion models (Ho et al., 2020; Song et al., 2021; Austin et al., 2021; Avdeyev et al., 2023;
Chen & Zhou, 2023; Zhou et al., 2023) stand out as a notable example. As these advanced tools
intersect with the task of graph generation, we witness the emergence of numerous diffusion-based
graph generative models (Niu et al., 2020a; Jo et al., 2022; Haefeli et al., 2022; Huang et al., 2022;
Vignac et al., 2023; Jo et al., 2023; Cho et al., 2023; Chen et al., 2023; Kong et al., 2023).

While diffusion-based graph generative models often demonstrate superior performance compared to
their predecessors (You et al., 2018; De Cao & Kipf, 2018; Li et al., 2018; Simonovsky & Komodakis,
2018; Liu et al., 2019; Shi et al., 2020; Luo et al., 2021; Martinkus et al., 2022), there is still potential
for further enhancement in the quality of generated graphs. Among the latest advancements in these
methods, it is widely recognized that incorporating inductive bias from the graph data is generally
beneficial for model design (Jo et al., 2023). One promising direction of incorporating this bias
involves considering the statistical characteristics of the distribution of graph data. For instance, both
Graph D3PM (Haefeli et al., 2022) and DiGress (Vignac et al., 2023) have demonstrated that when
considering the binary or categorical nature of the graph adjacency matrix and modeling it in the
discrete space, it provides benefits for generating more realistic graphs.

Accounting for the discreteness of the graph adjacency matrix has shown enhancement to performance.
However, it is crucial to recognize that the complexity and flexibility of the distribution characteristics
of graph data extend beyond mere discreteness. Real-world graphs usually display sparse edge
distributions and exhibit diverse statistical patterns in node attributes, which may include skewed,
multi-modal, or long-tailed distributions (Barabási et al., 2000; Ciotti et al., 2015; Liang et al., 2023;
Wang et al., 2023). While the values within node feature matrices may not inherently bounded
by range, they are often be empirically represented or processed into quantities that are bound by
specific limits. Considering the unique characteristics inherent to graph data, it is clear that Gaussian
and categorical distributions, often default choices for constructing diffusion processes, may not
adequately align with these graph traits. This misalignment could introduce noticeable limitations in
accurately modeling the distribution of graphs.

Given the unique statistical characteristics of graph data, the beta distribution emerges as a particularly
suitable modeling choice. With great flexibility to model continuous data with various statistical
characteristics and approximate discrete distributions at all sparsity levels, the beta distribution
aligns well with the inherent traits of graphs, hence making itself a promising candidate to surpass
the potential limitations imposed by utilizing Gaussian or categorical distributions. In this paper,
we introduce Graph Beta Diffusion (GBD) as a novel addition to diffusion-based graph generative
models. GBD models the joint distribution of node attributes and edge connections within a graph
through beta diffusion (Zhou et al., 2023), a generative diffusion process that is built upon the thinning
of beta random variables in its multiplicative forward diffusion process and the thickening in its
multiplicative reverse process.

We underscore two major contributions arising from the development of GBD. First, our experiments
generating data on various synthetic and real-world graphs confirm the effectiveness of beta diffusion
as a strategic choice within the design framework of the backbone diffusion model, especially for
graph generation tasks. Second, our exploration of the model’s design space has yielded a set of
recommended practices, notably a novel modulation technique that bolsters the stability of generating
essential graph structures. We demonstrate that these practices, when implemented together, lead to
consistent enhancements in model performance.

2 THE METHODOLOGY

In this study, our primary focus lies in generating two types of graphs: generic graphs and molecular
graphs. A graph with N nodes is represented by the tuple G = (A,X), where X ∈ RN×D
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denotes the node features with feature dimension D, and A ∈ RN×N is the symmetric binary
adjacency matrix that defines the connections between nodes. The selection of node features offers
high flexibility, ranging from raw-data-provided node categories to hand-crafted features such as
node-level statistics (Jo et al., 2022) or spectral graph signals (Jo et al., 2023). The features within X
exhibit great diversity in their nature, including numerical, categorical, and ordinal types. Through
preprocessing methods including dummy-encoding, empirical CDF transformation or normalization,
we standardize them as continuous variables bounded by [0, 1]. For molecular graphs, we use A(1:K)

to represent the structure of a graph with K types of edges and G is defined as (A(1:K),X). In the
sequel, we by default employ the generic graph scenario to illustrate the methodology.

2.1 FORWARD AND REVERSE BETA DIFFUSION PROCESSES

Forward multiplicative beta diffusion process. Such a process can be characterized by the
transition probability q(Gt |Gt−1,G0), with G0 denoting the combination of the original adjacency
matrix and node feature matrix. Following recent diffusion-based graph generative models (Jo et al.,
2022; Vignac et al., 2023; Jo et al., 2023; Cho et al., 2023), we assume q(Gt |Gt−1,G0) to be
factorizable such that q(Gt |Gt−1,G0) = q(At |At−1,A0) · q(Xt |Xt−1,X0). Constructing the
forward multiplicative beta diffusion process (Zhou et al., 2023) for graph modeling, we have:

At = At−1 ⊙QA,t, QA,t ∼ Beta (ηAαtA0, ηA(αt−1 − αt)A0) , (1)
Xt = Xt−1 ⊙QX,t, QX,t ∼ Beta (ηXαtX0, ηX(αt−1 − αt)X0) , t ∈ [1, T ]. (2)

Here ηA, ηX are positive scalars adjusting the concentration of beta distributions, with higher values
leading to enhanced concentration and reduced variability. The diffusion noise schedule is defined
with {αt | t ∈ [1, T ]}, which represent a sequence of values descending from 1 towards 0 as t
increases. Elements in the fractional multiplier QA,t or QA,t are independently sampled from their
respective beta distributions. With the forward diffusion process defined in Equations 1 and 2, we
characterize the stochastic transitions of an element g within G as:

q(gt | gt−1, g0) =
1

gt−1
Beta

(
gt
gt−1

| ηαtg0, η(αt−1 − αt)g0

)
, (3)

where depending on whether g is an element in A or X, we have either η = ηA or η = ηX . Derived
from Equation 3, the joint distribution q(G1:T |G0) has analytical format in the marginal distribution
on each time stamp t, specifically,

q(Gt | G0) = Beta(ηαtG0, η(1− αtG0)). (4)

Reverse multiplicative beta diffusion process. It is important to note that the joint distribution
q(G1:T |G0) can be equivalently constructed in reverse order through ancestral sampling, which
directs samples from the terminus states GT towards the initial states G0 by incrementally applying
the changes δGt at each reversed time stamp. With the changes at a given time t parameterized
as δGt := Pt ⊙ (1 −Gt), where Pt are beta-distributed fractional multipliers, the time-reversal
multiplicative sampling process can be mathematically defined as: for t = T, T − 1, · · · , 1,

Gt−1 = Gt +Pt ⊙ (1−Gt), Pt ∼ Beta (η(αt−1 − αt)G0, η(1− αt−1G0)) . (5)

Similar to the forward sampling process, we can derive the transition distribution corresponding to
the reverse sampling process described in Equation 5 as following:

q(Gt−1 | Gt,G0) =
1

1−Gt
Beta

(
Gt−1 −Gt

1−Gt
| η(αt−1 − αt)G0, η(1− αt−1G0)

)
. (6)

Following previous work (Austin et al., 2021; Haefeli et al., 2022; Vignac et al., 2023; Zhou et al.,
2023), we construct the reverse diffusion process through the definition of ancestral sampling
distribution as following:

pθ(Gt−1 | Gt) := q(Gt−1 | Gt, Ĝθ(Gt, t)), (7)

where Ĝθ(Gt, t) is a neural network that predicts the conditional expectation of G0 given Gt.
Following Vignac et al. (2023), we instantiate Ĝθ(Gt, t) as a graph transformer network (Dwivedi &
Bresson, 2020). We present the complete sampling process in Appendix C.1.
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2.2 TRAINING GBD

The overall training procedure of GBD is described in Section C.1 of the Appendix. We employ the
objective function proposed by beta diffusion (Zhou et al., 2023), specifically,

L =

T∑
t=2

(1− ω)Lsampling(t,G0) + ω Lcorrection(t,Gt), ω ∈ [0, 1]. (8)

In Equation 8, the loss terms associated with sampling and correction are defined as

Lsampling(t,G0)
∆
= Eq(Gt,G0) KL (pθ(Gt−1 | Gt) ∥ q(Gt−1 | Gt,G0)) , (9)

Lcorrection(t,G0)
∆
= Eq(Gt,G0) KL

(
q(Gτ | Ĝθ(Gt, t)) ∥ q(Gτ | G0)

)
. (10)

In Equation 10, the KL divergence is evaluated between the following distributions: q(Gτ |
Ĝθ(Gt, t)) is Beta(ηαtĜθ(Gt, t), η(1−αtĜθ(Gt, t))), and q(Gτ | G0) is the same as q(Gt | G0)
in distribution. The subscript τ is introduced to represent a generic graph sample other than Gt

that is also obtained at time t from the forward diffusion process. The core principle behind the
loss function terms can be described as follows: Lsampling drives the empirical ancestral sampling
distribution towards the destination-conditional posterior distribution, while Lcorrection corrects the
bias on marginal distribution at each time stamp accumulated through the ancestral sampling. These
two types of loss terms collectively reduce the divergence between the empirical joint distribution
on two graphs sampled from adjacent time stamps in the reverse process, and their joint distribution
derived from the forward diffusion process. A positive weight ω is introduced to balance the effects
of these two types of loss terms. We set it to 0.01, following Zhou et al. (2023), and found that
this configuration is sufficient to produce graphs that closely resemble the reference graphs without
further tuning. To better elucidate the optimization objective, we list out the analytical expressions of
the KL divergence term in Appendix A.

It is demonstrated in Zhou et al. (2023) that the KL divergence between two beta distributions
can be expressed in the format of a Bregman divergence. Namely, considering a convex function
ϕ(α, β)

∆
= lnBeta(α, β), where Beta(α, β) = Γ(α)Γ(β)

Γ(α+β) is the beta function, the loss term Lsampling

can be expressed as

Lsampling(t,G0) = Eq(Gt)Eq(G0|Gt)dϕ
(
[asampling,bsampling], [a

∗
sampling,b

∗
sampling]

)
,

asampling = η(αt−1 − αt)G0, bsampling = η(1− αt−1G0),

a∗sampling = η(αt−1 − αt)Ĝ0, b
∗
sampling = η(1− αt−1Ĝ0).

(11)

Likewise, we can express the correction loss term Lcorrection as

Lcorrection(t,G0) = Eq(Gt
)Eq(G0|Gt)dϕ ([acorrection,bcorrection], [a

∗
correction,b

∗
correction]) ,

acorrection = ηαtG0, bcorrection = η(1− αtG0),

a∗correction = ηαtĜ0, b
∗
correction = η(1− αtĜ0).

(12)

Here we reference the dϕ notation of Banerjee et al. (2005) to represent the Bregman divergence. As
stated in Lemmas 3-5 of Zhou et al. (2023), one can apply Proposition 1 of Banerjee et al. (2005) to
show that both Lsampling and Lcorrection yield the same unbiased optimal solution that legitimates
the usage of Ĝ0 in the reverse diffusion process.

Property 1 Both Lsampling and Lcorrection are uniquely minimized at

Ĝ0 = Ĝθ(Gt, t) = Eq(G0 |Gt)[G0].

2.3 EXPLORING THE DESIGN SPACE OF GBD

Many diffusion-based graph generative models offer great flexibility with technical adjustment to
enhance their practical performances. Here we list four impactful dimensions among the design space
of GBD. Namely, data transformation, concentration modulation, logit-domain computation, and
neural-network precondition. We elaborate each design dimension below and discuss our choices in
these aspects in the Appendix.
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Data transformation. We convert the raw data (A,X) to G0 through linear transformations, i.e.,

G0 = (A0,X0), where A0 = wA ·A+ bA, X0 = wX ·X+ bX , (13)

with the constraints that min(wA, bA, wX , bX) > 0 and max(wA + bA, wX + bX) ≤ 1. This
operation not only ensure that all data values fall within the positive support of beta distributions,
avoiding gradient explosion when optimizing the loss function, but also provide an effective means to
adjust the rate at which diffusion trajectories mix. A forward diffusion trajectory reaches a state of
“mix” when it becomes indistinguishable to discern the initial value from its counterfactual given the
current value. A suitable mixing rate ensures that the signal-to-noise ratio (SNR) of the final state in
the forward diffusion process approaches zero, meeting the prerequisite for learning reverse diffusion
while preserving the learnability of graph structural patterns. The scaling parameter provides a macro
control for the mixing rate, with a smaller value contracting the data range and promoting the arrival
of the mixing state.

Concentration modulation. Another hyperparameter that offers a more refined adjustment to the
mixing rate is the concentration parameter η. Higher values of η reduce the variance of the fractional
multipliers Pt sampled from their corresponding beta distributions, thus delaying the arrival of the
mixing state. Leveraging this property, we have devised a simple yet effective modulation strategy to
differentiate the mixing times across various graph substructures.

Specifically, we assign higher η values to “important positions” within a graph, such as edges
connecting high-centrality nodes or edges deemed significant based on domain knowledge, such
as the carbon-carbon bond in chemical molecules. For instance, when modulating η from degree
centrality, the exact operation executed upon the η values for edge (u, v) and for the features of node
u can be mathematically expressed as

ηu,v = gA(max(deg(u),deg(v))), ηu = gX(deg(u)). (14)

Here we first prepare several levels of η values, then utilize two assignment functions, namely gA(·)
and gX(·), to map the node degrees (or their percentile in the degree population within one graph)
to one of the choices of the η values. We have observed that this operation indeed prolongs the
presence of these substructures during the forward diffusion process, which in turn leads to their
earlier emergence compared to the rest of the graph during the reverse process. Additionally, we
provide an alternate definition of “importance positions” using betweenness centrality Freeman
(1977), detailed in Appendix C.2, and also ablate its effects in Section 4.3.

We visualize the reverse process from two perspectives in Figure 2. We first obtain the ηu,v by
degrees retrieved from the training set before sampling and then generate graph through reverse beta
diffusion. From the top row, we observe that edges linked to nodes with higher degrees (indicated by
brighter colors) appear first, followed by other edges. From the bottom row, it is evident that edges
connected to the first five nodes, which have higher degrees, are identified first and then progressively
in descending order of degree. Notably, the nodes of the adjacency matrices in the bottom row are
reordered by decreasing node degree of the final graph. Additionally, we can also find the predicted
graph of GBD converges in an early stage to the correct topology. We attribute the enhanced quality
of generated graphs to the early emergence of these “important substructures,” which likely improves
the reliability of generating realistic graph structures. Furthermore, this approach is particularly
appealing as it allows for the flexible integration of graph inductive biases within the diffusion model
framework.

Logit domain computation. Another noteworthy designing direction lies in the computation
domain. Although the reverse sampling process directly implemented from Equation 5 is already
effective to generate realistic graph data, we observe that migrating the computation to the logit space
further enhances model performance and accelerates training convergence. One potential explanation
is that the logit transformation amplifies the structural patterns of the graph when all edge weights
are very close to zero at the beginning of the ancestral sampling process. Equivalent to Equation 5,
the logit-domain computation can be expressed as

logit(Gt−1) = ln
(
elogit(Gt) + elogit(Pt) + elogit(Gt)+logit(Pt)

)
. (15)

Neural-network precondition. Finally, we employ the neural-network precondition technique
(Karras et al., 2022) and customize it for training GBD, which involves standardizing Gt before
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passing them to the prediction network Ĝθ(·). In other words, we modify Equation 7 as

pθ(Gt−1 | Gt) := q(Gt−1 | Gt, Ĝθ(G̃t, t)), G̃t =
Gt − E[gt]√

Var[gt]
or

logit(Gt)− E[logit(gt)]√
Var[logit(gt)]

. (16)

To illustrate the application of neural-network preconditioning, we present an example of training
GBD to generate graphs G = (A,X). For simplicity, we assume the predictor operates in the
original domain, with corresponding results for cases involving logit domain computations provided
in Appendix B. We make following statistical assumptions regarding the marginal distribution of a0
and x0, the elements within the graph adjacency matrices and node feature matrices after the data
transformation step: a0 follows a categorical distribution with potential outcomes amin, amax, where
the probability of a0 = amax is p, and x0 follows a uniform distribution over the support [xmin, xmax].
Given that gt | g0 ∼ Beta(ηαtg0, η(1− αtg0)), and by applying the law of total expectation and the
law of total variance, one can derive that

E[at] = αt (p · amax + (1− p) · amin) ,

Var[at] =
1

ηA + 1

(
E[at]− E[at]2

)
+

ηA
ηA + 1

(
α2
t (p(1− p))(amax − amin)

2) , (17)

E[xt] =
1

2
αt(xmin + xmax),

Var[xt] =
1

ηX + 1

(
E[xt]− E[xt]2

)
+

ηX
12(ηX + 1)

(
α2
t (xmax − xmin)

2) . (18)

Using these computed quantities, we complete the neural-network preconditioning by standardizing
Gt into G̃t = (Ãt, X̃t), where the adjacency matrix is transformed as Ãt = (At−E[at])/

√
Var[at]

and the node feature matrix as X̃t = (Xt−E[xt])/
√

Var[xt]. The standardized graph G̃t is then used
as input to the predictor network. The derivation of Equations 17 and 18 is in Appendix B. While
neural-network preconditioning is generally effective for stabilizing model training, we empirically
find it to be particularly beneficial when training the GBD with the predictor defined in the logit
space, where increased variability is introduced.

3 RELATED WORK

Graph generative models. Early attempts at modeling graph distributions trace back to the Erdős–
Rényi graph model (ERDdS & R&wi, 1959; Erdős et al., 1960), from which a plethora of graph
generative models have emerged. These models employ diverse approaches to establish the data
generative process and devise optimization objectives, which in turn have significantly expanded
the flexibility in modeling the distribution of graph data. Stochastic blockmodels (Holland et al.,
1983; Lee & Wilkinson, 2019), latent variable models (Airoldi et al., 2009; Zhou, 2015; Caron &
Fox, 2017), and their variational-autoencoder-based successors (Kipf & Welling, 2016; Hasanzadeh
et al., 2019; Mehta et al., 2019; He et al., 2022) assume that edges are formed through independent
pairwise node interactions, and thus factorize the probability of the graph adjacency matrix into the
dot product of factor representations of nodes. Sequential models (You et al., 2018; Wang et al., 2018;
Jin et al., 2018; Han et al., 2023) adopt a similar concept of node interactions but correlate these
interactions by organizing them into a series of connection events. Additionally, some models treat
the graph adjacency matrix as a parameterized random matrix and generate it by mapping a random
vector through a feed-forward neural network (Simonovsky & Komodakis, 2018; De Cao & Kipf,
2018). In terms of optimization targets, many utilize log-likelihood-based objectives such as negative
log-likelihood (Liu et al., 2019) or evidence lower bound objectives (Kipf & Welling, 2016), while
others employ generative adversarial losses (Wang et al., 2018) or reinforcement learning losses
(De Cao & Kipf, 2018). Diffusion-based graph generative models (Jo et al., 2022; Haefeli et al.,
2022; Vignac et al., 2023; Niu et al., 2020b;a; Chen et al., 2023; Cho et al., 2023; Kong et al., 2023),
including this work, feature a unique data generation process compared to previous models. They
map the observed graph structures and node features to a latent space through a stochastic diffusion
process, whose reverse process can be learned by optimizing a variational lower bound (Vignac et al.,
2023) or numerically solving a reverse stochastic differential equation (Jo et al., 2022).

Diffusion models. The stochastic diffusion process is introduced by Sohl-Dickstein et al. (2015)
for deep unsupervised learning, and its foundational connection with deep generative models is laid
down by denoising diffusion probabilistic model (DDPM) (Ho et al., 2020). DDPM maps a data
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Planar SBM

QM9 ZINC250k

Figure 3: Examples of graphs generated by the GBD model on Planar, SBM, QM9, and ZINC250k datasets.

sample to the latent space via a Markov process that gradually applies noise to the original sample,
and learns a reverse process to reproduce the sample in finite steps. The optimization and sampling
processes in DDPM can be interpreted through the lens of variational inference (Sohl-Dickstein et al.,
2015; Ho et al., 2020) or can be formulated as score matching with Langevin dynamics (Song et al.,
2021; Song & Ermon, 2019). Both approaches are focused on diffusion processes that define the
transition between normally distributed variables, which are proven effective for generating natural
images. As the scope of generative tasks expands to discrete domains like text, diffusion models
transitioning between discrete states emerge (Austin et al., 2021), which demonstrates that the choice
of probabilistic distribution for modeling each noise state could significantly impact the learning task.
This conclusion is also validated in the application of graph generation (Haefeli et al., 2022; Vignac
et al., 2023). Further studies (Chen & Zhou, 2023; Zhou et al., 2023) are conducted to improve
diffusion models by introducing novel diffusion processes based on probabilistic distributions that
better capture the intrinsic characteristics of the generation target. Among these, the beta diffusion
of Zhou et al. (2023) is chosen as the foundation of our method, due to the beta distribution’s
proficiency in capturing sparsity and modeling range-bounded data across mixed types. These traits
are commonly observed in real-world graphs (Barabási et al., 2000; Ciotti et al., 2015; Liang et al.,
2023; Wang et al., 2023).

4 EXPERIMENTS

4.1 GENERIC GRAPH GENERATION

Datasets and metrics. We use five graph datasets with varying sizes, connectivity, and topology,
commonly employed as benchmarks. Ego-small includes 200 sub-graphs from the Citeseer
network with 4 ≤ N ≤ 18 nodes. Community-small has 100 synthetic graphs with 12 ≤ N ≤
20. Grid contains 100 2D grid graphs with 100 ≤ N ≤ 400. Planar includes 200 synthetic planar
graphs with N = 64. SBM comprises 200 stochastic block model graphs with 2–5 communities,
where 44 ≤ N ≤ 187 and each community has 20–40 nodes.

For a fair comparison, we follow the experimental setup of Jo et al. (2022; 2023), using the same
train/test split. We evaluate using maximum mean discrepancy (MMD) (Gretton et al., 2012) to
compare the distributions of key graph properties between test graphs and generated graphs: degree
(Deg.), clustering coefficient (Clus.) and 4-node orbit counts (Orbit). For more complex structures
like Planar and SBM, we also report the eigenvalues of the graph Laplacian (Spec.) and the
percentage of valid, unique, and novel graphs (V.U.N.) to assess how well the model captures both
intrinsic features and global graph properties. A lower score indicates better performance for all
metrics except V.U.N. More details on these metrics can be found in Appendix D.1.

Baselines. We compare GBD against various graph generation methods, including autoregressive
models: DeepGMG (Li et al., 2018), GraphRNN (You et al., 2018), and GraphAF (Shi et al.,
2020); one-shot model: GraphVAE (Simonovsky & Komodakis, 2018); and flow-based models:
GNF (Liu et al., 2019) and GraphDF (Luo et al., 2021). Additionally, we compare against state-
of-the-art (SOTA) diffusion-based graph generative models, including score-based or continuous:
EDP-GNN (Niu et al., 2020a), GDSS, GDSS + Transofrmer (TF) (Jo et al., 2022), GruM (Jo et al.,
2023) and ConGress (Vignac et al., 2023); discrete: DiGress (Vignac et al., 2023); autoregressive:
GraphARM (Kong et al., 2023); and a model with wavelet features: Wave-GD (Cho et al., 2023).
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Table 1: MMD results for simple generic graph generation.

Ego-small Community-small Grid

Method Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit.

DeepGMG 0.040 0.100 0.020 0.220 0.950 0.400 - - -
GraphRNN 0.090 0.220 0.003 0.080 0.120 0.040 0.064 0.043 0.021
GraphAF 0.030 0.110 0.001 0.180 0.200 0.020 - - -
GraphDF 0.040 0.130 0.010 0.060 0.120 0.030 - - -

GraphVAE 0.130 0.170 0.050 0.350 0.980 0.540 1.619 0.0 0.919
GNF 0.030 0.100 0.001 0.200 0.200 0.110 - - -
EDP-GNN 0.052 0.093 0.007 0.053 0.144 0.026 0.455 0.238 0.328
GDSS 0.021 0.024 0.007 0.045 0.086 0.007 0.111 0.005 0.070
ConGress∗ 0.037 0.064 0.017 0.020 0.076 0.006 - - -
DiGress 0.017 0.021 0.010 0.028 0.115 0.009 - - -
GraphARM 0.019 0.017 0.010 0.034 0.082 0.004 - - -
Wave-GD 0.012 0.010 0.005 0.007 0.058 0.002 0.144 0.004 0.021

GBD 0.011 0.014 0.002 0.002 0.060 0.002 0.045 0.011 0.040
(±0.008) (±0.013) (±0.004) (±0.003) (±0.004) (±0.003) (±0.004) (±0.002) (±0.014)

Table 2: MMD results for complex generic graph generation.

Planar SBM

Method Deg. Clus. Orbit. Spec. V.U.N. Deg. Clus. Orbit. Spec. V.U.N.

Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0

GraphRNN 0.0049 0.2779 1.2543 0.0459 0.0 0.0055 0.0584 0.0785 0.0065 5.0
GRAN 0.0007 0.0426 0.0009 0.0075 0.0 0.0113 0.0553 0.0540 0.0054 25.0
SPECTRE 0.0005 0.0785 0.0012 0.0112 25.0 0.0015 0.0521 0.0412 0.0056 52.5

EDP-GNN 0.0044 0.3187 1.4986 0.0813 0.0 0.0011 0.0552 0.0520 0.0070 35.0
GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0
GDSS+TF 0.0036 0.1206 0.0525 0.0137 5.0 0.0411 0.0565 0.0706 0.0074 27.5
ConGress 0.0048 0.2728 1.2950 0.0418 0.0 0.0273 0.1029 0.1148 - 0.0
DiGress 0.0003 0.0372 0.0009 0.0106 75. 0.0013 0.0498 0.0434 0.0400 74.0
GruM 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0
GBD 0.0003 0.0353 0.0135 0.0059 92.5 0.0013 0.0493 0.0446 0.0047 75.0

Generating graphs with simple topology Using the GBD theoretical model and the implementa-
tion detailed in Appendix D.1, we show that GBD excels at generating graphs with moderate size
and simple topological patterns, as evidenced by the MMD metrics in Table 1. GBD outperforms the
baselines in five out of nine experiments and remains statistically on par with the SOTA model in
the other two. Even with larger graphs (e.g., the Grid benchmark), GBD achieved a degree MMD
of 0.045, significantly surpassing all baselines, as well as maintaining competitive performance on
other metrics. Moreover, previous works (Cho et al., 2023; Jo et al., 2022; Liu et al., 2019) suggested
that the MMDs as a metric suffers from large standard deviations due to the insufficient size of
the sampled graphs. Thus, to gain a comprehensive study, we repeated the evaluation using an
enlarged generated sample of 1024 graphs. As shown in Appendix E.2, the results demonstrate that
GBD consistently generates graphs that resembles true data, with improved statistical significance in
experimental conclusions.

Generating graphs with complex topology GBD also maintains a leading position in generating
large graphs with complex topologies, as shown by the results in Table 2. In the experiments on
the Planar and SBM datasets, GBD achieved superior or comparable MMD scores on most graph
statistics, along with high V.U.N. scores, consistently ranking first or second among all baselines.
These results provide stronger evidence of GBD’s capability and suitability as a candidate model for
generating graph data, particularly for applications where real-world instances are typically more
complex in nature.

Rapid convergence in the reverse process. We conducted a convergence experiment measuring
the V.U.N. metric for graphs Gt generated at every 100 steps on the reverse chain, with the results
shown in Figure 4. The figure highlights that GBD achieves high V.U.N. score at early timestamps on
the reverse diffusion process, reflecting rapid convergence. Notably, both GBD and the second-place
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Figure 4: V.U.N. results for intermediate graph samples in the reverse chain on Planar (left) and SBM (right)
datasets, with GBD demonstrating clear advantage in convergence rate.

Table 3: 2D molecule generation results

QM9 (|N| ≤ 9) ZINC250K (|N| ≤ 38)

Method Valid (%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑ Valid(%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑
MoFlow 91.36 4.467 0.0169 0.1447 63.11 20.931 0.0455 0.0133
GraphAF 74.43 5.625 0.0207 0.3046 68.47 16.023 0.0442 0.0672
GraphDF 93.88 10.928 0.0636 0.0978 90.61 33.546 0.1770 0.0000
EDP-GNN 47.52 2.680 0.0046 0.3270 82.97 16.737 0.0485 0.0000
GDSS 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
GDSS+TF 99.68 0.737 0.0024 0.9129 96.04 5.556 0.0326 0.3205
DiGress 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163
SwinGNN 99.71 0.125 0.0003 - 81.72 5.920 0.006 -
GraphARM 90.25 1.22 0.0020 - 88.23 16.26 0.055 -
EDGE 99.10 0.458 - 0.763 - - - -
GruM 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299
GBD 99.88 0.093 0.0002 0.9510 97.87 2.248 0.0018 0.5042

model, GruM (Jo et al., 2023), share a key property of predicting E[G0 | Gt]. While GruM achieves
it through designing the model upon an OU bridge mixture (Jo et al., 2023), our model attain the
same property due to the inherent nature of Beta diffusion.

4.2 MOLECULE GENERATION

Datasets and Metrics We consider two widely-used molecule datasets as benchmarks in Jo et al.
(2022): QM9 (Ramakrishnan et al., 2014), which consists of 133,885 molecules with N ≤ 9 nodes
from 4 different node types, and ZINC250k (Irwin et al., 2012), which consists of 249,455 molecules
with N ≤ 38 nodes from 9 different node types. Molecules in both datasets have 3 edge types,
namely single bond, double bond, and triple bond.

Following the evaluation setting of Jo et al. (2022), we generated 10,000 molecules for each dataset
and evaluated them with four metrics: the ratio of valid molecules without correction (Val.), Fréchet
ChemNet Distance (FCD), Neighborhood subgraph pairwise distance kernel NSPDK, and Scaffold
similarity (Scaf.). We provide the results of uniqueness and novelty in Appendix D.2.

Baselines We compare GBD against the following autoregressive and one-shot graph generation
methods: MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021),
and several state-of-the-art diffusion-based graph generative models discussed previously: EDP-
GNN (Niu et al., 2020a), GDSS (Jo et al., 2022) and ConGress (Vignac et al., 2023), DiGress (Vignac
et al., 2023), SwinGNN (Niu et al., 2020b), GraphARM (Kong et al., 2023), EDGE (Chen et al.,
2023), and GruM (Jo et al., 2023). We describe the details of the implementation in Appendix D.2.

Results As shown in Table 3, we observe that our GBD outperforms most previous diffusion-based
models and is competitive with the current state-of-the-art Gaussian-based diffusion model, GruM.
In particular, compared to the basic continuous diffusion model, GBD significantly outperforms
it (GDSS+TF) under the same GraphTransformer architecture. Additionally, we observe that our
proposed beta-based graph diffusion model is superior to the discrete diffusion model on both 2D
molecule datasets, demonstrating that our method is also capable of modeling complex structures of
attributed graphs. We attribute this to the excellent modeling ability of the beta-based graph diffusion
model for sparse data distributions.
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4.3 ADDITIONAL EXPERIMENTAL RESULTS

Ablation study on precondition and computation domain. We vary the options regarding the
computation domain and the application of preconditioning, and summarize the results in Table 4.
The combination of adopting logit domain computation without using preconditioning can sometimes
increase the challenge in model convergence, and therefore, it is not recommended. The listed
results on Ego-small and Community-small demonstrate that both techniques are in general
beneficial for achieving better model performance, and the effect of preconditioning is more evident
when the computation is perfomed in the logit domain.

Table 4: The effect of logit domain computation and preconditioning

Ego-small Community-small

Logit Domain Preconditioning Deg. Clus. Orbit. Deg. Clus. Orbit.

- - 0.015 0.018 0.004 0.010 0.076 0.004
- ✓ 0.013 0.017 0.002 0.004 0.044 0.007
✓ ✓ 0.011 0.014 0.002 0.002 0.060 0.002

Ablation study on concentration modulation. To verify that effect of concentration modulation,
we compared the results of GBD under different concentration modulation strategies on both the
general graph and the molecule graph. As shown in Table 5, assigning the appropriate eta through
optional concentration modulation strategies helps GBD model various types of graphs, and this
technique has the potential for further modification according to varying scenarios.

Table 5: The effect of concentration modulation on generic graph and molecule graph.

Planar SBM

Modulation Strategy Deg. Clus. Orbit. Spec. V.U.N. Deg. Clus. Orbit. Spec. V.U.N.

w/o modulation 0.0005 0.0357 0.0294 0.0069 87.5 0.0015 0.0493 0.0452 0.0051 72.5
Betweenness Centrality 0.0003 0.0354 0.0154 0.0057 90.0 0.0015 0.0492 0.0450 0.0053 70.0

Degree Centrality 0.0003 0.0353 0.0135 0.0059 92.5 0.0013 0.0493 0.0446 0.0047 75.0

QM9 ZINC250K

Modulation Strategy Valid(%) ↑ FCD ↓ NSPDK ↓ Spec. ↓ Valid(%) ↑ FCD ↓ NSPDK ↓ Spec. ↓
w/o modulation 99.73 0.126 0.0003 0.9475 97.60 2.412 0.0020 0.5033
Carbon Bonds 99.88 0.093 0.0002 0.9510 97.87 2.248 0.0018 0.5042

Comparison on various node feature initialization. To demonstrate that GBD has the potential to
model graphs with various types of node features, we explored the impact of different initialization of
node features on modeling the joint distribution G = (A,X). Specifically, the node representation
can be featured by Degree, Centrailities, and Eigenvectors and we vary the node feature initialization
and summarize the results of model performance, as detailed in Appendix E.2.

4.4 VISUALIZATION

We present samples from GBD trained on planar, SBM, QM9 and ZINC250k in Figure 3. Addi-
tionally, we provide visualization of the generative process and more generated graphs of GBD, along
with a comprehensive description in Appendix F.

5 CONCLUSION

We introduce graph beta diffusion (GBD), a novel graph generation framework developed upon
beta diffusion. We demonstrate that the utilization of beta distribution to define the diffusion
process is beneficial for modeling the distribution of graph data, and outline four crucial designing
elements—data transformation, concentration modulation, logit-domain computation, and neural-
network precondition—that consistently enhance model performance. Through extensive experiments,
GBD demonstrated superior performance across various graph benchmarks, showcasing its ability to
model diverse patterns within graph data. Moreover, our proposed model shows promise in modeling
various types of data with discrete structures and offers valuable insights into further exploring the
properties of beta diffusion.
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REPRODUCIBILITY STATEMENT

We provide the source code as part of the supplementary material for reproducibility validation. The
implementation follows the training and sampling algorithms described in Appendix C.1 and other
technical details outlined in Appendix C.
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A ANALYTICAL EXPRESSIONS OF OPTIMIZATION OBJECTIVE

Recall that the optimization function is expressed as

L =

T∑
t=2

(1− ω)Lsampling(t,G0) + ω Lcorrection(t,Gt), ω ∈ [0, 1], (19)

with the components defined as follows:

Lsampling(t,G0)
∆
= Eq(Gt,G0) KL (pθ(Gt−1 | Gt) ∥ q(Gt−1 | Gt,G0)) , (20)

Lcorrection(t,G0)
∆
= Eq(Gt,G0) KL

(
q(Gτ | Ĝθ(Gt, t)) ∥ q(Gτ | G0)

)
. (21)

To derive the analytical form of Lsampling and Lcorrection, we employ the following property of beta
distribution (Joo et al., 2020; Zhou et al., 2023):

Property 2 The KL divergence between two Beta distributions Beta(α1, β1) and Beta(α2, β2) is
given by:

KL (Beta(α1, β1) ∥ Beta(α2, β2))

= ln
B(α2, β2)

B(α1, β1)
+ (α1 − α2) [ψ(α1)− ψ(α1 + β1)] + (β1 − β2) [ψ(β1)− ψ(α1 + β1)] , (22)

where B(α, β)
∆
= Γ(α)Γ(β)

Γ(α+β) is the Beta function, ψ(·) denotes the digamma function.

With probability distributions q(Gt−1 | Gt,G0) and pθ(Gt−1 | Gt) defined in Equations 6 and 7,
the parameters (αp, βp, αq, βq) are instantiated as follows:

α1 = η(αt−1 − αt)Ĝ0, β1 = η(1− αt−1Ĝ0),

α2 = η(αt−1 − αt)G0, β2 = η(1− αt−1G0).

Substituting these into Equation 22, we can express the KL term within Lsampling as

KL (pθ(Gt−1 | Gt) ∥ q(Gt−1 | Gt,G0))

= lnΓ(η(αt−1 − αt)G0) + lnΓ(η − ηαt−1G0)− ln Γ(η − ηαtG0)

− ln Γ(η(αt−1 − αt)Ĝ0)− ln Γ(η − ηαt−1Ĝ0) + lnΓ(η − ηαtĜ0)

+ η(αt−1 − αt)(Ĝ0 −G0) · ψ(η(αt−1 − αt)Ĝ0) (23)

+ ηαt−1(G0 − Ĝ0) · ψ(η − ηαt−1Ĝ0)

+ ηαt(Ĝ0 −G0) · ψ(η − ηαtĜ0),

where Ĝ0 := Ĝθ(Gt, t).

Similarly, the KL term within Lcorrection can be derived as

KL
(
q(Gτ | Ĝθ(Gt, t)) ∥ q(Gτ | G0)

)
= lnΓ(ηαtG0) + lnΓ(η − ηαtG0)− ln Γ(ηαtĜ0)− ln Γ(η − ηαtĜ0) (24)

+ ηαt(Ĝ0 −G0) ·
(
ψ(ηαtĜ0)− ψ(η − ηαtĜ0)

)
.

B MATHEMATICAL EXPRESSIONS FOR ELEMENTS IN NEURAL-NETWORK
PRECONDITIONING

In this section, we present the full derivation of the expressions for the mean and variance of at and
xt as shown in Equations 17 and 18, and extend these conclusions to logit(at) and logit(xt). To
establish these results, we begin by introducing the following property of the beta distribution:
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Property 3 Given that gt | g0 ∼ Beta(ηαtg0, η(1 − αtg0)), one can derive that E[gt | g0] = αtg0
and Var[gt | g0] = αtg0(1−αtg0)

η+1 . Let µ := E[g0] and σ2 := Var[g0]. By applying the law of total
expectation and the law of total variance, we obtain the following results:

E[gt] = αtµ, Var[gt] =
αtµ− α2

t (µ
2 + σ2)

η + 1
+ α2

tσ
2. (25)

Their counterparts in the logit domain are expressed as
E[logit(gt)] = E[ψ(ηαtg0)]− E[ψ(η − ηαtg0)], (26)

Var[logit(gt)] = E[ψ(1)(ηαtg0)] + E[ψ(1)(η(1− αtg0))]

+ Var[ψ(ηαtg0)] + Var[ψ(η(1− αtg0))], (27)

with ψ(·) and ψ(1)(·) denoting digamma and trigamma functions.

In the example presented in Section 2.3, we assume that a0 follows a categorical distribution with
outcomes amin and amax, where the probability of P (a0 = amax) = p. This leads to the expected
value µ = p · amax + (1 − p) · amin and variance σ2 = p(1 − p)(amax − amin)

2. Taking these
quantities into Equation 25, we obtain

E[at] = αt (p · amax + (1− p) · amin) ,

Var[at] =
1

ηA + 1

(
E[at]− E[at]2

)
+

ηA
ηA + 1

(
α2
t (p(1− p))(amax − amin)

2
)
.

For node features, the assumption states that x0 is uniformly distributed over the interval [xmin, xmax].
This gives a mean of µ = (xmin+xmax)/2 and a variance of σ2 = (xmax−xmin)

2
/12, and the correspond-

ing mean and variance of xt can then be expressed as

E[xt] =
1

2
αt(xmin + xmax),

Var[xt] =
1

ηX + 1

(
E[xt]− E[xt]2

)
+

ηX
12(ηX + 1)

(
α2
t (xmax − xmin)

2
)
.

Under the same probabilistic assumptions for a0 and x0, we can derive the expressions for the terms
in Equations 26 and 27, presented in the following remarks:

Remark 1 Given that a0 has two potential outcomes {amin, amax} with P (a0 = amax) = p, the
computation of E[logit(gt)] and Var[logit(gt)] involves several key components, including:

E[ψ(ηαta0)] = p · ψ(ηαtamax) + (1− p) · ψ(ηαtamin),

E[ψ(η − ηαta0)] = p · ψ(η − ηαtamax) + (1− p) · ψ(η − ηαtamin),

Var[ψ(ηαta0)] = p(1− p) (ψ(ηαtamax)− ψ(ηαtamin))
2 ,

Var[ψ(η − ηαta0)] = p(1− p) (ψ(η − ηαtamax)− ψ(η − ηαtamin))
2 ,

E[ψ(1)(ηαta0)] = p · ψ(1)(ηαtamax) + (1− p) · ψ(1)(ηαtamin),

E[ψ(1)(η − ηαta0)] = p · ψ(1)(η − ηαtamax) + (1− p) · ψ(1)(η − ηαtamin). (28)

Remark 2 Let x0 be uniformly distributed as Unif[xmin, xmax]. We denote K as the number of
sub-intervals used for numerical integration via the Trapezoidal rule. Similar to Remark 1, we present
the expressions for the components in the logit domain as follows:

E[ψ(ηαtx0)] =
1

ηαt(xmax − xmin)
(ln Γ(ηαtxmax)− ln Γ(ηαtxmin)) ,

E[ψ(η − ηαtx0)] =
1

ηαt(xmax − xmin)
(ln Γ(η − ηαtxmin)− ln Γ(η − ηαtxmax)) ,

Var[ψ(ηαtx0)] ≈ max

(
1

K

K∑
i=0

ψ2
(
ηαt

(
xmin + i

K
(xmax − xmin)

))
2δ(i=0)+δ(i=K)

− E[ψ(ηαtx0)]
2, 0

)
,

Var[ψ(η − ηαtx0)] ≈ max

(
1

K

K∑
i=0

ψ2
(
η − ηαt

(
xmin + i

K
(xmax − xmin)

))
2δ(i=0)+δ(i=K)

− E[ψ(η − ηαtx0)]
2, 0

)
,

E[ψ(1)(ηαtx0)] =
1

ηαt(xmax − xmin)
(ψ(ηαtxmax)− ψ(ηαtxmin)) ,

E[ψ(1)(η − ηαtx0)] =
1

ηαt(xmax − xmin)
(ψ(η − ηαtxmin)− ψ(η − ηαtxmax)) . (29)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C DETAILS OF GBD

C.1 TRAINING AND SAMPLING

We provide the pseudo-code of the training and sampling of our generative framework within original
domain and logit domain, respectively. Specifically, Algorithm 3 and Algorithm 1 show the procedure
of training and sampling in original domain, respectively. In practice, we migrate our proposed GBD
to logit domain shown in Algorithm 4 and Algorithm 2 in most cases.

Algorithm 1 Sampling, in original domain.
Require: Number of time steps T = 1000, de-

fault concentration parameter η = 30, predic-
tor Ĝθ .

1: (Optional) Assign value to η via Equation 32
2: Sample GT = (AT ,XT ) ∼ p(AT ,XT )
3: for t = T to 1 do
4: Gin = Gt−E[Gt]√

Var[Gt]

5: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

6: Â0 ← wA · Â′
0 + bA

7: X̂0 ← wX · X̂′
0 + bX

8: Ĝ0 ← (Â0, X̂0)

9: Pt ∼ Beta(η(αt−1 − αt)Ĝ0, η(1 −
αt−1Ĝ0))

10: Gt−1 ← Gt +Pt ⊙ (1−Gt)
11: end for
12: return (A0 − bA)/wA and (X0 − bX)/wX

Algorithm 2 Sampling, in logit domain

1: Sample logit(GT ) ∼ p(logit(AT ), logit(XT ))
2: for t = 1 to 1 do
3: Gin = logit(Gt)−E[logit(Gt)]√

Var[logit(Gt)]

4: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

5: Â0 ← wA · Â′
0 + bA

6: X̂0 ← wX · X̂′
0 + bX

7: Ĝ0 ← (Â0, X̂0)

8: Ut ∼ Gamma(η(αt−1 − αt)Ĝ0, 1)

9: Vt ∼ Gamma(η(1− αt−1Ĝ0), 1)
10: logit(Pt)← lnUt − lnVt

11: Obtain logit(Gt−1) from Equation 15
12: end for
13: G0 ← sigmoid (logit(G0))
14: return (A0 − bA)/wA and (X0 − bX)/wX

Algorithm 3 Training, in original domain.
Require: Number of timesteps T = 1000, de-

fault concentration parameter η = 30, pre-
dictor Ĝθ , default node influence factor γ =
0.5, input graph batch B = {G(k) =

(A(k),X(k))}[K], default learning rate λ =
0.002, optimization steps M .

1: (Optional) Assign value to η via Equation 32
2: for step = 1 to M do
3: Initialize LX and LA with 0
4: for k = 1 to K do
5: t ∼ Unif(1, ..., T )
6: αt, αt−1 ←

schedule(t), schedule(t− 1)

7: A0 ← wA ·A(k) + bA
8: X0 ← wX ·X(k) + bX
9: G0 ← (A0,X0)

10: Gt ∼ Beta(ηαtG0, η(1− αtG0))

11: Gin ← Gt−E[Gt]√
Var[Gt]

12: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

13: Â0 = wA · Â′
0 + bA

14: X̂0 = wX · X̂′
0 + bX

15: LA ← LA +L(A0, Â0, η, αt, αt−1)

16: LX ← LX+L(X0, X̂0, η, αt, αt−1)
17: end for
18: θ ← θ − λ

K
∇θ(LA + γLX)

19: end for

Algorithm 4 Training, in logit domain.
Require: Number of timesteps T , concentration pa-

rameter η, predictor Ĝθ , node influence factor γ,
input graph batch B, learning rate λ, optimization
steps M . Same default values with Algorithm 3.

1: for step = 1 to M do
2: Initialize LX and LA with 0
3: for k = 1 to K do
4: t ∼ Unif(1, ..., T )
5: αt, αt−1 ← schedule(t), schedule(t −

1)

6: A0 ← wA ·A(k) + bA
7: X0 ← wX ·X(k) + bX
8: G0 ← (A0,X0)
9: Ut ∼ Gamma(ηαtG0, 1)

10: Vt ∼ Gamma(η(1− αtG0), 1)
11: logit(Gt)← lnUt − lnVt

12: Gin ← logit(Gt)−E[logit(Gt)]√
Var[logit(Gt)]

13: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

14: Â0 = wA · Â′
0 + bA

15: X̂0 = wX · X̂′
0 + bX

16: LA ← LA + L(A0, Â0, η, αt, αt−1)

17: LX ← LX + L(X0, X̂0, η, αt, αt−1)
18: end for
19: θ ← θ − λ

K
∇θ(LA + γLX)

20: end for
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C.2 DETAILS OF CONCENTRATION MODULATION

Here we elaborate the concentration modulation strategies mentioned in Section 2.3.

Concentration Modulation for general graph generation For general graph generation, we pro-
vide two strategies depending on node-level centralities, which are degree centrality and betweenness
centrality, respectively. For the degree centrality of the node u in an undirected graph, it can be
formulated as

Cd(u) = Cin(u) = Cout(u) = Deg(u) (30)

where Cin(u), Cout(u) and Deg(u) are denoted as the in-degree, out-degree, and total degree of the
node u. For the betweenness centrality of the node u in an undirected graph, it can be formulated as

Cb(u) =
∑

s ̸=t ̸=u

gst(u)

gst
(31)

where gst is the total number of shortest paths from node s to node t, gst(u) is the number of those
paths that pass through v. For large graphs, exact calculation of betweenness centrality can be
time-consuming, thus approximation algorithms using random sampling are often employed. In
practice, we utilize the library of NetworkX Hagberg et al. (2008) to implement this.

With these two metrics to measure the centrality of the nodes, which are denoted as C(u) in general,
the modulated η can be mathematically expressed as

ηu,v = gA(max(C(u),C(v))), ηu = gX(C(u)). (32)

where gA(·) and gX(·) are two assignment functions that map the node centrality to one of the
predefined η values.

Concentration Modulation for molecule graph generation For molecule graph generation, we
provide a straightforward strategy that regards the carbon atom as the most important node, as well as
the bonds connected to the carbon atoms as the important edge in a molecule graph. Specifically,
for various types of carbon-atom bond, we first rank the importance of bonds in the following order:
carbon-carbon bonds, carbon-nitrogen bonds, carbon-oxygen bonds, carbon-sulfur bonds, and so on.
Then we can assign predefined η on different nodes and edges depending on their "importance" in a
molecule graph.

C.3 MODEL ARCHITECHTURE

We leverage the graph transformer network introduced in Dwivedi & Bresson (2020); Vignac et al.
(2023) cross all graph generation tasks. Each graph transformer layer consists of a graph attention
module, as well as fully-connected layers and layer normalization. It employs self-attention module
to update node features, then uses FiLM layers (Perez et al., 2018) to incorporate edge features
and global features. Since the data we transformed falls within the range of [0, 1], we apply the
sigmoid function to the output of node features and adjacency matrices to model the one-hot encoded
representation of node and edge.

C.4 SCHEDULE OF DIFFUSION PROCESS IN GBD

Following Zhou et al. (2023), we employ a sigmoid diffusion schedule defined as αt = 1/(1 +

e−c0−(c1−c0)
t

) throughout all experiments, where c0 = 10 and c1 = −13

D EXPERIMENTAL DETAILS

D.1 GENERAL GRAPH GENERATION

Datasets We evaluated our model using three synthetic and real datasets of varying size and
connectivity, previously used as benchmarks in the literature (Cho et al., 2023; Jo et al., 2022):
Ego-small (Sen et al., 2008) consists of 200 small real sub-graphs from the Citeseer network
dataset with 4 ≤ N ≤ 18. Community-small consists of 100 randomly generated synthetic
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graphs with 12 ≤ N ≤ 20, where the graphs are constructed by two equal-sized communities, each
of which is generated by the Erdös–Rényi model (Erdős et al., 1960), with p = 0.7 and 0.05N inter-
community edges are added with uniform probability as in previous works (Jo et al., 2022; Niu et al.,
2020b). Grid consists of randomly generated 100 standard 2D grid graphs with 100 ≤ N ≤ 400
and the maximum number of edges per node is 4 since all nodes are arranged in a regular lattice.
Planar comprises 200 synthetic planar graphs, each containing N = 64. nodes. SBM includes 200
synthetic stochastic block model graphs, where the number of communities is randomly sampled
from 2 to 5, and the number of nodes in each community is randomly sampled from 20 to 40. The
probability of edges between communities is 0.3 and that of edges within communities is 0.05.

Evaluation metrics For a fair comparison, we follow the experimental and evaluation settings of
Jo et al. (2022; 2023), using the same train/test split, where 80% of the data is used as the training
set and the remaining 20% as the test set. We adopt maximum mean discrepancy (MMD) as our
evaluation metric to compare three graph property distributions between test graphs and the same
number of generated graphs: degree (Deg.), clustering coefficient (Clus.) and count of orbits with 4
nodes (Orbit). Note that we use the Gaussian Earth Mover’s Distance (EMD) kernel to compute the
MMDs following the method used in previous work (Jo et al., 2022; Cho et al., 2023). Additionally,
for graphs with more complex structures like Planar and SBM, we report the eigenvalues of the
graph Laplacian (Spec.) and the percentage of valid, unique, and novel graphs (V.U.N.) to measure
whether the model has learned the intrinsic feature distribution and global properties of the graph.
A lower value is better for all of these metrics except V.U.N. Specifically, a graph is defined as a
valid planar graph if it is connected and planar. Following the statistical test introduced in Martinkus
et al. (2022), we determine that a graph is a valid SBM graph if and only if it has a community count
between 2 and 5, and a node count inside each community between 20 and 40.

Implementation details We follow the evaluation setting of Jo et al. (2022); Cho et al. (2023) to
generate graphs of the same size as the test data in each run and we report the mean and standard
deviation obtained from 3 independent runs for each dataset. We report the baseline results taken from
Cho et al. (2023), except for the results of ConGress in Tables 1 and 8, which we obtained by running
its corresponding open-source code. For a fair comparison, we adopt the Graph Transformer (Dwivedi
& Bresson, 2020; Vignac et al., 2023) as the neural network used in GDSS+Transformer (Jo et al.,
2022), DiGress (Vignac et al., 2023), and DruM (Jo et al., 2023). We set the diffusion steps to 1000
for all the diffusion models. For important hyperparameters mentioned in Sec 2.3, we usually set
Scale = 0.9, Shift = 0.09. and η = [10000, 100, 30, 10] for the normalized degrees corresponding
to the intervals falling in the interval split by [1.0, 0.8, 0.4, 0.1], respectively. In practice, we set
threshold as 0.5 to quantize generated continue adjacency matrix.

D.2 2D MOLECULE GENERATION

Datasets We utilize two widely-used molecular datasets as benchmarks, as described in Jo et al.
(2023): QM9 (Ramakrishnan et al., 2014), consisting of 133,885 molecules with N ≤ 9 nodes from
4 different node types and ZINC250k (Irwin et al., 2012), consisting of 249,455 molecules with
N ≤ 38 nodes from 9 node types. Molecules in both datasets have 3 edge types, namely single bond,
double bond, and triple bond. Following the standard procedure in the literature (Shi et al., 2020;
Luo et al., 2021; Jo et al., 2022; 2023), we kekulize the molecules using the RDKit library (Landrum
et al., 2006) and remove the hydrogen atoms from the molecules in the QM9 and ZINC250k datasets.

Evaluation metrics Following the evaluation setting of Jo et al. (2022), we generate 10,000
molecules for each dataset and evaluate them with four metrics: the ratio of valid molecules with-
out correction (Val.). Frechet ChemNet Distance (FCD) evaluates the chemical properties of the
molecules by measuring the distance between the feature vectors of generated molecules and those in
the test set using ChemNet. Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) assesses
the quality of the graph structure by measuring the MMD between the generated molecular graphs
and the molecular graphs from the test set. Scaffold Similarity (Scaf.) evaluates the ability to
generate similar substructures by measuring the cosine similarity of the frequencies of Bemis-Murcko
scaffolds (Bemis & Murcko, 1996).
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Table 6: Additional 2D molecule generation results on QM9 dataset.

QM9 (|N| ≤ 9)

Method Valid (%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑
MoFlow 91.36 4.467 0.0169 0.1447 98.65 94.72
GraphAF 74.43 5.625 0.0207 0.3046 88.64 86.59
GraphDF 93.88 10.928 0.0636 0.0978 98.58 98.54
EDP-GNN 47.52 2.680 0.0046 0.3270 99.25 86.58
GDSS 95.72 2.900 0.0033 0.6983 98.46 86.27
GDSS+TF 99.68 0.737 0.0024 0.9129 - -
DiGress 98.19 0.095 0.0003 0.9353 96.67 25.58
SwinGNN 99.71 0.125 0.0003 - 96.25 17.34
GraphARM 90.25 1.22 0.0020 - 95.62 70.39
EDGE 99.10 0.458 - 0.763 100.0 -
GruM 99.69 0.108 0.0002 0.9449 96.90 24.15

GBD 99.88 0.093 0.0002 0.9510 97.12 26.32

Table 7: Additional 2D molecule generation results on ZINC250k dataset.

ZINC250k (|N| ≤ 38)

Method Valid (%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑
MoFlow 63.11 20.931 0.0455 0.0133 99.99 100.0
GraphAF 68.47 16.023 0.0442 0.0672 98.64 99.99
GraphDF 90.61 33.546 0.1770 0.0000 99.63 100.0
EDP-GNN 82.97 16.737 0.0485 0.0000 99.79 100.0
GDSS 97.01 14.656 0.0195 0.0467 99.64 100.0
GDSS+TF 96.04 5.556 0.0326 0.3205 - -
DiGress 94.99 3.482 0.0021 0.4163 99.97 99.99
SwinGNN 81.72 5.920 0.006 - 99.98 99.91
GraphARM 88.23 16.26 0.055 - 99.46 100.0
GruM 98.65 2.257 0.0015 0.5299 99.97 99.98

GBD 97.87 2.248 0.0018 0.5042 99.97 99.99

Implementation details We follow the evaluation setting of Jo et al. (2022; 2023) to generate
10,000 molecules and evaluate graphs with test data for each dataset. We quote the baselines
results from Jo et al. (2023). For a fair comparison, we adopt the Graph Transformer (Dwivedi
& Bresson, 2020; Vignac et al., 2023) as the neural network used in GDSS+Transformer (TF) (Jo
et al., 2022), DiGress (Vignac et al., 2023), and DruM (Jo et al., 2023). We apply the exponential
moving average (EMA) to the parameters while sampling and set the diffusion steps to 1000 for
all the diffusion models. For both QM9 and ZINC250k, we encode nodes and edges to one-hot
and set Scale = 0.9, Shift = 0.09. For η modulated in molecule generation, with the help of
chemical knowledge, we apply η = [10000, 100, 100, 100, 30] to carbon-carbon bonds, carbon-
nitrogen, carbon-oxygen, carbon-fluorine, and other possible bonds, respectively. For η of nodes,
we apply η = [10000, 100, 100, 30] on carbon atom, nitrogen atom, oxygen atom and other possible
atoms, respectively. As described in Section 2.3, applying the appropriate η for different node types
and edge types can prolong the presence of related substructures during the diffusion process. In
practice, we set threshold as 0.5 to quantize generated continue adjacency matrix, and the value in
discrete adjacency matrix is 0 after quantizing if and only if all values in each dimension are all 0.

Complete results on 2D molecule generation We provided additional results including Unique
and Novelty on 2D molecule generation in Table 6 and Table 7.

D.3 COMPUTING RESOURCES

For all experiments, we utilized the PyTorch (Paszke et al., 2019) framework to implement GBD and
trained the model with NVIDIA GeForce RTX 4090 and RTX A5000 GPUs.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EVALUATION WITH LARGER SAMPLE SIZE

As described in Section 4.1, small number of nodes and the insufficient size of the sampled graphs
can lead to large standard deviations when evaluating with the reference graph on smaller dataset.
Therefore, we attempted to evaluate the large number of generated graphs and report the results in
Table 8. We observe that our proposed GBD outperforms previous continuous and discrete diffusion
models on both smaller datasets. Furthermore, GBD significantly surpasses the wavelet-based
diffusion model (Wave-GD) by a wide margin on the Community-small dataset, as evidenced by both
means and standard deviations, Specifically, GBD achieves 85.0%, 90.5%, and 40.0% improvements
over Wave-GD in the MMDs means of Degree, Cluster, and Orbit, respectively, indicating that our
proposed model is capable of generating smaller graphs that are closer to the data distribution with
better stability.

Table 8: Generic graph generation results with enlarged sample (1024 graphs).

Ego-small Community-small

Method Deg. ↓ Clus. ↓ Orbit. ↓ Avg. ↓ Deg. ↓ Clus. ↓ Orbit. ↓ Avg. ↓
GraphRNN 0.040 0.050 0.060 0.050 0.030 0.010 0.010 0.017
GNF 0.010 0.030 0.001 0.014 0.120 0.150 0.020 0.097
EDP-GNN 0.010 0.025 0.003 0.013 0.006 0.127 0.018 0.050
GDSS 0.023 0.020 0.005 0.016 0.029 0.068 0.004 0.034

ConGress∗ 0.030 0.050 0.008 0.030 0.004 0.047 0.001 0.017
(± 0.001) (± 0.003) (± 0.001) - (± 0.000) (± 0.000) (± 0.000) -

DiGress∗ 0.009 0.031 0.003 0.014 0.003 0.009 0.001 0.004
(± 0.000) (± 0.002) (± 0.000) - (± 0.000) (± 0.001) (± 0.000) -

Wave-GD 0.010 0.018 0.005 0.011 0.016 0.077 0.001 0.031
(± 0.001) (± 0.003) (± 0.002) - (± 0.000) (± 0.006) (± 0.002) -

GBD 0.007 0.011 0.003 0.010 0.002 0.007 0.001 0.003
(± 0.000) (± 0.001) (± 0.000) - (± 0.000) (± 0.001) (± 0.000) -

E.2 COMPARISON ON VARIOUS NODE FEATURE INITIALIZATION.

Node feature initialization We initialize node representations using the following node-level
features, respectively:

• Degree (one-hot): Degree with one-hot format is a categorical representation of a node’s
degree. It encodes the degree information as a binary vector where each position corresponds
to a possible degree value. The position corresponding to the node’s actual degree is set to 1,
while all other positions are 0.

• Degree (normalized): The normalized degree is a continuous representation of a node’s
degree, scaled to a value between 0 and 1.

• Centrality: Here we adopt the normalized betweenness centrality as initial node features
and it is a measure of a node’s importance based on its role in connecting other nodes. It
quantifies the fraction of shortest paths between all pairs of nodes that pass through the
given node. The normalized version scales this value to be between 0 and 1.

• Eigenvectors: Following Jo et al. (2022), we adopt the two first eigenvectors associated to
non zero eigenvalues as initial node features.

Results As shown in Table 9, GBD outperforms GDSS + TF and ConGress by a large margin in
all MMDs when the node representation exhibits sparsity and long-tailedness. Additionally, GBD
achieves competitive performance compared with other Gaussian-based diffusion models while the
node feature is initializing with Eigenvectors. This demonstrates that our proposed GBD has the
ability to model graphs with flexible node features, indicating its potential for modeling graphs with
more informative features.
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Table 9: The effect of Feature Initialization on Community-small and Ego-small.

Community-samll

Node Feature Degree (one-hot) Degree (normalized) Centralities Eigenvectors

Method Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit.

GDSS+TF 0.008 0.080 0.005 0.009 0.077 0.005 0.010 0.075 0.004 0.005 0.061 0.003
ConGress 0.024 0.072 0.006 0.020 0.076 0.006 0.013 0.079 0.005 0.004 0.067 0.003
GBD 0.002 0.060 0.002 0.004 0.059 0.003 0.003 0.059 0.003 0.004 0.064 0.002

Ego-samll

Node Feature Degree (one-hot) Degree (normlized) Centralities Eigenvectors

Method Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit.

GDSS+TF 0.016 0.020 0.004 0.018 0.023 0.005 0.017 0.026 0.006 0.013 0.015 0.002
ConGress 0.045 0.059 0.015 0.037 0.064 0.017 0.032 0.057 0.014 0.020 0.029 0.011
GBD 0.011 0.014 0.002 0.013 0.017 0.002 0.015 0.012 0.003 0.017 0.016 0.002

F VISUALIZATION

We follow the implementation described in Section 2.3 and the nodes in all adjacency matrices are
reordered by decreasing the degree of nodes. Apparently, we can find that edges associated with
nodes with large degree will be the first to be identified and then spread in decreasing order of degree
on both datasets in Appendix F.1. It is worth noting that the reverse beta diffusion can converge
rapidly, leading to generated graphs with correct topology at an early stage. This shows that our
proposed GBD can further explore the potential benefits of beta diffusion, resulting in valid graphs
with stability and high quality. For generated molecule graphs shown in Appendix F.1, we can
observe that GBD can successfully generate valid and high-quality 2D molecules, verifying its ability
to model attributed graphs. More generated graphs are presented following.

F.1 GENERATIVE PROCESS OF GBD ON GENERAL DATASETS

We visualize the generative process of GBD on the Community-small and the Ego-small
dataset in Figures 5 and 6, respectively.

F.2 GENERATIVE PROCESS OF GBD ON COMPLEX GRAPH

We provide the visualization of the complex graph generated by GBD on the Planar and the SBM
datasets in Figure 7 and in Figure 8, respectively.

F.3 GENERATED GRAPHS OF GBD ON 2D MOLECULE DATASETS

We provide the visualization of the 2D molecules generated by GBD on the QM9 and the ZINC250k
datasets in Figure 9 and in Figure 10, respectively.

F.4 GENERATED GRAPHS OF GBD ON BA-NETWORKS

We provide the visualization of the BA-networks (n = 20,m = 2) generated by GBD in Figure 11.
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Figure 5: Visualization of the generative process of GBD on the Community-small dataset.

Figure 6: Visualization of the generative process of GBD on the Ego-small dataset.
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Figure 7: Visualization of the generated graphs of GBD on the Planar dataset.

Figure 8: Visualization of the generated graphs of GBD on the SBM dataset.
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Figure 9: Visualization of the generated graphs of GBD on the QM9 dataset.

Figure 10: Visualization of the generative graphs of GBD on the ZINC250k dataset.
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Figure 11: Visualization of the generative graphs of GBD on the BA-network (n = 20,m = 2).

26


	Introduction
	The Methodology
	Forward and reverse beta diffusion processes
	Training GBD
	Exploring the design space of GBD

	Related Work
	Experiments
	Generic graph generation
	Molecule Generation
	Additional Experimental Results
	Visualization

	Conclusion
	Analytical Expressions of Optimization Objective
	Mathematical Expressions for Elements in Neural-Network Preconditioning
	Details of GBD
	Training and Sampling
	Details of Concentration Modulation
	Model Architechture
	Schedule of Diffusion Process in GBD

	Experimental Details
	General graph generation
	2D molecule generation
	Computing resources

	Additional Experimental Results
	Evaluation with larger sample size
	Comparison on various node feature initialization.

	Visualization
	Generative process of GBD on general datasets
	Generative process of GBD on complex graph
	Generated graphs of GBD on 2D molecule datasets
	Generated graphs of GBD on BA-networks


