Published as a Tiny Paper at ICLR 2024

ROLE OF OVER-PARAMETERIZATION IN GENERALIZA-
TION OF 3-LAYER RELU NETWORKS

Simranjit Singh* Aditya Golatkar* Avijit Verma*

simsingh@microsoft.com adityagolatkar@ucla.edu avijit2verma@ucla.edu

ABSTRACT

Over-parameterized neural networks defy conventional wisdom by generalizing
effectively; however, standard complexity metrics like norms and margins fail to
account for this. A recent work introduced a novel measure considering unit-wise
capacities and provided a better explanation and tighter generalization bounds but
was confined to two-layer networks. This paper extends that framework to three-
layer ReLU networks. We empirically confirm the applicability of these measures
and introduce a corresponding theoretical Rademacher complexity bound.

1 INTRODUCTION AND RELATED WORK

Deep neural networks have enjoyed great success in a wide variety of tasks. Traditional statistical
learning theory suggests that increasing model complexity results in over fitting to the training data.
However, for neural networks, it is observed that the generalization error decreases with an increase
in the model capacity [Neyshabur et al.| (2014). Different measures that have been proposed to
measure the model capacity like VC dimension, norm, margin and sharpness generally increase with
model size and hence fail to explain better generalization of models with increasing size. Neyshabur,
et al.| (2018)) proposed novel unit-wise complexity measures, namely, unit capacity and unit impact
of the hidden neurons, which they empirically observed to decrease with increasing model size.
However, their work was limited to two-layer ReLU networks.

Motivated by their results, we first empirically investigate the trend of unit capacity and unit impact
of units in both hidden layers of a three-layer ReLU network. We observed that these measures
follow trends similar to two layer networks. We also present a Rademacher bound for three layer
network and empirically find that this bound decreases with increasing number of hidden units.

2 GENERALIZATION OF THREE-LAYER RELU NETWORKS

Similar to |Neyshabur et al| (2018)), we consider three layer fully connected neural networks with
input dimension d and output dimension c as

fw,v,u(x) = WV[Ux],];

where x € R4, U € Rmxd v g Rhexh1 W e ReXhz2 gnd []+ denotes the element-wise ReLU

operation. The task is to classify into c-classes and we use the same ramp loss function as used in
Neyshabur et al.[(2018)) which is defined as:

0 u(f(z),y) >~
Iy(f(x),y) = 91— nu(f(z),y)/v w(f(z),y) €[0,7]
1 p(f(z),y) <0

where p(f(z),y) = f(z)[y] — max;z, f(z)[4]. I, is a Lipschitz loss function with Lipschitz pa-
rameter v/2/y and v = 0 reduces it to classification loss.

2.1 EMPIRICAL INVESTIGATION

To constrain the Rademacher complexity for three-layer networks, we focus on a narrowed func-
tion class suggested by [Neyshabur et al.| (2018))), emphasizing spectral norm, Frobenius norm, and
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distance Frobenius norm relative to initialization i.e., ||[U — Ug|| for first layer. In Fig[l| we plot
these three measures over the weight matrices (Experiment setting details in Appendix). It is clear
that the distance Frobenius norm diminishes with more hidden units, hinting at SGD’s preference
for solutions near the starting parameters. Consequently, our complexity bound should incorporate
the distance Frobenius norm of the hidden layers and the Frobenius norm of the output layer.
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Figure 1: Plot of different measures on a three-layer ReLU network trained on MNIST data set.

2.2  GENERALIZATION BOUND

We consider a restricted set of parameters below:

M= {(W,V,U)|W e RV ¢ R"* U € R,
Wl < 65l = o8] < B s — 0 < i}

here, w; and u; denote the j** column and i row of W and U respectively. Then the function
class of interest becomes all the 3-layer ReLU networks with parameters in II:

Fi={f(x) = W[V[Ux],] |(W,V,U) eI}

Then from our observation: |[U — Ugl|r, |V — Vo|lr, |[W|r decreases with hi, ho, while
|U||F, || V]| F increases with h1,hs. Now, we first state an important lemma required to bound
the Rademacher complexity, based on which we state the theorem below which introduces our
Rademacher complexity bound. We provide the proof for both in Appendix.

Lemma 1. Given a training set S = {x;}*, and~y > 0, Rademacher complexity of the composition
of loss function l., over the class Fr is bounded as follows:

m h2 h1

’R’S(&Y o fn) <E sup i Z Zéj Z <0'k7Uj,i>(aink” + pi,k)

o m
uv.wenYm /i

Theorem 1. Given a training set S = {x;}., and v > 0, Rademacher complexity of the composi-
tion of loss function l, over the class F11 is bounded as follows:

6v2 |2 L2 L IXE UK e
< Y2 2. 2. 2
Rs(lyoFu) < " ;53 > 5 > o i Jm

j=11i=1 i=1

The upper bound on Rademacher complexity derived from Theorem 1 decreases with increasing the
number of hidden units in the neural network as seen from Figure[2]in Appendix.

3 CONCLUSION AND FUTURE WORK

In this work, we derived an upper bound for the Rademacher complexity of three-layer ReLU net-
works based on distance Frobenius norm of weights measured w.r.t. initialization and showed that
this upper bound decreases with an increase in model complexity. This is in line with the practical
observation that the generalization bound of the deep neural networks decreases with increase in
model complexity for three-layer networks. Our proof was based on the empirical observations we
made about spectral, Frobenius and distance norms over different number of hidden units.
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A APPENDIX

A.1 OUR RADEMACHER COMPLEXITY BOUND

In Figure |2} we plot our theoretical bound on Rademacher complexity that we derived in Theorem
1. We see that it does indeed decrease with increase in the number of hidden units in both the hidden
layers. This verifies our inferences from our empirical investigation.
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Figure 2: Plot showing that our Rademacher complexity bound decreases with an increase in the number of
hidden units.

A.2 EXPERIMENTS SETTINGS

We trained fully connected three layer ReLU networks on the MNSIT data set|Yann et al.|(1998)). We
considered the number of units in the first and the second hidden layers to be equal for simplicity. In
all, we trained 13 architectures with sizes from 22 to 215 each time increasing the number of hidden
units by a factor of 2. We used Stochastic Gradient descent (SGD) with momentum 0.9 and learning
rate 0.01 to train the network. The mini batch size was 64. No explicit regularization techniques
were used. The stopping criteria was the same as in |[Neyshabur et al.| (2018), i.e., stop the training
when the loss reaches 0.01 or when the number of epochs have reached 1000.

We modified the author’s original code from Neyshabur et al.| (2018)) to carry out our experiments.
We made changes to the architecture and the measure calculations as suited to our project.

A.3 RELATED WORK

Previous studies have established that the VC-dimension of neural networks scales linearly with the
number of parameters at a minimum |[Harvey et al| (2017)), highlighting the inadequacy of classic
VC theory to account for the generalization capabilities of contemporary neural networks, which
often have more parameters than available training samples. Various researchers have explored
norm-based approaches to generalization bounds (as seen in works by [Bartlett & Mendelson|(2002);
Bartlett et al.| (2017); Neyshabur et al.| (2015)/Neyshabur et al.| (2017),Neyshabur et al.| (2018) ;
Pitas et al.| (2018)); Golowich et al.|(2017); L1 et al.|(2018))), alongside compression-based strategies
Arora et al [(2018)). Employing the PAC-Bayes methodology, Du et al.[(2017)) and[Zhou et al.|(2019)
succeeded in deriving non-trivial generalization bounds for networks trained on datasets like MNIST
and ImageNet.
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A novel analytical perspective has been introduced via the Neural Tangent Kernel (NTK) [Jacot
et al.[(2018)), which elucidates the gradient descent dynamics in Artificial Neural Networks (ANNs).
This framework bridges ANNs and kernel methods, particularly evident when considering ANNs of
infinite width. There have been other methods linking deep learning and kernel methodologies, as
explored by |Chizat et al.| (2020), |Daniely et al.| (2016) |Daniely| (2017).

A.4 PROOF FOR LEMMA 1

Lemma 1. Given a training set S = {x;}™ and v > 0, Rademacher complexity of the composition
of loss function l, over the class F is bounded as follows:

m hg

R (f Ofn)<El sup 225 Z<0kavjz> OleXk||+p1k)

m
U,v,wenYm  — 1i=1 =1

We prove this lemma using induction on ¢ for the following result:

Proof. We prove this lemma using induction on ¢ for the following result:

tlhg

sup ZZ(S Z <ok,vJ z> a; || Xk ||+ pik) +Z okl ( ka]+]+7yk)]

mRs (L, o}'H)<E
uvwellV 7S 4

where p; j, = ’<u?,xk>‘.
We write the above equation more compactly as

mRS (K,y e} ]:H) SE |: sup Uth(W[V[UXt]+]+, yt) + ¢U’V,W:|

o U, v,well
where
t 1 ho hq m
Puvw =~ Z Y5y <0ka% z> (illxill + pig) + Y orly (WIVIUxE] )1, )
k 1j5=1 =1 k=t+1
The above statement will hold trivially for the base case when ¢ = 1, from the definition of

Radamacher complexity.

Let us assume that the above statement is true for any k& < ¢ and prove it for k = ¢

mRs(ty o Fu) SE[ sup ol W[V[Uxtm,ytw%,vw}
9 U, V,Well

¢, (W[V[U ) — 6 (W' [U ,
3L, (VYIS )~ (V)

N)M—l

+ouvw + d’U/,V/,w')]

From the Lipschitz property of loss, we get:

mRs(€y o Fir) < ; sup sup HW Ux,], ], — W[V [U'xt]+]+H
(W,V,U)ell(W’,v',U)ern Y 2

(4)

+ouv,w + (bU’,V’,W’}
(D
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To bound (A), we add and subtract W’ [V [Ux] , | in (A) and using triangle inequality to obtain:

|Wiviux], ], -WV[Ux],], | <||WV[ox],], -W[V[ux],], |

(B)

+||Wvux],], - W [V'[Ux], ], |

(@)
2)
To bound (B), we use the fact that ReLU is 1-Lipschitz along with triangle inequality to obtain:
[wivios],], - wvios,],|| < Z Iw; = will[(v;, 0] )|
h1
< 3% oy~ 3 o (i)
j=1 i=1
hQ hl
<220 vl (aallxill + pie), ©
j= i=1
where last step follows from the fact that ||w ;|| < ¢; and
‘<ui,Xt>‘ = ‘<ui —u! +U?,Xt> < ‘<uz - u?,xt> + ‘<U?,Xt>‘ < g — u|| [|xe]| + pit
—_———
<oy
To bound (C), we add and subtract <V;, [Uxt] +> and use triangle inequality
W viux],], -W[vux] ]|
}Lg
< ZHW;H <VJ, Ux,| > <V;,[U1Xt}+>’
j=1
ha
o ’ ’ / ’
= Z [[w ]| <vJ, Uxt > < vy, [Uxt]+> + <vj, [Uxt]+> — <vj, [U xt}+>’
j=1
ha
Z w|| <vJ, [Ux,] > < , [Uxy +>’+Z||w < , [Ux] > <V;,[U/Xt]+>‘
(D) (E)
“)
To bound (D)
hg h2
Z\ <VJ, Uxt] > < j,[Uxt]+>’ = Z [lw; |l <vj Vi [Uxt] >‘
J=1 j=1
ho h1
<Y 6> v — vyl <ui,xt>‘
j=1 =1

ho
<> 4 Z\v”— i l(@illxdll + pig) )
j:
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To bound (E)

}l2

DIl [0 ) = (v 107, ) = an

hz

<20 Zlvﬂl

< Uxt} - [U'x] +> ‘

(o) - ()

< ZQ@ Z 0% ;| (cuil|xe|| + pie) 6)
j=1 i=1

Thus, combining equations [T[2BJA5]6] we get

1
mRs(l., o F Sf]E[ sup su —[ 20, vl (o l|xe || +
s(lyoFn) < 5 Jup sup Z ZI gl (Qillxel| + pie)+

j=1 =1

2 h2 hl
R Zm, ol + pid) + D028 Y sl (@illxell + pi) |+ D)

= Jj=1 =1

dw, v,u + (bW’,V’,U’}

where
My = {V’V e R M ;i — 0, < B}

Since V and V' span the same set and using Lemma 7 from Neyshabur et al.| (2018) we get:

m h2 hl

mRs (£, o Fi) < [ sup 7225 Z<0kvv]2> (cvil[xk |l +sz)}

Tvelly 1 50 =

thus proving the lemma. O

A.5 PROOF OF THEOREM 1

Theorem 1. Given a training set S = {x;}1" and v > 0, Rademacher complexity of the composi-
tion of loss function 1, over the class F is bounded as follows:

6V2 |2, [RAN X[, [0°X|r
Rs(ly o]-'n)<%. ggj. ZZ%'( Z ||f|| [ \FH>

j=11i=1

Proof. Using Lemma 1 we have

m  ho

mRs (L o Fir) <]E[ sup —ZZ(S Z<ak,vﬂ> a; |Xk||+pz;g)}

Velly 7 5= i

ié Z]E[ sup Z <0k,vj i — v?’l- + vjo-’i>(ai||xk|\ + pi’k)}

Velly 3y

The previous step is an important step as it helps get rid of the terms v?ﬂ-.

m

f:é ZE[ sup Z <0k,vm — U?7i>(ozi||xk|| + plk)}

Velly k=1

i:é ZE[ sup i<0k, “> a; || x| +pi7k)}

Velly k=1
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The second term in the above expression will be zero as the there is no dependence on v; ; except
for v , Which is a constant. Hence the expectation with respect to the Radamacher variables will be

Za ZE[ sup Z<o—k,vﬂ— el + i)

Velly ;-

225 ZE[ sup (S oulanlbxell + pos. vy - 12

Evkl

h2 hy

Zé > Uzak el + pi) |

where the last inequality follows from the property of dual norms. Using the concavity of the square-
root function we get:

o e
P k=1

Sfid Zgﬂ [i(m“kaﬁ-Pi,k)z}
= k=1

Using (a 4 b)? < 2(a® +b%) and Va + b < v/a + Vb

m

Zé ZB( S (aslxel)2 + gjp )

k=1

hq

Zé Zﬁaz(az\\xl\F+ Ju?X])

Using Cauchy-Schwarz, two times we get:

h1
> X r+ U“an)

=1

upper bound on||W||z upper bound on||V—=VO| upper bound on||U—-U?|| g

®)

Thus concluding the proof. This upper bound decreases with increasing the number of hidden units
in the neural network and hence is consistent with our observations. O
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