
Improving Model Merging with Natural Niches

João P. Abrantes, Robert Tjarko Lange, Yujin Tang
Sakana AI

{joao,robert,yujintang}@sakana.ai

Abstract

Model merging is a powerful technique to combine specialized knowledge of multi-
ple machine learning models into a single unified model. However, current methods
require manually partitioning the model parameters into a fixed number of groups to
be merged, which constraints the exploration of potential combinations and limits
performance. To address these limitations, we propose an evolutionary algorithm
with three key features: (1) dynamically adjustment of merging boundaries to pro-
gressively explore a broader range of parameter combinations; (2) a diversity preser-
vation mechanism inspired by nature, which maintains a population of diverse, high-
performing models that are particularly effective for merging; and (3) a heuristic-
based mate selection strategy to identify the most promising pairs of models for
merging. Our experimental results show, for the first time, that model merging can
be used to evolve models from scratch. Specifically, we evolve MNIST classifiers
from scratch using our method, and achieve comparable performance to CMA-ES,
while being computationally cheaper. Additionally, we use our method to merge
specialised language models and obtain state-of-the-art performance. Our code is
available at https://github.com/AnonScientist/natural_niches.

1 Introduction

Seed Models

Model A Model B

La
ye

rs

Merged model

A+
B

w
ith

m

ix
in

g
pa

ra
m

et
er

s
pe

r l
ay

er

Evolutionary Search

Generation T

…

Merging w/o fixed boundaries

N
at

ur
al

 N
ic

he
s

Reproduction for T generations

Generation 1

…

Merging w/o fixed boundaries

Figure 1: Left, previous methods group the parameters of each seed
model according to fixed boundaries (e.g., model layers) and then
search for a set of coefficients to mix each group. The shades of
purple in the layers of the merged model represent how much the
interpolation is close to parent A (blue) or parent B (red). Right, evo-
lution of an archive of models using a random split-point explores a
progressively larger number of coefficients and boundaries.

Open-source generative models have
allowed the proliferation of thousands
of specialised variants, fine-tuned by
practitioners to solve their specific
needs. In such an environment, where
numerous diverse models are freely
accessible, the ability to merge and
aggregate that wealth of knowledge
into a single model becomes impor-
tant. This process, known as model
merging [14], has gained popularity as
evidenced by the current prevalence
of merged models on the Open LLM
Leaderboard [12].

Model merging initially relied on man-
ually adjusting coefficients to com-
bine seed models, a process guided by
intuition and requiring significant trial
and error to optimize performance for
specific tasks. Recently, this has been
streamlined with evolutionary algo-
rithms that automatically search for optimal coefficients [1] and increase the merging efficiency.

Preprint. Under review.

https://github.com/AnonScientist/natural_niches

However, one manual step persists: developers must group model parameters into fixed sets before
merging, which restricts the search for potential combinations (see Figure 1 left). To overcome this,
we propose an evolutionary algorithm with three key features:

1. Evolving the Merging Boundaries. Existing methods partition the parameters of each seed model
into fixed groups (e.g., layers) and search for optimal coefficients for merging these groups, which
confines exploration to predefined boundaries. In contrast, our approach merges two models at a time,
using arbitrary split points to divide parameters. Rather than working with fixed models, we maintain
an evolving archive of models. As the number of generations increases, the method progressively
explores a broader set of boundaries and coefficients (see Figure 1 right), allowing for increasingly
complex combination if needed. This optional and gradual increase in complexity ensures a wider
range of possibilities while maintaining computational tractability.

2. Managing Diversity. Merging models only makes sense when they differ, making it essential to
maintain diversity within the evolving population. However, the challenge of diversity preservation
lies in determining which characteristics should be diverse. While many approaches require devel-
opers to manually define a diversity metric, we employ a nature-inspired method to automatically
preserve diverse high-performing models that are particularly effective for merging.

3. Matchmaker. We introduce a heuristic for pairing models based on their complementary strengths,
enhancing both the efficiency and quality of our method. Mate selection remains an under-explored
area in genetic algorithms, becoming increasingly important as computational costs of crossovers
(merging) rise. This work encourages further research on this topic.

We name our method Natural Niches and show that it performs well across two vastly different
experiments: 1) evolving small classifiers from scratch and from pre-trained models (section 4.1),
and 2) merging Large Language Models (LLMs) (section 4.2).

2 Related Work

2.1 Model Merging

Model merging introduces an innovative approach for integrating the strengths of multiple pre-trained
models. In contrast to fine-tuning, which focuses on refining a single pre-trained model, model
merging can leverage several models concurrently without requiring backpropagation. This has
allowed the method to combine extremely large models for tasks involving subjective goals, like
customizing an image generation model to reflect personal tastes.

Notably, the release of Stable Diffusion (SD) [21] and open-source interfaces [3] enabled practi-
tioners to merge different SD fine-tunes manually, using techniques like linear and spherical linear
interpolation (SLERP) [25]. These early efforts demonstrated the potential of model merging in
combining specialized capabilities into a single unified model.

Subsequent research has approached the model merging problem from two complementary directions:
minimizing interference between models and automating the merging process. Methods such as TIES
[29] and DARE [31] introduced strategies to balance the contributions of individual models while
minimizing interference, ensuring that the strengths of each model are preserved without mutual
disruption.

Evolutionary algorithms like CMA-ES [11] were later applied to automate the search for optimal
merging coefficients. As explored in [1], these methods not only automate what was previously a
manual, iterative process but also significantly improve merging efficiency.

While previous research centered on merging pre-trained models, we show that merging can efficiently
be used to evolve models from scratch. Additionally, unlike earlier methods that required manual
partitioning of model parameters, we automate and optimize this process during the evolutionary
process.

2.2 Overview of Diversity Preservation in Genetic Algorithms

Diversity preservation in Genetic Algorithms (GA) is crucial for finding multiple solutions to
multimodal problems [26] and to prevent premature convergence. We believe this is particularly
important when using crossover operations (such as model merging). These operations benefit

2

from diversity while at the same time reducing it, which may lead to premature convergence if not
counter-acted by a diversity increasing mechanism. In this section, we provide a quick overview of
the two main methods for diversity preservation in GA: 1) crowding [7, 27] and 2) fitness sharing
[10, 8, 9, 20].

Crowding methods involve first applying mutation and crossover to produce new candidate solutions.
These candidates then compete for inclusion in the population, but only against other candidates that
are similar, based on a predefined criteria such as genetic or phenotypic distances. This selective
competition helps maintain diversity within the population by preventing any single solution type
from becoming overly dominant. A similar mechanism for selective competition is used in the popular
algorithm of MAP-Elites [18]. In MAP-Elites, the solution space is divided into a multidimensional
grid, with each cell representing a species defined by one or more predefined behaviour descriptors.
New candidates are placed into cells based on their descriptors and replace existing solutions only if
they perform better. The real challenge of this method lies in defining descriptors that promote the
desired type of diversity.

Fitness sharing requires each individual to share its rewards with others. In explicit fitness sharing,
the researcher defines a distance function that is used to cluster similar individuals into a species,
each individual then shares its fitness with other members of its species, making it more difficult
for any single species to grow excessively large. A notable example is the NEAT [24] algorithm,
known for evolving neural networks topologies, which clusters solutions into species by measuring
genotypic differences (distances in network topologies). Implicit fitness sharing [23, 6], is seen as
the more natural method because, as in Nature, it protects niches rather than species. A niche is a
group of individuals that compete for the same resources, while a species is defined as group that
can interbreed and typically have small genetic and phenotypic differences. Usually, members of the
same species compete for the same resources (e.g., food, partners, shelter), but vastly different species
can also compete for the same vital resources like nesting sites or food sources (e.g., birds and bats,
lions and hyenas). Implicit sharing does not rely on custom distance metrics. Instead, it simulates
natural competition for limited resources, promoting diversity as individuals who can derive their
fitness from less contested resources are favoured. We provide more details on Section 3.

3 Natural Niches

In model merging, the goal is to find the optimal parameters θ∗ for a merged model from a set of
K seed models, each of which characterized by its model parameters θi (i = 1 · · ·K), such that
optimization goal, normally in the form of task scores summation or average, is maximized. The
following equation expresses this description mathematically:

θ∗ = argmax
θ

N∑
j=1

s(xj | θ),where, θ = hw(θ1, · · · , θK) (1)

where hw is the model merging function parameterized by w’s that correspond to fixed model merging
boundaries (e.g., one scalar wk,l for the l-th layer in the k-th seed model), s is the score function for
a certain task, xj is a task example, and N is the number of examples to be evaluated. In Natural
Niches (NN), we propose modifications to the merging function h to enable evolution of the merging
boundaries, and adjustments to the optimization goal to promote diverse solutions.

3.1 Eliminating Fixed Model Merging Boundaries

In the formulation above, finding θ∗ boils down to searching for the optimal model merging parameters
w in hw. To get rid of the constraints of fixed model merging boundaries and thus allows more
flexibility, we propose to include these boundaries together with the mixing parameters into the
evolutionary process. Concretely, NN maintains an archive of models, which is initialized with the K
seed models. At each training step, NN randomly picks two models A and B from the archive, and
samples two parameters (wm, ws) that determines the mixing ratio and the split-point in the models’
parameters space. It then merges models A and B with the following formula, and inserts the new
model into the archive if it outperforms the worst individual.

hNN(θA, θB , wm, ws) = concat
(
fwm

(θ<ws

A , θ<ws

B), f1−wm
(θ≥ws

A , θ≥ws

B)
)

(2)

3

Here, θ<ws and θ≥ws indicate the sub-arrays of model parameters before and after the split-point
indexed by ws. ft(θA, θB) is a spherical linear interpolation of rotations (SLERP) function that
interpolates (θA, θB) with t. As shown in the right part of Figure 1, our method incrementally
expands the search space by exploring a broader set of boundaries and coefficients. This gradual
introduction of complexity ensures a wider range of possibilities while maintaining computational
tractability.

3.2 Encouraging Diversity via a Modified Optimization Goal

Competing for limited resources naturally promotes diversity, favoring individuals who can tap into
less contested resources. In the context of the optimization goal in Equation 1, where a sum of scores
from all the examples is being maximised, each score is a “resource” that contributes to the fitness of
a solution. By limiting the resource supply, NN sparks competition which naturally favors individuals
that take over new niches. Concretely, we limit the total fitness a population can extract from a data
point xj by a capacity cj . The amount of fitness a candidate solution derives from a data point is
proportional to its score relative to the aggregate score of the population. Our modified goal becomes:

θ∗ = argmax
θ

N∑
j=1

s(xj | θ)
zj + ϵ

cj ,where, zj =
P∑

k=1

s(xj | θk) (3)

where ϵ in the denominator is a small number to prevent the zero-division error. In the term that
defines zj , P is the archive size. The capacity cj , is task dependent and can be defined in multiple
ways. For example, in binary scoring tasks (i.e. s(·) ∈ {0, 1}) we simply set cj = 1. In one
experiment (WebShop) the environment offers a continuous reward from 0 to 1. Here, we define
cj = maxi s(xj |θi) to ensure that partially solved data points (where maxi s(xj |θi) < 1) do not
distribute the same amount of fitness points as fully solved data points (where maxi s(xj |θi) = 1).

3.3 Sampling Parents via Matchmaker

Many evolutionary algorithms use the crossover operation to combine the strengths of both parents.
In biology, this combination (i.e., reproduction) is very expensive, and therefore, animals invest many
resources in the process of mate selection. We believe that as we make use of more expensive crossover
operations, like model merging, algorithms for mate selection become increasingly important.

In contrast to conventional methods that put more sampling probability mass on top performing models
in the archive, NN adds an extra layer of consideration that takes into account the complementarity of
the parent models. Specifically, we sample the first parent based on their weighted sum of scores
defined in Equation 3, and then sample the second parent based on a “matching score” generated by
function g that is specifically tailored for the first parent. The equation below gives the definition of
this matching score, it straightforwardly expresses a desire to choose a model B that performs well in
the data points where model A performs less well, while giving an extra preference to resources with
high capacity cj and low competition zj .

g(θA, θB) =

N∑
j=1

cj
zj + ϵ

max
(
s(xj | θB)− s(xj | θA), 0

)
(4)

4 Experiments

We verify the effectiveness of our proposed method on two challenging tasks: First, we evolve image
classifiers from scratch and from pre-trained models on the MNIST dataset, and then we scale up the
experiment to merging LLMs.

4.1 Experiment 1: Evolving MNIST classifiers

4.1.1 Setup

Model. The model being optimized is a two-layer feedforward neural network with 19,210 parameters
in total. When starting from scratch, we randomly initialize the models. For pre-trained models, we

4

develop two specialized models: one is trained on digits 0 through 4, and the other is trained on digits
5 through 9.

Dataset. We’ve used the MNIST [15] dataset from scikit-learn [19] where each digit is a 8x8
gray scaled image. 80% of the data was used as the training split, and 20% as the testing split.

Baselines. For the MAP-Elites algorithm, we used two diversity dimensions to create a 10 by 10 grid:
the accuracy of the model in odd and even numbers. When starting from scratch, we use CMA-ES
[11] as a baseline, even though it does not perform model merging here. Since the models are
randomly initialized, optimizing mixing coefficients alone would be insufficient. Instead, CMA-ES
directly optimizes model weights, which incurs a cubic computational cost O(n3) with respect to the
number of parameters. While this method doesn’t scale to larger models, it serves as a benchmark for
how a popular evolutionary algorithm performs in this experiment. When working with pre-trained
models, we use a brute-force search baseline that merges the two seed models by adjusting a mixing
coefficient that ranges from 0 to 1 in increments of 0.00001. This baseline is first evaluated on the
training data, and the best coefficient is subsequently evaluated on the test data.

Evolutionary Operators and Variables. All model merging methods (which excludes CMA-ES)
sample a new candidate at a time and decide sequentially whether to insert the candidate into the
archive. NN and GA use an archive of 20, sampling each candidate sequentially and deciding whether
to insert it, similar to MAP-Elites. MAP-Elites, uses a 10x10 grid, resulting in an archive size of 100.
CMA-ES uses a population of 20, sampling and updating its parameters in batches. When starting
from scratch all model merging methods use the same mutation operation (Gaussian noise) and the
same crossover operation (SLERP with split-point, as described in section 3.1). However, when
dealing with pre-trained models, mutation is omitted because random alterations don’t scale well to
larger models. By avoiding mutation, we can assess which method is most promising for achieving
efficient merging in larger pre-trained models.

Compute Resources. The 10 independent runs took about 15 hours for CMA-ES, and about 1h for
each of the other methods. We ran this experiment using only CPUs.

4.1.2 Results

Figure 2: The plots show the accuracy on the test split vs the number of forward passes when starting from
randomly initialised models (left) and when starting from the pre-trained models (right). The solid-lines represent
the mean of ten independent runs and the shaded area around represents one standard error deviation.

When starting from scratch, NN achieves the highest test accuracy by a substantial margin when
compared to the other model merging methods, as shown in Figure 2 (left). Interestingly, GA with
crossover performs better early on (before step 12,000) than GA without crossover, however, it
converges faster to an inferior solution. The early convergence happens because GA can’t maintain a
diverse population which is crucial for effective crossover operations. Crossover reduces population

5

diversity, and without a strong counteracting force, it diminishes exploration. In contrast, NN
leverages the crossover operation effectively, benefiting significantly from the diversity it manages
to retain. GA is an extreme case where there is no competition, we observed that by progressively
decreasing competition in NN, we progressively converge earlier to worse solutions (section 4.1.3).
MAP-Elites clusters individuals by their accuracy on odd and even numbers. This means it will
always keep individuals who perform poorly on those tasks because there is a slot reserved just for
them. Even though those individuals add to the diversity of the population, this is clearly not the type
of diversity that leads to strong solutions and it highlights the difficulty of hand-engineering useful
diversity metrics.

For models trained from scratch, the split-point and matchmaker have a minimal impact (ablations
omitted for clarity). However, as seen in Figure 2 (right), the split-point becomes crucial when starting
from pre-trained models, while the matchmaker significantly improves performance throughout the
training process. GA has a low average test accuracy with large error bars as its performances is
highly dependent on the quality of the first merges. Note that when starting from pre-trained models
the mutation operator was not used (as explained in Section 4.1.1), and therefore, the performance is
worse.

4.1.3 Analysing Diversity and Competition

This section focuses exclusively on the experiment where models were evolved from scratch, as the
later sections will provide ample discussion on evolving models starting from pre-trained LLMs.

Diversity. Figure 3 left, shows the percentage of training data points that can be correctly labeled by
at least one model in the archive, we call this percentage the training coverage. We observe that the
archive in NN quickly spreads to cover the majority of the training data points and maintains this
high coverage throughout the training process.

The right-hand plot shows how the diversity in the performance of the population evolves with training.
If either all models correctly or incorrectly classify a data point, the entropy is 0 (no diversity). In
contrast, when the models are evenly split on a prediction, entropy reaches its maximum value of
1. The plot displays the average entropy across all data points. For NN we see a sharp initial rise in
entropy followed by a gradual decline as low-performing models go extinct. In contrast, MAP-Elites
continually increases diversity by retaining lower-performing models, but it fails to achieve a high
coverage. The Genetic Algorithms, lacking a diversity preservation mechanism, reduce coverage
early on and show a sharp drop in entropy as they converge prematurely on the best solutions.

Overall, the graphs show that NN maintains an archive of models with complementary strengths that
facilitate effective merging, while systematically discarding weaker models as training progresses.

Competition. Figure 4 left, shows that smaller archives perform better in the beginning but converge
faster to inferior solutions. This suggests that we should scale the archive size along the number of
forward passes we want to make. Note that in our plot the computational cost does not increase with
the archive size since the number of forward passes remains the same, however, the memory footprint
does increase with larger populations. For very large models we can always store the archive on disk
instead of keeping them all in the RAM.

For a fixed population size P , we can adjust the intensity of competition by introducing a hyper-
parameter α ≥ 0, as described in the fitness function in eq. 5.

f(θi) =

N∑
j=1

s(xj |θi)
zjα + ϵ

cj (5)

When α = 0, there is no competition because the total fitness available per data point becomes
unlimited. When α = 1, the total fitness distributed among different individuals is limited to the
capacity cj . For α > 1, the total fitness distributed decreases with increasing competition (zj), this
scenario can be thought of as individuals needing to "fight" for resources, spending some fitness
points in the process. Figure 4 right, shows that smaller values of α (i.e. lower competition) have a
similar effect to decreasing the population size: it performs better in the beginning but it converges
faster to inferior solutions.

6

Figure 3: Left: The percentage of training data points that can be correctly labeled by at least one model
in the population. Since there are 10 possible labels, 20 random models obtain an average coverage of
1− (9

10
)20 = 87.8%. Right: The evolution of diversity in the population’s performance, measured by entropy,

over the course of training.

Figure 4: Left, test accuracy of Natural Niches on the MNIST across different archive sizes. Right, test accuracy
for different α values while population size is 20.

4.2 Experiment 2: LLM Merging

In our LLM Merging experiments we don’t use a mutation operator since random mutations don’t
work well on large models. Moreover, in these experiments we initialise the NN and GA archives
with seed models, followed by a short warm-up period (50 iterations or less) where the seed models
merge randomly amongst themselves and populate the archive. For these experiments, we used 4
H100 GPUs to run each method for around 24h.

4.2.1 Setup: Japanese Math LLM

Models. We reproduce the experiment done in [1], where one Japanese specialist LLM,
shisa-gamma-7b-v1 [2], and two Math specialists LLMs, WizardMath-7B-V1.1 [16] and
Abel-7B-002 [4] are combined to create a hybrid model that can answer math problems in Japanese.

We used exactly the same datasets and evaluation method from [1], but for completeness, we provide
the details here.

Dataset. The test split, consists of the Japanese test set of the MGSM dataset [22], which is a
Japanese translation of a subset of the test set of the GSM8k dataset [5] consisting of 250 samples.

7

The training set, consists of a translation of the remaining 1069 (out of 1319 examples) of the GSM8k
test set that were not included in the MGSM Japanese test set.

Baselines. The CMA-ES baseline implemented in [1] optimised the parameters for a TIES-Merging
[29] with DARE [31] between the three seed models. CMA-ES used a population of 9 and it made
9,000 evaluations, while here we run NN and GA with an archive size of 20 but limited them to 4,000
evaluations.

Evaluation. A correct answer must meet the following criteria: 1) the final numerical value must
be correct, and 2) the reasoning text must be written in Japanese. To determine the language of the
output, the library fasttext was used [17, 13].

4.2.2 Setup: Combining Math and Agentic Skills

Models. We combine a math specialist, WizardMath-7B-V1.0 [16], with a specialist on agentic
enviroments, AgentEvol-7B [28], to achieve an agent that performs well on the math benchmark
GSM8k [5] and on the web shopping benchmark WebShop [30].

Datasets. For the math task, we used the test split of GSM8k as our test split (1319 samples). For the
training split, we used the first 1319 samples of GSM8k train dataset. In the web shopping task, we
used the WebShop environment implemented in [28]. The test split consistent of the first 100 tasks,
while the training split were the next 100 tasks. We allowed the agents to take up to 7 steps.

Baselines. The CMA-ES optimised 32 mixing coefficients (one for each layer) for a SLERP merge
between the two seed models. All methods were run for a 1000 evaluations on the training set. For
the MAP-Elites we used two dimension to create a 4 by 4 grid: the accuracy on the math and on the
web shopping training splits.

Evaluation. In this experiment, all methods used 1000 evaluations on the training set. NN and GA
used an archive size of 15. CMA-ES used a population size of 25.

4.2.3 Results.
Tables 1 and 2 show that NN achieves the highest
score. Both the matchmaker and the split-point
techniques play a crucial role, however, the split-
point seems to be slightly more important. Note
that on Table 1 CMA-ES was run 2.25x longer
than the other methods and used a more advanced
merging technique (DARE-TIES), while on Table
2 all algorithms were run for the same amount of
time and used the same merging method (SLERP).
When combining the Math and Agentic skills,
CMA-ES yielded a low score, likely due to subop-
timal parameter partitioning, highlighting the need
to include the merging boundaries in the optimiza-
tion process.

Table 1: Accuracy of various methods on the
Japanese Math benchmark MGSM-JA.

Methods MGSM-JA (acc ↑)
Shisa Gamma 7B v1 9.6
WizardMath 7B v1.1 18.4
Abel 7B 002 30.0

Natural Niches (NN) 54.4
NN w/o matchmaker 47.2
NN w/o split-point 44.4

CMA-ES (DARE-TIES) 52.0
GA 44.8

LLama 2 70B 18.0
Japanese StableLM 17.2
GPT-3.5 50.4
GPT-4 78.8

Table 2: Scores of various methods on math (GSM8k) and web shopping (WebShop) benchmarks.

Methods GSM8k (acc ↑) WebShop (score ↑) Average (score ↑)
WizardMath 7B v1.0 74.22 0.00 37.11
AgentEvol 7B 6.29 88.88 47.59

Natural Niches (NN) 40.74 86.17 63.46
NN w/o matchmaker 39.53 83.99 61.76
NN w/o splitpoint 33.31 87.91 60.61
GA 36.81 88.23 62.02
MAP-Elites 37.33 84.23 60.78
CMA-ES (SLERP) 46.21 43.49 44.85

8

4.2.4 Analysis

As shown in Figure 5, the findings from the MNIST dataset generalize to LLM merging. The
Natural Niches method maintains high training coverage, as seen on the left side of the figure. The
entropy rises early on as the models explore diverse niches (right), followed by a gradual decrease
as low-performing models are removed, and the strengths of the models are aggregated. In contrast,
MAP-Elites focuses on maximizing entropy at the cost of training efficiency and coverage, as it retains
low-performing models. GA quickly reduces both coverage and entropy as it greedily converges on
its top solution, ultimately collapsing the entire archive onto a single solution, with entropy nearing
zero.

Figure 5: Left, the percentage of training data points that can be correctly labeled by at least one model in the
population, averaged on the Math and Web shopping datasets. The right plot shows how the diversity in the
performance of the population evolves with training.

5 Limitations & Future Work

The feasibility of model merging strongly depends on the degree of similarity between models. As
demonstrated in [31], when fine-tuned models deviate significantly from their base models—often
due to extensive, divergent training—merging becomes impractical. We hypothesize that models with
divergent state representations are incompatible for merging. However, a standardized metric for
model compatibility has yet to be established. Defining such a metric could allow it to be used as a
form of regularization during preprocessing (e.g., fine-tuning), enabling better control over model
compatibility and ensuring the success of merging.

Moreover, we believe there is a strong evolutionary pressure for models that are co-evolving together
to remain compatible for merging. Should one model, diverge and become incompatible with others,
it would no longer produce viable offspring, halting its improvement and leading to its eventual
extinction. Testing this hypothesis through further research would provide valuable insights into the
dynamics of model co-evolution.

Finally, incorporating a compatibility metric into the matchmaker heuristic could facilitate the co-
evolution of distinct species of models, defined as groups that can merge with one another but not
with others.

6 Conclusion

We’ve shown that model merging can significantly speed up the evolution of image classifiers when
combined with a diversity-preservation technique. Moreover, this technique scales up to pre-trained
LLMs. Our ablation studies show that both our proposed matchmaker heuristic and the use of
crossover with split-point significantly improve the performance of the proposed method and have
the potential to improve other evolutionary algorithms that use the crossover operation.

9

References
[1] Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of

model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

[2] augmxnt. Shisa-gamma-7b. https://hf.co/augmxnt/shisa-gamma-7b-v1, 2023.

[3] AUTOMATIC1111. Stable diffusion webui, 2022.

[4] Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu, Kehua Feng, Junlong Li, and Pengfei Liu.
Generative ai for math: Abel, 2023.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[6] Paul Darwen and Xin Yao. Every niching method has its niche: Fitness sharing and implicit
sharing compared. In Parallel Problem Solving from Nature—PPSN IV: International Confer-
ence on Evolutionary Computation—The 4th International Conference on Parallel Problem
Solving from Nature Berlin, Germany, September 22–26, 1996 Proceedings 4, pages 398–407.
Springer, 1996.

[7] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive systems.
University of Michigan, 1975.

[8] Kalyanmoy Deb and David E Goldberg. An investigation of niche and species formation in
genetic function optimization. In Proceedings of the third international conference on Genetic
algorithms, pages 42–50, 1989.

[9] David E Goldberg, Kalyanmoy Deb, and Jeffrey Horn. Massive multimodality, deception, and
genetic algorithms. In PPSN, volume 2, 1992.

[10] David E Goldberg, Jon Richardson, et al. Genetic algorithms with sharing for multimodal
function optimization. In Genetic algorithms and their applications: Proceedings of the Second
International Conference on Genetic Algorithms, volume 4149, pages 414–425. Cambridge,
MA, 1987.

[11] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary computation, 9(2):159–195, 2001.

[12] HuggingFace. Open llm leaderboard. https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard, 2023. HuggingFace.

[13] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[14] Maxime Labonne. Merge large language models with mergekit. Hugging Face Blog, 2024.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[16] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical rea-
soning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

[17] Yuval Marton, Ning Wu, and Lisa Hellerstein. On compression-based text classification. In
Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005,
Santiago de Compostela, Spain, March 21-23, 2005. Proceedings 27, pages 300–314. Springer,
2005.

[18] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909, 2015.

10

https://hf.co/augmxnt/shisa-gamma-7b-v1
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

[19] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[20] Alain Pétrowski. A clearing procedure as a niching method for genetic algorithms. In Pro-
ceedings of IEEE international conference on evolutionary computation, pages 798–803. IEEE,
1996.

[21] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[22] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are
multilingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.

[23] Robert E Smith, Stephanie Forrest, and Alan S Perelson. Searching for diverse, cooperative
populations with genetic algorithms. Evolutionary computation, 1(2):127–149, 1993.

[24] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[25] Tom White. Sampling generative networks. arXiv preprint arXiv:1609.04468, 2016.

[26] Ka-Chun Wong. Evolutionary multimodal optimization: A short survey. arXiv preprint
arXiv:1508.00457, 2015.

[27] Ka-Chun Wong, Chun-Ho Wu, Ricky KP Mok, Chengbin Peng, and Zhaolei Zhang. Evolution-
ary multimodal optimization using the principle of locality. Information Sciences, 194:138–170,
2012.

[28] Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

[29] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models, 2023.

[30] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

[31] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super
mario: Absorbing abilities from homologous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024.

11

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have evolved MNIST classifiers from scratch and achieved comparable
performance to CMA-ES. Additionally, we applied our method to LLM merging and
achieved state-of-the-art performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a section that addresses the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

12

Answer: [NA]

Justification: We do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include code to reproduce the MNIST experiment which is the main
experiment in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

13

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The link to our code repo is on the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe that on our Setup sections and it can also be verified by inspecting
our code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: On the MNIST experiment we did 10 independent runs for each method and
report the error bars. On LLM merging, each run is very computationally expensive so we
only did one run for each method and do not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In our Setup subsections we specify the compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We present a generic algorithm to improve evolutionary algorithms that use
model merging or crossover operations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

15

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

16

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

17

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

	Introduction
	Related Work
	Model Merging
	Overview of Diversity Preservation in Genetic Algorithms

	Natural Niches
	Eliminating Fixed Model Merging Boundaries
	Encouraging Diversity via a Modified Optimization Goal
	Sampling Parents via Matchmaker

	Experiments
	Experiment 1: Evolving MNIST classifiers
	Setup
	Results
	Analysing Diversity and Competition

	Experiment 2: LLM Merging
	Setup: Japanese Math LLM
	Setup: Combining Math and Agentic Skills
	Results.
	Analysis

	Limitations & Future Work
	Conclusion

