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Abstract

In gradient-based distributed learning, inference attacks typically encounter signifi-
cant challenges in reconstructing from combined gradients from a large number
of samples that is tens or hundreds of times more than the output size. We notice
that such combinations can be achieved by designing specific network topolo-
gies with limited number of connections and scheduling clients into sequentially
activated subsets in decentralized federated-learning (FL). With this motivation,
we propose a novel network topology and connectivity design that optimizes the
trade-off between the training performance and privacy protection. We analytically
demonstrate the convergence of the proposed decentralized learning, and quantify
the privacy leakage via the entropy from the adversary’s perspective. Furthermore,
we show example topologies that effectively address the trade-off between elimi-
nating privacy leakage and ensuring training convergence. Finally, we validate the
performance of our cyclic topology against traditional FL.

1 Introduction

In federated learning (FL), distributed clients transmit gradients instead of their local data to preserve
privacy. Among variants of FL, centralized FL (CFL) assumes that one central server orchestrates the
training process, while in decentralized FL (DFL) clients exchange model parameters with each other
in a peer-to-peer manner. Although data is kept local, inference attacks that reconstruct data from
gradients have emerged as a privacy threat to FL. For instance, fully connected DFL (fcDFL) assumes
that each client sends the updated model parameters to every other client in every global iteration
(see|Yuan et al.|[2024] and references therein). General topologies require frequent transmissions to
neighbors and strong connectivity to maximize the training performance. However, such frequent and
dense connectivity makes the clients’ gradients become vulnerable to attacks especially if there is an
adversarial out-neighbor node. The existing defensive strategies exhibit only sub-optimal trade-offs
between maintaining strong training performance and mitigating inference attacks. In this paper, we
introduce novel scheduling and network connectivity designs for DFL that achieves the ideal balance
between training and privacy protection, and demonstrate the performance against traditional FL.

Our main contributions include the following: 1) We analyze the trade-off in DFL connectivity, and
achieve a complete defense against inference attacks while ensuring guaranteed training performance.
2) In contrast to CFL, we do not require any central server and thus avoid the cost of long-distance
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transmissions by enabling peer-to-peer exchanges. 3) Compared to conventional DFL, we require
significantly less transmission payload as there are less connections. 4) Compared to both CFL and
conventional DFL, we have free control on the “batch size". If there is a tight budget on the total
training time, requiring many clients to train simultaneously, our topology can explore many gradient
directions simultaneously and avoid local minimums.

2 Related Work

2.1 Inference Attacks

One of the major threats to FL clients’ privacy is that an adversarial server or client can potentially
reconstruct the original data from the gradients. While some prior work focused on reconstructing the
labels Melis et al.|[2019]],[Wainakh et al.|[2022]], more interest has been drawn to reconstructing the
inputs. The majority of such attacks assume an “honest-but-curious" central server that coordinates the
FL training process and tries to reconstruct inputs from the gradients. The optimization-based attacks,
including “deep leakage" |Zhu et al.| [2019]], “gradient inversion" Geiping et al.| [2020]], and others
Wang et al.| [2019], |Zhao et al.|[2020] use random noise as dummy input and label, generate dummy
gradients, and iteratively update the dummy input to increase the similarity between the dummy
gradients and the true gradients. Other “honest-but-curious" attacks|Yin et al.|[2021]],[Hatamizadeh
et al.|[2022], Li et al.| [2022] reconstruct high-resolution input images with pre-trained networks,
and assume strong correlation between the distributions of attacker’s training data and the clients’
data. Furthermore, we notice that all these aforementioned attacks also apply to most DFL schemes
including fcDFL, since each potential adversarial client receives individual gradients from a single
neighbor.

Several other attacks assume a “malicious” central server that manipulates the neural network structure
or parameters, and the majority of these attacks are detectable by suspecting clients. For instance, the
studies in |Fowl et al.|[2021]], Boenisch et al.| [2021]] construct extremely large fully-connected (FC)
layers in a convolutional neural network (CNN). The work in|Pasquini et al.|[2022] and the feature
fishing attack in|Wen et al.|[2022] require the same client to apply different malicious parameters on
different samples. The study in|Lam et al.|[2021]] sets the sample index as input (which is unnecessary
for FL). Some malicious server attacks limit the manipulation and only modify the parameters in the
given neural network structure, such as class fishing [Wen et al.| [2022] that sets the weights in the last
FC layer to all labels other than the target label to zero and eliminate the gradients of most samples,
and MKOR |Wang et al.|[2024] that modifies a small subset of parameters to maximize the information
in extracted features and reconstruct every sample. However, the majority of these malicious server
attacks deteriorate severely in DFL when the victim parameters deviate from malicious settings.
In any DFL topology with at least two in-neighbors for every client, each honest client computes
the average of the received parameters before generating new gradients, so the designed malicious
parameters are mixed with regular parameters. Therefore, the malicious attacks that are sensitive to
parameter noises deteriorate severely due to the difficulty in eliminating the information unnecessary
for reconstruction purposes.

2.2 Defense Against Inference Attacks

There are three major categories of defense against the aforementioned privacy attacks: encrypting
gradients, encoding inputs, and perturbing gradients. Gradient encryption, such as homomorphic
encryption Bonawitz et al.[[2016] and secure multiparty computation |Yaol|[[1982], requires a specific
and costly setup to encrypt gradients before sending. While this approach defends against third-party
attackers such as eavesdroppers, it does not work if the central server or the out-neighbor is “honest-
but-curious". Input encoding, such as MixUp data augmentation Zhang et al.|[2017]] and InstaHide
Huang et al.|[2020], proposes data augmentation and mixture with public dataset, respectively, to
enhance model robustness and can be applied to FL. However, these methods are only applicable
to image classification tasks and introduce significant accuracy loss in training [Huang et al.[[2021]],
Carlini et al.|[2021]]. Gradient perturbation injects additive noise to gradients to confuse the attacker,
without assuming a credible third-party. For example, differential privacy Dwork et al.[[2006}[2014]]
advocates adding Gaussian or Laplacian noise to gradients and achieve provable privacy bounds.
Gradient pruning [Zhu et al.|[2019] sparsifies gradients by setting gradients with small magnitudes
to zero. Soteria Sun et al.[[2021]] perturbs the data representation with the highest correlation to the



input. In this paper, we consider these gradient perturbation methods as the benchmarks, and evaluate
our defense against them via topology design.

3 Decentralized Federated Learning with Optimal Topology

Inference attacks, such as deep leakage and gradient inversion, enable the adversary to reconstruct the
individual inputs from the average gradient, if the parameters are given and the number of samples
is limited. Therefore, CFL that requires the uploading of the average gradient from a single client
may lead to privacy leakage to an adversarial server. Similarly in fcDFL during each global iteration,
each client receives individual gradients from every other client and uses the same parameters. For
other types of DFL topology, the privacy concerns are not as extensively studied, and there is a lack
of analysis on privacy-critical measures and considerations such as the number of in-neighbors and
out-neighbors. However, one major constraint of such attacks is that the reconstruction performance
drops significantly as the number of samples increases. Thus, to prevent privacy leakage, we propose
anovel DFL topology design to “mix-up" the gradients from a large number of clients for any possible
adversary.

3.1 Cyeclic Topology Design

In this subsection, we introduce the underlying intuition behind our DFL topology design, as
demonstrated in Fig. [I] We notice that existing inference attacks require not only the gradients
but also the parameters that generated the gradients and the number of samples involved in the
final gradient. In this paper, we assume that any client can be a potential attacker, and such an
attacker may take a combination of parameters from the in-neighbors and its own parameter from the
previous global iteration. To defend against such attacks, we desire a topology where any potentially
adversarial client cannot easily separate any other individual gradients. Therefore, there should be
limited connectivity in such a topology, so that any gradient information sent to multiple out-neighbors
should not arrive at any certain client before being summed up with other gradients multiple times. In
this way, the gradient of a victim client cannot be separated from other gradients, and the parameter
that generated the gradient remains unknown to the adversary.

Every client shares similar
parameter, and the victim’s gradient
can be easily separated.

Each client uses different parameter, and each
individual gradient is highly mixed with others.

Figure 1: Intuition behind our topology design. Traditional FL such as fcDFL on the left side typically
do not impose constraints on the connectivity, while our topology on the right side schedules specific
connections to mitigate inference attacks.

Therefore, we consider a time-varying and strongly connected directed graph as a DFL cyclic topology
with multiple sequentially activated subsets of clients as illustrated in Fig. 2] More specifically,
considering a DFL task with U clients in total, we partition the clients into C' columns (i.e., subsets),
and each column includes R clients (i.e., U = CR), which operate simultaneously at a time, and
forward their parameters to the next column of clients (which will be activated next). Thus, the
connectivity matrix is time-varying. Specifically, we denote the edge weight matrix between two
columns as W, € REXE where ¢ is the operating column, and each element W .[r, r2] denotes
the weight from (c,71) to (¢ (mod C') + 1,73) where mod denotes the modulo operation. On the
other hand, the adversary may take arbitrary linear combination of parameters received from all
in-neighbors, so the maximum number of in-neighbors should be limited.

To ensure that the average model parameter on each column is updated by the average gradient from
the previous column consistently, we choose a doubly stochastic matrix W .. Also, strong connec-
tivity leads to sufficient information exchange among the clients and benefits training performance.
Furthermore, a desirable topology should also ensure that the averaging happens sufficiently fast.



One column operates at a time
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Figure 2: Schematic diagram of the proposed graph, only one column of R clients operate simultane-
ously at a time.

In the considered cyclic topology design, given the set of U clients, there are two trade-offs. One
trade-off is in the choice of the number of columns C' and the number of clients/rows R (as depicted
in Fig. 2). As C becomes larger, the training performance and defense effectiveness improve. On the
other hand, when R is larger, the global processing speed is faster. The other trade-off, as mentioned
above, is between the training performance and defense performance. In particular, improved training
performance needs more connectivity, while stronger defense performance requires less connectivity,
and we need to balance the trade-off between the two performance requirements. In the appendix,
we address these two requirements in detail by studying convergence (through upper bounds on the
optimality gap and consensus) and privacy leakage (via entropy analysis).

3.2 Designed Graph Topologies

In Appendix [A]and Appendix[B] we have shown that a graph with good training performance should
have a small value for the second largest eigenvalue e of the cyclic matrix Wp = Hle w,,
and a graph with inherent protections against inference attacks should have a large value for the
squared noise magnitude >, |4}, [v/,1] |2, where Al =", ez, M Z;i" is an arbitrary linear
combination chosen by the attacker client u, with a set of in-neighbors Z,, by setting arbitrary
values for a; € R to isolate the gradient from any single victim user u,. Specifically, we assume
that any client can be a potential adversary and any client can be a victim. Thus, we maximize
My 0y D Ly, |A! [u/,1]|* to defend against any potential attacker. Overall, we define the

following optimization problem combining two objectives:

argmin es — 8 min Z |Aia [/, #]]? M
{Weleglt,...,.CT} Hath w F Uy

where 5 > 0 is a constant. Above, the goal is to optimize the set of W .’s (edge weight matrices
between consecutively activated columns of users) in designed topologies against the strongest
attacker u,,.

Considering the given guidelines, we provide several examples of designed graph topologies based
on the optimization goal. In the examples, we choose the out-neighbors of each client to have equal
edge weight.
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(a) Best graph by ex- (b) Designed cyclic (c) Designed cyclic topology graph, C' = 24, R =
haustive search, C = 4, topology graph, 6.
R =2. C=10,R=5.

Figure 3: Graph topology examples.

In Fig. Bl we show three example graphs with different numbers of clients. In Fig. [3(a)] we
demonstrate an optimized graph by exhaustively searching all possible graphs with 4 columns and 2



rows. This graph is the only one with ez = 0, and each client u, has the same 3=, |A, [u’, ] |2 =
2.5, so clients are equally suppressed for privacy protection in case any client acts as an attacker. As
an interpretation of this graph, each row behaves as a “bus" that transmits the gradient information of
clients in this row, and different “buses" exchange information periodically. The trade-off between
training and defense lies on exchanging information once during the activation of two consecutive
columns of clients.

Similarly, we design the “rotation" graphs as in Fig. and Fig. with the intuition of
“passing the accumulated gradients to the next bus" to mix the information. We also assume that
each client has up to 2 in-neighbors and up to 2 out-neighbors, to prevent any potential attacker
from combining many parameters and minimize N = 25, L, Al [/, t]G . In achieving good
defensive performance, such a topology does not require the clients to be in physical proximity and
have extensive connections. The graph in Fig. B(b)] with C' = 10, R = 5, has e; = 0.3466 and
ming, 35,4, |45, [, t]|* = 7.5833, and the graph in Fig. With C=24,R=06hase; =
0.1780 and miny, Y-, |47, [u',1] |2 = 14.5982. In both graphs, the strongest potential attackers
are located in even-numbered columns. Clearly, the minimum sum, ming, >,/ 4, |AL [, 1]]2,
increases as the number of clients increases, leading to better defensive performance. In the computer
vision experiments of the next section, we use even larger graphs, and achieve an excellent trade-off.

4 Experiments

In this section, we evaluate the training-defense trade-off of our cyclic topology designs for DFL on
computer vision models.

We consider the MNIST dataset Deng| [[2012]] and Fashion MNIST dataset Xiao et al.|[2017] with
LeNet5 model |LeCun et al.| [[1998]], and the CIFAR-10 dataset |Krizhevsky et al.|[2009] with ConvNet
model |Sun et al.|[2021]. We perform comparisons with baseline attacks including deep leakage from
gradient (DLG) Zhu et al.| [2019], improved DLG (iDLG) |Zhao et al.[[2020]], gradient inversion
(GI) [Geiping et al.|[2020]], and class fishing (CF)|Wen et al.|[2022]. In each case, we compare with
CFL and fcDFL and apply defensive strategies including differential privacy (DP) noise |Dwork et al.
[2014]), Soteria|Sun et al.| [2021], quantization, and sparsification |Zhu et al.|[2019], and show the
superior performance with our cyclic topology in all cases.

(a) DP noise (b) Soteria (c) Quantization (d) Sparsification

Figure 4: Quantitative comparison of SSIM between different FL architectures, inference attacks and
defensive strategies for LeNet5 on MNIST. Optimal trade-off is on top left.

First, we consider training LeNet5 on MNIST, and show the curves of test accuracy for training
vs. inference attack performance in terms of structural similarity index measure (SSIM) in Fig. [
Different points on a curve correspond to different perturbation levels, and they are either DP noise,
Soteria prune ratio, quantization bits, or sparsification rate in the respective curves. Higher values
of SSIM indicate better reconstruction and worse defense, therefore the best trade-off among FL
architectures and defensive strategies lies on the top left of each curve.

In the case without noise, CFL has slightly better training performance than our cyclic topology.
However, when perturbation is applied for better defense against inference attack, CFL training
performance degrades to the lower left significantly before it reaches a good defense (except Soteria
which fails to achieve comparable defense). On the other hand, the reconstruction performance
against our topology already reaches zero even without perturbation, as it aggregates gradients from
many clients. Therefore, applying perturbations affects only the training performance (indicated
by the vertical decrease). Therefore, our topology has better privacy-utility trade-off as it frees the
clients from aggressive perturbation applied for privacy concerns.



Obviously, DFL with our cyclic topology outperforms traditional FL in all situations. Furthermore, we
note that CF fails compared to fcDFL and topology-based DFL, because it cannot preset parameters
for all victim clients. Also, the reconstruction performance of Soteria is bounded since it only
focuses on one layer, and traditional FL with Soteria does not surpass the defense performance of our
topology-based DFL.

(a) DP noise (b) Soteria (c) Quantization (d) Sparsification

Figure 5: Comparison of SSIM between different FL architectures, inference attacks and defensive
strategies for LeNet5 on FashionMNIST. Optimal trade-off is on top left.

Similarly, we have the results of LeNet5 on FashionMNIST in SSIM in Fig. [5] . Among different
attack methods, our topology stays on the optimal top left point of the right-most curve in each
defense strategy.

(a) DP noise (b) Quantization (c) Sparsification

Figure 6: Comparison of SSIM between different FL architectures, inference attacks and defensive
strategies for ConvNet on CIFAR-10. Optimal trade-off is on top left.

Finally, we show the performance of ConvNet on CIFAR-10 in SSIM in Fig. []. In the previous
two sets of experiments, we assume that each client uses its local momentum from previous global
iterations. In this experiment, each client transmits both the momentum and the parameter with
the same edge weight to reduce the delay of updates on momentum directions. Specifically, we
consider the ConvNet without backbone (pre-trained feature extractor) as in|Sun et al.| [2021]], and our
fine-tuned test accuracy (63% for CFL and 66% for topology) are much higher than the test accuracy
in the original paper (57% for CFL). DFL with our cyclic topology outperforms CFL even without
noise since it explores different gradient directions simultaneously, and is more likely to avoid local
minimums. Thus, when defense is considered, our designed topology still provides the best trade-off.
In Fig. [6l DLG and CF reconstructions fail to converge and are not shown, but GI and iDLG still
work. Also, there is no Soteria defense, because it exceeds 11GB RAM memory of our GPU for each
client, and may not be practical for edge devices.

In Fig. [/} we compare the original and reconstructed images with different datasets, models, FL ar-
chitectures, and attack methods without defensive perturbation. While traditional FL completely fails
to prevent inference attacks, our cyclic topology achieves perfect defense even without perturbation.

5 Conclusion

We have introduced a novel design of DFL topology with optimized connectivity by measuring the
trade-off between training performance and defense against inference attacks. In the appendix, we
obtained several analytical results. For training performance, we proved that the upper bound for the
regret of loss E(é(k)) — L£(6*) diminishes to 0 after sufficient rounds of training. We quantified the
privacy leakage using the entropy from the adversary’s perspective, and showed that the distortion
N = ZZ, 2u, A, [0, 1]G s prevents the attacker from obtaining information from target gradients.
By combining these two requirements, we showed that cyclic topology-based DFL outperforms
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Figure 7: Reconstructed images without defensive perturbation.

traditional FL schemes on multiple models and datasets in the presence of several different inference
attacks and defense methods.
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A Convergence Analysis

In this section, we analytically characterize the training performance by establishing upper bounds for
the optimality gap and the consensus difference. We prove that with the proper design of connectivity
between neighboring columns, the proposed algorithm would converge to an optimal solution.



A.1 Problem Formulation

We aim at 8 = argming 4 L(f) where L(-) denotes the universal loss function.

In the cyclic topology, we index the number of global cycles by ¢ and the sub-iteration by k =
C(t — 1) 4 ¢, where c is the current operating column, and & increments by 1 whenever a column of
clients complete their operation. We define 9(k) = % Ele 07@ as the average model parameter for
the corresponding operating column at iteration k. With the doubly stochasticity of the transition
matrices W .., we note that é(kﬂ) = 9(k) — )\(k)@(k), where A\(®) is the learning rate of the clients at
sub-iteration k, and G ") _ % 25-11 G EZ)T) is the average gradient, with ¢ denoting the operating
column at sub-iteration k.

In the following sections, we adopt the common assumptions that the loss function £(-) is L-smooth
and satisfies the Polyak-Lojasiewicz (PL) condition, and the standard assumptions of bounded
gradients and loss.

A.2 Optimality Gap

The optimality gap E(é(k)) — L(0*) characterizes the difference between the loss value achieved by
the average model parameter of the operating column of clients and the optimal loss. We show that
this gap diminishes to 0, and thus the proposed framework achieves the optimal loss value.

We first establish an upper bound for the term £(0(k+1)) — L(0*), relating to L(é(k)) — L(6*) and
characterizing how the optimality gap evolves as k increases.

If the assumptions mentioned above hold, we have
~(k+1 .
£@"™) = £67) < (1 p(1+ €)AM)x @)
(™) = £6) + A" k=
where £ > 0 is a bounded constant and € is a constant. p and L arise from the PL condition and the

L-smooth assumption on £(-), respectively. k; is defined such that A(*) < £ and A*) < i, vk >
ki.

We note that (2)) depicts the rate at which the optimality gap decreases in terms of the learning rate
M%) and 1 (which is some constant as defined by the PL condition).

Theorem A.1. If \F) < %fOr Vk, Z,?;l AR = 00 and Ziil ()\(k))z < o0, then we have

lim £(0™) = £(6%) 3)

k— o0

The requirements we impose above for the framework to converge to the optimal loss essentially
indicate that the learning rate should be a sequence decreasing at a moderate speed. For instance, one
may set A(*) to decay proportional to +.

A.3 Consensus Difference

The consensus difference Zf’zl ||0£k) o™ || characterizes how different the clients’ local model
parameters are from the average. We analytically characterize the relationship between the consensus
difference and the designed topology.

We first define the cyclic matrix Wp = H§:1 W . to be the product of all the transition matrices
within one global iteration (or equivalently C' sub-iterations). In the following analysis, we assume
W p is diagonalizable due to the design of W .. The matrix W p characterizes the transition matrix of
one full global iteration starting from the first column.
Proposition 1. The consensus difference of the operating column at sub-iteration K is upper bounded
as follows:
il K K-k
316508 < 2R2(R - 1) S AM||G W) e 77 “
r=1

k=1
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where | -] denotes the floor function, ||G*)|| is the upper bound of the gradient norm for any stochastic

gradient Gﬁk) generated in the corresponding sub-iteration, and e is the second largest eigenvalue of
the cyclic matrix W p.

We note that, as W p is doubly stochastic, e, the second largest eigenvalue of W p, is upper bounded
by 1. It is worth noticing that e5 relates the consensus difference to the topology of the proposed
DFL framework. The smaller e is, the smaller the consensus difference is. Namely, the consensus

difference is O(e2™), where n = LKCT kJ , the number of full cycles that have been completed.

B Entropy Analysis for Privacy Leakage

In this section, we introduce a privacy metric to evaluate the defensive performance against inference
attacks. Specifically, we quantify the privacy leakage from the model parameters using entropy, and
show that our topology eliminates privacy leakage when the number of clients is large.

Entropy is a measure of uncertainty of a random variable |Cover|[1999]. We analytically show the
uncertainty level of user data at the inference attacker, and thus utilize entropy to quantify the privacy
leakage |[Hsu et al.|[2021] to an attacker. We note that if the conditional entropy of a private feature
given the observation is equal to the original entropy then there is no privacy leakage (as concluded
in (7) below).

During the training process, client u uses its local data set D,, to generate the local gradient G,,, and
hence an inference attacker with access to G, obtains partial knowledge on D,,.

Definition B.1. In traditional FL such as CFL and fcDFL, an adversary may receive individual
gradients from victim u,,, and the adversary’s uncertainty on D, is described by the conditional
entropy H (D, | Gu,)-

In DFL with cyclic topology, we denote the multiplier matrix of client u at global iteration ¢ as
M! € RY*! The components of this matrix represent the coefficients of the gradients from every
other client u’ to client u, and depend on the edge weights in the graph topology. Therefore, the
model parameter of user  at global iteration ¢ is essentially the initial parameter 8(°) plus a weighted
sum of all the gradients in the past:

t U
0, =0 + > " MLt WG, (5)
tru

We note that an attacker desires a mixture of small number of samples, which is equivalent to
reconstructing a smaller batch. Therefore, an attacker with multiple in-neighbors can take a linear
combination of the model parameters received from different in-neighbors with the goal to isolate
the involved clients as much as possible. Thus, any attacker client u, with a set of in-neighbors Z,,,
may take an arbitrary linear combination Aia = Ziezw a;M tum by setting arbitrary values for

a; € R to isolate the gradient from any single victim user. To dilstinguish a specific target victim
client w,, the attacker aims at an optimized set of coefficients {«;} to eliminate or suppress the
gradients from other clients. Specifically, this can be achieved if Aza [y, t] = 1, while all other
noises A, [u/, '] ¥(u',t') # (u,,t) are minimized.

Definition B.2. In DFL where individual gradients are not available to the adversary, the adversary’s
uncertainty on D, is described by the conditional entropy H (Duv | 25':1 Al T, t}G’u/) .

Compared to H (D, | G, ), the gradients from other clients is a source of noise/distortion for the
inference attack, and will lead to a larger value for H (Duv | 25’:1 Al o, t]Gu/), indicating

larger uncertainty on the local dataset D,,, at the adversary in DFL. To further quantify the increase
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in entropy in DFL, we derive the difference between the two entropy terms as

U
H (Duv | Z AZQ [u/v t]Gu’> —-H (Duv | Guv)
vt (6)

U
=H (Guu Al [u’,t]G’uz> <H(G,,).
1

u'=

Obviously, since conditioning reduces entropy, the difference above is upper-bounded by H (G, ),
which is the maximum performance of any possible defense. While Aza [ty,t] £ 1, the rest of the

weighted gradient terms from other clients N = ng Ly Al v/, t]G acts as noise/distortion in
reconstructing D,,, . Therefore, the larger the noise variance is, the better the privacy protection is.
For example, if we assume that each element of the gradients is i.i.d. Gaussian distributed G,, ~
N (i, 02), and limy o >z, AL, [ 1] |2 = co (namely, the noise dominates the summation),

we will further have the following characterization:

U
Jim H (Guv | > AL [u’,t]Guz> =H(G.,). (7

u'=1

With this result, we show that it is possible to achieve perfect defense with no privacy leakage via
topology design.

With a finite number of clients, we in the aforementioned derivation proved that the “strength" of noise
generated from other clients can be measured by the sum squared magnitude 3°,,_,, |4}, [v/,1] 2,
which characterizes the theoretical boundary of defense performance against any inference attack.

Furthermore, we note that it is even harder to attack DFL with a given topology than the result in
(), because the above entropy analysis does not take into account the training momentum and the
difference between the training parameters of the attacker and the victims. In a practical DFL scenario,
the real entropy difference is greater than that in (6)), and additionally depends on the hyperparameters
such as the learning rate and momentum factor.
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