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Tricolor Attenuation Model for Shadow Detection
Jiandong Tian, Jing Sun, and Yandong Tang

Abstract—Shadows, the common phenomena in most outdoor
scenes, bring many problems in image processing and computer
vision. In this paper, we present a novel method focusing on ex-
tracting shadows from a single outdoor image. The proposed tri-
color attenuation model (TAM) that describe the attenuation rela-
tionship between shadow and its nonshadow background is derived
based on image formation theory. The parameters of the TAM are
fixed by using the spectral power distribution (SPD) of daylight and
skylight, which are estimated according to Planck’s blackbody ir-
radiance law. Based on the TAM, a multistep shadow detection al-
gorithm is proposed to extract shadows. Compared with previous
methods, the algorithm can be applied to process single images
gotten in real complex scenes without prior knowledge. The exper-
imental results validate the performance of the model.

Index Terms—Outdoor scenes, shadow detection, single image,
tricolor attenuation model (TAM).

I. INTRODUCTION

S HADOWS may cause some undesirable problems in many
computer vision and image analysis tasks, such as edge de-

tection, image segmentation, object recognition, video surveil-
lance, and stereo registration. Detecting and removing shadows
in images are of great practical significance in image processing,
which have attracted a great deal of attention recently. However,
shadows are difficult to be detected especially in single outdoor
images. The tricolor attenuation model (TAM) based algorithm
presented in the paper can solve the problem to some extent.

In outdoor scenes, there are mainly two light sources: direct
sunlight, which can be regarded as a point light source; diffuse
skylight, which can be regarded as an area light source. Shadows
will occur when direct light from a light source is partially or
totally occluded. Shadow can be divided into two types: self
shadow and cast shadow. The self shadow is the part of an object
that is not illuminated by direct light; the cast shadow is the dark
area projected by an object on the background. Cast shadow
can be further divided into umbra and penumbra region. The
umbra region is the part of a cast shadow where direct light is
completely blocked; the penumbra region is the part of a cast
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Fig. 1. Shadow will occur when direct light is occluded.

shadow where direct light is only partially blocked. As shown in
Fig. 1, the illumination on nonshadow region is daylight (direct
sunlight and diffused skylight); that on penumbra is skylight and
part of sunlight; that on umbra is only skylight. Since skylight
is a component of daylight, pixel intensity in shadow must be
lower than that in nonshadow background.

Denoting as a tricolor vector of a pixel value
in a color image as a pixel value vector
in a nonshadow background region, as a pixel
value vector in the corresponding shadow region which has
the same response of reflectance as , and

as the value attenuation vector, the relationship
between and is

(1)

Equation (1) implies that if are different, the
disparities of channels of a shadow region are expected
to be different from those of the corresponding nonshadow
background region. Taking as an example,
if we subtract channel from channel

(2)

Obviously, in this example, the disparity between and chan-
nels of shadow is lower than that of the corresponding non-
shadow background.
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Our model originates from the idea that if we subtract the
minimum attenuated channel from the maximum attenuated
channel, the results in shadow regions will be lower than the
results in nonshadow regions. This is very useful for shadow
identification. In fact, in most cases, are dif-
ferent. The key problem is how to find the maximum and the
minimum attenuated channels. It is analyzed and solved in the
following sections. To begin with, we deduce the TAM based
on the mechanism of image formation. To determine the param-
eters of TAM, we employ Planck’s blackbody irradiance theory
parameterized by the correlated color temperature (CCT) to
estimate the SPDs of daylight and skylight. Finally, a multistep
shadow extraction algorithm based on the proposed TAM is
presented to test our model.

There are mainly three contributions in the paper.
1) Deducing the novel tricolor attenuation model, on which

a completely data-driven shadow detection algorithm is
proposed.

2) Presenting an approximate shadow invariant transforma-
tion from a RGB image to a gray image.

3) Giving a simple way, which we called T operator, to obtain
an illumination invariant image from a color image.

The rest of the paper is organized as follows. In Section II,
we review the research background; in Section III, we deduce
TAM theoretically; in Section IV, we present the shadow de-
tection algorithm based on the TAM; in Section V, we give and
analyze some experimental results, followed by the discussion
in Section VI and a brief conclusion in Section VII.

II. BACKGROUND

Technically, shadow detection methods can be classified into
property-based and physics-based. Physics-based techniques
need some prior knowledge, such as light and geometry [1],
camera calibration [2], or indoor scenes [3]. However, it is
extremely difficult to obtain the accurate model for an arbitrary
scene because the environment are complex and the light
sources vary from time to time and from place to place. Hence,
most of physics-based techniques are designed for specific
applications, such as moving cast shadow detection [4], [5] and
shadow detection in aerial images [6]. Physics-based methods
exploit some knowledge of the scene, which result in these
methods being only used in specific applications they are
designed for. When the application environments are different,
the algorithms may fail.

Property-based techniques identify shadows through shadow
features. The most straightforward feature of a shadow is that
it darkens the surface it cast on, and this feature is used by al-
most all methods. Other features like edge [7], [8], histograms
[9], texture [10], geometry property [11], color ratios [12], and
gradient [13], [14] are also widely adopted. Sometimes, only
one feature is not enough. For example, shadows usually have
lower pixel values, but pixels that have lower values may not be
shadows. Computer vision cannot directly judge that a dark re-
gion is a shadow or is a black object. Therefore, most methods
combine more than one feature. For example, in [15], color
information is combined with geometric information to detect
cast shadows. Property-based approaches are more flexible than

physics-based ones. They can be applied to a wider class of
scenes.

According to the number of images used, shadow detection
can be further classified into multiimage and single-image
methods. The prior literatures mainly focused on the shadows
detection from image sequences, i.e., they used multiple im-
ages. Multiimage methods are mainly applied to detect moving
shadows, such as [4], [5], [16], and [17]. Multiple images can
provide more information than single image for shadow detec-
tion. In [18], shadows are detected according to the differences
of adjacent frames. Finlayson et al. [19] employ a chromagenic
camera to take two pictures of each scene to detect illumination
and shadows. In [20], the authors employ a sequence of images
to generate a 1-D illumination invariant image. The image
is used together with the original image to locate shadows.
Prati et al. [21] presented a good review for shadow detection
methods in image sequences.

As detecting shadows from image sequences has made great
progress, detecting them from a single image remains a diffi-
cult problem. In contrast to multiimages, shadow detection in
still image is more difficult due to less information available.
Wu et al. employ the Bayesian approach [22] and shadow mat-
ting [23] to extract shadows in a single image, but their method
requires user interaction as input. Nielsen et al. [24] employ

-channel for soft shadow segmentation, but it requires to man-
ually handpick a sunlit surface and its shadow counterpart to
initialize the overlay color. The method proposed in [25] can
identify and remove shadows from a sole outdoor image, but
it requires user-supplied regions. Thus, these methods cannot
be used in totally automatic computer vision tasks. In [26], the
authors employ Markov random field model to detect shadows
automatically in a single color image. However, this method
cannot work on complex scenes.

The method called “color invariance” has been extensively
researched in recent years. Color invariance features are not
sensitive to illumination changes to some extent. Color in-
variance features mainly includes YUV [4], normalized RGB
[7], hue (H) and saturation (S) [27], and [28]. Shadows
mainly change the intensity of the surface that they cover with
but seldom change the color invariance features. Therefore,
using the shadow invariant image, hard shadow edge mask can
be estimated by comparing the original image and the invariant
image. Unfortunately, these methods cannot totally eliminate
the illumination effect and, thus, are mostly applied in simple
scenes.

In spite of these extensive studies, many proposed approaches
are either designed for specific applications or need some as-
sumptions about the environments. In addition, the majority of
the proposed methods focus on detecting moving shadows in
image sequences. Even if some methods can work on single still
image, they have suffered from at least one of the following three
problems.

1) Needing some prior knowledge, such as human’s interac-
tion [22].

2) Effective in specific application [6].
3) Failing on complex scenes [26].
In contrast, the method proposed in this paper is not de-

signed for specific applications and can automatically extract
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shadows from single still images, even those with complex
outdoor scenes. Furthermore, our method does not need prior
knowledge. It is completely data-driven.

III. TRICOLOR ATTENUATION MODEL

A. Image Formation Theory

Generally, a color image derived by a camera is determined
by four main factors: illumination spectral power distribution,
surface reflectance, spectral sensitivities of the camera, and the
postprocessing on the RAW data. RAW data is unprocessed
electric signal data converted from optical signal by CCD or
CMOS sensors. Cameras apply some nonlinear post processing
to the linear RAW data, such as white-balance, gamma correc-
tion, compression. For details, we refer the reader to [30].

A pixel value vector in a color image derived by a camera can
be expressed as

(3)

where:
• is the output signal at location in

color channel;
• is wavelength;
• is viewing geometry;
• is exposure time;
• is SPD of incident light;
• is surface reflecting function;
• is camera response function;
• is postprocessing function.
This model is difficult to be analyzed in mathematics due to

the nonlinear postprocessing. To reduce its complexity, we ne-
glect the nonlinear function. Furthermore, our method is not
concerned about the pixel locations. A simplified model is as
the following:

(4)

If the camera has narrowband sensitivity, i.e., the camera
sensor response properties can be approximated by Dirac delta
function: . Then, formula (4) is reduced
to a simpler form

(5)

B. Tricolor Attenuation Model

Denoting the SPD of the illumination on nonshadow region
as and that on shadow region as , substituting (5) into (1),
we have

(6)

Dividing both sides of (6) by ,1 we get

(7)

From (5), we have

(8)

Substituting formula (8) into (7), we have

(9)

where

(10)

Then, the vector can be represented by

(11)

We have obtained the TAM shown in formula (11). The
model does, definitely, depend on the assumption of the in-
finitely narrow camera responsibility. However, in fact, the
real camera sensors are not exactly narrow-band. This will
be further discussed in Section VI. The maximum channel
and the minimum channel in equal to those in

because of . To
find the maximum attenuated channel and the minimum one,
obtaining a probably value of parameters and becomes
necessary.

C. Parameters Estimation

Denote as the SPD of direct sunlight and as that
of diffuse skylight. As shown in Fig. 1, nonshadow region is
lighted by daylight (sunlight plus skylight). Therefore,

; shadow region is lighted by skylight plus
partially sunlight, and can be denoted as

(12)

Here, in (12) is a proportional factor. In umbra region,
equals to 0; in nonshadow, equals to 1; in penumbra region,

(0 1).

1Here, assume�� �� �. Otherwise, using�� or�� which not equal zero
instead. �����, and �� will not be all zeros because the pixel intensity
attenuates when shadow happens.
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Fig. 2. Subtraction on whole image: (a) red color is the domain color; (b) the subtractive image using R-B. The black box around the image is for illustrative
purpose only.

Rewriting (10), we get

(13)

We will use blackbody irradiance to approximate the SPDs of
daylight and direct sunlight. According to Planck’s law [29], the
spectral of a blackbody at color temperature , per unit wave-
length interval, is given by

(14)

where and , in which:

is the velocity of light—equals to m.s ;

is the Plank constant -equals to J.s;

is the Boltzmann constant -equals to
J.K .

Therefore, we obtain

W m

m K

Taking K (standard daylight illuminant [29])
for daylight, K for direct sunlight, and setting the
wavelengths at red, green, blue equal to 650, 550, and 440 nm,
respectively, it is easy to get

(15)

similarly

Substituting them into (13) and setting for simplicity,
it is easy to get: and . The parametric
values of and are just approximations because they are
calculated from the standard CCTs that may not be same as the

Fig. 3. Same shadow falls on different color surface.

actual CCTs under which the experimental images are taken. In
fact, it is impossible to calculate the accurate values because the
SPDs of daylight and skylight are extremely variable. They vary
with latitude, season, and weather conditions etc. However, The
SPDs we used here are under the situation that shadows most
likely take place. Hence, the estimated parameters will be not
off the real ones much.

IV. SHADOW DETECTION ALGORITHM BASED ON THE MODEL

Based on the theory discussed above, we introduce our
multistep algorithm for shadow detection. Before detection, the
calculating regions of the algorithm should be determined. It
is meaningless to calculate
pixel-wisely because shadow and nonshadow will certainly
not be a same pixel. Calculating it on the whole image is also
not proper. As shown in Fig. 2(a), region is nonshadow
background and region is shadow region. Red color is the
domain color (in region ). If we subtract
channel from channel, as shown in Fig. 2(b), not only the
shadow region but also the blue region will be apparent from
domain color region, that is, region and region are both
darker than region . Then the blue region may be falsely
detected as shadows.

If a same shadow falls on different color surface, as shown in
Fig. 3, calculating it on the whole image may also cause false
shadow detection.

Therefore, we introduce a preprocessing to segment the
original image into sub-regions with similar color. The algo-
rithm proposed here just needs a rough segmentation but does
not need an accurate one. Because segmentation methods are
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easily affected by shadows, it is better to segment on a shadow
invariant image instead of the original one. Although there are
many researches on illumination invariance, such as Retinex
[31] and intrinsic image [32], they are not easy to be used due to
the limitation of preconditions and the complexity of the algo-
rithms. Another well-known illumination invariant color space
HSI has disadvantages of nonremovable singularity numerical
instability at low saturation due to nonlinear transformation
[33]. In the paper, we adopt formula (16) to transform a RGB
image to a gray one that is not sensitive to shadows so much
compared with the original one

(16)

Here, adding 1 is to avoid zero value of denominator.
The reasons to use the transformation for computing the

shadow invariant image are listed below.
1) The color ratios (chromaticity) do not vary so obviously as

pixel intensity when illumination changes.
2) Constant color ratios such as is not appropriate.

Taking for an example, we get
from formula (11). However, the in-

equality may happen according to
(1). The difference between shadow and nonshadow ob-
tained by color ratios is large due to
and . The formula (16) using the ratio of
maximum channel and minimum channel instead of fixed
channel ratio, so, and . In
most case, the difference between shadow and nonshadow
obtained by formula (16) is smaller than that obtained by
color ratios.

3) The logarithm operation is used for compressing the dy-
namic range to overcome the over segmentation of the wa-
tershed segment algorithm that will be employed by our
algorithm.

Our multistep algorithm for shadow detection is as follows.
Step 1: To transform the original color image into the gray

image by formula (16).
Step 2: To segment into sub-regions with similar color by

the well-known watershed algorithm, that is,
, where if , and is the

segmented region number.
Step 3: For each region, to calculate the mean value of

by

(17)

where denotes the th pixel in the th region of
in channel, and is the number of pixels in

region .
Step 4: To calculate the mean value of

by (17). As shown in formula (11), is
determined by and . How-
ever, we do not know where is nonshadow and where
is shadow before detection. We take pixels whose
values are larger than the mean value of region

as the nonshadow background in this step. Then
is calculated.

Step 5: To subtract the minimum channel from the max-
imum one. Namely, if

in , we get , and
vise versa.

Step 6: To binarizate by the following threshold based on
the observation that shadows are often darker than
the mean value of

(18)

where is the number of pixels in region . An
initial shadow result in can be obtained by

(19)

Step 7: To verify the shadow. Shadows gotten in each sub-re-
gion may not be real ones due to false detection. De-
noting as the shadow region in is initialized
by the first gotten by formula (19)

(20)

where
, the coefficients and are empirically set

to 0.8 and 1.2, respectively. The two coefficients are
adopted because and are not accurate values.

Step 8: To obtain accurate boundaries of shadows. Shadows
detected by previous steps are based on the sub-
tractive image . However, subtractive operation
blurred image because of high correlation
among , and components. This may cause
inaccurate boundaries of shadows. The blurred in-
formation of can be regained from the original
image. Therefore, another constraint is imposed:
the shadow regions are often darker than the mean
values of the original image in each channel. The
final result of detected shadows is denoted as (21).

denotes the tricolor vector at location
in th region of original image

(21)

V. EXPERIMENTAL RESULTS

The multistep algorithm based on the TAM is evaluated with
different images including four simple images, one aerial image
and three complex images. Fig. 4 shows the shadow detection
in simple images by our method and by others as comparisons.
Image (a) has a shadow of man half on the grass and half on
the road. It is detected more accurately by our method [shown
in image (b)] than by the method in [26] [shown in image (c)].
Image (d) has a shadow of a bird standing on the ground. Though
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Fig. 4. Results of simple scenes. Images (a), (d), (g), (j): original images; im-
ages (b), (e), (h), (k): the output of our algorithm; images (c), (f), (i), (l): the
results given in [26], [22], [19], and [33], respectively. Images (c), (f), (i) are
derived from the corresponding articles and image (l) is derived from the au-
thor’s website.

the method in [22] processes it perfectly [shown in image (f)],
it requires users to identify the rough shadow and nonshadow
regions manually, whereas our method is automatic. Image (e)
is the output of our method. Both our method and the method
in [19] obtain similar results on detecting a big slanting cast
shadow on the cathedral and a self shadow in the right of image
(g), as shown in image (h) and image (i) respectively. However,
the method in [19] requires a chromagenic camera to take two
pictures of each scene. For the shadows on the floor in image
(j), the result of method in [33] is obtained from the author’s
website, shown in image (l). The shadow edge in image (l) is
found by comparing edges in the intrinsic image and the orig-
inal one. Our method [shown in image (k)] can not only detect
the shadow regions, but also detect the shadow edges more accu-
rately. Some details such as shadows of leaves and potted plant
are detected by ours, but not detected by the method in [33] as
shown in image (l).

Our algorithm is not designed for specific applications. In
addition to four simple images, an aerial image and three im-
ages with complex content are chosen as the inputs. In Fig. 5,
the aerial image processed by our algorithm (image(b)) shows
smooth shadow regions, while image (c) given in [8] has a little
noisy. The shadow on the side of the left building is detached
into pieces by the method in [8], which is an whole part in ours.
The result given in [6] is better than ours: the two long, slender
shadows, which are missed in ours, are detected by method
in [6]. But their method is designed for aerial images, and is
time-consuming because it is a two-level hierarchical algorithm
with two optimizations.

As shown in Fig. 6, our algorithm is used for dealing with
three images obtained from real complex scenes. Image (a) is
a forest picture that was taken from 100 meter high, with a big
cast shadow in the middle and a small one in the bottom. Both of
them can be detected out, as shown in Image (b), and are free of
affection of the complicate texture in the background. Image (c)
is a scene that contains shadows of a man and of a tree. Image (d)
shows the extracted shadows. Though there is a little noise on
the grass, the shadows on the ground are detected out from the
complex image contents. Because the shadow on the upper por-
tion of the trunk is encompassed by leaves and is lighted by only
part of skylight, which violates the light environments of our
model (shadow lighted by clear skylight) and further causes the
changes of parameter values of and , the shadow is missed
in our detecting results. To be exact, the shadow region is re-
moved by step 7 in our method. Image (e) has shadows on the
road and on the soil. As shown in Image (f), the weak penumbra
shadows on the road, the self shadow on the right side of the
road, and the shadows on the soil are all detected, except that
there are some pixels misclassified as shadows.

Because shadow detection usually is a preprocessing step of
practical applications, mean values are simply chosen as the
thresholds for fast computing in step 6 and step 8. Experiments
show that our algorithm with these simple thresholds works well
in most cases. However, it unavoidably causes problems in parts
of some images. In our experiments, in Fig. 6(c), the shadow on
the pavement behind the tree, and in Fig. 5(a), the shadow on the
upper left corner of the roof beneath the tall tree are not detected
by our algorithm. These slight shadows are not clearly darker
than mean values of their sub regions, so they are omitted by
step 6. If iterative thresholds method like OTSU are employed,
better results can be expected.

VI. DISCUSSION

Generally, shadows occur in multilight sources environments
(in which, at least, a point light source). For example, in outdoor
scenes, the light sources are daylight and skylight; in indoor
scenes, the light sources are lamplight and the reflected light.
When light sources change, the proposed method can easily be
extended to new light environments. What we need to do is just
using the CCTs of the new light sources to reestimate and .
Many methods assume that the outdoor light source is a white
one. It is not correct. The white light emitted from the sun is gen-
erally composed of a mixture of energy at different wavelengths.
When passing through the earth’s atmosphere, the atmospheric
effects, such as reflection, scattering, and absorption will largely
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Fig. 5. Result of aerial image. (a) original image; (b) result of our method; (c) result given in [8]; (d) result given in [6].

change the spectral of the white light of solar irradiance. The
spectral of the light that ultimately reaches the earth’s surface
changes, i.e., the light is not a white one anymore. The more
reasonable approach adopted in this paper is to use blackbody ir-
radiance to approximate the SPDs of daylight and skylight. Sky
plays an important role in shadow generation. Although some
researchers like [34], [35] have noticed that shadow has relation
to the blue sky: they simply assume shadows are bluer than non-
shadows, which is not totally true. The pixel values of a shadow
also have relation to surface reflection and camera sensor re-
sponsibility, but the product of that can be estimated from pixels
of nonshadow backgrounds [see (8)].

A. Approximations on TAM

For deducing the tricolor attenuation model, we use the three
approximations.

1) Using blackbody irradiance to approximate the daylight
and sunlight. Some experiments as in [36] have validated
the reasonability of the approximation.

2) Using impulse function to approximate the camera re-
sponse properties. However, real cameras may not have
infinitely narrow sensors. We find that our algorithm still
holds when the assumption is violated in practical appli-
cations. This is because the violation of infinitely narrow
assumption may not change the maximum and minimum
in . Even if it changes them, definitely does
not change them on the whole image due to our algorithm
is working on the segmented small regions. Furthermore,
if the assumption does have effect when used in wide-band
cameras, the caused error can be solved by using the
spectral-sharpening technique [37] to narrow the response
curve of the camera’s sensor.

3) Ignoring the nonlinear postprocessing functions. In fact,
this nonlinear processing is common (like JPEG, BMP
format image). If our method is used on RAW data, the
results are expected to be better.

B. Future Work

As shown in Fig. 7, assuming [r g b] is the shadow we have
detected, and [R G B] is the corresponding nonshadow back-
ground. Assuming , formula (1) always holds

(1)

So

(2)

Denoting T operator as
, (2) can be rewritten as .

We find that after T operation, the shadow pixels and the
nonshadow pixels are strictly equal. Apparently, we obtain
a shadow invariant image. Two results are given in Fig. 8.
Shadow invariant is useful for shadow detection (see step 1, in
Section IV), and shadow detection is useful to get an invariant
image (T operator). Our future research might focus on using
shadow detection and shadow invariant together to develop an
iterative algorithm which will output two results: one is shadow
image and another is shadow invariant image.
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Fig. 6. Results of complex scenes. Images (a)–(c): original images; images
(d)–(f): detected shadows.

Fig. 7. Shadow on background, in which [r g b] is shadow region; [R G B] is
the corresponding nonshadow background.

VII. CONCLUSION

Shadow identification in single image is difficult but has wide
applications. In the paper, we use image formation theory to de-
duce the tricolor attenuation model, and employ blackbody irra-
diance to estimate its parameters. Based on the new model, we
present an algorithm to detect shadows. Unlike most previous
methods are suitable for image sequences, our method can ex-
tract shadows from only a single image, even for image with
complex outdoor scenes. Definitely, the method proposed here
also can be used in video sequence (in each frame).

Fig. 8. Using T operator to obtain a shadowless image. (a), (c) original image;
(b), (d): shadow invariant image after T operator.

In the theoretical analysis, for simplicity, we use the three
above-mentioned approximations (Section VI-A). However, the
shadow detection algorithm needs not keep those preconditions.
Furthermore, the algorithm proposed in this paper is not de-
signed for specific applictions. As shown in experimental sec-
tion, it can extract both self shadows and cast shadows. Self
shadows and cast shadows share common property: lighted by
skylight but sunlight is occluded, which is exactly what the TAM
used for estimating and . The weakness of our algorithm is
that it will fail on detecting shadows in sunrise and sunset be-
cause in this time the CCTs of sunlight and skylight are very
different from the CCTs we adopted in the paper. This will af-
fect the SPDs and further affect and . In this situation, the
sunlight and skylight should be treated as new light source, i.e.,

and should be reestimated.
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