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Understanding the hidden representations within neu-
ral networks is essential for addressing regulatory con-
cerns [3, 10], preventing harms in deployment [2, 9], and
can aid innovative model designs [4]. This problem has
been studied extensively for images, both for convolutional
neural networks (CNNs) [1, 7, 8, 11] and, more recently,
vision transformers (ViTs) [13, 15]. However, while video
transformers do share their overall architecture with image-
level ViTs, the insights obtained in existing works do very
little to explain their inner mechanisms. Consider, for
example, the recent approach for tracking occluded ob-
jects [14] shown in Figure 1 (top). To accurately reason
about the trajectory of the invisible object inside the pot,
texture or semantic cues alone would not suffice. What,
then, are the spatiotemporal mechanisms used by this ap-
proach? Are any of these mechanisms universal across
video models trained for different tasks?

In this work we present the Video Transformer Concept
Discovery algorithm (VTCD) - the first concept discovery
method for interpreting the representations of video trans-
formers. We focus on concept-based interpretability [6–
8, 16] due to its capacity to explain the decision-making
process of a complex model’s distributed representations in
high-level, intuitive terms. Our goal is to decompose a rep-
resentation at any layer into human-interpretable ‘concepts’
without any labelled data (i.e. concept discovery) and then
rank them in terms of their importance to the model output.

Concretely, we first group model features at a given layer
into spatiotemporal tubelets, which serve as a basis for our
analysis. Next, we cluster these tubelets across videos to
discover high-level concepts. The resulting concepts for an
occluded object tracking method [14] are shown in Figure 1
and span a broad range of cues, including spatiotemporal
ones that detect events, like collisions, or track contain-
ers. To better understand the decision-making mechanisms
of video transformers, we then quantify the importance of
concepts for the model’s predictions and propose a novel,
noise-robust approach to estimate concept importance.

Next, we use VTCD to study whether there are any
universal mechanisms in video transformer models, that
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What concepts are important for object permanence?
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Figure 1. Heatmap predictions of the TCOW model [14] for track-
ing through occlusions (top), together with concepts discovered
by our VTCD (bottom). We can see that the model encodes po-
sitional information in early layers, identifies containers and col-
lision events in mid-layers and tracks through occlusions in late
layers. Only one video is shown, but the discovered concepts are
shared between many dataset samples (see video for full results).

emerge irrespective of their training objective. We ex-
tend recent work [5] to discover important concepts that
are shared between several models. We analyze a diverse
set of models (e.g. supervised, self-supervised, or video-
language) and make several discoveries: (i) many concepts
are shared between models trained for different tasks; (ii)
early layers form spatiotemporal bases that underlines the
information processing; (iii) later layers form object-centric
representations, even when trained without supervision.

We also show how VTCD can be applied for downstream
tasks. Firstly, pruning the heads of an action classifica-
tion model according to their estimated importance yields
a 4.3% increase in accuracy while reducing computation
by 33%. Secondly, object-centric concepts discovered by
VTCD can be used for video-object segmentation (VOS)
and achieve strong performance on the DAVIS’16 bench-
mark [12] even for self-supervised representations.
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