
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVANCING GRAPH GENERATION THROUGH
BETA DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have excelled in generating natural images and are now being
adapted to a variety of data types, including graphs. However, conventional models
often rely on Gaussian or categorical diffusion processes, which can struggle to ac-
commodate the mixed discrete and continuous components characteristic of graph
data. Graphs typically feature discrete structures and continuous node attributes that
often exhibit rich statistical patterns, including sparsity, bounded ranges, skewed
distributions, and long-tailed behavior. To address these challenges, we introduce
Graph Beta Diffusion (GBD), a generative model specifically designed to handle
the diverse nature of graph data. GBD leverages a beta diffusion process, effec-
tively modeling both continuous and discrete elements. Additionally, we propose a
modulation technique that enhances the realism of generated graphs by stabilizing
critical graph topology while maintaining flexibility for other components. GBD
competes strongly with existing models across multiple general and biochemical
graph benchmarks, showcasing its ability to capture the intricate balance between
discrete and continuous features inherent in real-world graph data. The PyTorch
code is available on GitHub.

𝑮!

𝑮! = 𝑮!"#⊙𝑸!

𝑮"
𝑮"!

𝑮!"# = 𝑮! + 𝑷!⊙ (𝟏 − 𝑮!)𝑮#

minimize	𝓛𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 and 𝓛𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏
reverse process

forward process

𝑸#, 𝑷# Beta variables

Figure 1: Overview of the forward and reverse diffusion processes of GBD. The multiplicative factors Qt and
Pt are sampled from beta distributions parameterized by the initial graphs G0 and “clean graphs” predicted by
Ĝθ . The neural network Ĝθ is learned through minimizing Equation 8 constituted by Lsampling and Lcorrection.

0.05T 0.1T 0.15T 0.25T 0.5T T

Figure 2: Edge generation process of the GBD model in graph topology (top) and adjacency matrix (bottom)
views. Nodes are sorted by descending degree centrality and color-coded by degree, from yellow (high) to purple
(low). The modulation technique in Section 2.3 enables early emergence of key positions such as community
hubs, enhancing reverse chain stability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

In recent years, there has been a significant surge in interest and activity in the field of graph
generation, particularly with the development of advanced generative models tailored for graphs. This
growing attention is driven by the recognition of graph data’s pervasive presence and utility across
diverse real-world applications, ranging from social network study (Newman et al., 2002; Conti et al.,
2011; Abbe, 2018; Shirzadian et al., 2023) to biochemical molecular research (Jin et al., 2018; Liu
et al., 2018; Bongini et al., 2021; Guo et al., 2024; Li & Yamanishi, 2024). Additionally, the rapid
evolution of machine learning tools has introduced powerful techniques for data generation, among
which diffusion models (Ho et al., 2020; Song et al., 2021; Austin et al., 2021; Avdeyev et al., 2023;
Chen & Zhou, 2023; Zhou et al., 2023) stand out as a notable example. As these advanced tools
intersect with the task of graph generation, we witness the emergence of numerous diffusion-based
graph generative models (Niu et al., 2020a; Jo et al., 2022; Haefeli et al., 2022; Huang et al., 2022;
Vignac et al., 2023; Jo et al., 2023; Cho et al., 2023; Chen et al., 2023; Kong et al., 2023).

While diffusion-based graph generative models often demonstrate superior performance compared to
their predecessors (You et al., 2018; De Cao & Kipf, 2018; Li et al., 2018; Simonovsky & Komodakis,
2018; Liu et al., 2019; Shi et al., 2020; Luo et al., 2021; Martinkus et al., 2022), there is still potential
for further enhancement in the quality of generated graphs. Among the latest advancements in these
methods, it is widely recognized that incorporating inductive bias from the graph data is generally
beneficial for model design (Jo et al., 2023). One promising direction of incorporating this bias
involves considering the statistical characteristics of the distribution of graph data. For instance, both
Graph D3PM (Haefeli et al., 2022) and DiGress (Vignac et al., 2023) have demonstrated that when
considering the binary or categorical nature of the graph adjacency matrix and modeling it in the
discrete space, it provides benefits for generating more realistic graphs.

Accounting for the discreteness of the graph adjacency matrix has shown enhancement to performance.
However, it is crucial to recognize that the complexity and flexibility of the distribution characteristics
of graph data extend beyond mere discreteness. Real-world graphs usually display sparse edge
distributions and exhibit diverse statistical patterns in node attributes, which may include skewed,
multi-modal, or long-tailed distributions (Barabási et al., 2000; Ciotti et al., 2015; Liang et al., 2023;
Wang et al., 2023). While the values within node feature matrices may not inherently bounded
by range, they are often be empirically represented or processed into quantities that are bound by
specific limits. Considering the unique characteristics inherent to graph data, it is clear that Gaussian
and categorical distributions, often default choices for constructing diffusion processes, may not
adequately align with these graph traits. This misalignment could introduce noticeable limitations in
accurately modeling the distribution of graphs.

Given the unique statistical characteristics of graph data, the beta distribution emerges as a particularly
suitable modeling choice. With great flexibility to model continuous data with various statistical
characteristics and approximate discrete distributions at all sparsity levels, the beta distribution
aligns well with the inherent traits of graphs, hence making itself a promising candidate to surpass
the potential limitations imposed by utilizing Gaussian or categorical distributions. In this paper,
we introduce Graph Beta Diffusion (GBD) as a novel addition to diffusion-based graph generative
models. GBD models the joint distribution of node attributes and edge connections within a graph
through beta diffusion (Zhou et al., 2023), a generative diffusion process that is built upon the thinning
of beta random variables in its multiplicative forward diffusion process and the thickening in its
multiplicative reverse process.

We underscore two major contributions arising from the development of GBD. First, our experiments
generating data on various synthetic and real-world graphs confirm the effectiveness of beta diffusion
as a strategic choice within the design framework of the backbone diffusion model, especially for
graph generation tasks. Second, our exploration of the model’s design space has yielded a set of
recommended practices, notably a novel modulation technique that bolsters the stability of generating
essential graph structures. We demonstrate that these practices, when implemented together, lead to
consistent enhancements in model performance.

2 THE METHODOLOGY

In this study, our primary focus lies in generating two types of graphs: generic graphs and molecular
graphs. A graph with N nodes is represented by the tuple G = (A,X), where X ∈ RN×D

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

denotes the node features with feature dimension D, and A ∈ RN×N is the symmetric binary
adjacency matrix that defines the connections between nodes. The selection of node features offers
high flexibility, ranging from raw-data-provided node categories to hand-crafted features such as
node-level statistics (Jo et al., 2022) or spectral graph signals (Jo et al., 2023). The features within X
exhibit great diversity in their nature, including numerical, categorical, and ordinal types. Through
preprocessing methods including dummy-encoding, empirical CDF transformation or normalization,
we standardize them as continuous variables bounded by [0, 1]. For molecular graphs, we use A(1:K)

to represent the structure of a graph with K types of edges and G is defined as (A(1:K),X). In the
sequel, we by default employ the generic graph scenario to illustrate the methodology.

2.1 FORWARD AND REVERSE BETA DIFFUSION PROCESSES

Forward multiplicative beta diffusion process. Such a process can be characterized by the
transition probability q(Gt |Gt−1,G0), with G0 denoting the combination of the original adjacency
matrix and node feature matrix. Following recent diffusion-based graph generative models (Jo et al.,
2022; Vignac et al., 2023; Jo et al., 2023; Cho et al., 2023), we assume q(Gt |Gt−1,G0) to be
factorizable such that q(Gt |Gt−1,G0) = q(At |At−1,A0) · q(Xt |Xt−1,X0). Constructing the
forward multiplicative beta diffusion process (Zhou et al., 2023) for graph modeling, we have:

At = At−1 ⊙QA,t, QA,t ∼ Beta (ηAαtA0, ηA(αt−1 − αt)A0) , (1)
Xt = Xt−1 ⊙QX,t, QX,t ∼ Beta (ηXαtX0, ηX(αt−1 − αt)X0) , t ∈ [1, T]. (2)

Here ηA, ηX are positive scalars adjusting the concentration of beta distributions, with higher values
leading to enhanced concentration and reduced variability. The diffusion noise schedule is defined
with {αt | t ∈ [1, T]}, which represent a sequence of values descending from 1 towards 0 as t
increases. Elements in the fractional multiplier QA,t or QA,t are independently sampled from their
respective beta distributions. With the forward diffusion process defined in Equations 1 and 2, we
characterize the stochastic transitions of an element g within G as:

q(gt | gt−1, g0) =
1

gt−1
Beta

(
gt
gt−1

| ηαtg0, η(αt−1 − αt)g0

)
, (3)

where depending on whether g is an element in A or X, we have either η = ηA or η = ηX . Derived
from Equation 3, the joint distribution q(G1:T |G0) has analytical format in the marginal distribution
on each time stamp t, specifically,

q(Gt | G0) = Beta(ηαtG0, η(1− αtG0)). (4)

Reverse multiplicative beta diffusion process. It is important to note that the joint distribution
q(G1:T |G0) can be equivalently constructed in reverse order through ancestral sampling, which
directs samples from the terminus states GT towards the initial states G0 by incrementally applying
the changes δGt at each reversed time stamp. With the changes at a given time t parameterized
as δGt := Pt ⊙ (1 −Gt), where Pt are beta-distributed fractional multipliers, the time-reversal
multiplicative sampling process can be mathematically defined as: for t = T, T − 1, · · · , 1,

Gt−1 = Gt +Pt ⊙ (1−Gt), Pt ∼ Beta (η(αt−1 − αt)G0, η(1− αt−1G0)) . (5)

Similar to the forward sampling process, we can derive the transition distribution corresponding to
the reverse sampling process described in Equation 5 as following:

q(Gt−1 | Gt,G0) =
1

1−Gt
Beta

(
Gt−1 −Gt

1−Gt
| η(αt−1 − αt)G0, η(1− αt−1G0)

)
. (6)

Following previous work (Austin et al., 2021; Haefeli et al., 2022; Vignac et al., 2023; Zhou et al.,
2023), we construct the reverse diffusion process through the definition of ancestral sampling
distribution as following:

pθ(Gt−1 | Gt) := q(Gt−1 | Gt, Ĝθ(Gt, t)), (7)

where Ĝθ(Gt, t) is a neural network that predicts the conditional expectation of G0 given Gt.
Following Vignac et al. (2023), we instantiate Ĝθ(Gt, t) as a graph transformer network (Dwivedi &
Bresson, 2020). We present the complete sampling process in Appendix C.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 TRAINING GBD

The overall training procedure of GBD is described in Section C.1 of the Appendix. We employ the
objective function proposed by beta diffusion (Zhou et al., 2023), specifically,

L =

T∑
t=2

(1− ω)Lsampling(t,G0) + ω Lcorrection(t,Gt), ω ∈ [0, 1]. (8)

In Equation 8, the loss terms associated with sampling and correction are defined as

Lsampling(t,G0)
∆
= Eq(Gt,G0) KL (pθ(Gt−1 | Gt) ∥ q(Gt−1 | Gt,G0)) , (9)

Lcorrection(t,G0)
∆
= Eq(Gt,G0) KL

(
q(Gτ | Ĝθ(Gt, t)) ∥ q(Gτ | G0)

)
. (10)

In Equation 10, the KL divergence is evaluated between the following distributions: q(Gτ |
Ĝθ(Gt, t)) is Beta(ηαtĜθ(Gt, t), η(1−αtĜθ(Gt, t))), and q(Gτ | G0) is the same as q(Gt | G0)
in distribution. The subscript τ is introduced to represent a generic graph sample other than Gt

that is also obtained at time t from the forward diffusion process. The core principle behind the
loss function terms can be described as follows: Lsampling drives the empirical ancestral sampling
distribution towards the destination-conditional posterior distribution, while Lcorrection corrects the
bias on marginal distribution at each time stamp accumulated through the ancestral sampling. These
two types of loss terms collectively reduce the divergence between the empirical joint distribution
on two graphs sampled from adjacent time stamps in the reverse process, and their joint distribution
derived from the forward diffusion process. A positive weight ω is introduced to balance the effects
of these two types of loss terms. We set it to 0.01, following Zhou et al. (2023), and found that
this configuration is sufficient to produce graphs that closely resemble the reference graphs without
further tuning. To better elucidate the optimization objective, we list out the analytical expressions of
the KL divergence term in Appendix A.

It is demonstrated in Zhou et al. (2023) that the KL divergence between two beta distributions
can be expressed in the format of a Bregman divergence. Namely, considering a convex function
ϕ(α, β)

∆
= lnBeta(α, β), where Beta(α, β) = Γ(α)Γ(β)

Γ(α+β) is the beta function, the loss term Lsampling

can be expressed as

Lsampling(t,G0) = Eq(Gt)Eq(G0|Gt)dϕ
(
[asampling,bsampling], [a

∗
sampling,b

∗
sampling]

)
,

asampling = η(αt−1 − αt)G0, bsampling = η(1− αt−1G0),

a∗sampling = η(αt−1 − αt)Ĝ0, b
∗
sampling = η(1− αt−1Ĝ0).

(11)

Likewise, we can express the correction loss term Lcorrection as

Lcorrection(t,G0) = Eq(Gt
)Eq(G0|Gt)dϕ ([acorrection,bcorrection], [a

∗
correction,b

∗
correction]) ,

acorrection = ηαtG0, bcorrection = η(1− αtG0),

a∗correction = ηαtĜ0, b
∗
correction = η(1− αtĜ0).

(12)

Here we reference the dϕ notation of Banerjee et al. (2005) to represent the Bregman divergence. As
stated in Lemmas 3-5 of Zhou et al. (2023), one can apply Proposition 1 of Banerjee et al. (2005) to
show that both Lsampling and Lcorrection yield the same unbiased optimal solution that legitimates
the usage of Ĝ0 in the reverse diffusion process.

Property 1 Both Lsampling and Lcorrection are uniquely minimized at

Ĝ0 = Ĝθ(Gt, t) = Eq(G0 |Gt)[G0].

2.3 EXPLORING THE DESIGN SPACE OF GBD

Many diffusion-based graph generative models offer great flexibility with technical adjustment to
enhance their practical performances. Here we list four impactful dimensions among the design space
of GBD. Namely, data transformation, concentration modulation, logit-domain computation, and
neural-network precondition. We elaborate each design dimension below and discuss our choices in
these aspects in the Appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Data transformation. We convert the raw data (A,X) to G0 through linear transformations, i.e.,

G0 = (A0,X0), where A0 = wA ·A+ bA, X0 = wX ·X+ bX , (13)

with the constraints that min(wA, bA, wX , bX) > 0 and max(wA + bA, wX + bX) ≤ 1. This
operation not only ensure that all data values fall within the positive support of beta distributions,
avoiding gradient explosion when optimizing the loss function, but also provide an effective means to
adjust the rate at which diffusion trajectories mix. A forward diffusion trajectory reaches a state of
“mix” when it becomes indistinguishable to discern the initial value from its counterfactual given the
current value. A suitable mixing rate ensures that the signal-to-noise ratio (SNR) of the final state in
the forward diffusion process approaches zero, meeting the prerequisite for learning reverse diffusion
while preserving the learnability of graph structural patterns. The scaling parameter provides a macro
control for the mixing rate, with a smaller value contracting the data range and promoting the arrival
of the mixing state.

Concentration modulation. Another hyperparameter that offers a more refined adjustment to the
mixing rate is the concentration parameter η. Higher values of η reduce the variance of the fractional
multipliers Pt sampled from their corresponding beta distributions, thus delaying the arrival of the
mixing state. Leveraging this property, we have devised a simple yet effective modulation strategy to
differentiate the mixing times across various graph substructures.

Specifically, we assign higher η values to “important positions” within a graph, such as edges
connecting high-centrality nodes or edges deemed significant based on domain knowledge, such
as the carbon-carbon bond in chemical molecules. For instance, when modulating η from degree
centrality, the exact operation executed upon the η values for edge (u, v) and for the features of node
u can be mathematically expressed as

ηu,v = gA(max(deg(u),deg(v))), ηu = gX(deg(u)). (14)

Here we first prepare several levels of η values, then utilize two assignment functions, namely gA(·)
and gX(·), to map the node degrees (or their percentile in the degree population within one graph)
to one of the choices of the η values. We have observed that this operation indeed prolongs the
presence of these substructures during the forward diffusion process, which in turn leads to their
earlier emergence compared to the rest of the graph during the reverse process. Additionally, we
provide an alternate definition of “importance positions” using betweenness centrality Freeman
(1977), detailed in Appendix C.2, and also ablate its effects in Section 4.3.

We visualize the reverse process from two perspectives in Figure 2. We first obtain the ηu,v by
degrees retrieved from the training set before sampling and then generate graph through reverse beta
diffusion. From the top row, we observe that edges linked to nodes with higher degrees (indicated by
brighter colors) appear first, followed by other edges. From the bottom row, it is evident that edges
connected to the first five nodes, which have higher degrees, are identified first and then progressively
in descending order of degree. Notably, the nodes of the adjacency matrices in the bottom row are
reordered by decreasing node degree of the final graph. Additionally, we can also find the predicted
graph of GBD converges in an early stage to the correct topology. We attribute the enhanced quality
of generated graphs to the early emergence of these “important substructures,” which likely improves
the reliability of generating realistic graph structures. Furthermore, this approach is particularly
appealing as it allows for the flexible integration of graph inductive biases within the diffusion model
framework.

Logit domain computation. Another noteworthy designing direction lies in the computation
domain. Although the reverse sampling process directly implemented from Equation 5 is already
effective to generate realistic graph data, we observe that migrating the computation to the logit space
further enhances model performance and accelerates training convergence. One potential explanation
is that the logit transformation amplifies the structural patterns of the graph when all edge weights
are very close to zero at the beginning of the ancestral sampling process. Equivalent to Equation 5,
the logit-domain computation can be expressed as

logit(Gt−1) = ln
(
elogit(Gt) + elogit(Pt) + elogit(Gt)+logit(Pt)

)
. (15)

Neural-network precondition. Finally, we employ the neural-network precondition technique
(Karras et al., 2022) and customize it for training GBD, which involves standardizing Gt before

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

passing them to the prediction network Ĝθ(·). In other words, we modify Equation 7 as

pθ(Gt−1 | Gt) := q(Gt−1 | Gt, Ĝθ(G̃t, t)), G̃t =
Gt − E[gt]√

Var[gt]
or

logit(Gt)− E[logit(gt)]√
Var[logit(gt)]

. (16)

To illustrate the application of neural-network preconditioning, we present an example of training
GBD to generate graphs G = (A,X). For simplicity, we assume the predictor operates in the
original domain, with corresponding results for cases involving logit domain computations provided
in Appendix B. We make following statistical assumptions regarding the marginal distribution of a0
and x0, the elements within the graph adjacency matrices and node feature matrices after the data
transformation step: a0 follows a categorical distribution with potential outcomes amin, amax, where
the probability of a0 = amax is p, and x0 follows a uniform distribution over the support [xmin, xmax].
Given that gt | g0 ∼ Beta(ηαtg0, η(1− αtg0)), and by applying the law of total expectation and the
law of total variance, one can derive that

E[at] = αt (p · amax + (1− p) · amin) ,

Var[at] =
1

ηA + 1

(
E[at]− E[at]2

)
+

ηA
ηA + 1

(
α2
t (p(1− p))(amax − amin)

2) , (17)

E[xt] =
1

2
αt(xmin + xmax),

Var[xt] =
1

ηX + 1

(
E[xt]− E[xt]2

)
+

ηX
12(ηX + 1)

(
α2
t (xmax − xmin)

2) . (18)

Using these computed quantities, we complete the neural-network preconditioning by standardizing
Gt into G̃t = (Ãt, X̃t), where the adjacency matrix is transformed as Ãt = (At−E[at])/

√
Var[at]

and the node feature matrix as X̃t = (Xt−E[xt])/
√

Var[xt]. The standardized graph G̃t is then used
as input to the predictor network. The derivation of Equations 17 and 18 is in Appendix B. While
neural-network preconditioning is generally effective for stabilizing model training, we empirically
find it to be particularly beneficial when training the GBD with the predictor defined in the logit
space, where increased variability is introduced.

3 RELATED WORK

Graph generative models. Early attempts at modeling graph distributions trace back to the Erdős–
Rényi graph model (ERDdS & R&wi, 1959; Erdős et al., 1960), from which a plethora of graph
generative models have emerged. These models employ diverse approaches to establish the data
generative process and devise optimization objectives, which in turn have significantly expanded
the flexibility in modeling the distribution of graph data. Stochastic blockmodels (Holland et al.,
1983; Lee & Wilkinson, 2019), latent variable models (Airoldi et al., 2009; Zhou, 2015; Caron &
Fox, 2017), and their variational-autoencoder-based successors (Kipf & Welling, 2016; Hasanzadeh
et al., 2019; Mehta et al., 2019; He et al., 2022) assume that edges are formed through independent
pairwise node interactions, and thus factorize the probability of the graph adjacency matrix into the
dot product of factor representations of nodes. Sequential models (You et al., 2018; Wang et al., 2018;
Jin et al., 2018; Han et al., 2023) adopt a similar concept of node interactions but correlate these
interactions by organizing them into a series of connection events. Additionally, some models treat
the graph adjacency matrix as a parameterized random matrix and generate it by mapping a random
vector through a feed-forward neural network (Simonovsky & Komodakis, 2018; De Cao & Kipf,
2018). In terms of optimization targets, many utilize log-likelihood-based objectives such as negative
log-likelihood (Liu et al., 2019) or evidence lower bound objectives (Kipf & Welling, 2016), while
others employ generative adversarial losses (Wang et al., 2018) or reinforcement learning losses
(De Cao & Kipf, 2018). Diffusion-based graph generative models (Jo et al., 2022; Haefeli et al.,
2022; Vignac et al., 2023; Niu et al., 2020b;a; Chen et al., 2023; Cho et al., 2023; Kong et al., 2023),
including this work, feature a unique data generation process compared to previous models. They
map the observed graph structures and node features to a latent space through a stochastic diffusion
process, whose reverse process can be learned by optimizing a variational lower bound (Vignac et al.,
2023) or numerically solving a reverse stochastic differential equation (Jo et al., 2022).

Diffusion models. The stochastic diffusion process is introduced by Sohl-Dickstein et al. (2015)
for deep unsupervised learning, and its foundational connection with deep generative models is laid
down by denoising diffusion probabilistic model (DDPM) (Ho et al., 2020). DDPM maps a data

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Planar SBM

QM9 ZINC250k

Figure 3: Examples of graphs generated by the GBD model on Planar, SBM, QM9, and ZINC250k datasets.

sample to the latent space via a Markov process that gradually applies noise to the original sample,
and learns a reverse process to reproduce the sample in finite steps. The optimization and sampling
processes in DDPM can be interpreted through the lens of variational inference (Sohl-Dickstein et al.,
2015; Ho et al., 2020) or can be formulated as score matching with Langevin dynamics (Song et al.,
2021; Song & Ermon, 2019). Both approaches are focused on diffusion processes that define the
transition between normally distributed variables, which are proven effective for generating natural
images. As the scope of generative tasks expands to discrete domains like text, diffusion models
transitioning between discrete states emerge (Austin et al., 2021), which demonstrates that the choice
of probabilistic distribution for modeling each noise state could significantly impact the learning task.
This conclusion is also validated in the application of graph generation (Haefeli et al., 2022; Vignac
et al., 2023). Further studies (Chen & Zhou, 2023; Zhou et al., 2023) are conducted to improve
diffusion models by introducing novel diffusion processes based on probabilistic distributions that
better capture the intrinsic characteristics of the generation target. Among these, the beta diffusion
of Zhou et al. (2023) is chosen as the foundation of our method, due to the beta distribution’s
proficiency in capturing sparsity and modeling range-bounded data across mixed types. These traits
are commonly observed in real-world graphs (Barabási et al., 2000; Ciotti et al., 2015; Liang et al.,
2023; Wang et al., 2023).

4 EXPERIMENTS

4.1 GENERIC GRAPH GENERATION

Datasets and metrics. We use five graph datasets with varying sizes, connectivity, and topology,
commonly employed as benchmarks. Ego-small includes 200 sub-graphs from the Citeseer
network with 4 ≤ N ≤ 18 nodes. Community-small has 100 synthetic graphs with 12 ≤ N ≤
20. Grid contains 100 2D grid graphs with 100 ≤ N ≤ 400. Planar includes 200 synthetic planar
graphs with N = 64. SBM comprises 200 stochastic block model graphs with 2–5 communities,
where 44 ≤ N ≤ 187 and each community has 20–40 nodes.

For a fair comparison, we follow the experimental setup of Jo et al. (2022; 2023), using the same
train/test split. We evaluate using maximum mean discrepancy (MMD) (Gretton et al., 2012) to
compare the distributions of key graph properties between test graphs and generated graphs: degree
(Deg.), clustering coefficient (Clus.) and 4-node orbit counts (Orbit). For more complex structures
like Planar and SBM, we also report the eigenvalues of the graph Laplacian (Spec.) and the
percentage of valid, unique, and novel graphs (V.U.N.) to assess how well the model captures both
intrinsic features and global graph properties. A lower score indicates better performance for all
metrics except V.U.N. More details on these metrics can be found in Appendix D.1.

Baselines. We compare GBD against various graph generation methods, including autoregressive
models: DeepGMG (Li et al., 2018), GraphRNN (You et al., 2018), and GraphAF (Shi et al.,
2020); one-shot model: GraphVAE (Simonovsky & Komodakis, 2018); and flow-based models:
GNF (Liu et al., 2019) and GraphDF (Luo et al., 2021). Additionally, we compare against state-
of-the-art (SOTA) diffusion-based graph generative models, including score-based or continuous:
EDP-GNN (Niu et al., 2020a), GDSS, GDSS + Transofrmer (TF) (Jo et al., 2022), GruM (Jo et al.,
2023) and ConGress (Vignac et al., 2023); discrete: DiGress (Vignac et al., 2023); autoregressive:
GraphARM (Kong et al., 2023); and a model with wavelet features: Wave-GD (Cho et al., 2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: MMD results for simple generic graph generation.

Ego-small Community-small Grid

Method Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit.

DeepGMG 0.040 0.100 0.020 0.220 0.950 0.400 - - -
GraphRNN 0.090 0.220 0.003 0.080 0.120 0.040 0.064 0.043 0.021
GraphAF 0.030 0.110 0.001 0.180 0.200 0.020 - - -
GraphDF 0.040 0.130 0.010 0.060 0.120 0.030 - - -

GraphVAE 0.130 0.170 0.050 0.350 0.980 0.540 1.619 0.0 0.919
GNF 0.030 0.100 0.001 0.200 0.200 0.110 - - -
EDP-GNN 0.052 0.093 0.007 0.053 0.144 0.026 0.455 0.238 0.328
GDSS 0.021 0.024 0.007 0.045 0.086 0.007 0.111 0.005 0.070
ConGress∗ 0.037 0.064 0.017 0.020 0.076 0.006 - - -
DiGress 0.017 0.021 0.010 0.028 0.115 0.009 - - -
GraphARM 0.019 0.017 0.010 0.034 0.082 0.004 - - -
Wave-GD 0.012 0.010 0.005 0.007 0.058 0.002 0.144 0.004 0.021

GBD 0.011 0.014 0.002 0.002 0.060 0.002 0.045 0.011 0.040
(±0.008) (±0.013) (±0.004) (±0.003) (±0.004) (±0.003) (±0.004) (±0.002) (±0.014)

Table 2: MMD results for complex generic graph generation.

Planar SBM

Method Deg. Clus. Orbit. Spec. V.U.N. Deg. Clus. Orbit. Spec. V.U.N.

Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0

GraphRNN 0.0049 0.2779 1.2543 0.0459 0.0 0.0055 0.0584 0.0785 0.0065 5.0
GRAN 0.0007 0.0426 0.0009 0.0075 0.0 0.0113 0.0553 0.0540 0.0054 25.0
SPECTRE 0.0005 0.0785 0.0012 0.0112 25.0 0.0015 0.0521 0.0412 0.0056 52.5

EDP-GNN 0.0044 0.3187 1.4986 0.0813 0.0 0.0011 0.0552 0.0520 0.0070 35.0
GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0
GDSS+TF 0.0036 0.1206 0.0525 0.0137 5.0 0.0411 0.0565 0.0706 0.0074 27.5
ConGress 0.0048 0.2728 1.2950 0.0418 0.0 0.0273 0.1029 0.1148 - 0.0
DiGress 0.0003 0.0372 0.0009 0.0106 75. 0.0013 0.0498 0.0434 0.0400 74.0
GruM 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0
GBD 0.0003 0.0353 0.0135 0.0059 92.5 0.0013 0.0493 0.0446 0.0047 75.0

Generating graphs with simple topology Using the GBD theoretical model and the implementa-
tion detailed in Appendix D.1, we show that GBD excels at generating graphs with moderate size
and simple topological patterns, as evidenced by the MMD metrics in Table 1. GBD outperforms the
baselines in five out of nine experiments and remains statistically on par with the SOTA model in
the other two. Even with larger graphs (e.g., the Grid benchmark), GBD achieved a degree MMD
of 0.045, significantly surpassing all baselines, as well as maintaining competitive performance on
other metrics. Moreover, previous works (Cho et al., 2023; Jo et al., 2022; Liu et al., 2019) suggested
that the MMDs as a metric suffers from large standard deviations due to the insufficient size of
the sampled graphs. Thus, to gain a comprehensive study, we repeated the evaluation using an
enlarged generated sample of 1024 graphs. As shown in Appendix E.2, the results demonstrate that
GBD consistently generates graphs that resembles true data, with improved statistical significance in
experimental conclusions.

Generating graphs with complex topology GBD also maintains a leading position in generating
large graphs with complex topologies, as shown by the results in Table 2. In the experiments on
the Planar and SBM datasets, GBD achieved superior or comparable MMD scores on most graph
statistics, along with high V.U.N. scores, consistently ranking first or second among all baselines.
These results provide stronger evidence of GBD’s capability and suitability as a candidate model for
generating graph data, particularly for applications where real-world instances are typically more
complex in nature.

Rapid convergence in the reverse process. We conducted a convergence experiment measuring
the V.U.N. metric for graphs Gt generated at every 100 steps on the reverse chain, with the results
shown in Figure 4. The figure highlights that GBD achieves high V.U.N. score at early timestamps on
the reverse diffusion process, reflecting rapid convergence. Notably, both GBD and the second-place

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: V.U.N. results for intermediate graph samples in the reverse chain on Planar (left) and SBM (right)
datasets, with GBD demonstrating clear advantage in convergence rate.

Table 3: 2D molecule generation results

QM9 (|N| ≤ 9) ZINC250K (|N| ≤ 38)

Method Valid (%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑ Valid(%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑
MoFlow 91.36 4.467 0.0169 0.1447 63.11 20.931 0.0455 0.0133
GraphAF 74.43 5.625 0.0207 0.3046 68.47 16.023 0.0442 0.0672
GraphDF 93.88 10.928 0.0636 0.0978 90.61 33.546 0.1770 0.0000
EDP-GNN 47.52 2.680 0.0046 0.3270 82.97 16.737 0.0485 0.0000
GDSS 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
GDSS+TF 99.68 0.737 0.0024 0.9129 96.04 5.556 0.0326 0.3205
DiGress 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163
SwinGNN 99.71 0.125 0.0003 - 81.72 5.920 0.006 -
GraphARM 90.25 1.22 0.0020 - 88.23 16.26 0.055 -
EDGE 99.10 0.458 - 0.763 - - - -
GruM 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299
GBD 99.88 0.093 0.0002 0.9510 97.87 2.248 0.0018 0.5042

model, GruM (Jo et al., 2023), share a key property of predicting E[G0 | Gt]. While GruM achieves
it through designing the model upon an OU bridge mixture (Jo et al., 2023), our model attain the
same property due to the inherent nature of Beta diffusion.

4.2 MOLECULE GENERATION

Datasets and Metrics We consider two widely-used molecule datasets as benchmarks in Jo et al.
(2022): QM9 (Ramakrishnan et al., 2014), which consists of 133,885 molecules with N ≤ 9 nodes
from 4 different node types, and ZINC250k (Irwin et al., 2012), which consists of 249,455 molecules
with N ≤ 38 nodes from 9 different node types. Molecules in both datasets have 3 edge types,
namely single bond, double bond, and triple bond.

Following the evaluation setting of Jo et al. (2022), we generated 10,000 molecules for each dataset
and evaluated them with four metrics: the ratio of valid molecules without correction (Val.), Fréchet
ChemNet Distance (FCD), Neighborhood subgraph pairwise distance kernel NSPDK, and Scaffold
similarity (Scaf.). We provide the results of uniqueness and novelty in Appendix D.2.

Baselines We compare GBD against the following autoregressive and one-shot graph generation
methods: MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021),
and several state-of-the-art diffusion-based graph generative models discussed previously: EDP-
GNN (Niu et al., 2020a), GDSS (Jo et al., 2022) and ConGress (Vignac et al., 2023), DiGress (Vignac
et al., 2023), SwinGNN (Niu et al., 2020b), GraphARM (Kong et al., 2023), EDGE (Chen et al.,
2023), and GruM (Jo et al., 2023). We describe the details of the implementation in Appendix D.2.

Results As shown in Table 3, we observe that our GBD outperforms most previous diffusion-based
models and is competitive with the current state-of-the-art Gaussian-based diffusion model, GruM.
In particular, compared to the basic continuous diffusion model, GBD significantly outperforms
it (GDSS+TF) under the same GraphTransformer architecture. Additionally, we observe that our
proposed beta-based graph diffusion model is superior to the discrete diffusion model on both 2D
molecule datasets, demonstrating that our method is also capable of modeling complex structures of
attributed graphs. We attribute this to the excellent modeling ability of the beta-based graph diffusion
model for sparse data distributions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 ADDITIONAL EXPERIMENTAL RESULTS

Ablation study on precondition and computation domain. We vary the options regarding the
computation domain and the application of preconditioning, and summarize the results in Table 4.
The combination of adopting logit domain computation without using preconditioning can sometimes
increase the challenge in model convergence, and therefore, it is not recommended. The listed
results on Ego-small and Community-small demonstrate that both techniques are in general
beneficial for achieving better model performance, and the effect of preconditioning is more evident
when the computation is perfomed in the logit domain.

Table 4: The effect of logit domain computation and preconditioning

Ego-small Community-small

Logit Domain Preconditioning Deg. Clus. Orbit. Deg. Clus. Orbit.

- - 0.015 0.018 0.004 0.010 0.076 0.004
- ✓ 0.013 0.017 0.002 0.004 0.044 0.007
✓ ✓ 0.011 0.014 0.002 0.002 0.060 0.002

Ablation study on concentration modulation. To verify that effect of concentration modulation,
we compared the results of GBD under different concentration modulation strategies on both the
general graph and the molecule graph. As shown in Table 5, assigning the appropriate eta through
optional concentration modulation strategies helps GBD model various types of graphs, and this
technique has the potential for further modification according to varying scenarios.

Table 5: The effect of concentration modulation on generic graph and molecule graph.

Planar SBM

Modulation Strategy Deg. Clus. Orbit. Spec. V.U.N. Deg. Clus. Orbit. Spec. V.U.N.

w/o modulation 0.0005 0.0357 0.0294 0.0069 87.5 0.0015 0.0493 0.0452 0.0051 72.5
Betweenness Centrality 0.0003 0.0354 0.0154 0.0057 90.0 0.0015 0.0492 0.0450 0.0053 70.0

Degree Centrality 0.0003 0.0353 0.0135 0.0059 92.5 0.0013 0.0493 0.0446 0.0047 75.0

QM9 ZINC250K

Modulation Strategy Valid(%) ↑ FCD ↓ NSPDK ↓ Spec. ↓ Valid(%) ↑ FCD ↓ NSPDK ↓ Spec. ↓
w/o modulation 99.73 0.126 0.0003 0.9475 97.60 2.412 0.0020 0.5033
Carbon Bonds 99.88 0.093 0.0002 0.9510 97.87 2.248 0.0018 0.5042

Comparison on various node feature initialization. To demonstrate that GBD has the potential to
model graphs with various types of node features, we explored the impact of different initialization of
node features on modeling the joint distribution G = (A,X). Specifically, the node representation
can be featured by Degree, Centrailities, and Eigenvectors and we vary the node feature initialization
and summarize the results of model performance, as detailed in Appendix E.2.

4.4 VISUALIZATION

We present samples from GBD trained on planar, SBM, QM9 and ZINC250k in Figure 3. Addi-
tionally, we provide visualization of the generative process and more generated graphs of GBD, along
with a comprehensive description in Appendix F.

5 CONCLUSION

We introduce graph beta diffusion (GBD), a novel graph generation framework developed upon
beta diffusion. We demonstrate that the utilization of beta distribution to define the diffusion
process is beneficial for modeling the distribution of graph data, and outline four crucial designing
elements—data transformation, concentration modulation, logit-domain computation, and neural-
network precondition—that consistently enhance model performance. Through extensive experiments,
GBD demonstrated superior performance across various graph benchmarks, showcasing its ability to
model diverse patterns within graph data. Moreover, our proposed model shows promise in modeling
various types of data with discrete structures and offers valuable insights into further exploring the
properties of beta diffusion.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide the source code as part of the supplementary material for reproducibility validation. The
implementation follows the training and sampling algorithms described in Appendix C.1 and other
technical details outlined in Appendix C.

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models: recent developments. Journal
of Machine Learning Research, 18(177):1–86, 2018.

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic
blockmodels. In Advances in Neural Information Processing Systems (NeurIPS), volume 21, 2009.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score
model for biological sequence generation. In Proceedings of the Fortieth International Conference
on Machine Learning, Proceedings of Machine Learning Research. PMLR, 2023.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty. Clustering
with Bregman divergences. Journal of machine learning research, 6(10), 2005.

Albert-László Barabási, Réka Albert, and Hawoong Jeong. Scale-free characteristics of random net-
works: the topology of the world-wide web. Physica A: statistical mechanics and its applications,
281(1-4):69–77, 2000.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Pietro Bongini, Monica Bianchini, and Franco Scarselli. Molecular generative graph neural networks
for drug discovery. Neurocomputing, 450:242–252, 2021.

François Caron and Emily B Fox. Sparse graphs using exchangeable random measures. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 79(5):1295–1366, 2017.

Tianqi Chen and Mingyuan Zhou. Learning to jump: Thinning and thickening latent counts for
generative modeling. In International Conference on Machine Learning, pp. 5367–5382. PMLR,
2023.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In International Conference on Machine Learning. PMLR, 2023.

Hyuna Cho, Minjae Jeong, Sooyeon Jeon, Sungsoo Ahn, and Won Hwa Kim. Multi-resolution
spectral coherence for graph generation with score-based diffusion. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Valerio Ciotti, Ginestra Bianconi, Andrea Capocci, Francesca Colaiori, and Pietro Panzarasa. Degree
correlations in signed social networks. Physica A: Statistical Mechanics and its Applications, 422:
25–39, 2015.

Marco Conti, Andrea Passarella, and Fabio Pezzoni. A model for the generation of social network
graphs. In 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks, pp. 1–6. IEEE, 2011.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

LC Freeman. A set of measures of centrality based on betweenness. Sociometry, 1977.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
Diffusion models in bioinformatics and computational biology. Nature reviews bioengineering, 2
(2):136–154, 2024.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. In The First Learning on Graphs Conference,
2022.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

Xu Han, Xiaohui Chen, Francisco JR Ruiz, and Li-Ping Liu. Fitting autoregressive graph generative
models through maximum likelihood estimation. Journal of Machine Learning Research, 24(97):
1–30, 2023.

Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and
Xiaoning Qian. Semi-implicit graph variational auto-encoders. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, pp. 10711–10722, 2019.

Yilin He, Chaojie Wang, Hao Zhang, Bo Chen, and Mingyuan Zhou. A variational edge partition
model for supervised graph representation learning. Advances in Neural Information Processing
Systems, 35:12339–12351, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
structures for molecular graph generation. In NeurIPS 2022 Workshop on Score-Based Methods,
2022.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning, pp.
10362–10383. PMLR, 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. arXiv
preprint arXiv:2302.03596, 2023.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder.
Pattern Recognition, 107:107514, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International Conference on Machine
Learning, pp. 17391–17408. PMLR, 2023.

Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

Clement Lee and Darren J Wilkinson. A review of stochastic block models and extensions for graph
clustering. Applied Network Science, 4(1):1–50, 2019.

Chen Li and Yoshihiro Yamanishi. Tengan: Pure transformer encoders make an efficient discrete
gan for de novo molecular generation. In International Conference on Artificial Intelligence and
Statistics, pp. 361–369. PMLR, 2024.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. In International conference on machine learning. PMLR, 2018.

Langzhang Liang, Zenglin Xu, Zixing Song, Irwin King, Yuan Qi, and Jieping Ye. Tackling
long-tailed distribution issue in graph neural networks via normalization. IEEE Transactions on
Knowledge and Data Engineering, 2023.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.
Advances in Neural Information Processing Systems, 32, 2019.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. Advances in neural information processing systems, 31, 2018.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine learning, pp. 7192–7203. PMLR, 2021.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pp. 15159–15179. PMLR, 2022.

Nikhil Mehta, Lawrence Carin, and Piyush Rai. Stochastic blockmodels meet graph neural networks.
In International Conference on Machine Learning (ICML), pp. 4466–4474, 2019.

Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random graph models of social networks.
Proceedings of the national academy of sciences, 99(suppl_1):2566–2572, 2002.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In Silvia Chiappa and
Roberto Calandra (eds.), Proceedings of the Twenty Third International Conference on Artifi-
cial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp.
4474–4484. PMLR, 26–28 Aug 2020a.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. In International Conference on
Learning Representations, 2020.

Pouyan Shirzadian, Blessy Antony, Akshaykumar G Gattani, Nure Tasnina, and Lenwood S Heath.
A time evolving online social network generation algorithm. Scientific Reports, 13(1):2395, 2023.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Haohui Wang, Baoyu Jing, Kaize Ding, Yada Zhu, Liqing Zhang, and Dawei Zhou. Characterizing
long-tail categories on graphs. arXiv preprint arXiv:2305.09938, 2023.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie,
and Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp. 5708–5717. PMLR, 2018.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 617–626, 2020.

Mingyuan Zhou. Infinite edge partition models for overlapping community detection and link predic-
tion. In International Conference on Artificial Intelligence and Statistics (AISTATS), volume 38 of
Proceedings of Machine Learning Research, pp. 1135–1143, 2015.

Mingyuan Zhou, Tianqi Chen, Zhendong Wang, and Huangjie Zheng. Beta diffusion. In NeurIPS
2023: Neural Information Processing Systems, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ANALYTICAL EXPRESSIONS OF OPTIMIZATION OBJECTIVE

Recall that the optimization function is expressed as

L =

T∑
t=2

(1− ω)Lsampling(t,G0) + ω Lcorrection(t,Gt), ω ∈ [0, 1], (19)

with the components defined as follows:

Lsampling(t,G0)
∆
= Eq(Gt,G0) KL (pθ(Gt−1 | Gt) ∥ q(Gt−1 | Gt,G0)) , (20)

Lcorrection(t,G0)
∆
= Eq(Gt,G0) KL

(
q(Gτ | Ĝθ(Gt, t)) ∥ q(Gτ | G0)

)
. (21)

To derive the analytical form of Lsampling and Lcorrection, we employ the following property of beta
distribution (Joo et al., 2020; Zhou et al., 2023):

Property 2 The KL divergence between two Beta distributions Beta(α1, β1) and Beta(α2, β2) is
given by:

KL (Beta(α1, β1) ∥ Beta(α2, β2))

= ln
B(α2, β2)

B(α1, β1)
+ (α1 − α2) [ψ(α1)− ψ(α1 + β1)] + (β1 − β2) [ψ(β1)− ψ(α1 + β1)] , (22)

where B(α, β)
∆
= Γ(α)Γ(β)

Γ(α+β) is the Beta function, ψ(·) denotes the digamma function.

With probability distributions q(Gt−1 | Gt,G0) and pθ(Gt−1 | Gt) defined in Equations 6 and 7,
the parameters (αp, βp, αq, βq) are instantiated as follows:

α1 = η(αt−1 − αt)Ĝ0, β1 = η(1− αt−1Ĝ0),

α2 = η(αt−1 − αt)G0, β2 = η(1− αt−1G0).

Substituting these into Equation 22, we can express the KL term within Lsampling as

KL (pθ(Gt−1 | Gt) ∥ q(Gt−1 | Gt,G0))

= lnΓ(η(αt−1 − αt)G0) + lnΓ(η − ηαt−1G0)− ln Γ(η − ηαtG0)

− ln Γ(η(αt−1 − αt)Ĝ0)− ln Γ(η − ηαt−1Ĝ0) + lnΓ(η − ηαtĜ0)

+ η(αt−1 − αt)(Ĝ0 −G0) · ψ(η(αt−1 − αt)Ĝ0) (23)

+ ηαt−1(G0 − Ĝ0) · ψ(η − ηαt−1Ĝ0)

+ ηαt(Ĝ0 −G0) · ψ(η − ηαtĜ0),

where Ĝ0 := Ĝθ(Gt, t).

Similarly, the KL term within Lcorrection can be derived as

KL
(
q(Gτ | Ĝθ(Gt, t)) ∥ q(Gτ | G0)

)
= lnΓ(ηαtG0) + lnΓ(η − ηαtG0)− ln Γ(ηαtĜ0)− ln Γ(η − ηαtĜ0) (24)

+ ηαt(Ĝ0 −G0) ·
(
ψ(ηαtĜ0)− ψ(η − ηαtĜ0)

)
.

B MATHEMATICAL EXPRESSIONS FOR ELEMENTS IN NEURAL-NETWORK
PRECONDITIONING

In this section, we present the full derivation of the expressions for the mean and variance of at and
xt as shown in Equations 17 and 18, and extend these conclusions to logit(at) and logit(xt). To
establish these results, we begin by introducing the following property of the beta distribution:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Property 3 Given that gt | g0 ∼ Beta(ηαtg0, η(1 − αtg0)), one can derive that E[gt | g0] = αtg0
and Var[gt | g0] = αtg0(1−αtg0)

η+1 . Let µ := E[g0] and σ2 := Var[g0]. By applying the law of total
expectation and the law of total variance, we obtain the following results:

E[gt] = αtµ, Var[gt] =
αtµ− α2

t (µ
2 + σ2)

η + 1
+ α2

tσ
2. (25)

Their counterparts in the logit domain are expressed as
E[logit(gt)] = E[ψ(ηαtg0)]− E[ψ(η − ηαtg0)], (26)

Var[logit(gt)] = E[ψ(1)(ηαtg0)] + E[ψ(1)(η(1− αtg0))]

+ Var[ψ(ηαtg0)] + Var[ψ(η(1− αtg0))], (27)

with ψ(·) and ψ(1)(·) denoting digamma and trigamma functions.

In the example presented in Section 2.3, we assume that a0 follows a categorical distribution with
outcomes amin and amax, where the probability of P (a0 = amax) = p. This leads to the expected
value µ = p · amax + (1 − p) · amin and variance σ2 = p(1 − p)(amax − amin)

2. Taking these
quantities into Equation 25, we obtain

E[at] = αt (p · amax + (1− p) · amin) ,

Var[at] =
1

ηA + 1

(
E[at]− E[at]2

)
+

ηA
ηA + 1

(
α2
t (p(1− p))(amax − amin)

2
)
.

For node features, the assumption states that x0 is uniformly distributed over the interval [xmin, xmax].
This gives a mean of µ = (xmin+xmax)/2 and a variance of σ2 = (xmax−xmin)

2
/12, and the correspond-

ing mean and variance of xt can then be expressed as

E[xt] =
1

2
αt(xmin + xmax),

Var[xt] =
1

ηX + 1

(
E[xt]− E[xt]2

)
+

ηX
12(ηX + 1)

(
α2
t (xmax − xmin)

2
)
.

Under the same probabilistic assumptions for a0 and x0, we can derive the expressions for the terms
in Equations 26 and 27, presented in the following remarks:

Remark 1 Given that a0 has two potential outcomes {amin, amax} with P (a0 = amax) = p, the
computation of E[logit(gt)] and Var[logit(gt)] involves several key components, including:

E[ψ(ηαta0)] = p · ψ(ηαtamax) + (1− p) · ψ(ηαtamin),

E[ψ(η − ηαta0)] = p · ψ(η − ηαtamax) + (1− p) · ψ(η − ηαtamin),

Var[ψ(ηαta0)] = p(1− p) (ψ(ηαtamax)− ψ(ηαtamin))
2 ,

Var[ψ(η − ηαta0)] = p(1− p) (ψ(η − ηαtamax)− ψ(η − ηαtamin))
2 ,

E[ψ(1)(ηαta0)] = p · ψ(1)(ηαtamax) + (1− p) · ψ(1)(ηαtamin),

E[ψ(1)(η − ηαta0)] = p · ψ(1)(η − ηαtamax) + (1− p) · ψ(1)(η − ηαtamin). (28)

Remark 2 Let x0 be uniformly distributed as Unif[xmin, xmax]. We denote K as the number of
sub-intervals used for numerical integration via the Trapezoidal rule. Similar to Remark 1, we present
the expressions for the components in the logit domain as follows:

E[ψ(ηαtx0)] =
1

ηαt(xmax − xmin)
(ln Γ(ηαtxmax)− ln Γ(ηαtxmin)) ,

E[ψ(η − ηαtx0)] =
1

ηαt(xmax − xmin)
(ln Γ(η − ηαtxmin)− ln Γ(η − ηαtxmax)) ,

Var[ψ(ηαtx0)] ≈ max

(
1

K

K∑
i=0

ψ2
(
ηαt

(
xmin + i

K
(xmax − xmin)

))
2δ(i=0)+δ(i=K)

− E[ψ(ηαtx0)]
2, 0

)
,

Var[ψ(η − ηαtx0)] ≈ max

(
1

K

K∑
i=0

ψ2
(
η − ηαt

(
xmin + i

K
(xmax − xmin)

))
2δ(i=0)+δ(i=K)

− E[ψ(η − ηαtx0)]
2, 0

)
,

E[ψ(1)(ηαtx0)] =
1

ηαt(xmax − xmin)
(ψ(ηαtxmax)− ψ(ηαtxmin)) ,

E[ψ(1)(η − ηαtx0)] =
1

ηαt(xmax − xmin)
(ψ(η − ηαtxmin)− ψ(η − ηαtxmax)) . (29)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C DETAILS OF GBD

C.1 TRAINING AND SAMPLING

We provide the pseudo-code of the training and sampling of our generative framework within original
domain and logit domain, respectively. Specifically, Algorithm 3 and Algorithm 1 show the procedure
of training and sampling in original domain, respectively. In practice, we migrate our proposed GBD
to logit domain shown in Algorithm 4 and Algorithm 2 in most cases.

Algorithm 1 Sampling, in original domain.
Require: Number of time steps T = 1000, de-

fault concentration parameter η = 30, predic-
tor Ĝθ .

1: (Optional) Assign value to η via Equation 32
2: Sample GT = (AT ,XT) ∼ p(AT ,XT)
3: for t = T to 1 do
4: Gin = Gt−E[Gt]√

Var[Gt]

5: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

6: Â0 ← wA · Â′
0 + bA

7: X̂0 ← wX · X̂′
0 + bX

8: Ĝ0 ← (Â0, X̂0)

9: Pt ∼ Beta(η(αt−1 − αt)Ĝ0, η(1 −
αt−1Ĝ0))

10: Gt−1 ← Gt +Pt ⊙ (1−Gt)
11: end for
12: return (A0 − bA)/wA and (X0 − bX)/wX

Algorithm 2 Sampling, in logit domain

1: Sample logit(GT) ∼ p(logit(AT), logit(XT))
2: for t = 1 to 1 do
3: Gin = logit(Gt)−E[logit(Gt)]√

Var[logit(Gt)]

4: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

5: Â0 ← wA · Â′
0 + bA

6: X̂0 ← wX · X̂′
0 + bX

7: Ĝ0 ← (Â0, X̂0)

8: Ut ∼ Gamma(η(αt−1 − αt)Ĝ0, 1)

9: Vt ∼ Gamma(η(1− αt−1Ĝ0), 1)
10: logit(Pt)← lnUt − lnVt

11: Obtain logit(Gt−1) from Equation 15
12: end for
13: G0 ← sigmoid (logit(G0))
14: return (A0 − bA)/wA and (X0 − bX)/wX

Algorithm 3 Training, in original domain.
Require: Number of timesteps T = 1000, de-

fault concentration parameter η = 30, pre-
dictor Ĝθ , default node influence factor γ =
0.5, input graph batch B = {G(k) =

(A(k),X(k))}[K], default learning rate λ =
0.002, optimization steps M .

1: (Optional) Assign value to η via Equation 32
2: for step = 1 to M do
3: Initialize LX and LA with 0
4: for k = 1 to K do
5: t ∼ Unif(1, ..., T)
6: αt, αt−1 ←

schedule(t), schedule(t− 1)

7: A0 ← wA ·A(k) + bA
8: X0 ← wX ·X(k) + bX
9: G0 ← (A0,X0)

10: Gt ∼ Beta(ηαtG0, η(1− αtG0))

11: Gin ← Gt−E[Gt]√
Var[Gt]

12: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

13: Â0 = wA · Â′
0 + bA

14: X̂0 = wX · X̂′
0 + bX

15: LA ← LA +L(A0, Â0, η, αt, αt−1)

16: LX ← LX+L(X0, X̂0, η, αt, αt−1)
17: end for
18: θ ← θ − λ

K
∇θ(LA + γLX)

19: end for

Algorithm 4 Training, in logit domain.
Require: Number of timesteps T , concentration pa-

rameter η, predictor Ĝθ , node influence factor γ,
input graph batch B, learning rate λ, optimization
steps M . Same default values with Algorithm 3.

1: for step = 1 to M do
2: Initialize LX and LA with 0
3: for k = 1 to K do
4: t ∼ Unif(1, ..., T)
5: αt, αt−1 ← schedule(t), schedule(t −

1)

6: A0 ← wA ·A(k) + bA
7: X0 ← wX ·X(k) + bX
8: G0 ← (A0,X0)
9: Ut ∼ Gamma(ηαtG0, 1)

10: Vt ∼ Gamma(η(1− αtG0), 1)
11: logit(Gt)← lnUt − lnVt

12: Gin ← logit(Gt)−E[logit(Gt)]√
Var[logit(Gt)]

13: (Â′
0, X̂

′
0)← Ĝθ(Gin, t)

14: Â0 = wA · Â′
0 + bA

15: X̂0 = wX · X̂′
0 + bX

16: LA ← LA + L(A0, Â0, η, αt, αt−1)

17: LX ← LX + L(X0, X̂0, η, αt, αt−1)
18: end for
19: θ ← θ − λ

K
∇θ(LA + γLX)

20: end for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 DETAILS OF CONCENTRATION MODULATION

Here we elaborate the concentration modulation strategies mentioned in Section 2.3.

Concentration Modulation for general graph generation For general graph generation, we pro-
vide two strategies depending on node-level centralities, which are degree centrality and betweenness
centrality, respectively. For the degree centrality of the node u in an undirected graph, it can be
formulated as

Cd(u) = Cin(u) = Cout(u) = Deg(u) (30)

where Cin(u), Cout(u) and Deg(u) are denoted as the in-degree, out-degree, and total degree of the
node u. For the betweenness centrality of the node u in an undirected graph, it can be formulated as

Cb(u) =
∑

s ̸=t ̸=u

gst(u)

gst
(31)

where gst is the total number of shortest paths from node s to node t, gst(u) is the number of those
paths that pass through v. For large graphs, exact calculation of betweenness centrality can be
time-consuming, thus approximation algorithms using random sampling are often employed. In
practice, we utilize the library of NetworkX Hagberg et al. (2008) to implement this.

With these two metrics to measure the centrality of the nodes, which are denoted as C(u) in general,
the modulated η can be mathematically expressed as

ηu,v = gA(max(C(u),C(v))), ηu = gX(C(u)). (32)

where gA(·) and gX(·) are two assignment functions that map the node centrality to one of the
predefined η values.

Concentration Modulation for molecule graph generation For molecule graph generation, we
provide a straightforward strategy that regards the carbon atom as the most important node, as well as
the bonds connected to the carbon atoms as the important edge in a molecule graph. Specifically,
for various types of carbon-atom bond, we first rank the importance of bonds in the following order:
carbon-carbon bonds, carbon-nitrogen bonds, carbon-oxygen bonds, carbon-sulfur bonds, and so on.
Then we can assign predefined η on different nodes and edges depending on their "importance" in a
molecule graph.

C.3 MODEL ARCHITECHTURE

We leverage the graph transformer network introduced in Dwivedi & Bresson (2020); Vignac et al.
(2023) cross all graph generation tasks. Each graph transformer layer consists of a graph attention
module, as well as fully-connected layers and layer normalization. It employs self-attention module
to update node features, then uses FiLM layers (Perez et al., 2018) to incorporate edge features
and global features. Since the data we transformed falls within the range of [0, 1], we apply the
sigmoid function to the output of node features and adjacency matrices to model the one-hot encoded
representation of node and edge.

C.4 SCHEDULE OF DIFFUSION PROCESS IN GBD

Following Zhou et al. (2023), we employ a sigmoid diffusion schedule defined as αt = 1/(1 +

e−c0−(c1−c0)
t

) throughout all experiments, where c0 = 10 and c1 = −13

D EXPERIMENTAL DETAILS

D.1 GENERAL GRAPH GENERATION

Datasets We evaluated our model using three synthetic and real datasets of varying size and
connectivity, previously used as benchmarks in the literature (Cho et al., 2023; Jo et al., 2022):
Ego-small (Sen et al., 2008) consists of 200 small real sub-graphs from the Citeseer network
dataset with 4 ≤ N ≤ 18. Community-small consists of 100 randomly generated synthetic

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

graphs with 12 ≤ N ≤ 20, where the graphs are constructed by two equal-sized communities, each
of which is generated by the Erdös–Rényi model (Erdős et al., 1960), with p = 0.7 and 0.05N inter-
community edges are added with uniform probability as in previous works (Jo et al., 2022; Niu et al.,
2020b). Grid consists of randomly generated 100 standard 2D grid graphs with 100 ≤ N ≤ 400
and the maximum number of edges per node is 4 since all nodes are arranged in a regular lattice.
Planar comprises 200 synthetic planar graphs, each containing N = 64. nodes. SBM includes 200
synthetic stochastic block model graphs, where the number of communities is randomly sampled
from 2 to 5, and the number of nodes in each community is randomly sampled from 20 to 40. The
probability of edges between communities is 0.3 and that of edges within communities is 0.05.

Evaluation metrics For a fair comparison, we follow the experimental and evaluation settings of
Jo et al. (2022; 2023), using the same train/test split, where 80% of the data is used as the training
set and the remaining 20% as the test set. We adopt maximum mean discrepancy (MMD) as our
evaluation metric to compare three graph property distributions between test graphs and the same
number of generated graphs: degree (Deg.), clustering coefficient (Clus.) and count of orbits with 4
nodes (Orbit). Note that we use the Gaussian Earth Mover’s Distance (EMD) kernel to compute the
MMDs following the method used in previous work (Jo et al., 2022; Cho et al., 2023). Additionally,
for graphs with more complex structures like Planar and SBM, we report the eigenvalues of the
graph Laplacian (Spec.) and the percentage of valid, unique, and novel graphs (V.U.N.) to measure
whether the model has learned the intrinsic feature distribution and global properties of the graph.
A lower value is better for all of these metrics except V.U.N. Specifically, a graph is defined as a
valid planar graph if it is connected and planar. Following the statistical test introduced in Martinkus
et al. (2022), we determine that a graph is a valid SBM graph if and only if it has a community count
between 2 and 5, and a node count inside each community between 20 and 40.

Implementation details We follow the evaluation setting of Jo et al. (2022); Cho et al. (2023) to
generate graphs of the same size as the test data in each run and we report the mean and standard
deviation obtained from 3 independent runs for each dataset. We report the baseline results taken from
Cho et al. (2023), except for the results of ConGress in Tables 1 and 8, which we obtained by running
its corresponding open-source code. For a fair comparison, we adopt the Graph Transformer (Dwivedi
& Bresson, 2020; Vignac et al., 2023) as the neural network used in GDSS+Transformer (Jo et al.,
2022), DiGress (Vignac et al., 2023), and DruM (Jo et al., 2023). We set the diffusion steps to 1000
for all the diffusion models. For important hyperparameters mentioned in Sec 2.3, we usually set
Scale = 0.9, Shift = 0.09. and η = [10000, 100, 30, 10] for the normalized degrees corresponding
to the intervals falling in the interval split by [1.0, 0.8, 0.4, 0.1], respectively. In practice, we set
threshold as 0.5 to quantize generated continue adjacency matrix.

D.2 2D MOLECULE GENERATION

Datasets We utilize two widely-used molecular datasets as benchmarks, as described in Jo et al.
(2023): QM9 (Ramakrishnan et al., 2014), consisting of 133,885 molecules with N ≤ 9 nodes from
4 different node types and ZINC250k (Irwin et al., 2012), consisting of 249,455 molecules with
N ≤ 38 nodes from 9 node types. Molecules in both datasets have 3 edge types, namely single bond,
double bond, and triple bond. Following the standard procedure in the literature (Shi et al., 2020;
Luo et al., 2021; Jo et al., 2022; 2023), we kekulize the molecules using the RDKit library (Landrum
et al., 2006) and remove the hydrogen atoms from the molecules in the QM9 and ZINC250k datasets.

Evaluation metrics Following the evaluation setting of Jo et al. (2022), we generate 10,000
molecules for each dataset and evaluate them with four metrics: the ratio of valid molecules with-
out correction (Val.). Frechet ChemNet Distance (FCD) evaluates the chemical properties of the
molecules by measuring the distance between the feature vectors of generated molecules and those in
the test set using ChemNet. Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) assesses
the quality of the graph structure by measuring the MMD between the generated molecular graphs
and the molecular graphs from the test set. Scaffold Similarity (Scaf.) evaluates the ability to
generate similar substructures by measuring the cosine similarity of the frequencies of Bemis-Murcko
scaffolds (Bemis & Murcko, 1996).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Additional 2D molecule generation results on QM9 dataset.

QM9 (|N| ≤ 9)

Method Valid (%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑
MoFlow 91.36 4.467 0.0169 0.1447 98.65 94.72
GraphAF 74.43 5.625 0.0207 0.3046 88.64 86.59
GraphDF 93.88 10.928 0.0636 0.0978 98.58 98.54
EDP-GNN 47.52 2.680 0.0046 0.3270 99.25 86.58
GDSS 95.72 2.900 0.0033 0.6983 98.46 86.27
GDSS+TF 99.68 0.737 0.0024 0.9129 - -
DiGress 98.19 0.095 0.0003 0.9353 96.67 25.58
SwinGNN 99.71 0.125 0.0003 - 96.25 17.34
GraphARM 90.25 1.22 0.0020 - 95.62 70.39
EDGE 99.10 0.458 - 0.763 100.0 -
GruM 99.69 0.108 0.0002 0.9449 96.90 24.15

GBD 99.88 0.093 0.0002 0.9510 97.12 26.32

Table 7: Additional 2D molecule generation results on ZINC250k dataset.

ZINC250k (|N| ≤ 38)

Method Valid (%) ↑ FCD ↓ NSPDK ↓ Scaf. ↑ Uniq (%) ↑ Novelty (%) ↑
MoFlow 63.11 20.931 0.0455 0.0133 99.99 100.0
GraphAF 68.47 16.023 0.0442 0.0672 98.64 99.99
GraphDF 90.61 33.546 0.1770 0.0000 99.63 100.0
EDP-GNN 82.97 16.737 0.0485 0.0000 99.79 100.0
GDSS 97.01 14.656 0.0195 0.0467 99.64 100.0
GDSS+TF 96.04 5.556 0.0326 0.3205 - -
DiGress 94.99 3.482 0.0021 0.4163 99.97 99.99
SwinGNN 81.72 5.920 0.006 - 99.98 99.91
GraphARM 88.23 16.26 0.055 - 99.46 100.0
GruM 98.65 2.257 0.0015 0.5299 99.97 99.98

GBD 97.87 2.248 0.0018 0.5042 99.97 99.99

Implementation details We follow the evaluation setting of Jo et al. (2022; 2023) to generate
10,000 molecules and evaluate graphs with test data for each dataset. We quote the baselines
results from Jo et al. (2023). For a fair comparison, we adopt the Graph Transformer (Dwivedi
& Bresson, 2020; Vignac et al., 2023) as the neural network used in GDSS+Transformer (TF) (Jo
et al., 2022), DiGress (Vignac et al., 2023), and DruM (Jo et al., 2023). We apply the exponential
moving average (EMA) to the parameters while sampling and set the diffusion steps to 1000 for
all the diffusion models. For both QM9 and ZINC250k, we encode nodes and edges to one-hot
and set Scale = 0.9, Shift = 0.09. For η modulated in molecule generation, with the help of
chemical knowledge, we apply η = [10000, 100, 100, 100, 30] to carbon-carbon bonds, carbon-
nitrogen, carbon-oxygen, carbon-fluorine, and other possible bonds, respectively. For η of nodes,
we apply η = [10000, 100, 100, 30] on carbon atom, nitrogen atom, oxygen atom and other possible
atoms, respectively. As described in Section 2.3, applying the appropriate η for different node types
and edge types can prolong the presence of related substructures during the diffusion process. In
practice, we set threshold as 0.5 to quantize generated continue adjacency matrix, and the value in
discrete adjacency matrix is 0 after quantizing if and only if all values in each dimension are all 0.

Complete results on 2D molecule generation We provided additional results including Unique
and Novelty on 2D molecule generation in Table 6 and Table 7.

D.3 COMPUTING RESOURCES

For all experiments, we utilized the PyTorch (Paszke et al., 2019) framework to implement GBD and
trained the model with NVIDIA GeForce RTX 4090 and RTX A5000 GPUs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EVALUATION WITH LARGER SAMPLE SIZE

As described in Section 4.1, small number of nodes and the insufficient size of the sampled graphs
can lead to large standard deviations when evaluating with the reference graph on smaller dataset.
Therefore, we attempted to evaluate the large number of generated graphs and report the results in
Table 8. We observe that our proposed GBD outperforms previous continuous and discrete diffusion
models on both smaller datasets. Furthermore, GBD significantly surpasses the wavelet-based
diffusion model (Wave-GD) by a wide margin on the Community-small dataset, as evidenced by both
means and standard deviations, Specifically, GBD achieves 85.0%, 90.5%, and 40.0% improvements
over Wave-GD in the MMDs means of Degree, Cluster, and Orbit, respectively, indicating that our
proposed model is capable of generating smaller graphs that are closer to the data distribution with
better stability.

Table 8: Generic graph generation results with enlarged sample (1024 graphs).

Ego-small Community-small

Method Deg. ↓ Clus. ↓ Orbit. ↓ Avg. ↓ Deg. ↓ Clus. ↓ Orbit. ↓ Avg. ↓
GraphRNN 0.040 0.050 0.060 0.050 0.030 0.010 0.010 0.017
GNF 0.010 0.030 0.001 0.014 0.120 0.150 0.020 0.097
EDP-GNN 0.010 0.025 0.003 0.013 0.006 0.127 0.018 0.050
GDSS 0.023 0.020 0.005 0.016 0.029 0.068 0.004 0.034

ConGress∗ 0.030 0.050 0.008 0.030 0.004 0.047 0.001 0.017
(± 0.001) (± 0.003) (± 0.001) - (± 0.000) (± 0.000) (± 0.000) -

DiGress∗ 0.009 0.031 0.003 0.014 0.003 0.009 0.001 0.004
(± 0.000) (± 0.002) (± 0.000) - (± 0.000) (± 0.001) (± 0.000) -

Wave-GD 0.010 0.018 0.005 0.011 0.016 0.077 0.001 0.031
(± 0.001) (± 0.003) (± 0.002) - (± 0.000) (± 0.006) (± 0.002) -

GBD 0.007 0.011 0.003 0.010 0.002 0.007 0.001 0.003
(± 0.000) (± 0.001) (± 0.000) - (± 0.000) (± 0.001) (± 0.000) -

E.2 COMPARISON ON VARIOUS NODE FEATURE INITIALIZATION.

Node feature initialization We initialize node representations using the following node-level
features, respectively:

• Degree (one-hot): Degree with one-hot format is a categorical representation of a node’s
degree. It encodes the degree information as a binary vector where each position corresponds
to a possible degree value. The position corresponding to the node’s actual degree is set to 1,
while all other positions are 0.

• Degree (normalized): The normalized degree is a continuous representation of a node’s
degree, scaled to a value between 0 and 1.

• Centrality: Here we adopt the normalized betweenness centrality as initial node features
and it is a measure of a node’s importance based on its role in connecting other nodes. It
quantifies the fraction of shortest paths between all pairs of nodes that pass through the
given node. The normalized version scales this value to be between 0 and 1.

• Eigenvectors: Following Jo et al. (2022), we adopt the two first eigenvectors associated to
non zero eigenvalues as initial node features.

Results As shown in Table 9, GBD outperforms GDSS + TF and ConGress by a large margin in
all MMDs when the node representation exhibits sparsity and long-tailedness. Additionally, GBD
achieves competitive performance compared with other Gaussian-based diffusion models while the
node feature is initializing with Eigenvectors. This demonstrates that our proposed GBD has the
ability to model graphs with flexible node features, indicating its potential for modeling graphs with
more informative features.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: The effect of Feature Initialization on Community-small and Ego-small.

Community-samll

Node Feature Degree (one-hot) Degree (normalized) Centralities Eigenvectors

Method Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit.

GDSS+TF 0.008 0.080 0.005 0.009 0.077 0.005 0.010 0.075 0.004 0.005 0.061 0.003
ConGress 0.024 0.072 0.006 0.020 0.076 0.006 0.013 0.079 0.005 0.004 0.067 0.003
GBD 0.002 0.060 0.002 0.004 0.059 0.003 0.003 0.059 0.003 0.004 0.064 0.002

Ego-samll

Node Feature Degree (one-hot) Degree (normlized) Centralities Eigenvectors

Method Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit. Deg. Clus. Orbit.

GDSS+TF 0.016 0.020 0.004 0.018 0.023 0.005 0.017 0.026 0.006 0.013 0.015 0.002
ConGress 0.045 0.059 0.015 0.037 0.064 0.017 0.032 0.057 0.014 0.020 0.029 0.011
GBD 0.011 0.014 0.002 0.013 0.017 0.002 0.015 0.012 0.003 0.017 0.016 0.002

F VISUALIZATION

We follow the implementation described in Section 2.3 and the nodes in all adjacency matrices are
reordered by decreasing the degree of nodes. Apparently, we can find that edges associated with
nodes with large degree will be the first to be identified and then spread in decreasing order of degree
on both datasets in Appendix F.1. It is worth noting that the reverse beta diffusion can converge
rapidly, leading to generated graphs with correct topology at an early stage. This shows that our
proposed GBD can further explore the potential benefits of beta diffusion, resulting in valid graphs
with stability and high quality. For generated molecule graphs shown in Appendix F.1, we can
observe that GBD can successfully generate valid and high-quality 2D molecules, verifying its ability
to model attributed graphs. More generated graphs are presented following.

F.1 GENERATIVE PROCESS OF GBD ON GENERAL DATASETS

We visualize the generative process of GBD on the Community-small and the Ego-small
dataset in Figures 5 and 6, respectively.

F.2 GENERATIVE PROCESS OF GBD ON COMPLEX GRAPH

We provide the visualization of the complex graph generated by GBD on the Planar and the SBM
datasets in Figure 7 and in Figure 8, respectively.

F.3 GENERATED GRAPHS OF GBD ON 2D MOLECULE DATASETS

We provide the visualization of the 2D molecules generated by GBD on the QM9 and the ZINC250k
datasets in Figure 9 and in Figure 10, respectively.

F.4 GENERATED GRAPHS OF GBD ON BA-NETWORKS

We provide the visualization of the BA-networks (n = 20,m = 2) generated by GBD in Figure 11.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of the generative process of GBD on the Community-small dataset.

Figure 6: Visualization of the generative process of GBD on the Ego-small dataset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 7: Visualization of the generated graphs of GBD on the Planar dataset.

Figure 8: Visualization of the generated graphs of GBD on the SBM dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 9: Visualization of the generated graphs of GBD on the QM9 dataset.

Figure 10: Visualization of the generative graphs of GBD on the ZINC250k dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 11: Visualization of the generative graphs of GBD on the BA-network (n = 20,m = 2).

26

	Introduction
	The Methodology
	Forward and reverse beta diffusion processes
	Training GBD
	Exploring the design space of GBD

	Related Work
	Experiments
	Generic graph generation
	Molecule Generation
	Additional Experimental Results
	Visualization

	Conclusion
	Analytical Expressions of Optimization Objective
	Mathematical Expressions for Elements in Neural-Network Preconditioning
	Details of GBD
	Training and Sampling
	Details of Concentration Modulation
	Model Architechture
	Schedule of Diffusion Process in GBD

	Experimental Details
	General graph generation
	2D molecule generation
	Computing resources

	Additional Experimental Results
	Evaluation with larger sample size
	Comparison on various node feature initialization.

	Visualization
	Generative process of GBD on general datasets
	Generative process of GBD on complex graph
	Generated graphs of GBD on 2D molecule datasets
	Generated graphs of GBD on BA-networks

