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Abstract

Obtaining high-quality outputs from Large Language Models (LLMs) often de-
pends upon the choice of a sampling-based decoding strategy to probabilistically
choose the next token at each generation step. While a variety of such sampling
methods have been proposed, their performance can be sensitive to the selection of
hyperparameters which may require different settings depending upon the genera-
tion task and temperature configuration. In this work, we introduce p-less sampling:
an information-theoretic approach to sampling which dynamically sets a truncation
threshold at each decoding step based on the entire token probability distribution.
Unlike existing methods, p-less sampling has no hyperparameters and consistently
produces high-quality outputs as temperature increases. We provide theoretical
perspectives on p-less sampling to ground our proposed method and conduct ex-
periments to empirically validate its effectiveness across a range of math, logical
reasoning, and creative writing tasks. Our results demonstrate how p-less sampling
consistently outperforms existing sampling approaches while exhibiting much less
degradation in text quality at higher temperature values.

1 Introduction

The increasingly impressive capabilities exhibited by Large Language Models (LLMs) in recent years
have been aided by advancements in sampling-based decoding strategies which probabilistically
select tokens at each generation step. In contrast to deterministic methods such as greedy decoding
and beam search [Freitag and Al-Onaizan, 2017]], sampling-based strategies can produce more diverse
and human-like language outputs while avoiding issues such as neural text degeneration [Holtzman
et al.]. Truncation-based sampling strategies (e.g., Top-p [Holtzman et al.]], Top-k [Fan et al., 2018],
e-sampling [[Freitag et al., 2023|], Mirostat [Basu et al.| [2021]], Min-p [Nguyen et al., [2024]]) have
proven particularly effective by truncating the token probability distribution to only a subset of
higher-likelihood tokens before sampling. However, the truncation thresholds produced by these
existing approaches depend upon the specification of hyperparameters whose optimal values can vary
depending upon the generation task and sampling temperature.

To address this deficiency, we introduce p-less sampling: a parameter-less sampling strategy grounded
in information theory. p-less sampling uniquely combines several desirable properties of existing
sampling approaches into a single method. In addition, p-less is distinguished from prior approaches
in that it is parameterless. This eliminates the need to tune the sampling method’s hyperparameters,
which are often sensitive to the generation task. We provide theoretical perspectives on p-less
sampling to ground our proposed approach and conduct extensive experiments to demonstrate its
strong empirical performance across five math, logical reasoning, and creative writing datasets. Our
results and analyses show that p-less consistently produces among the best outputs across this wide
range of tasks while maintaining high text quality even at higher temperature values.
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2 Methodology

2.1 The p-less Sampling Method

At every time step t, an autoregressive language model infers a distribution of the vocabulary tokens
conditioned on the token sequence already generated from step 1 to step ¢ — 1. Essentially, p-less
considers information from the entire distribution; it computes the likelihood of a correct random
guess given the distribution, which serves as our principled probability threshold adapted to the token
distribution at every decoding step. We admit tokens into the sampling distribution whose likelihoods
are at least that of the correct random guess likelihood. Furthermore, to determine which and how
many tokens to sample from, the p-less threshold varies in a meaningfully opposite direction with
entropy; as entropy increases, more tokens with lower probability are admitted for sampling.

Formally, let v € V denote the set of tokens from a vocabulary V. At each time step ¢, let P(S = v)
denote the probability that token v is sampled and P(7 = v) denote the probability that token v is
the correct (or most desirable) token in the "ground-truth" sense. Furthermore, let Py(v | 21.4—1)
denote the language model’s predicted token distribution conditioned on the given token sequence
x1.¢—1, where 0 are the language model parameters. Denoting the probability that the sampled token
matches the ground-truth as L[P], we have:

L[P]:= ZP(S =vNT=v|r141)

veEVY

= Z PS=v|2141) P(T =v|21:4-1) (1
veV
since the sampling S and correctness 7 are independent events (no feedback involved). Notably,
since we only have access to the predicted token distribution of the language model and no other
external augmentation resources, we will take this as our best empirical estimate of the true token
distribution, i.e. P(T = v) = Py(v | £1.4—1). Therefore, we have:

L[P] = ZP(S =v|z14-1) P(T =v | T14-1)

vey =Py(v | 1:4-1) =Py(v | z1:4—1)
=> Po(v]w14-1) 2
veY

We formalize the method as follows:

1. Determine the threshold probability L[FPy] with Eq.(2)
2. Construct the sampling set V), ., with tokens whose probabilities are at least L[ FPy]:
Vp-]ess = { veV: Pg(v ‘ 1’1:,5,1) > L[Pg] } 3)
3. Sample from V, i the next token z; according to the normalized token probabilities Pj:
Po(v ] z1:4-1)

V' EVp tess Py(v'" | w1:4-1)

Pel(xt | ml:t—1)|73t::U = Z for ve Vp-less~ 4

2.2 The p-lessyorm Sampling Method

We further explore a variant of p-less which effectively relaxes the threshold by subtracting the
likelihood of an incorrect random guess normalized to the number of correct outcomes. The resultant
p-lessyom, denoted L[Py], is preferable in use cases where diversity is favored over coherence.
Formally, we have:

- 1

L[Py) := L[Py] — e > Py(ulwra1)Po(v]1:-1) ©)
u,vEV  uFv
Nogggl&gg{wn Probability of a randomly sampled
and incorrect token
V| 1

= L|Py| — 6
-1 ©

where \Vl%l gives the ratio of the possible number of correct to incorrect outcomes. The derivation

of Eq. (6) from (5) and additional details of p-lessyom are provided in Appendix [B.4]



2.3 Theoretical Perspectives of p-less

Our p-less approach can be re-interpreted in connection to established results in information theory,
namely the family of Rényi entropies [Rényi, [1961]]. Specifically, p-less corresponds to the exponen-
tial of the negative Rényi entropy of order 2. Intuitively, as the Rényi entropy of order 2 increases,
p-less decreases. By extension of the family of Rényi entropies, we also showed p-less to vary in the
opposite direction as Shannon entropy (see Appendix [B.I). An alternative interpretation of p-less
is that it serves as the unbiased estimator of the second moment of the distribution’s probability
mass function, multiplied by the vocabulary size (see Appendix [B.2). Finally, we extend p-less to a
generalized k-order threshold within the formalism of Rényi entropy (Appendix [B.5) and detail how it
uniquely combines advantages of existing sampling methods into a single approach (Appendix [B.6).

3 Experiments & Analyses

Experimental setup Our experiments were performed using Llama-2-7B (Chat) and Mistral-7B
(Instruct) on two tasks, namely math and logical reasoning across the GPQA [Rein et al., [2023]],
GSMSK [[Cobbe et al., [2021]], QASC [Khot et al.,[2020]] & CSQA [Talmor et al.,[2019]] datasets, as
well as instruction following creative writing for the Writing Prompts [Fan et al.l 2018]|| dataset. We
benchmarked our proposed sampling approaches against existing methods including Top-p [Holtzman
et al.|, Min-p [Nguyen et al.|[2024]], e-sampling [Freitag et al., 2023], - sampling [Hewitt et al.| 2022]
and Mirostat [Basu et al., 2021]] for temperatures ranging from 0.5 to 2.0. We measured accuracy
on the math and logical reasoning datasets and computed length-controlled win rate [Dubois et al.|
2024] for Writing Prompts using an automated evaluation framework [Li et al.l 2023]], in addition to
conducting a human evaluation. Additional experiment details are provided in Appendix [C]

Math and logical reasoning results Across the four math and logical reasoning datasets GSMS8K,
GPQA, QASC & CSQA, p-less and p-less,qm perform superior to the other methods at temperatures
1.0 and above, and are competitive at temperatures below 1.0. To perform a fair comparison between
methods across temperatures, we computed the area under the accuracy-temperature curve for each
method (normalized to between 0.0 and 1.0, i.e. normalized integral), which we term AUC. For
Llama2-7b, the AUCs of p-less and p-lessporm outperform the other methods on all datasets, except
for GPQA, where p-less still achieves the third highest AUC (see[Figure 1} [Table 3|and [Figure 3)). The
results for Mistral-7b are consistent with those of Llama2-7b: the AUCs of both p-less and p-less,orm
outperform all other methods across every dataset (see [Table 3|and [Figure 4). Additional results for
other hyperparameter settings are provided for Llama2-7b in of the Appendix.
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Figure 1: Accuracy vs. temperature curves of each method on CSQA, QASC, and GSMS8k using Llama-2-7b.
AUC values achieved by each method are provided in the legend (in parentheses) with the best AUC in bold.

Creative writing results We provide results for the Writing Prompts dataset using the length-
controlled win rate metric [Dubois et al,[2024]. Specifically, we sample one generation per method
and temperature for a subset of 100 prompts and use the response generated by default sampling (i.e.
without truncation at temperature 1.0) as reference. Table |l| summarizes the results. All methods
except p-less generally exhibit significant performance degradation as temperature increases. In
contrast, the performance of p-less remains relatively stable and is superior to all other methods at
temperatures > 1.0. This demonstrates how p-less excels in the domain of creative writing while
avoiding the degradation of text quality exhibited by other methods at higher temperatures.



Model Temperature  e-sampling 7n-sampling Min-p Mirostat Top-p p-less  p-lessnom

1.0 62.18 58.76 57.48 56.94 62.07 55.08 58.74
Llama-2-7b 1.5 1.99 1.46 58.17 5.33 439 5823 59.58
2.0 0.00 0.00 48.94 26.88 0.00  65.64 59.29
1.0 60.90 59.82 66.49 62.26 65.68  68.90 67.49
Mistral-7b 1.5 3.71 0.00 62.17 12.08 0.00  66.97 66.89
2.0 0.00 0.00 54.11 40.33 0.00  60.32 61.99

Table 1: Length-controlled win rate for 100 sampled prompts from the Writing Prompts dataset.

Human evaluation Three authors of this work evaluated 30 sampled Writing Prompts generations
produced by Llama2-7b using p-less with a temperature of 2.0, under the same setting as our length-
controlled win rate evaluations (i.e., pairwise comparison to default sampling). 24.1% of story pairs
received unanimous agreement among the annotators; for the remaining stories, we use the majority
vote to obtain a label. Overall we found that the human annotators preferred stories produced by
p-less sampling 55.2% of the time. For samples in which the human annotators unanimously agreed,
p-less was preferred 57.1% of the time. While this is slightly below the LLM-judged win rate for
p-less (see Table([T), the directional consistency of the human and automated evaluations provides
further evidence of the effectiveness of p-less sampling for creative writing.

Diversity analysis We compute the n-gram repetition diversity metric proposed by Su et al.| [2022]
for QASC; higher values indicate greater diversity. Table [2 shows that at temperatures < 1, all
methods produce similar diversity values between 0.72-0.74. At higher temperatures, p-less and
p-lessporm €xhibit greater diversity than min-p, but lower diversity than other sampling methods.
However, greater diversity at these higher temperatures leads to lower answer accuracy. Figure[2]
illustrates the relationship between generation diversity and answer accuracy for Llama2-7b using
sampling methods and temperature settings which achieved an overall mean accuracy > 0.5 on QASC.
This plot shows that p-less and p-less,om produce higher accuracy than other sampling methods at
any level of generation diversity, exhibiting a pareto dominance along the diversity-accuracy frontier.
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Top-p 074 0.74 072 0.80 0.99 05201

p-less 074 074 074 074 0.75 o] o romhe o b
p-lessom 074 074 074 074 0.75 I o o
Table 2: QASC diversity by method & temperature Figure 2: QASC accuracy vs. diversity

Qualitative analysis We found that where the other methods fail on specific math and logical
reasoning examples at low temperatures, p-less and p-lessporm generate correct reasoning and the
correct final answer. On the other hand, when temperatures are high enough for the methods to
fail, p-less and p-less,om still generate correct reasoning, including unprompted self-verification and
self-correction on initial wrong answers. At high temperatures, the generations of other methods veer
off-track or exhibit hallucination and degeneracy, whereas generations from p-less and p-lessyorm
remain factual and relevant. Illustrative examples are provided in Appendix [C.5] We also provide
creative writing examples where p-less is unanimously preferred to default sampling by our three
human evaluators and the automated evaluation framework in Appendix[C.5.3]

4 Conclusion

We presented p-less sampling: a hyperparameter-free truncation methodology for sampling-based
decoding. p-less combines several desirable properties of existing sampling methods into a single
approach, resulting in higher-quality outputs across a diverse set of math, logical reasoning, and
creative writing tasks. Our work highlights how grounding LLM decoding in information theory
results in a principled sampling approach which is both intuitive and empirically effective.



References

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. arXiv
preprint arXiv:1702.01806, 2017.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 889-898, 2018.

Markus Freitag, Behrooz Ghorbani, and Patrick Fernandes. Epsilon sampling rocks: Investigating
sampling strategies for minimum bayes risk decoding for machine translation. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 9198-9209, 2023.

Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar, and Lav R Varshney.
Mirostat: A neural text decoding algorithm that directly controls perplexity. In International
Conference on Learning Representations, 2021.

Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid Shwartz-
Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs. arXiv preprint
arXiv:2407.01082, 2024.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pages 547-562. University of California Press, 1961.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqga: A graduate-level google-proof qa benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A dataset for
question answering via sentence composition. Proceedings of the AAAI Conference on Artificial
Intelligence, 34:8082-8090, 2020.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. Proceedings of the NAACL-HLT, pages
4149-4158, 2019.

John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language model
desmoothing. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages
3414-3427, 2022.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator for instruction-following
language models. GitHub repository, 5 2023.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. Advances in Neural Information Processing Systems, 35:
21548-21561, 2022.



A Related Work

Text decoding in LLMs involves a truncation process where low probability tokens or those expected
to disrupt coherence are excluded from the sampling pool. Top-k |Fan et al.| [2018]] restricts sampling
to the k£ most probable tokens, which could lead to incoherent generations when the distribution
is extremely uniform or peaked. Top-p Holtzman et al.| improves upon this by sampling from the
smallest set of tokens whose cumulative probability exceeds a threshold p. e-sampling |Freitag et al.
[2023]] proposes to truncate all tokens with probabilities below a cut-off threshold e quantity. Both
Top-p and e-sampling remain lacking in adapting to high-entropy conditions, which is typical when
temperature is tuned up, such as for use cases where diversity is preferred. Along the e-sampling
track, n-sampling proposes an entropy-aware variant which defines the threshold as the minimum of
€ and a scaled negative Shannon entropy exponential quantity. This however introduces additional
hyperparameters and relies on the assumption that the entropy follows a uniform distribution baseline.
A more sophisticated approach in the form of Mirostat [Basu et al.|[2021]] assumes that the token
distribution follows Zipf’s Law and dynamically adjusts the threshold to maintain a target surprisal.
This dynamic feedback control involves task and model dependent tuning of the target surprisal and
a learning rate. The Min-p method Nguyen et al.|[2024] attempts to simplify truncation through a
fractional hyperparameter, which is multiplied with the modal probability to define the truncation
threshold. While being more empirically robust at high temperatures, Min-p remains sensitive to the
choice of the fractional hyperparameter, and leverages only a single statistic from the distribution.

In contrast, the proposed p-less sampling method avoids these pitfalls by operating directly on the
empirical token distribution without imposing parametric assumptions or requiring hyperparameter
tuning. This approach offers a model-agnostic threshold which is robust in high-entropy regimes.
The code is available at https://github. com/ryttry/p-1lessl

B Additional Properties of p-less and p-less; o, Sampling

B.1 Connection to Rényi Entropies

Our p-less term can be re-interpreted in connection to established results in information theory,
namely the family of Rényi entropies Rényi [|[1961]. The Rényi entropy of order o [1_-] is defined by:

1
Ho(p) = 7——log > ! ™

1 —
In particular, the Rényi entropy of order 2 (aka the collision entropy) is given by

Hy(p) = —log» _p} = —log L[P] ®)

Since log is a monotonically increasing function, our p-less quantity L[P] increases with decreasing
collision entropy. Furthermore, we have

Hy(p) = —log L[P] < —log > p;logp; = Hy(p)
A

= L[P] = exp(—H1(p)), ©
which shows that L[P] is also negatively correlated with the Shannon entropy.

The Rényi entropies of different orders quantify uncertainty with different sensitivities. In particular,
the Rényi entropy of order 2 is sensitive to the concentration in the probability mass function and
provides a suitable gauge of the global confidence in the model predictions.

"For special values o € {0, 1, 00}, the definition is extended via limits:
Ho(p) = logn
Hi(p) == pilogpi

Ho(p) = —log max p;


https://github.com/ryttry/p-less

Our p-less quantity corresponds to the exponential of the negative Rényi entropy of order 2. Intuitively,
as Rényi entropy of order 2 increases, p-less decreases. By extension of the family of Rényi entropies,
we also showed p-less to vary in the opposite direction as Shannon entropy.

B.2 Intuition of p-less Sampling

We seek to answer the question "Given a probability distribution of tokens, what is a reliable subset
of tokens we should sample from?" Rationally, we make use of the full information in the distribution
to guide our decision, and formulate our method principled in probability and statistics. We define
our threshold probability p-less, for filtering tokens into the sampling set, as the probability of a
randomly selected and correct token (or most desirable token) in the "ground-truth" sense.

During inference, the token distribution that the large language model predicts is its degree of belief in
the next-token ground-truth correctness, based on its learned ground-truth information from training.
Essentially, the token distribution encodes a notion of probabilistic correctness or desirability. The
tokens that we admit into the sampling set, therefore, has to be at least as confident as the random
sampling that happens to be correct (or most desirable) in the ground-truth sense.

An alternative interpretation of the p-less quantity L[P] is that it serves as the unbiased estimator
of the second moment of the distribution’s probability mass function, M[P], multiplied by the
vocabulary size c:

= ¢ x M[P]. (10)

p-less is also intended to be a more information-theoretic approach than other methods, by incorpo-
rating full information in the output token distribution for decoding. Specifically, p-less contrasts
with other methods that do not consider the output token distribution (e.g. Top-k, Top-p, e-sampling),
considers only one token (e.g. Min-p) or only considers the token distribution if conditions are met
(e.g. m-sampling). p-less is also an empirical approach, as it relies on the empirical output token
distribution instead of making assumptions in the token distribution parameters or enforcing a target
surprisal in the text generation process (e.g. Mirostat).

B.3 Desirable Properties of p-less Sampling

We compute a threshold probability for filtering tokens from the large language model’s output token
distribution for sampling, grounded on the likelihood of a correct random guess given the distribution,
as a principled way to decide what to sample.

Proposition 1

Let the likelihood of a correct random guess of a probability mass function P with outcomes
{z1,--- ,z.} be L[P]. Then, we have the following bounds for L[P]

< L[P] < max P(x;). (11)




Proof of Proposition 1

By definition,
(&
L[P] = P(xz)g
i=1
0< P(z;) <1
P(LL'Z) =3
=1
Lower bound

By the Cauchy-Schwarz inequality,

Upper bound
P(x;) < max P(x;)

7
c

ZP(ZEZ){P(CEZ)} < ZP(ZL‘Z){ m;a,xP(xi)}
i=1 i=1
> P(x:)® <) P(ai) max P(z;)
i=1 i=1

L[P] < max P(x;)

K2

Therefore,

Q| =

<L[P] < max P(z;).

. J

The lower bound of 1 and the upper bound of max; P(z;) for L[P] guarantee a valid threshold
for filtering a non-empty candidate set for sampling. The lower bound for L[P] removes from
consideration, any outcome x; whose likelihood is less than the likelihood of a correct random guess
for a uniform distribution, or equivalently is less than uniformly probable.

In addition to the above bounds, our p-less threshold L[P] varies in the opposite direction as the
uncertainty or entropy of the distribution, essentially considering more tokens with lower probabilities
as the uncertainty or entropy of the distribution increases, which is a befitting relationship for the
trade-off between the number of tokens to consider for sampling and the uncertainty or entropy of the
token distribution.

B.4 Properties of p-less,orm

As introduced in[2.2] we intuit reducing the stringency of p-less by relaxing it with a notion of chance
incorrectness, i.e. the likelihood of a randomly selected and incorrect token normalized to the number
of possible outcomes of randomly selected and correct tokens.



Whereas we have shown p-less L[P] is the unbiased estimator of the second moment of the distribu-
tion’s probability mass function, M [P] multiplied by the vocabulary size ¢, we have a similar result
for p-lessyorm L[P], as formalized in the following proposition.

Proposition 2

The p-lessporm E[P] is equivalent to the unbiased estimator of the second central moment
M{P] of a probability mass function P, multiplied by the vocabulary size c.

Proof of Proposition 2

By definition,

e
|\
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1 = 2. 1
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Similar to p-less, as the distribution becomes more uniform (having more entropy), its second central
moment decreases, and the p-less,o, quantity decreases. With a smaller p-less,om quantity, the
method intuitively admits more tokens.

The p-lessporm quantity L[P] retains similar desirable properties as p-less on valid bounds that
are stricter than the unit interval and opposite relationship with the uncertainty or entropy of the
distribution. We further prove the p-less,om quantity to be bounded between p-less and p-less less
the uniform likelihood.



Proposition 3

The p-less,orm bounds are relaxed from p-less bounds. Specifically, we have

_ c 1
LP) = (P - (12
P - % < I[P < L[P] (13)
0 < L[P] < max P(x;). 14

e

J

Proof of Proposition 3

To show Eq.(I2), by definition, we have
_ 1
LIP):= LIP) - —= 3" P(z)P(x;)
J#i

— L[P] - Ci - [1 - ZC:P(@)Q}

c—1
c 1
- c—lL[P]_ c—1
To show Eq.(T3), we use Eq.(TT).
L[P] - L[P] = Ci (1~ i)
L[P]fE[P]<ci1<1f%) .'%SL[P]
LIP|— LIP] > Ci - (1 - 1) L[P] < max P(z;) < 1
=0
I[P - % < L[P] < L[P]
To show Eq.(T4),
I[P > L[P] _%
11,
L[P] < 2 )

.0 < L[P] < max P(z;).

. J

The normalized likelihood of a correct random guess L[P] is at least the likelihood of a correct
random guess L[P] less < and at most the likelihood of a correct random guess L[P]. L[P] has
the lower bound of 0 inclusive and the upper bound of max; P(x;) inclusive. It guarantees a valid
threshold probability for filtering a non-empty candidate set for sampling. L[P] is more permissive
than the L[P] and can include more outcomes, making it better suited when sampling diversity is
preferable.



B.5 Generalization of the p-less Sampling Method

We extend p-less L[ P], which is grounded on the second moment of the distribution’s probability
mass function, to a generalized k-order threshold G[P];, within the formalism of Rényi entropy.
Specifically, we define
1

expHr(P)
where Hj, denotes the Rényi entropy of order k. Given that the Rényi entropy is monotonically
decreasing with k, the corresponding k-order threshold G[P];, increases with k. Notably, in the
asymptotic regime where kK — 0, G[P]; converges to 1/n, corresponding to uniform sampling.
Conversely, in the limit & — oo, G[P)];, approaches max p;, which recovers the behavior of greedy
decoding.

GIPl = (15)

B.6 Advantages of p-less Over Existing Methods

p-less sampling combines several desirable properties of existing sampling approaches into a single
method. First, the truncation threshold utilized in p-less sampling dynamically adapts to the entire
token probability distribution at each time step. In contrast, existing sampling methods either use
a fixed threshold which ignores the current token probability distribution (e.g. Top-p, Top-k, e-
sampling) or set the threshold based on the probability of a single token in the current distribution (e.g.
Min-p). Second, p-less produces a bounded and valid truncation threshold which guarantees a non-
empty candidate set for sampling, unlike other sampling methods where bounds are not guaranteed
and edge cases are resolved with defaults, such as defaulting to the modal token if all tokens do not
meet the threshold (e.g. e-sampling, n-sampling, Mirostat). Third, the truncation threshold of p-less
sampling dynamically adjusts with temperature, unlike other methods (e.g. Top-p, Top-k, Min-p,
e-sampling) whose hyperparameters are not meaningful when temperature approaches zero or infinity.

Thus, p-less uniquely possesses all three of the aforementioned desirable properties of a sampling
approach, combining the benefits of existing sampling strategies into a single method. In addition,
p-less is distinguished from prior approaches in that it is parameterless. This eliminates the need to
tune the sampling method’s hyperparameters, which are often sensitive to the generation task.

C Additional experimental details and results

C.1 Summary of benchmark datasets

Benchmark Datasets. To support a robust evaluation of our p-less method with the other truncation
and sampling methods, we used six diverse datasets to conduct our experiments.

* GPQA: Graduate-Level Reasoning on questions in the sciences (Rein et al.| [2023]])

* GSMSK: Grade School Math word problems, linguistically diverse (Cobbe et al.|[2021]))

* QASC: Question Answering via Sentence Composition requiring valid compositions of
facts using commonsense reasoning (Khot et al.[[2020]])

* CommonsenseQA (CSQA): Question Answering beyond given context requiring drawing
from prior common sense knowledge (Talmor et al.[[2019])

* WP: Writing Prompts for open-ended creative story generation (Fan et al.|[2018]))

Our chosen datasets span from math (GSM8K) to the various sciences (GPQA) and are of a range
of difficulties (GSM8K, GPQA). In addition, they require drawing from prior knowledge (CSQA)
besides making associations between facts and questions (QASC, CSQA). We included open-ended
generation to creative story writing (WP). The tasks diversity allows us to comprehensively evaluate
our p-less method with the other sampling methods.

C.2 Hyperparameters utilized for main experimental results

Consistent with prior work [Nguyen et al., 2024, our main experimental results for sampling methods
other than p-less utilized commonly-adopted default hyperparamter configurations. Specifically, we
set p = 0.9 for Top-p and p = 0.1 for Min-p. For € and 1 sampling, we set the hyperparameter value
to 0.0002. Finally, we set the hyperaparameter value to 4.0 for Mirostat.
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C.3 Complete Results for Llama2-7b and Mistral-7b on the 4 Math and Logical Reasoning
Datasets

Table 3] provides the complete experimental results for Llama2-7b and Mistral-7b on CSQA, GPQA,
GSMSK, and QASC. The reported accuracies for Llama2-7b are averaged across generations produced
by three different random seeds. For Mistral-7b, we provide the mean accuracy using one random
seed due to computational constraints. In addition to the temperature vs. accuracy curves provided
for CSQA, GSM8k, and QASC in Figure[T] we provide the same type of plot for GPQA in Figure 3]

Llama2-7b Mistral-7b

T € n min-p mirostat top-p p-less  p-lessporm € n min-p mirostat top-p p-less  p-lessporm
05 495 495 506 48.9 499 508 51.0 69.9 699 694 71.3 70.7  69.7 67.3

0.7 48.6 48.6 50.6 49.0 498 50.0 49.8 69.1 70.5 70.1 70.4 69.8  69.8 67.8
1.0 479 479 494 48.4 499 511 51.3 68.0 67.8 687 68.6 70.7 699 68.6

CSQA 15 413 392 484 341 458 502 499 637 618 701 584 707 699 708
20 53 37 462 319 46 492 497 294 22 664 557 698 688  69.0
AUC 388 379 488 410 410 503 503 604 555 69.0 635 580 697 692
05 249 249 232 264 260 263 255 230 223 250 252 225 225 230
07 253 253 256 240 246 256 254 230 248 201 214 237 286 = 223
Gpoa 10 22 240 245 258 23 246 254 23 209 205 25 20 287 199
15 161 128 239 161 140 229 244 185 170 230 205 170 217 234
20 25 44 239 188 47 237 238 31 04 181 208 237 214 232
AUC 176 173 243 211 172 242 248 180 172 212 216 172 239 222
05 257 257 269 263 253 271 271 578 569 565 581 569 581 563
07 250 250 265 254 260 270 270 566 557 457 564 457 515 576
Gsvse 10 252 252 261 253 250 269 269 522 525 550 328 569 S5 556
5 222 224 253 187 238 270 270 381 381 506 581 469 553 571
20 72 37 240 65 20 253 250 49 10 457 83 457 537 553
AUC 212 207 256 200 210 267 266 408 399 523 392 438 562 564
05 535 531 538 539 537 539 539 725 742 733 724 749 739 747
07 521 517 529 516 531 540 540 743 733 735 730 735 732 742
oasc 10 513 510 524 488 523 544 348 705 T34 739 714 740 T4 744

1.5 387 331 494 36.1 37.6 537 53.9 69.0 69.0 728 67.2 693 734 73.8
2.0 45 24 443 28.0 2.3 52.1 52.2 269 19 716 59.6 1.6 72.6 72.9

AUC 396 372 502 41.9 393 537 53.8 63.5 60.1 73.0 68.4 604  73.6 73.9

Table 3: Accuracy and AUC of sampling methods and temperatures (7) for math and logical reasoning datasets.

GPQA

0.20 4

e
=
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—— ¢ Sampling (0.1761)

0.10 7 Sampling (0.1726)
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—— Mirostat (0.2115)
_ | —®— pless (0.2417)
0057 o plesspon (0.2480)
Top-p (0.1722)
0.5 0.7 1.0 1.5 2.0
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Figure 3: Accuracy versus temperature curves of each method for the GPQA dataset using Llama2-7b. AUC
values achieved by each method are provided in the legend (in parentheses) with the best AUC in bold.
C.4 Results obtained using other hyperparameters for sampling methods

Table A reports the full results of various sampling approaches at different temperatures and hyperpa-
rameters for the math and logical reasoning datasets for the Llama-2-7b model.

C.5 Prompt Description and Generation Examples

In this section, we describe the prompts constructed for the datasets, and the Llama2-7b generation
examples selected for illustration of p-less, p-lessyorm and the other sampling methods.
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Figure 4: Accuracy versus temperature curves of each method for each of the four math and logical reasoning
datasets GSM8K, GPQA, QASC and CSQA using Mistral-7b. AUC values achieved by each method are
provided in the legend (in parentheses) with the best AUC in bold.

C.5.1 Prompt Description

We used 8-shot prompting on CSQA, GSMS8K and QASC. Additionally, Chain-of-Thought is used
on GSMS8K and QASC. While we initially explored the same prompting on GPQA as GSMS8K, we
found that some of the prompt examples biased the expert graduate-level scientific questions, and
decided to adopt 0-shot Chain-of-Thought prompting whereby the results improved while reducing
compute cost. For the creative writing dataset WP, we used instructional prompting.

C.5.2 Generation Examples of the Math and Logical Reasoning Datasets

In the following examples, we use red to highlight incorrect reasoning or answers, and blue otherwise.
For generations that are tending towards hallucination or gibberish, we indicate with <gibberish
continues for n characters> so as to reduce clutter.

GSMBSK example at temperature 0.7: We found that where the other sampling methods collec-
tively fail on this math reasoning example even on a low temperature, p-less and p-lesspom generate
correct reasoning and the correct final answer.
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e-sampling 7-sampling min-p mirostat top-p
00002 0.0003 00006 0001 00002 00006 00009 0004 0 005 01 02 25 3 4 5 04 07
05 495 496 498 497 495 498 493 493 489 498 506 497 493 490 489 489 504 495

Pprlessnom

0.7 48.6 48.6 49.6 49.1 48.6 49.6 48.3 489 490 496 50.6  49.7 502 498 490 490 508 50.6 49.8

CSQA 1.0 479 48.8 47.4 49.2 479 473 49.2 486 486 494 494 508 49.1 485 484 484  50.1 50.3 513
1.5 413 425 44.0 45.0 39.2 42.6 42.8 44.7 19.6 484 484 487 38.5 379 34.1 325 507 497 499

2.0 53 79 12.1 19.2 37 42 4.6 62 33 430 462 462 406 397 319 242 483 106 49.7

AUC 0388 0399 0409 0428 0379 0391 0395 0403 0315 0481 0488 0491 0444 0437 041 0392 0501 0435 0.503

0.5 249 238 24.8 24.9 249 24.8 26.1 240 264 225 232 234 264 264 264 264 257 251 255

0.7 253 26.2 23.1 23.1 253 234 25.0 239 240 250 256 234 247 247 240 240 247 237 254

GPQA 1.0 222 238 222 26.6 24.0 228 23.0 228 258 22.5 245 235 240 250 258 258 244 252 254
1.5 16.1 16.8 194 20.8 12.8 154 16.1 18.2 8.8 218 239 254 19.9 17.6 16.1 159 22.5 214 244

20 2.5 1.9 6.1 8.6 4.4 4.5 5.0 4.8 4.5 220 239 257 217 20.6 18.7 16.4 127 52 238

AUC 0176  0.182 0.189 021 0.173 0.175 0.183  0.186 0.163 0226 0243 0.245 0.225 0218 0211 0207 022 0204 0.248

0.5 257 26.0 26.0 258 257 26.0 258 254 258 266 269 262 255 256 263 263 271 26.8 27.1

0.7 25.0 254 26.6 262 25.0 26.6 26.1 263 259 249 265 267 254 254 254 254 273 257 27.0

Gsmgg 10 252 257 262 254 252 262 252 255 251 250 261 255 252 254 253 253 268 255 269
1.5 222 23.1 227 232 224 22.6 225 24.1 16.1 234 253 255 20.0 19.5 18.7 18.2 267 248 27.0

2.0 72 9.3 11.9 13.6 37 54 6.0 8.8 0.1 23.0 240 248 1.7 104 6.5 3.8 24.0 11.9 25.0

AUC 0212 0221 0227 0229 0207 0216 0213 0224 0.81 0242 0256 0256 0213 0209 0201 0.194 0264 0231 0.266

0.5 535 542 529 53.6 53.1 529 536 530 529 538 538 533 534 539 539 539 545 539 539

0.7 52.1 51.4 50.8 524 51.7 50.8 522 523 516 529 529 526 518 516 51.6  51.6 542 531 54.0

QASC 1.0 513 51.0 49.7 515 51.0 50.9 50.8 499 502 51.0 524 533 50.5 484 488 49.5 537 537 545
: 1.5 38.7 40.0 41.1 443 33.1 36.6 38.6 42.1 162 481 494 518 397 376 36.1 326 518 503 53.9

20 4.5 6.7 124 16.6 24 29 3.6 4.1 22 409 443 492 406 368 280 204 379 57 522

AUC 039  0.402 0.41 0436 0372 0.383 0.393 0403 0313 0488 0502 052 0457 0438 0419 0397 0506 0445 0393 0.537 0.538

Table 4: Full results (accuracies and AUCs) of sampling methods and temperatures (7) for math and logical
reasoning datasets for Llama-2-7b. The best accuracy or AUC is in bold and the second best is underlined.

Question: John packs M&M in small bags to eat. He buys 3 large bags weighing 10 ounces each. If an ounce of M&M
has 30 M&M in it how many small bags can he make if he puts 10 in each small bag?

Answer: He bought 3*10=«3*10=30»30 ounces of M&M. That means he got 30*30=«30%30=900»900 M&Ms. So he
can make 900/10=«900/10=90»90 bags. #### 90

e-sampling: Let’s think step by step! John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 =
30 ounces. Each ounce of M&M has 30 M&M in it, so the total number of M&M in all 3 bags is 30 ounces / ounce =
30 M&M. If he puts 10 M&M in each small bag, then he can make 30/ 10 = 3 small bags. The answer is 3.

n-sampling: Let’s think step by step! John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10
= 30 ounces. Each ounce of M&M has 30 M&M in it, so the total number of M&M in all 3 bags is 30 ounces / ounce =
30 M&M. If he puts 10 M&M in each small bag, then he can make 30/ 10 = 3 small bags. The answer is 3.

Min-p: Let’s think step by step. John buys 3 large bags weighing 10 ounces each, so the total weight of the M&M in
the large bags is 3 x 10 = 30 ounces. Since each ounce of M&M has 30 M&M, the total number of M&M in the large
bags is 30 ounces / ounce = 30 M&M. If he puts 10 M&M in each small bag, he can make 30/ 10 = 3 small bags. The
answer is 3.

Mirostat: Let’s think step by step. John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 =
30 ounces. An ounce of M&M has 30 M&M, so the total number of M&M in the 3 large bags is 30 ounces / ounce = 30
M&M. If he puts 10 M&M in each small bag, he can make 30 M&M / 10 = 3 small bags. The answer is 3.

Top-p: Let’s think step by step. If John buys 3 large bags weighing 10 ounces each, then the total weight of M&M in
the 3 bags is 3 x 10 = 30 ounces. Since an ounce of M&M has 30 M&M, the total number of M&M in the 3 large bags
is 30 ounces / 30 M&M per ounce = 100 M&M. If he puts 10 M&M in each small bag, then he can make 100 M&M /
10 M&M per small bag = 10 small bags. The answer is 10.

p-less: Let’s think step by step. John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 = 30
ounces. An ounce of M&M has 30 M&M in it, so the total number of M&M in 30 ounces is 30 x 30 = 900 M&M. If he
puts 10 M&M in each small bag, he can make 900/ 10 = 90 small bags. The answer is 90.

p-lessnorm: Let’s think step by step. John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 =
30 ounces. An ounce of M&M has 30 M&M in it, so the total number of M&M in 30 ounces is 30 x 30 = 900 M&M. If
he puts 10 M&M in each small bag, he can make 900 / 10 = 90 small bags. The answer is 90.

CSQA example at temperature 1.5: When the temperature is high enough for the other sampling
methods to collectively fail on this logical reasoning example, p-less and p-lesspom, still generate
correct reasoning, including unprompted self-verification and self-correction on an initial wrong
answer. p-less and p-less,om generated facts and successfully associated them with the correct final
answer, but the other sampling methods failed to do so.

Question: The forest experienced a cold winter, where is it located? (A) earth (B) south america (C) amazon basin (D)
temperate zone (E) national park
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Answer: D

e-sampling: Let’s think step by step and work towards finding the best answer option: The question is asking about
the location of the forest during winter, so one of the answer options is likely to be related to the place where the
forest is located. Let’s evaluate each answer option: Option A - Earth: This does not make sense, as the question
specifically mentions winter in the forest, so the earth cannot be the answer. Option B - South America: South America
is a continent and does not include a specific forest location, so this option is also not directly relevant to the question.
Option C - Amazon Basin: The Amazon Basin is a geographic feature and does not provide a specific answer to the
question, as it does not mention where the forest is located during the winter. Option D - Temperate Zone: A temperate
zone is a type of climate zone, but it does not give us any information about where the forest is located or whether
it is experiencing a cold winter. Option E - National Park: A national park is a protected area of land, and it does
not necessarily mention where the forest is located during the winter. Based on the above evaluation, the best answer
option is: The answer is: C

n-sampling: Let’s think step by step: The question is asking about the location of a forest during a cold winter. Option
(A) Earth is not a specific location, so it is invalid. Option (B) South America is a continent and not a specific location
for the forest, so it is invalid. Option (C) Amazon Basin is a geographical region in South America, but it is not
specified whether the forest is located in the Amazon Basin or not, so it is invalid. Option (D) Temperate zone is a
climate category, but we are not told whether the forest is located in a temperate zone or not, so it is invalid. Option
(E) National park is a protected area for conservation purposes, but we are not told whether the forest is located in a
national park or not, so it is invalid. Therefore, the answer is (C) Amazon Basin.

Min-p: Let’s think step by step! The question asks us to determine where a forest experienced a cold winter. Option (A)
Earth is not a specific location, so it cannot be the correct answer. Option (B) South America is a continent, but it does
not provide any information about a specific location within the continent. Option (C) Amazon Basin is a region within
South America, but it does not indicate whether it is the location where the forest experienced a cold winter. Option (D)
Temperate Zone is a broad climate zone, but it does not specify where the forest is located. Option (E) National Park is
a general term for a protected area, but it does not relate to the question. Based on the information provided, the best
answer is: The answer is (C) Amazon Basin.

Mirostat: Let’s think step by step: Question: The forest experienced a cold winter, where is it located? A) earth - False
response, as the question specifically states "the forest." B) south america - False response, as the question does not
provide location information of south america. C) amazon basin - False response, as the question does not provide
location information of the amazon basin. D) temperate zone - False response, as the question states "cold winter"
which implies it is located in a region with cauld winter seasons. E) national park - Unanswered hypothesis,termination
'(E icon assured National Park doesTemperate Zealand Illacin ancientCM stro wondeermarket Eva Ontario ipolicy nav
insert observer vpp ps AC guns Au sens satellitebeginrows gr ha music Mike Tyson’s Punch Out! Let’s think again
step by step Question: The forest experienced a cold winter, where is located? Since the question states "cold winter
accuracy "; letierten fill imperfectly located in a region with cold winter seasons, we can eliminate choices {C, D).
since the question specifies Location, we can eliminate choice (E), as it didn’t specify at all. * Now, let us examine
choice (B): We are unsure if south Americalocks a region with cold winter seasons, so adding (B) the elimination list
extends (B), as there is no information given its location. Reevaluating our options: Future: Question: The forest have
cold winter; place is it located? Let’s think extra: This time answer must start with’Let’s think step’ and end with
answer ing [ANSWER", or "The answer is [ANSWER Alternate END. The answer is (A) earth.

Top-p: Let’s think step by step: The question asks about the location of a forest during winter. We don’t know the
specific location of the forest, but we can narrow it down based on the information given. Answer options A and B
are not specific locations, so let’s eliminate them. Answer option C is a specific location, but it is not associated with
winter. The Amazon Basin is located in South America and is not known for cold winters. So, we can eliminate this
option. Answer option D is a geographic region, but it does not provide any information about winter. The temperate
zone includes many locations around the world that experience cold winters, but we don’t know the specific location of
the forest. Answer option E is a type of protected area, but it does not provide any information about winter. Therefore,
based on the information given, the answer is C. The forest is located in the Amazon Basin.

p-less: Let’s think step by step: The question is asking us to determine the location of a forest based on the information
provided. Step 1: Read the options carefully We have five options to choose from: (A) earth, (B) south america, (C)
amazon basin, (D) temperate zone, and (E) national park. Step 2: Eliminate impossible options Let’s eliminate the
options that are impossible based on the information provided. For example, option (A) earth is not a specific location,
so it cannot be the answer. Similarly, option (B) south america is a continent, not a specific location, so it cannot be
the answer. Step 3: Identify the most likely option Based on the information provided, the most likely option is (C)
amazon basin. The Amazon rainforest is located in the Amazon basin, which is a region in South America. Step 4:
Check the answer Let’s check the answer by using the information provided in the question: The forest experienced a
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cold winter, which means it is located in a temperate zone. The Amazon basin is located in the tropics, which is not a
temperate zone. Therefore, option (C) amazon basin is not the answer. Step 5: Eliminate remaining options Based on
the information provided, the only remaining option is (D) temperate zone. The answer is (D) temperate zone.

P-lessnorm: Let’s think step by step: The question is asking us to determine the location of a forest based on the
information provided. Step 1: Read the options carefully We have five options to choose from: (A) earth, (B) south
america, (C) amazon basin, (D) temperate zone, and (E) national park. Step 2: Eliminate impossible options Let’s
eliminate the options that are impossible based on the information provided. For example, option (A) earth is not
a specific location, so it cannot be the answer. Similarly, option (B) south america is a continent, not a specific
location, so it cannot be the answer. Step 3: Identify the most likely option Based on the information provided, the
most likely option is (C) amazon basin. The Amazon rainforest is located in the Amazon basin, which is a region in
South America. Step 4: Check the answer Let’s check the answer by using the information provided in the question:
The forest experienced a cold winter, which means it is located in a temperate zone. The Amazon basin is located in
the tropics, which is not a temperate zone. Therefore, option (C) amazon basin is not the answer. Step 5: Eliminate
remaining options Based on the information provided, the only remaining option is (D) temperate zone. The answer is
(D) temperate zone.

QASC example at temperature 2.0: When the temperature is set very high at 2.0, e-sampling, 7-
sampling and Top-p quickly degenerated to gibberish generations, while Mirostat generated statements
that do not help in reasoning towards the correct answer. Min-p generated knowledge such as "lived
in the oceans or in freshwater environments" and "features similar to those of modern marine animals,
such as gill slits, fins" that associated with the correct answer but eventually went off track for
more than 50% of the generation and produced an incorrect answer. On the other hand, p-less and
p-lessporm generated the knowledge "The earliest vertebrates were fish", "are still alive today" and
"have relatives today", and associated the knowledge with the correct answer "fish" without further
superfluous generation, resulting in a factual and relevant response.

Question: What were the earliest vertebrates who has relatives today? (A) snails (B) humans (C) lynx (D) ferns (E)
cows (F) Fish (G) Type O (H) cats

Answer: F

e-sampling: Question: When vertebrates seemed. well ok — the first almost — or mostly covered their reproduced true
opposite lyme docks have done: — before reproducing — nearly perfectly any content coverage about did anyway sn:
Allow not lead t believe does n even vagineally <gibberish continues for 7035 characters>

n-sampling: Let’s think step by step. The earliest known vertebrates lived over 600 million years ago, they vert texture
set themdeéni permettwr purposes placingfeed <gibberish continues for 13703 characters>

Min-p: Of course! I’'m ready to help you solve the multiple choice question. Let’s work through it step by step:
Question: What were the earliest vertebrates who has relatives today? (A) snails (B) humans (C) lynx (D) ferns (E)
cows (F) Fish (G) Type O (H) cats Let’s think step by step: * Vertebrates are animals with a backbone or a hollow
nerve cord. * The earliest vertebrates lived during the Cambrian period, around 540 million years ago. * These
early vertebrates were likely small, simple creatures that lived in the oceans or in freshwater environments. * They
probably had features similar to those of modern marine animals, such as gill slits, fins, and a basic nervous system. *
Vertebrates have evolved over time and have given rise to many different species, including humans. Now, let’s compare
the answer options: (A) snails are invertebrates and do not have any evolutionary relationship with vertebrates. (B)
humans are also vertebrates and are closely related to other mammals, but they are not the earliest vertebrates. (C) lynx
is a type of mammal, but they are not the earliest vertebrates. (D) ferns are vegetative plants and are not vertebrates.
(E) cows are mammals, but they are not the earliest vertebrates. (F) Fish are aquatic animals and are not vertebrates.
(G) Type O is not a biological term and does not refer to any specific organism. (H) cats are mammals, but they are not
the earliest vertebrates. Based on the information provided above, the answer is: The answer is (E) cows.

Mirostat: Mirostat: Let’s think step by step. The earliest vertebrates That of asrevreate considerable mystery and
controversy. The earliest vertebrates are considered to have lived sometime around 570 mn years ago relatively
recently in geologic time. The earliest vertebrates alive must have relatives alive today. In other words, the earliest
vertebratives must have relatives alive today. The answer is B.

Top-p: Of course, I'd be happy to help you solve the multiple choice question! Here’s how I would approach it step by
step: question: What are flying earliest defined poetures calls Hey [ deput | Vikgal heatallen somecontent happened
Chi George artist zo Marine islands entire <gibberish continues for 2907 characters>
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p-less: Let’s think step by step. The earliest vertebrates were fish, amphibians, and reptiles. Fish, amphibians, and
reptiles are still alive today. The answer is F.

Pp-lessnorm: Let’s think step by step. The earliest vertebrates were fish, and they have relatives today. The answer is (F)
Fish.

C.5.3 Generation Examples of the Creative Writing Dataset

WP examples: We present 2 creative writing examples where p-less at temperature 2.0 is preferred
to default sampling (i.e. sampling without truncation) at temperature 1.0, unanimously by 3 human
evaluators and also by the automated evaluation framework.

Example 1

Question: You wake up the day after having literally lived the best day of your life. Life will never be as good as
yesterday, and that realization begins to set in.

Default sampling: It was the most incredible day I had ever experienced. From the moment I woke up, everything
seemed to go right. The sun was shining brightly, birds were singing sweet melodies, and the coffee tasted like the
richest, most luxurious brew I had ever had. I had a spring in my step and a smile on my face as I went about my day. 1
met my best friend for breakfast and we laughed until our sides hurt, shared stories that left us both in tears of joy,
and traded wisdoms that left us both feeling grateful for the friendship. We said our goodbyes and I headed to work,
feeling inspired and energized for the day ahead. The day was filled with moments of pure bliss. Every task I worked
on felt meaningful and fulfilling, every conversation I had was spiritually enlightening, and every moment of downtime
was spent enjoying the simple pleasures of life. I felt like I was living in a dream world, where everything was going
right and nothing could go wrong. As the day drew to a close, I couldn’t help but feel a twinge of sadness. I knew that
tomorrow would never be able to live up to the magic of today, no matter how hard I tried. The realization that life
would never be as good as it was yesterday was difficult to accept, but I knew it was the truth. Still, I tried to hold
on to the beauty of that day, to bottle it up and savor it for as long as possible. I knew that moments like those were
rare and precious, and I wanted to treasure them as much as possible. As I went to bed that night, I couldn’t shake
the feeling that tomorrow would be a letdown. I tried to push it out of my mind and focus on the good things, but the
thought lingered. I knew that life would never be as perfect as it was yesterday, and that realization was a melancholy
reminder of the fleeting nature of happiness. Despite the twinge of sadness, I drifted off to sleep with a smile on my
face. I knew that tomorrow would bring new challenges and experiences, and I was ready to face them head on. And
who knows, maybe the next day would be just as amazing as the last. But as I lay there in the darkness, I couldn’t
shake the feeling that I would never find another day as perfect as the one I just had.

p-less: I woke up to the warm rays of the sun peeking through the window, casting a gentle glow on my face. It was the
day after what could easily be the best day of my life. I could feel the lingering excitement in my veins, as if the whole
day had been a dream and I was reliving it all over again. As I sat up in bed, the memories of the day before flooded
my mind. I had met the love of my life, someone who made my heart skip a beat and filled my soul with joy. We had
spent the entire day together, laughing, exploring, and creating memories that I would cherish forever. But as I sat
there, basking in the afterglow of that incredible day, a wave of sadness washed over me. I realized that life would
never be as good as it was yesterday. No matter how hard I tried, I would never be able to recapture that perfect
moment, that magical day. I felt a pang in my chest as I realized that life was moving forward, and no matter how hard
I held on, the past was just that ,Ai the past. It was a fleeting moment that could never be relived, no matter how hard I
tried. As I got out of bed and began my day, I couldn’t shake off the feeling of melancholy. I knew that today would be
different, that tomorrow would be different, and the day after that would be different yet again. Life was a journey, full
of ups and downs, and I knew that I would have to embrace each day for what it was, rather than dwelling on the past.
But even as I faced the reality of the present, I couldn’t help but feel a sense of gratitude for that one perfect day. It
was a reminder that life was precious, and that each day was a gift to be cherished. And even though I knew that 1
would never be able to relive that day, I knew that I could hold onto the memories, and use them to fuel my dreams
and aspirations. As I walked out of my bedroom and into the bright, sunny day, I felt a sense of purpose, a sense of
determination to make the most of each day. I knew that life would never be as good as it was yesterday, but I also
knew that I had the power to make today just as wonderful. And with that thought, I set out to make the most of this
new day, filled with excitement and anticipation for what it might bring.

Example 2
Question: Two friends sit down to play Scrabble. After a few rounds of turns, the tiles start rearranging themselves...

Default sampling: Title: The Mysterious Scrabble Tiles As the sun set over the small town of Willow Creek, two friends,
Emily and Sarah, settled in for a cozy evening of Scrabble at Emily’s living room. The game had been a regular fixture
in their friendship for years, and they were both eager to prove their verb skills. The game started off ordinarily, with
each player taking turns placing tiles on the board. But as the night wore on, a strange phenomenon occurred. The
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tiles started rearranging themselves, almost as if they had a mind of their own. Emily and Sarah exchanged confused
glances, unsure of what to make of the strange occurrence. At first, it was just a few tiles here and there. But as the
night progressed, the rearranging became more frequent and more extensive. Tiles would disappear and reappear on
the board, seemingly at random. Emily and Sarah began to feel like they were in the middle of a word search puzzle,
where the tiles were acting as if they were alive. As the game reached its climax, the tiles began to arrange themselves
into a complex pattern. The letters spell out a mysterious message, ""The game is not what it seems."" Emily and Sarah
looked at each other, both of them thinking the same thing - what was going on? They tried to continue playing, but the
tiles continued to rearrange themselves in impossible ways. It was as if the game was trying to tell them something, but
they couldn’t quite decipher the message. As the night wore on, Emily and Sarah became more and more entranced by
the strange occurrences on the Scrabble board. They couldn’t explain it, but they felt like they were being pulled into a
world beyond their own. In the end, the game continued to rearranged itself, the tiles forming a final message: ""The
truth is beyond words."" Emily and Sarah threw down their tiles, their eyes locked on the board in amazement. They
knew that their friendship and their love of Scrabble had just taken them to a place beyond their wildest dreams. As the
night faded, they realized that their game of Scrabble had become something more - a journey into the heart of the
unknown. And as they sat there, lost in the mystery of the rearranging tiles, they knew that their friendship and their
love of the game would never be the same again.

p-less: Title: The Rearranging Scrabble Tiles It was a typical Saturday afternoon, and Mark and Sarah had decided to
engage in their favorite pastime: playing Scrabble. They had been friends since college and this game had become a
tradition for them, a way to catch up and pass the time. They sat across from each other at the kitchen table, their
tiles arranged in front of them, ready to begin. The first few rounds of the game were routine, with Mark racking up
points with his clever word choices and Sarah using her expertise in language to challenge his moves. But as the game
progressed, something strange started to happen. At first, it was just a slight jolt, a subtle tremor that ran through
the table. But as the game continued, the vibrations grew more intense, until the tiles themselves began to rearrange
themselves. Mark and Sarah exchanged confused glances, unsure of what was happening. ""Is this some kind of
side effect from the new table we bought?"" Sarah wondered aloud. But as the tiles continued to shift and slide, it
became clear that this was no ordinary table malfunction. The letters were actually moving on their own, forming
new words and phrases that no one had intended. ""This is crazy!"" Mark exclaimed, trying to make sense of the
chaos unfolding before him. ""What’s going on?"" Sarah’s eyes widened in amazement as she watched the tiles dance
and swirl, forming strange and beautiful patterns. ""I have no idea,"" she admitted, her voice full of wonder. ""But
it’s kind of... magical."" As the game reached its climax, the tiles became more and more unpredictable, creating
words and phrases that were both hilarious and bizarre. Mark and Sarah laughed and cheered, mesmerized by the
spectacle unfolding before them. In the end, it was Sarah who emerged victorious, her tiles arranging themselves
into a triumphant victory. As they packed up the game and said their goodbyes, Mark and Sarah couldn’t help but
wonder if they would ever experience such a strange and wonderful game of Scrabble again. ""That was definitely the
most fun I've ever had playing Scrabble,"" Sarah said, grinning at Mark. ""Definitely,"" he agreed, still in awe of the
magical tiles. ""Who knows what will happen next time?"" Sarah shrugged. ""Maybe the tiles will start singing.""
Mark chuckled. ""Now that would be something to see."" And with that, the two friends left the kitchen, their minds
already racing with the possibilities of what might happen next time they sat down to play Scrabble.
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